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Abstract

We present TropNNC, a framework for compressing neural networks with linear and con-
volutional layers and ReLU activations. TropNNC is a structured compression framework
based on a geometrical approach to machine/deep learning, using tropical geometry and
extending the work of Misiakos et al. (2022). We use the Hausdor distance of zonotopes
in its standard continuous form to achieve a tighter approximation bound for tropical poly-
nomials compared to previous work. This enhancement leads to the development of an
eective compression algorithm that achieves superior functional approximations of neural
networks. Our method is signicantly easier to implement compared to other frameworks,
and does not depend on the availability of training data samples. We validate our framework
through extensive empirical evaluations on the MNIST, CIFAR, and ImageNet datasets.
Our results demonstrate that TropNNC achieves performance on par with state-of-the-art
methods like ThiNet (even surpassing it in compressing linear layers) and CUP. To the best
of our knowledge, it is the rst method that achieves this using tropical geometry.

Keywords: tropical geometry, zonotopes, Hausdor distance, neural network compres-
sion

1 Introduction

In recent years, deep neural networks (DNNs) have signicantly advanced the eld of com-
puter vision, excelling in tasks such as image classication (Krizhevsky et al., 2012; Si-
monyan and Zisserman, 2015; He et al., 2016; Rawat and Wang, 2017), object detection
(Zou et al., 2023), semantic segmentation (Noh et al., 2015; Guo et al., 2018), and image
captioning (Jia et al., 2015; Hossain et al., 2019). These networks have outperformed tradi-
tional methods reliant on manually crafted visual features. However, despite their success,
deploying DNNs on resource-constrained devices, such as mobile phones or embedded sys-
tems, remains challenging due to their substantial computational and storage demands. For
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example, the VGG-16 model (Simonyan and Zisserman, 2015), with its approximately 138
million parameters, requires over 500MB of storage and performs about 31 billion FLOPs
to classify a single image. Such resource-intensive models exceed the capabilities of small
devices and pose signicant challenges, including energy limitations recently highlighted by
the deployment of large language models (Samsi et al., 2023). This has led to a growing
focus on network compression techniques (Blalock et al., 2020) as a critical area of research.

Initial attempts to reduce network complexity date back to the 1990s, when LeCun et al.
(1989) demonstrated that removing negligible weights from a network had minimal impact
on performance. This approach, known as neural network pruning, has since evolved.
Han et al. (2015) proposed a simple yet eective pruning strategy: iteratively removing
connections with weights below a certain threshold and ne-tuning the network to recover
accuracy, resulting in highly sparse models.

These methods belong to the category of unstructured pruning, which alters the net-
work’s structure by eliminating individual weights. While eective in reducing network size,
unstructured pruning presents challenges in practical applications. Such pruned networks
often require specialized hardware and software for ecient inference due to issues like poor
cache locality and jumping memory accesses, which can negate the benets of sparsity and
sometimes even degrade performance (Wen et al., 2016).

To overcome the limitations of unstructured pruning, structured pruning methods, such
as channel-level pruning, have been proposed (He and Xiao, 2024). Notably, the ThiNet
framework by Luo et al. (2017) prunes entire lters or channels, maintaining the network’s
original structure. In another work, Wen et al. (2016) proposed the structured sparsity learn-
ing approach, which also includes lter- or channel-wise pruning. This structured approach
ensures compatibility with existing deep learning libraries and oers several advantages:
it signicantly reduces memory footprint, facilitates further compression and acceleration
through methods like parameter quantization (Gong et al., 2014; Chen et al., 2015; Wu
et al., 2016), and accelerates various vision tasks.

Parallel to these advancements, tropical geometry (Maclagan and Sturmfels, 2021) has
emerged as a promising mathematical framework with applications in neural networks and
machine learning (Maragos et al., 2021). Tropical geometry, rooted in algebraic geometry,
operates over the tropical semiring (Cuninghame-Green, 1994), where conventional addition
and multiplication are replaced by min and plus operations, respectively. This transforma-
tion turns polynomials into piecewise linear functions, making tropical geometry highly
relevant to the study of neural networks with piecewise linear activations like ReLU.

Tropical mathematics encompasses a wide range of applications, which include opera-
tions research and scheduling (Cuninghame-Green, 1979), control and optimization (Bac-
celli et al., 2001; Cohen et al., 2004; Butkovič, 2010; Akian et al., 2012), mathematical
physics (Litvinov et al., 2001), speech recognition (Mohri et al., 2002), polyhedral geometry
(Gaubert and Katz, 2011), tropical geometry (Maclagan and Sturmfels, 2021), dynamical
systems on weighted lattices (Maragos, 2017), sparsity theory on weighted lattices (Tsilivis
et al., 2022), matrix factorization (Kordonis et al., 2024), nite state transducers (Theo-
dosis and Maragos, 2018), convex regression (Maragos and Theodosis, 2020), and machine
learning (Maragos et al., 2021; Gärtner and Jaggi, 2008). Recently, tropical geometry has
been applied to the theoretical study of neural networks. For example, Zhang et al. (2018)
demonstrated the equivalence of ReLU-activated neural networks with tropical rational
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mappings, and used zonotopes to compute a bound on the number of linear regions of net-
works, equal to the one in (Montufar et al., 2014). Other works, like those of Charisopoulos
and Maragos (2018); Alfarra et al. (2023); Smyrnis and Maragos (2020), have used tropical
geometry to compute bounds on the number of linear regions in neural networks and to
develop methods for pruning and compressing these networks.

In this paper, we explore the application of tropical geometry to neural network com-
pression. We build on the work of Misiakos et al. (2022), who utilized tropical geometry
for structured neural network compression by geometrically approximating the zonotopes
corresponding to the network layers. Our contributions include:

• Obtaining a tighter bound for the functional approximation of tropical polynomials
than that presented in (Misiakos et al., 2022) using the standard, continuous Hausdor
distance.

• Designing an algorithm that leverages tropical geometry and the Hausdor distance
for the structured compression of neural networks. Our algorithm renes the choice of
weights in the compressed network from the clustering done in (Misiakos et al., 2022)
and we also provide an iterative technique to further optimize them. Our method is
simple to implement and does not depend on the availability of training data samples
like other frameworks such as ThiNet (Luo et al., 2017). It is also the rst method
based on the theory of tropical geometry that compresses convolutional layers.

• Evaluating our algorithm through experiments on MNIST, Fashion-MNIST, CIFAR-
10, CIFAR-100, and ImageNet datasets. Our method outperforms that of Misiakos
et al. (2022) and achieves competitive or superior performance compared to ThiNet,
especially in compressing linear layers, and superior performance compared to CUP
(Duggal et al., 2021), particularly in the VGG architecture.

This work demonstrates the potential of tropical geometry in enhancing neural network
compression techniques, providing a theoretical foundation and a practical algorithm that
improves eciency and maintains accuracy.

2 Related Work

Seminal works have showcased that neural networks tend to be hyperparameterized. Denil
et al. (2013) demonstrated that neural networks can be reconstructed using a small subset of
parameters, which sparked signicant interest in network compression techniques. Blalock
et al. (2020) reviewed various methods for reducing model size without compromising per-
formance, highlighting the ongoing advancements in this area.

Early methods for network compression focused on unstructured pruning. LeCun et al.
(1989) showed that removing unimportant weights leads to minimal performance loss. This
approach was further rened by Han et al. (2015), who proposed pruning weights below
a certain threshold followed by ne-tuning the network. Despite their eectiveness, these
methods require specialized hardware for ecient inference due to their unstructured nature.

Structured pruning techniques maintain the network’s architecture, facilitating better
compatibility and eciency. Wen et al. (2016) introduced structured sparsity learning to
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compress networks by nding compact representations of lters and channels, preserving
the architecture. Luo et al. (2017) proposed ThiNet, a method that greedily prunes l-
ters based on their impact on the next layer, thereby maintaining network structure and
eciency. Yu et al. (2018) presented the Neuron Importance Score Propagation (NISP)
algorithm, which extended the ideas of ThiNet by pruning neurons and channels based on
their impact on the nal layer output. Lin et al. (2020) introduced HRank, which uses
feature map information to rank and prune lters. Duggal et al. (2021) proposed Cluster
Pruning (CUP), which prunes similar lters by clustering them based on features derived
from both incoming and outgoing weight connections. CUP addresses the limitations of
prior work by eciently determining the ideal number of lters to prune in each layer and
integrating pruning into the initial training phase, leading to signicant savings in train-
ing time and maintaining performance. Wang et al. (2021) introduced a novel approach
to pruning convolutional neural networks that focuses on reducing structural redundancy
rather than merely pruning individual neurons or channels. Their method identies and
eliminates redundant structures within the network architecture, thereby achieving more
ecient pruning without compromising the network’s performance. Smyrnis and Maragos
(2020) proposed a tropical division algorithm for structured network compression, further
enhancing the capabilities of structured pruning techniques. Misiakos et al. (2022) devel-
oped Neural Path K-means, which uses clustering techniques based on tropical geometry
and functional approximation for structured compression.

Beyond pruning, other state-of-the-art strategies for network compression include pa-
rameter quantization and low-rank approximation. Parameter quantization, as explored by
Zhou et al. (2017), Zhou et al. (2018) and Han et al. (2015), reduces the number of bits per
parameter, signicantly lowering memory and computational requirements. Behdin et al.
(2023) presented an optimization-based framework for ecient post-training quantization of
large language models. Polino et al. (2018) presented quantized distillation, a method that
combines quantization with teacher-student distillation. Low-rank approximation (LRA)
techniques decompose weight matrices into smaller matrices, reducing parameters and com-
putations. Studies by Denton et al. (2014), Jaderberg et al. (2014), Sindhwani et al. (2015),
Ioannou et al. (2016), Tai et al. (2016), and Chen et al. (2018) have shown that LRA
can achieve signicant speedups and compression with minimal accuracy loss, although it
typically requires iterative optimization. These methods can be combined with structured
pruning approaches like ThiNet to achieve further model compression and eciency.

Our framework is a structured pruning method that extends the approach of Misiakos
et al. (2022). It prunes networks layer-by-layer, aiming to minimize the error introduced to
the input of the next layer. In that sense, it is similar to the ThiNet framework. However,
our algorithm is simpler to implement and does not require a training dataset. Our frame-
work leverages clustering and can be naturally extended to non-uniform pruning, drawing
parallels to the CUP framework. In fact, it improves upon steps 1, 2, and 3 of CUP. For
step 1, we use similar clustering vectors (referred to as lter features by CUP authors Dug-
gal et al. (2021)) for linear layers, and introduce a new method for constructing clustering
vectors in convolutional layers. For step 2, we introduce two approaches for choosing the
distance threshold of the hierarchical clustering. Our main contribution lies in step 3, where
we employ tropical geometry to select a better representative for each cluster, rather than
simply choosing the neuron or channel with the most energy. While it is tempting to com-
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pare our framework with those of NISP (Yu et al., 2018) and HRank (Lin et al., 2020) given
that they are both structured pruning methods, it is important to recognize the distinctions
between them and ours. NISP and HRank are advanced frameworks specically designed
to address the limitations of layer-by-layer pruning approaches, such as those employed
by ThiNet and our own method. In contrast, our framework leverages a rich theoretical
foundation and does not rely on training data samples, oering a unique advantage in cer-
tain contexts. We believe our results are promising and present signicant advantages.
Our work highlights the potential of tropical geometrical techniques and paves the way
for further research that could enhance their competitiveness with current state-of-the-art
methods.

3 Tropical Geometry of Neural Networks

In this section, we introduce the fundamental background of tropical geometry and its
applications to neural network compression.

3.1 Background on Tropical Geometry

Tropical algebra is a eld of mathematics that studies the tropical semiring. Tropical geom-
etry is the counterpart of algebraic geometry in the tropical setting. The tropical semiring
can refer to either the min-plus semiring or the max-plus semiring (Butkovič, 2010). In
this work, we adhere to the convention of using the max-plus semiring (Rmax,,+), dened
as the set Rmax = R  −∞ equipped with two binary operations:  (ordinary max) and
+ (ordinary sum).

3.1.1 Tropical Polynomials and Rational Functions

Within the max-plus semiring, we can dene polynomials. A tropical polynomial f in d
variables x = (x1,    , xd) is dened as the function:

f(x) =

n

i=1


aTi x+ bi


= max

i∈[n]


aTi x+ bi


, (1)

where [n] := 1, , n. Here, n represents the rank of the tropical polynomial. Each mono-
mial term aTi x+ bi of the polynomial has an exponent or slope ai ∈ Rd and a coecient
or bias bi ∈ R. Each monomial term corresponds to a plane in Rd+1. Consequently, tropical
polynomials are piecewise linear convex functions. Specically, every tropical polynomial is
a continuous piecewise linear convex function, and every continuous piecewise linear convex
function can be expressed (though not uniquely) as a tropical polynomial (Maclagan and
Sturmfels, 2021). The set of tropical polynomials in x denes the semiring Rmax[x]. Figures
1a, 1b illustrate examples of tropical polynomials in one and multiple variables, respectively.

Tropical rational functions extend the concept of rational polynomial functions to tropi-
cal algebra. A tropical rational function is dened as the tropical multiplication of a tropical
polynomial p by the tropical multiplicative inverse q−1 of another tropical polynomial q. In
conventional arithmetic, this operation corresponds to the dierence of two tropical poly-
nomials p and q:

r(x) = p(x)− q(x)
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(d) f(x, y) = maxx,−x−maxy,−y

Figure 1: (a) depicts a single-variate tropical polynomial, (b) depicts a multi-variate tropical
polynomial, (c) depicts a single-variate tropical rational function, (d) depicts a multi-variate
tropical rational function

Tropical rational functions correspond to general piecewise linear functions. Specically,
every tropical rational function is a continuous piecewise linear function, and every contin-
uous piecewise linear function can be expressed (though not uniquely) as a tropical rational
function. Figures 1c, 1d provide examples of tropical rational functions.

3.1.2 Newton Polytopes

As with algebraic geometry (Hartshorne, 2013), in tropical geometry we can dene the
Newton polytope (Monical et al., 2019) of a tropical polynomial. Newton polytopes can
be used to analyse the behavior of a polynomial. They connect tropical geometry with
polytope theory, an extensively studied eld of mathematics (Ziegler, 2012). For a tropical
polynomial f as dened in (1), we dene its Newton polytope as the convex hull of the slopes
ai of f

Newt(f) := conv ai, i ∈ [n] 
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Additionally, we dene the extended Newton polytope of a tropical polynomial f as the
convex hull of the slopes ai of f extended in their last dimension by the coecient bi

ENewt(f) := conv

(aTi , bi), i ∈ [n]




The following proposition allows us to calculate the (extended) Newton polytope of expres-
sions of tropical polynomials.

Proposition 1 (Zhang et al., 2018) Let f, g ∈ Rmax[x] be two tropical polynomials in x.
For the extended Newton polytope, the following holds:

ENewt (f  g) = conv ENewt(f)  ENewt(g)
ENewt(f + g) = ENewt(f) ENewt(g)

Here,  denotes the tropical addition (taking the maximum), and + denotes the tropi-
cal multiplication (ordinary addition). The Minkowski sum  of two polytopes (or more
generally subsets of Rd) P and Q is dened as:

P Q := p+ q  p ∈ P, q ∈ Q

Using the principle of induction, Proposition 1 can be generalized to any nite tropical
expression of tropical polynomials.

The extended Newton polytope provides a geometrical interpretation for studying tropi-
cal polynomials. The following propositions establish the relationship between tropical poly-
nomials and their extended Newton polytopes. The upper envelope or upper hull UF (P )
of an extended Newton polytope is dened as the set of all points (aT , b) of the polytope P
that are not ”shadowed” by any other part of the polytope when viewed from above (last
dimension). This means that there is no b′ > b such that (aT , b′) belongs to P . We have
the following useful lemma (proof in Appendix A.1).

Lemma 2 Let p ∈ Rmax[x] a tropical polynomial in d variables with extended Newton
polytope P = ENewt(p). If (aT , b) lies below the upper envelope of P , then ∀x ∈ Rd, aTx+
b ≤ p(x). The inequality is strict if (aT , b) lies strictly below the upper envelope.

An immediate consequence of the above lemma is the following theorem:

Theorem 3 Let f ∈ Rmax[x] be a tropical polynomial. The values of f are fully determined
by the upper envelope UF (ENewt(f)) of its extended Newton polytope.

Theorem 4 (Charisopoulos and Maragos, 2018) The linear regions of a tropical polyno-
mial f ∈ Rmax[x] are in one-to-one correspondence with the vertices of UF (ENewt(f)).
In fact, each vertex (aTi , bi) ∈ UF (ENewt(f)) gives exactly one linear region D where
f(x) = aTi x+ bi.

The above theorem highlights the direct relationship between the geometric structure of
the extended Newton polytope and the piecewise linear nature of the tropical polynomial.
An immideate consequence of Theorems 3 and 4 is the following theorem:
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(0, 1, 1)
(0,−1, 1)

(0, 0, 0)

(a) ENewt(f)

(1, 0, 1)

(−1, 0, 1)

(b) ENewt(g) (c) ENewt(f  g) (d) ENewt(f + g)

Figure 2: Operations on tropical polynomials. ENewt(f g) corresponds to the convex hull
of the union of the vertices of the polytopes ENewt(f),ENewt(g). ENewt(f+g) corresponds
to the Minkowski sum of ENewt(f),ENewt(g). For the polytope ENewt(f g) we illustrate
with blue the upper envelope, which consists of a single face. The vertices of the upper
envelope are the only non reduntant terms of the polynomial f  g.

Theorem 5 For any two tropical polynomials f, g ∈ Rmax[x], the following holds:

f = g ⇔ UF (ENewt(f)) = UF (ENewt(g))

This implies that two tropical polynomials are functionally identical if and only if their
extended Newton polytopes have the same upper envelope.

The above theorems indicate that a tropical polynomial is fully functionally determined by
the upper envelope of its extended Newton polytope, as shown by the following example.

Example 1 Consider the polynomials corresponding to Figure 2.

f(x, y) = max0,−y + 1, y + 1

g(x, y) = maxx+ 1,−x+ 1
We have that

(f  g)(x, y) = max0, x+ 1, y + 1,−y + 1,−x+ 1
(f + g)(x, y) = maxx+ 1,−x+ 1, x− y + 2,−x− y + 2, x+ y + 2,−x+ y + 2

The extended Newton polytopes of f, g, f  g, f + g are shown in Figure 2. The polynomial
f  g can be reduced as follows:

(f  g)(x, y) = maxx+ 1, y + 1,−y + 1,−x+ 1,

which corresponds to the vertices of the upper envelope of ENewt(f  g).

3.1.3 Zonotopes

In polytope theory, zonotopes are a special class of convex polytopes that can be dened as
the Minkowski sum of a nite set of line segments (or edges). Formally, given a set of line
segments g1,    , gn, the zonotope is dened as

Z :=


i∈[n]
gi
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The line segments gi are referred to as the zonotope’s generators. Each generator contributes
to the shape and size of the zonotope, which is formed by the space swept out by these line
segments.

Alternatively, a zonotope can be expressed equivalently by a set of vectors v1,    ,vn ∈
Rd and a starting point s ∈ Rd. By taking the generators to be the segments [0,v1],    , [0,vn]
and translating the rst segment by s, we obtain the equivalent form:

Z =


s+

n

i=1

λivi  0 ≤ λi ≤ 1



In this context, the vectors vi are sometimes referred to as the zonotope’s generators,
meaning the segments [0,vi]. When the starting point s is not mentioned, it is assumed to
be the origin 0.

For a zonotope with a starting point s ∈ Rd and generators v1,    ,vn ∈ Rd, a vertex
u ∈ VZ corresponds to points where λi = 0 or 1. The vertex u can be expressed as:

u = s+


i∈I
vi,

where I ⊆ [n]. It can be shown that zonotopes have up to exponential many verticesIn
fact, for generators in general positions they have exactly 2

d−1
j=0 nCr(n − 1, j) vertices

(Gritzmann and Sturmfels, 1993).
Zonotopes exhibit several interesting properties. Notably, they are centrally symmetric.

This symmetry, along with their convex structure, make zonotopes particularly useful in
various elds, including optimization (Bern and Eppstein, 2001) and computational geom-
etry (Ziegler, 2012).

3.2 Neural Networks with Piecewise Linear Activations

Tropical geometry provides a mathematical framework for analyzing neural networks with
piecewise linear activation functions. Leveraging the properties of tropical polynomials
and Newton polytopes, it is used to model the behavior of various activation functions
commonly used in neural networks. In this work, we focus on ReLU-activated networks. In
this section, we outline the basic tropical geometrical properties of ReLU-activated networks
and establish our notations.

ReLU Activations. Consider a network which consists of an input layer x = (x1,    , xd),
a hidden layer f = (f1,    , fn) of ReLU units, and an output layer v = (v1,    , vm). The
input, hidden, and output layers are connected through linear transformations represented
by matrices A and C. Each neuron i has input weights and bias given by Ai,: = (aTi , bi)
and output weights CT

:,i = (c1i,    , cmi). We assume the output layer has no bias. Such a
network is depicted in Figure 3.

The output of the ReLU unit i is given by:

fi(x) = ReLU(aTi x+ bi) = maxaTi x+ bi, 0

This expression represents a tropical polynomial of rank 2, with one term being the constant
0. The extended Newton polytope ENewt(fi) of fi is an edge with one endpoint at the origin
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x1

x2

...

xk

...

xd

f1

f2

...

fi

...

fn

b1

b2

bi

bn

v1

v2

...

vm

...

vm

ai1

ai2

aik

aid

c1i

c2i

cji

cmi

Figure 3: Neural network with one hidden ReLU layer. The rst linear layer has weights
aTi  with bias bi corresponding to i-th node ∀i ∈ [n] and the second has weights cji,
∀j ∈ [m], i ∈ [n]

0 and the other endpoint at (aTi , bi). The j-th component of the output layer vj can be
computed as follows:

vj =


i∈[n]
cjifi =



i:cji>0

cjifi −


i:cji<0

cjifi = pj − qj 

In the above expression, cjifi are tropical polynomials. Thus, pj and qj are tropical
polynomials formed by the addition of tropical polynomials. Consequently, vj is a tropical
rational function. We call pj the positive polynomial and qj the negative polynomial of vj .
This result can be extended to deeper networks, as suggested by the following proposition:

Theorem 6 (Zhang et al., 2018) A ReLU-activated deep neural network F : Rd  Rm is
a tropical rational mapping (vector whose elements are tropical rational functions).

The extended Newton polytope of cjifi is an edge with one endpoint at the origin 0
and the other at cji(aTi , bi). The extended Newton polytope Pj of pj is the Minkowski sum
of the positive generators cji(aTi , bi) : cji > 0, and the polytope Qj of qj is the Minkowski
sum of the negative generators cji(aTi , bi) : cji < 0. Thus, Pj , Qj are zonotopes. We
refer to Pj as the positive zonotope and Qj as the negative zonotope of vj .

4 Approximation based on Hausdor distance

In this section, we present our improved theorem, which uses the Hausdor distance in its
standard continuous form to bound the error between the original and approximate neural
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networks. Misiakos et al. (2022) derived a bound for the error of approximating the tropical
polynomials that represent a neural network. The motivation for geometrically bounding
the error of these polynomials stems from Theorem 5. This theorem indicates that two
polynomials with the same extended Newton polytopes are functionally equivalent. Con-
sequently, it is expected that two tropical polynomials with approximately equal extended
Newton polytopes will attain similar values.

The metric used by Misiakos et al. (2022) to dene the distance between extended
Newton polytopes is a discrete form of the Hausdor distance. In contrast, we extend their
result by employing the standard continuous Hausdor distance between two polytopes to
obtain a tighter bound. As a convention we consider the denition of polytopes as convex
and including their interior. Moreover, the distance between two points u and v is denoted
as dist(u,v) := ∥u−v∥, where ∥ · ∥ denotes the standard L2 Euclidean norm. The distance
between a point u and a set V is dened as dist(u, V ) = dist(V,u) := infv∈V ∥u− v∥. We
proceed by providing the denition of the Hausdor distance.

Denition 7 (Hausdor distance) Let S, S̃ be two subsets of Rd. The Hausdor dis-
tance H(S, S̃) of the two sets is dened as

H(S, S̃) := max


sup
u∈S

dist(u, S̃), sup
v∈S̃

dist(S,v)



In the case of polytopes, the following lemma (proof in Appendix A.2) reassures us that
the suprema in the above expression are attained, and in fact by points in the vertex sets
VP , VP̃ of the polytopes.

Lemma 8 Due to the convexity and compactness of polytopes, we have that

H(P, P̃ ) = max


max
u∈VP

dist(u, P̃ ),max
v∈VP̃

dist(P,v)



In their work, Misiakos et al. (2022) used the discrete form of the Hausdor distance,
dened as the Hausdor distance of the vertex sets of the two polytopes (DH(P, P̃ ) :=
H(VP , VP̃ )), to obtain the following result.

Proposition 9 (Misiakos et al., 2022) Let p, p̃ ∈ Rmax[x] be two tropical polynomials with
extended Newton polytopes P = ENewt(p) and P̃ = ENewt(p̃). Then,

1

ρ
max
x∈B

p(x)− p̃(x) ≤ DH(P, P̃ )

where B = x ∈ Rd : ∥x∥ ≤ r and ρ =
√
r2 + 1.

We extend the result of Misiakos et al. (2022). The proof is provided in the appendix.

Proposition 10 Let p, p̃ ∈ Rmax[x] be two tropical polynomials with extended Newton poly-
topes P = ENewt(p) and P̃ = ENewt(p̃). Then,

1

ρ
max
x∈B

p(x)− p̃(x) ≤ H(P, P̃ )

where B = x ∈ Rd : ∥x∥ ≤ r and ρ =
√
r2 + 1.
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Since VP ⊆ P, VP̃ ⊆ P̃ , we have that dist(u, P̃ ) ≤ dist(u, VP̃ ), dist(P,v) ≤ dist(VP ,v).
The equality in the aforementioned inequalities is achieved only in special cases and thus
the bound H(P, P̃ ) we provide is in general tighter than DH(P, P̃ ) from Misiakos et al.
(2022). We demonstrate one example where the two formulations give equal distances and
one where the standard Hausdor distance is strictly smaller than the discrete one.

Example 2 Let P be the zonotope formed by taking the generators (1, 0) and (cos 60◦ =
1
2 , sin 60

◦ =
√
3
2 ). Form zonotope P̃ by taking as a generator the mean of the two generators

of P , which is the vector (34 ,
2+

√
3

4 ). Refer to Figure 4a for a visual representation.
The discrete Hausdor distance between the two polytopes is given by:

DH(P, P̃ ) = max

√
3

2
,
1

2


=

√
3

2


In this case, the Hausdor distance is equal to the discrete one:

H(P, P̃ ) = max

√
3

2
, sin 30◦ · generator of P̃ 



= max

√
3

2
,
1

2
· cos 30◦ =

√
3

4


=

√
3

2


Example 3 Let zonotope P be formed by taking the generators (1, 0) and (cos 60◦ = 1
2 , sin 60

◦ =√
3
2 ). Form zonotope P̃ by taking as a generator the sum of the two generators, which results

in the vector (32 ,
2+

√
3

2 ). Refer to Figure 4b for a visual representation.
The discrete Hausdor distance between the two polytopes is calculated as:

DH(P, P̃ ) = max0, 1 = 1

Here, the Hausdor distance is strictly smaller and equal to:

H(P, P̃ ) = max


0,

1

2


=

1

2


Notice that if our goal were to approximate the polytope P by the polytope P̃ , then
according to the discrete Hausdor distance, taking the mean is the optimal strategy and
gives distance

√
32 (example 2), better than 1 (example 3). On the other hand, according

to the Hausdor distance in its standard form, taking the sum is the optimal strategy
and gives distance 12 (example 2), better than

√
32 (example 3). This implies that an

algorithm based on the Hausdor distance would imply a better approximation of P in the
above example.

We derive the following result, which diers from (Misiakos et al., 2022) by using the
standard form of the Hausdor distance and thus providing a tighter bound. For the proof
we apply the triangle inequality and then repeatedly Proposition 10 to each output of the
network. The full proofs of Proposition 10 and Theorem 11 are provided in Appendix A.3.
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1

1

1/2

√
3/2

30o

60o

(a) Example 2

1

1

1/2

30o

60o

(b) Example 3

Figure 4: Polytopes P , P̃ of examples 2, 3

Theorem 11 Let v and ṽ be the outputs of two neural networks as in Figure 3. Then, the
following inequality holds:

1

ρ
max
x∈B

∥v(x)− ṽ(x)∥1 ≤
m

j=1


H(Pj , P̃j) +H(Qj , Q̃j)


,

where ∥ · ∥1 denotes the L1 norm.

5 Compression Algorithm

In this section we present our algorithm TropNNC for neural network compression. Our
method, based on Theorem 11, is a structured neural network compression method that
reduces the number of neurons in the hidden layers and produces a compressed network
that is a functional approximation of the original. We dierentiate between single-output
and multi-output networks and introduce novel approaches for both scenarios. The main
achievement of our method is to preserve the neural network as a function, achieving per-
formance comparable to state-of-the-art frameworks, all without relying on training data
samples.

5.1 Single Output

First, we focus on single output networks, as the one depicted in Figure 3, with m = 1.
The network has weight matrices A ∈ Rn×(d+1), C ∈ R1×n, and a single output v with
corresponding positive and negative zonotopes P and Q. We aim to approximate this
network with a smaller one that has fewer neurons in the hidden layer, say K < n, resulting
in a new hidden layer f̃ = (f̃1,    , f̃K) with new weight matrices A and C. Our goal is to
ensure that ṽ(x) ≈ v(x) for all x ∈ B. According to Theorem 11, it is sucient to choose
the new weight matrices A and C such that P ≈ P and Q ≈ Q, where the approximation
relation is in terms of the Hausdor distance between the zonotopes.

In the original network with n hidden neurons, each neuron contributes a generator
ci(aTi , bi), which can be either positive or negative. In the approximating network with K
hidden neurons, each neuron contributes a generator c̃i(ãTi , b̃i). We aim to pick generators
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c̃i(ãTi , b̃i) such that the generated positive and negative zonotopes P and Q approximate
the positive and negative zonotopes P and Q, respectively.

In essence, we have translated the neural network approximation problem into a zonotope
approximation problem—specically, the task of approximating a zonotope with another
zonotope that has fewer generators. This problem is known in the literature as zonotope
order reduction (Yang and Scott, 2018). In our case, the approximation must happen in
terms of the Hausdor distance.

5.1.1 Algorithm for single output network

Misiakos et al. (2022) proposed the algorithm ”Zonotope K-means” for compressing single-
output neural networks. Their approach uses K-means clustering on the set of positive
and negative generators, and replaces the generators of each formed cluster by a single
representative, the center of the cluster (i.e. the mean of the generators of the cluster).

In contrast, our approach also uses K-means to cluster the generators, but instead of
taking the representative to be the center of the cluster, we take the representative to be the
sum of the generators of the cluster. We show later that this compression produces a tighter
approximation of the neural network compared to (Misiakos et al., 2022). We demonstrate
this with Example 4 and prove this formally with Proposition 12 and Corollary 13. Our
Algorithm 1 is depicted below.

Algorithm 1 TropNNC, Single output

1: Split the generators ci(aTi , bi) into positive and negative generators:

ci(aTi , bi) : ci > 0,
ci(aTi , bi) : ci < 0

2: Execute K-means with K2 centers on the positive generators ci(aTi , bi) : ci > 0,
and K2 centers on the negative generators ci(aTi , bi) : ci < 0.

3: Obtain positive and negative cluster representatives:

c̃i(ãTi , b̃i) : i ∈ C+,
c̃i(ãTi , b̃i) : i ∈ C−,

where C+  C− = [K] and c̃i(ãTi , b̃i) is the sum of the generators of cluster i.
4: For each i ∈ [K] construct a (hidden layer) neuron with input weights and bias

c̃i(ãTi , b̃i).
5: For each constructed neuron i set the output weight to 1 if the neuron corresponds to

a representative of a positive cluster (i ∈ C+), otherwise set it to -1.

Example 4 Suppose we have a positive zonotope consisting of 3 positive generators g1, g2, g3
like the pink zonotope (hexagon) in Figure 5a, and suppose we have K2 = 2. The Zonotope
K-means algorithm of Misiakos et al. (2022) will form 2 clusters of generators, the black
cluster which consists of a single generator g1, and the pink cluster which consists of the
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g2

g3

g1

(a) Original Zonotope

g̃2 =
g2+g3

2

g̃1 = g1

(b) Zonotope K-means

g̃2 = g2 + g3

g̃1 = g1

(c) TropNNC

Figure 5: Example execution of Zonotope K-means and TropNNC

pink generators g2, g3. Zonotope K-means will take as cluster representatives the centers of
the clusters. In our example, this will be the black generator g̃1 = g1 for the black cluster,
and the blue generator g̃2 = g2+g3

2 for the pink cluster, as in Figure 5b. The blue zonotope
is the zonotope generated by the representatives of the clusters (black and blue generators
g̃1, g̃2 respectively), and it is the approximation that Zonotope K-means uses to approximate
the pink zonotope.

In contrast, TropNNC will also form the same 2 clusters of generators, but instead
of taking the center, it will take the sum of the generators of each cluster as the cluster
representative. In our example, these will be the black generator g̃1 = g1 and the blue
generator g̃2 = g2 + g3 of Figure 5c, which form a dierent blue zonotope which is used as
the approximation of the pink zonotope.

In this example, one can visually verify that according to the Hausdor distance, the
approximation of TropNNC is better than the approximation of Zonotope K-Means.

The result of Example 4 can be generalized. Indeed, the following bound and its corollary
hold (proofs in Appendix A.4 and A.5).

Proposition 12 Suppose the clusters K are enough so that for every cluster, no 2 gener-
ators of the cluster form an obtuse angle. Then, single-output TropNNC produces a neural
network with output ṽ satisfying:

1

ρ
max
x∈B

u(x)− ṽ(x) ≤


i∈I
minci(aTi , bi), δmax,

where δmax is the largest distance from a point to its corresponding cluster center.

Corollary 13 The above bound is tighter than the bound of Zonotope K-means of Misiakos
et al. (2022).

5.2 Multi-output

Now we consider the case of multi-output networks as in Figure 3, for general m ∈ N. We
consider a network with output v = (v1,    , vm) and corresponding positive and negative
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zonotopes Pj and Qj for each output node vj . An interesting property of these polytopes
is that they share the directions (aTi , bi) of their generators. For instance, output v1 might
have a positive generator c1i(aTi , bi) of zonotope P1, while output v2 might have a negative
generator c2i(aTi , bi) of zonotope Q2. These generators are parallel to each other, with
common direction (aTi , bi).

As before, we aim to approximate this network with a smaller network that has fewer
neurons in the hidden layer, sayK < n, resulting in a new hidden layer f̃ = (f̃1,    , f̃K) with
new weight matrices A and C. Our goal is to ensure that ṽ(x) ≈ v(x) for all x ∈ B. As we
have seen, this can be translated to having Pj ≈ Pj and Qj ≈ Qj , where the approximation
relation is in terms of the Hausdor distance between the zonotopes.

Notice that for each new neuron f̃i, its input weight-bias (ãTi , b̃i) denes a generator
direction for every output ṽj , where j ∈ [m]. For this generator direction, the magnitudes
of the generators change across dierent outputs by adjusting the output weight c̃ji for
each j ∈ [m], resulting in parallel generators for each output: c̃1i(ãTi , b̃i),    , c̃mj (ãTi , b̃i).
These generators can be either positive or negative according to the sign of c̃ji.

Thus, we start with original positive and negative zonotopes, with parallel generators,
and aim to approximate them with new positive and negative zonotopes, also with parallel
generators. We refer to this complex approximation problem as simultaneous zonotope
approximation.

Example 5 Suppose we have a neural network with a single hidden layer, as in Figure 3,
with dimensions d + 1 = n = m = 2. Consider input weights (aT1 , b1) = (1, 0), (aT2 , b2) =
(0, 1) and output weights c11 = 3, c12 = 5, c21 = 4, c22 = 2. In this example, for simplicity
we took all output weights to be positive so that we only deal with positive zonotopes. The
zonotopes of the two outputs will be two parallelograms with parallel edges, as illustrated in
the Figure 6. The zonotope of the rst output is generated by c11(a

T
1 , b1) = 3(1, 0) = (3, 0)

and c12(a
T
2 , b2) = 5(0, 1) = (0, 5), and of the second output by c21(a

T
1 , b1) = 4(1, 0) = (4, 0)

and c22(a
T
2 , b2) = 2(0, 1) = (0, 2). Say we want to reduce the hidden neurons to K = 1, f̃ =

(f̃1). If we could approximate each output’s zonotope separately, we could simply apply the
single output algorithm and approximate each parallelogram by its diagonal. However, these
diagonals are not parallel to each other, and thus can not occur by a single hidden neuron f̃1
with input weights (ãT1 , b̃1). Instead, we have to choose a single common direction (ãT1 , b̃1)
for both output zonotopes. We can however choose a dierent magnitude for each output
along this common direction. As will be presented in the algorithm below, for the common

direction we choose the vector (ãTi , b̃i) =
(aT

1 ,b1)+(aT
2 ,b2)

2 = (05, 05). For each output j, c̃j1
is chosen so that the edge is as close to the diagonal as possible. Specically, we choose
c̃11 = 3+5 = 8 and c̃21 = 2+4 = 6. The approximation procedure can be seen in Figure 6c.

5.2.1 Non-iterative Algorithm for multi-output network

To tackle this problem of simultaneous zonotope approximation, Misiakos et al. (2022)
proposed the ”Neural Path K-means” algorithm. Their approach to the problem is to use

K-means clustering on the set of vectors

(aTi , bi,C

T
:,i), i ∈ [n]


, and replace the vectors of

each formed cluster by a single representative, the center of the cluster (i.e. the mean of the
vectors of the cluster). Our approach also uses K-means to cluster the same vectors, but
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(3, 0)

(0, 5)

(a) Zonotope of 1st output

(4, 0)

(0, 2)

(b) Zonotope of 2nd output

(3, 5)

(4, 2)
(3, 3)

(4, 4)

(c) Simultaneous zonotope approx-
imation

Figure 6: Example of simultaneous zonotope approximation for a network with 2 outputs
and 2 hidden neurons

instead of taking the representative to be the center of the cluster, we form the representative
using the following heuristic:

Suppose you have 2 neurons with input weights (aT1 , b1), (a
T
2 , b2) and output weights

CT
:,1,C

T
:,2, that get clustered together. If (aT1 , b1) ≈ (aT2 , b2) ≈

(aT
1 ,b1)+(aT

2 ,b2)
2 , then for every

output j the following holds:

Cj,1(a
T
1 , b1) + Cj,2(a

T
2 , b2) ≈ (Cj,1 + Cj,2)

(aT1 , b1) + (aT2 , b2)

2


Thus, in order to approximate the 2 neurons, it suces to take the mean of their input
weights and the sum of their output weights. This heuristic can also be motivated by
viewing at the network: it corresponds to taking the mean in terms of the input activations
of the two neurons, and taking the sum as the joint output activations of the two neurons.

We generalize the above to clusters with more neurons. For every cluster k ∈ [K] with

clustered neuron indexes Ik and vectors

(aTi , bi,C

T
:,i), i ∈ Ik


take (ãTk , b̃k) to be the mean

of

(aTi , bi), i ∈ Ik


, take CT

:,k to be the sum of

CT

:,i, i ∈ Ik


, and form the representative

of the cluster (ãTk , b̃k,
CT
:,k). This leads to Algorithm 2.

There are several variations of Algorithm 2. For instance, one could use the sum instead
of the mean for the input weights. However, in our experiments, this approach yielded worse
results. Another variation involves clustering neurons based on cosine similarity rather than
the L2 distance of the vectors, recognizing that neurons with parallel input weights can be
clustered together regardless of their output weights. Additionally, one could normalize
the vectors based on their input weights by shifting the norm to the output weights before
applying K-means. Despite testing these methods, none provided signicant advantages.
Therefore, we simply recommend Algorithm 2.
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Algorithm 2 (Non-iterative) TropNNC for Multi-output networks

1: Execute KMeans with K centers on the vectors (aTi , bi,C
T
:,i) for i ∈ [n], forming K

clusters (aTi , bi,CT
:,i)  i ∈ Ik for k ∈ [K].

2: For each k ∈ [K], form the cluster representative (ãTk , b̃k,
CT
:,k) as follows:

(i) Compute (ãTk , b̃k) as the mean of the input weights and biases of the vectors
in the cluster, i.e., the mean of the set (aTi , bi)  i ∈ Ik.

(ii) Compute CT
:,k as the sum of the output weights of the vectors in the cluster,

i.e., the sum of the set CT
:,i  i ∈ Ik.

3: Construct the new hidden layer:

(i) For the input weights, set the k-th row of the weight-bias matrix to (ãTk , b̃k).

(ii) For the output weights, set the k-th column to C:,k.

5.2.2 Iterative Algorithm for multi-output network

To improve the approximation of Algorithm 2, we again make use of tropical geometry.
Specically, we formulate an optimization problem that takes the output of Algorithm 2
and with an iterative process produces weights that achieve a better simultaneous zonotope
approximation.

Motivated by Algorithm 1, assuming the number of null neurons are few (see Misiakos
et al. (2022) and Appendix A.6), we wish in terms of every output j the cluster representative
Cj,k(ã

T
k , b̃k) to be as close to the cluster sum


i∈Ik Cj,i(a

T
i , bi) as possible. Thus, for every

cluster k, we have unknowns (ãTk , b̃k,
CT
:,k) = (ãk1,    , ãkd, b̃k, C1k,   ), and we wish to nd

a solution which minimizes the following criterion:

m

j=1


C̃jk(ã

T
k , b̃k)−



i∈Ik
Cji(a

T
i , bi)



2

,

where m is the number of outputs, and Ik is the set of neurons of cluster k.

The above optimization problem can be solved by means of iterative alternating mini-
mization. Specically:

1. Holding the input weights (ãTk , b̃k) constant and minimizing with respect to C:,k, we
notice that the terms of the sum are independent and thus can be minimized separately.
For each term of the sum, the minimization occurs if we project the sum


i∈Ik Cji(a

T
i , bi)

onto (ãTk , b̃k). We have:

Cjk =


i∈Ik Cji(a

T
i , bi), (ã

T
k , b̃k)



(ãTk , b̃k)

2
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2. Holding the output weights C:,k constant, and minimizing with respect to the input
weights (ãTk , b̃k), we take the derivative of the criterion with respect to (ãTk , b̃k) and set it
to zero. We have:

2

m

j=1


 Cjk(ã

T
k , b̃k)−



i∈Ik
Cji(a

T
i , bi)


 Cjk = 0 ⇔

⇔ (ãTk , b̃k)

m

j=1

C2
jk =

m

j=1



i∈Ik
Cji(a

T
i , bi)

Cjk ⇔

(ãTk , b̃k) =

m
j=1


i∈Ik Cji(a

T
i , bi)

Cjk
m

j=1
C2
jk

We iterate over the above alternating steps for num iter iterations. Additionally, we can
initialize the iteration with the representative obtained from Algorithm 2, which should
provide a good starting point. This initialization is expected to reduce the number of re-
quired epochs and speed up the compression algorithm. The resulting procedure is detailed
in Algorithm 3. We should note that, in practise, the number of null generators is not
negligible, and thus our optimization criterion also constitutes a heuristic method. For this
reason, the number of iterations should not be excessive. We provide the following bound
for the approximation error of our algorithm (proof in Appendix A.6).

Proposition 14 Suppose the clusters K are enough so that for every cluster, no two
(aTi , bi), (a

T
i′ , bi′) of the cluster form an obtuse angle. Then, a variant (see Appendix) of

Iterative TropNNC produces a neural network with output ṽ satisfying:

1

ρ
max
x∈B

∥v(x)− ṽ(x)∥1 ≤
√
m

n

i=1

min


∥C:,i∥∥(aTi , bi)∥,

lk(i)

Nmin
+ ∥ϵ:,i∥F



+

m

j=1



i∈Nj

cji∥(aTi , bi)∥

where:

• Nj is the set of null neurons with respect to output j.

• k(i) is the cluster of neuron i.

• Nmin is the minimum cardinality of the non-null generators of a cluster.

• lk is the objective value of the optimization criterion for cluster k.

• ϵj,i is the dierence/error between cji(a
T
i , bi) and the cluster mean


i∈Ijk

cji(a
T
i ,bi)

|Ijk| .

• ϵ:,i = [ϵ1,i,    , ϵm,i].

• ∥ · ∥F is the Frobenius norm.
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Algorithm 3 Iterative TropNNC for Multi-output networks

1: Execute K-means with K centers on the vectors (aTi , bi,C
T
:,i), i ∈ [n], and form K clusters

(aTi , bi,CT
:,i), i ∈ Ik, k ∈ [K]

2: for k ∈ [K] do
3: Form the initial cluster representative (ãTk , b̃k,

CT
:,k) as follows:

4: 2i. Take (ãTk , b̃k) to be the mean of the input weights + bias of the vectors
of the cluster, i.e., the mean of the set of vectors (aTi , bi), i ∈ Ik

5: 2ii. Take CT
:,k to be the sum of the output weights of the vectors of the

cluster, i.e., the sum of the set of vectors CT
:,i, i ∈ Ik

6: end for
7: for iter = 1 to num iter do
8: for k ∈ [K] do
9: for j ∈ [m] do

10: Cjk  ⟨i∈Ik
Cji(a

T
i ,bi),(ã

T
k ,b̃k)⟩

∥(ãT
k ,b̃k)∥2

11: end for

12: (ãTk , b̃k) 
m

j=1


i∈Ik

Cji(a
T
i ,bi) Cjk

m
j=1

C2
jk

13: end for
14: end for
15: Construct the new linear layer:
16: For the input weights, the k-th row of weight-bias matrix is (ãTk , b̃k)

17: For the output weights, the k-th column is CT
:,k

6 Extensions, Limitations, and Applications of the Method

Before proceeding to our experiments, we would like to discuss the applicability of our
algorithm, highlight some limitations, and explore potential strategies to overcome these
challenges.

Deep and Convolutional Networks. Our methods were analyzed previously for
the case of networks with a single hidden linear layer with ReLU activations. However,
they can be generalized both for deep and convolutional neural networks. In the rst case,
where we have a deep network with multiple layers, we can view each layer as an instance
for our algorithm, by having an input from the previous layer and providing an output to
the next layer. Therefore, we can recursively apply our multi-output algorithm to compress
each hidden layer of the network.

In the case of convolutional networks, our methods can be extended for convolutional
layers with ReLU and maxout or average pooling layers in between them. Here, instead of
neurons, we have channels, and instead of weights that connect the neurons, we have kernels
that connect the channels. For each hidden layer, the input and output weight matrices
A and C are 4-dimensional, where each element of the row (aTi , bi) and the column C:,i

is a kernel. Compressing a convolutional layer in a structured manner involves clustering
channels. To apply our multi-output algorithm, we rst atten the matrices A and C so
that they become 2-dimensional, by unravelling the kernels row-wise for A and column-wise
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for C. We then apply our multi-output algorithm on the attened matrices. Finally, after
obtaining the new A and C, we reshape the matrices to restore their original dimensions as
convolutional layer weight matrices. We emphasize that we are the rst to apply a tropical
geometrical method to convolutional layers.

Batch normalization and other limitations. Our algorithm can not be applied in
the case of networks with batch normalization layers in between the convolutional and linear
layers. The reason for this is that batch normalization layers have a non-negligible eect
on the zonotopes of the network we approximate. Here, we explain two methodologies that
can be used to adapt networks with batch normalization to be applicable for our algorithm.
These methodologies were used in the experiments to convert the VGG and ResNet models
to equivalent models that our algorithm can be applied to. We propose two methodologies
that allow most networks with batch normalization layers to be expressed equivalently
as networks without batch normalization. As a rst idea, we can fuse together a pair
(convolutional (or linear) layer, batch normalization layer) into a single convolutional layer
as follows: We take the pair we wish to fuse and form a network with just these two layers.
We form a second network with a single, new convolutional layer. We then train the second
network to give the same output as the rst network on random noise input. This should
produce a new convolutional layer that approximates the pair (convolutional (or linear)
layer, batch normalization layer) with very little accuracy loss. Finally, we replace each such
pair with its approximate convolutional (or linear) layer, which gives us an approximately
equivalent network without batch normalization. An alternative second method is to shift
the computations of the normalization layer directly to the convolutional or linear layer.
Specically, we can view the batch normalization layer being applied as a multiplication
with corrective terms and addition with an extra bias term. We can incorporate these
computations into the weights and bias of the convolutional or linear layer.

Using these ideas, we can fuse a batch normalization layer with its preceding convolu-
tional or linear layer. This enables two approaches for applying our algorithm to networks
with batch normalization. The rst approach involves fusing all layers of the network
beforehand, resulting in a fully fused network without batch normalization. The second
approach performs fusion during the compression process, applying it layer-by-layer as
each layer is compressed. For the second approach, we made a notable observation during
our experiments, although the reasoning behind it remains unclear: using the pre-fusion
weights/kernels of the layers for clustering vectors consistently led to signicantly better
results.

As for other limitations, we should note that our algorithm is designed to work strictly on
layers as described above. Namely, convolutional or linear layers with ReLU and maxout or
average pooling layers in between. Layers that apply computations, like batch normalization
layers or the loops of residual blocks of ResNet networks fundamentally change the theory
for the analysis of the network. For example, similarly to ThiNet, our methods can not be
applied for the compression of the terminal convolutional layer of residual blocks.

Non-uniform compression. The techniques we have presented apply a uniform
pruning ratio to all layers of the network. However, they can easily be extended to non-
uniform pruning if instead of K-means we use hierarchical clustering with a global threshold
parameter, like in the CUP framework (Duggal et al., 2021). In fact, when used with hi-
erarchical clustering, TropNNC diers from CUP in step 1, where we choose a dierent
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approach to build the clustering vectors (or lter features as Duggal et al. (2021) call them)
of a convolutional layer, and more importantly in step 3, where we choose a dierent cluster
representative based on tropical geometry. We also propose a modication to step 2 of
CUP, specically the hierarchical clustering step using a global distance threshold. Since
the clustering vectors of dierent layers have varying dimensions, and vectors in higher-
dimensional spaces tend to be more spread out, we introduce two variants for selecting the
distance threshold for each layer:

• Variant 1: For each layer, take the distance threshold to be some global constant
times the square root of the dimension of the clustering vectors of the layer.

• Variant 2: For each layer, take the distance threshold to be some global constant
times the mean of the norms of the clustering vectors of the layer.

As demonstrated in our experiments, the rst variant excels when minimizing the number
of parameters, while the second variant is more eective when our objective is to minimize
oating-point operation demands.

7 Experiments

We conduct experiments targeting the compression of the linear and convolutional layers
of both convolutional and deep neural networks. Our method TropNNC performs layer-
by-layer compression of both linear and convolutional layers and is suitable for regression
and classication tasks. The empirical results from these experiments demonstrate that our
algorithm achieves the expected performance as claimed. Throughout our experiments, we
reserve the use of the iterative variant of TropNNC for cases where its slower performance
is justied by the expectation of signicantly better results compared to the non-iterative
variant.

Baselines. We compare our framework with state-of-the-art methods that conduct
structured pruning without requiring re-training (or ne-tuning). Specically, we compare
it with the algorithms proposed by Misiakos et al. (2022), ThiNet (Luo et al., 2017), CUP
(Duggal et al., 2021) and the simple baselines random and L1 structured pruning. The
algorithms presented in (Misiakos et al., 2022) are originally designed for linear layers only.
To enable a fair comparison in compressing convolutional layers, we extended their ap-
proach using our proposed technique, making them applicable to convolutional layers as
well. ThiNet employs a greedy criterion to remove neurons and channels that contribute
least to the subsequent layer’s input. For the non-uniform pruning variant of our frame-
work, we compare it with CUP. CUP assigns to each neuron/channel a feature, performs
hierarchical clustering based on these features, and replaces each neuron/channel in each
cluster by a cluster representative according to a maximum norm criterion. As explained,
our proposed algorithm enhances all three steps of CUP. Through an ablation study, we
found that each improvement is essential for achieving a competitive advantage over CUP,
indicating that these enhancements complement each other. In the presented experiments,
we compare CUP exclusively with the fully enhanced version of TropNNC, incorporating
all improvements. Furthermore, the trivial baseline of random structured pruning discards
neurons or channels based on a uniform probability distribution, while L1 structured prun-
ing targets those with the smallest L1 norm of their weights or kernels.
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Percentage of
Remaining Neurons

Zonotope
K-means

TropNNC,
single output

Neural Path
K-means

TropNNC

100.0 99.42 ± 0.05 99.42 ± 0.05 99.44 ± 0.06 99.44 ± 0.06
10.0 99.38 ± 0.04 99.43 ± 0.04 99.41 ± 0.06 99.34 ± 0.16
5.0 99.37 ± 0.06 99.42 ± 0.06 99.37 ± 0.04 99.31 ± 0.16
1.0 99.33 ± 0.05 99.41 ± 0.04 99.32 ± 0.06 99.33 ± 0.05
0.5 99.12 ± 0.28 99.43 ± 0.04 99.40 ± 0.08 99.37 ± 0.04
0.3 95.98 ± 3.16 99.43 ± 0.04 98.39 ± 0.99 99.39 ± 0.10

Table 1: Comparison of methods on MNIST-3 5

Percentage of
Remaining Neurons

Zonotope
K-means

TropNNC,
single output

Neural Path
K-means

TropNNC

100.0 99.55 ± 0.04 99.55 ± 0.04 99.56 ± 0.04 99.56 ± 0.04
10.0 99.60 ± 0.07 99.54 ± 0.04 99.52 ± 0.04 99.50 ± 0.05
5.0 99.56 ± 0.04 99.54 ± 0.04 99.52 ± 0.04 99.50 ± 0.03
1.0 99.35 ± 0.29 99.54 ± 0.04 99.49 ± 0.14 99.47 ± 0.11
0.5 98.03 ± 0.71 99.54 ± 0.04 99.01 ± 0.50 99.48 ± 0.12
0.3 86.38 ± 7.59 99.54 ± 0.04 94.25 ± 4.57 99.47 ± 0.09

Table 2: Comparison of methods on MNIST-4 9

Datasets and networks. We evaluate our framework on the MNIST and CIFAR
datasets, testing it across various models including simple multi-layer perceptrons (MLPs),
convolutional neural networks (CNNs), LeNet (LeCun et al., 1998), AlexNet (Krizhevsky
et al., 2012), and VGG (Simonyan and Zisserman, 2015). The non-uniform variant of our
algorithm is tested on the CIFAR and ImageNet datasets, with its performance evaluated
across models such as VGG, ResNet56, and ResNet18 (He et al., 2016).

7.1 MNIST Dataset, Pairs 3-5 and 4-9

The rst experiment is performed on the binary classication tasks of pairs 3/5 and 4/9 of
the MNIST dataset and so we can utilize both single-output and multi-output versions of
our algorithm for the compression of the nal hidden linear layer. In Tables 1 and 2, we
compare single-output TropNNC and TropNNC with the corresponding single-output and
multi-output algorithms from Misiakos et al. (2022). We use the same network, a simple
CNN network with two fully connected layers and a nal hidden linear layer of size 1000,
and the same pruning ratios as in the corresponding experiment of Misiakos et al. (2022).
According to Tables 1 and 2, our algorithm performs better than Misiakos et al. (2022) with
particular dierence in performance when using 03% of the nodes of the hidden layer.

7.2 MNIST and Fashion-MNIST Datasets

The second experiment is performed on the MNIST and FASHION-MNIST datasets. This
classication task is multiclass, and thus only our multi-output algorithm may be used.
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Percentage of
Remaining Neurons

MNIST FASHION-MNIST

Neural Path
K-means

TropNNC Neural Path
K-means

TropNNC

100.0 98.54 ± 0.16 98.54 ± 0.16 89.16 ± 0.21 89.16 ± 0.21
50.0 97.85 ± 0.39 98.49 ± 0.14 88.17 ± 0.46 89.00 ± 0.25
25.0 96.69 ± 1.06 98.36 ± 0.14 86.33 ± 0.87 88.70 ± 0.22
10.0 96.25 ± 1.39 97.96 ± 0.35 84.91 ± 1.28 88.24 ± 0.40
5.0 95.17 ± 2.36 97.06 ± 0.73 81.48 ± 3.90 87.42 ± 0.46

Table 3: Comparison of Neural Path K-means and TropNNC on MNIST and FASHION-
MNIST

Table 3 compares TropNNC with Neural Path K-means of Misiakos et al. (2022) for the
same CNN network as above, and for the same pruning ratios as in (Misiakos et al., 2022).
We again compress the nal linear layer. As shown in the results, for both datasets, our
algorithm outperforms Neural Path K-means.

To evaluate the performance of our algorithm in compressing linear layers of deeper
networks, we applied TropNNC to ”deepNN”, a fully connected neural network with layer
sizes 28 × 28, 512, 256, 128, and 10. The performance plots are provided in Figures 7a and
7b. As illustrated, TropNNC outperforms both Neural Path K-means from (Misiakos et al.,
2022) and ThiNet from (Luo et al., 2017).

To assess the performance of our algorithm in compressing convolutional layers, we ap-
plied TropNNC to ”deepCNN2D”, a LeNet-type convolutional neural network with ReLU
activations. The performance plots are provided in Figures 7c and 7d. The results demon-
strate that TropNNC outperforms Neural Path K-means from (Misiakos et al., 2022) and
matches, or even surpasses, ThiNet from (Luo et al., 2017).

7.3 CIFAR Datasets

In this experiment, we compress AlexNet and VGG trained on the CIFAR-10 and CIFAR-
100 datasets to assess the performance of each compression method. Figures 8a and 8b
illustrate the compression of the linear layers of AlexNet on CIFAR-10 and CIFAR-100,
respectively. Additionally, Figures 8c and 8d show the compression of VGG’s convolutional
layers for these datasets. For VGG, we applied compression to the fused networks without
batch normalization, as we found that ThiNet’s performance on the original networks was
practically identical to its performance on the fused networks.

The results indicate that for larger datasets, TropNNC consistently outperforms Neural
Path K-means from (Misiakos et al., 2022). Furthermore, it at least matches or even
surpasses the performance of ThiNet from (Luo et al., 2017) for the compression of linear
layers. These ndings highlight the eectiveness of TropNNC in handling more complex and
larger-scale data scenarios. For the compression of convolutional layers of VGG, TropNNC
matches ThiNet. For the compression of convolutional layers of VGG, we do not present
results for iterative TropNNC because it had almost identical performance to the non-
iterative algorithm.
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(a) deepNN, MNIST (b) deepNN, F-MNIST

(c) deepCNN2D, MNIST (d) deepCNN2D, F-MNIST

Figure 7: Compression of linear and convolutional layers of ReLU neural networks on
MNIST datasets.
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(a) AlexNet, linear, CIFAR10 (b) AlexNet, linear, CIFAR100

(c) VGG, conv., CIFAR10 (d) VGG, conv., CIFAR100

Figure 8: Compression of linear layers of AlexNet and convolutional layers of VGG on
CIFAR datasets.
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7.4 Non-ReLU Activation

In this experiment, we evaluate the performance of our algorithm in compressing networks
that do not use ReLU activations, such as LeNet (LeCun et al., 1998). We conduct experi-
ments on the MNIST and FASHION-MNIST datasets, focusing on compressing the linear
and convolutional layers of LeNet. The results are presented in Figures 9a, 9b, 9c and
9d. Interestingly, our algorithm demonstrates robust performance even on networks with
non-ReLU activations.

7.5 Non-uniform Pruning

In this section, we evaluate the eectiveness of the non-uniform variant of TropNNC. Our ex-
periments here compress various models, such as VGG on CIFAR-10, ResNet56 on CIFAR-
10, and ResNet18 on ImageNet. The results are summarized in Tables 4, 5, 6, and 7. We
should emphasize that we did not apply any form of ne-tuning or re-training. In Table 4 we
present the compression of fused models, i.e. models whose batch normalization has been
fused into its preceding convolutional or linear layer, as explained in a previous section. We
noticed that the performance of CUP was better on the original networks with batch nor-
malization. In Tables 5, 6 and 7 we compare our performance with the performance of CUP
compressing the original networks. For our method only, we applied batch normalization
fusion following the second approach described earlier—fusing the batch normalization layer
with the preceding layer on a layer-by-layer basis, followed by compression of the fused layer
before moving on with the next layer. We observed that our method performed signicantly
better when the clustering vectors were generated using the pre-fusion weights/kernels of
the layers. While the reason for this improvement remains unclear, it consistently led to
better performance in our experiments.

Our ndings indicate that our method demonstrates a clear advantage. Notably, our
approach shows a signicant performance improvement for the VGG model, while the ben-
ets are comparatively modest for ResNet models. The substantial advantage observed
with VGG remains somewhat unexplained, and we have yet to determine why this eect
is less pronounced for ResNet architectures. Further investigation may be required to fully
understand these discrepancies and to optimize our approach across dierent model types.

We also found that the rst variant of non-uniform TropNNC excelled at reducing the
overall network size but was less eective at minimizing inference operations. In contrast,
the second variant performed well in both tasks, outperforming CUP. Upon further analysis,
we concluded that the rst variant tends to focus more aggressively on the nal layers,
where parameter count is high due to the increased number of channels, but the number of
operations is lower because of smaller image sizes. Meanwhile, the second variant, like CUP,
also targets the initial layers, where fewer parameters are present, but a greater number of
operations is required.
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(a) LeNet, linear, MNIST (b) LetNet, linear, F-MNIST

(c) LeNet, conv., MNIST (d) LetNet, conv., F-MNIST

Figure 9: Compression of LeNet on MNIST Datasets.

Model Method Threshold #params  FLOPS  Acc. 

VGG Original - 14.72M 0.63G 93.64

CIFAR10 CUP 0.15 4.70M 0.40G 56.22

TropNNC (v2) 1.12 4.70M 0.33G 90.82

ResNet56 Original - 0.85M 0.25G 93.67

CIFAR10 CUP 0.55 0.79M 0.18G 45.89

TropNNC (v2) 1.2 0.65M 0.18G 76.50

ResNet18 Original - 11.68M 3.63G 69.10

ImageNet CUP 0.6 11.62M 3.50G 58.20

TropNNC (v2) 1 11.60M 3.47G 62.60

Table 4: Comparison of CUP and TropNNC (variant 2) accuracy across dierent pruning
thresholds for fused models without batch normalization.
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Method Threshold #params  FLOPS  Acc. 

Original - 14.7M 0.63G 93.64

CUP 0.15 6.24M 0.46G 92.41

TropNNC (v1) 0.006 5.70M 0.44G 93.58

CUP 0.20 4.62M 0.42G 67.91

TropNNC (v1) 0.0085 4.32M 0.41G 93.46

CUP 0.25 3.61M 0.39G 16.02

TropNNC (v1) 0.011 3.53M 0.39G 93.21

Table 5: Comparison of CUP and TropNNC (variant 1) accuracy across dierent pruning
thresholds on CIFAR10, VGG.

Method Threshold #params  FLOPS  Acc. 

Original - 0.85M 0.25G 93.67

CUP 0.55 0.72M 0.20G 87.32

TropNNC (v2) 1.17 0.71M 0.19G 90.53

CUP 0.6 0.63M 0.17G 78.83

TropNNC (v2) 1.23 0.63M 0.17G 87.04

CUP 0.65 0.54M 0.15G 71.48

TropNNC (v2) 1.3 0.54M 0.15G 73.03

TropNNC (v1) 0.067 0.49M 0.19G 82.70

Table 6: Comparison of CUP and TropNNC accuracy across dierent pruning thresholds
on CIFAR10, ResNet56.

Method Threshold #params  FLOPS  Acc. 

Original - 11.69M 3.64G 70.10

CUP 0.5 11.66M 3.58G 66.60

TropNNC (v2) 1.1 11.64M 3.44G 68.40

CUP 0.6 11.49M 3.38G 53.20

TropNNC (v2) 1.2 11.27M 3.07G 57.90

CUP 0.65 11.17M 3.15G 29.20

TropNNC (v2) 1.25 10.71M 2.75G 41.20

TropNNC (v1) 0.021 9.87M 3.46G 58.10

Table 7: Comparison of CUP and TropNNC accuracy across dierent pruning thresholds
on ImageNet, ResNet18.
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8 Conclusions and Future work

We improved upon the theoretical results of Misiakos et al. (2022) by using the (usual)
Hausdor distance instead of its discrete counterpart, to obtain a tighter bound for the
approximation of tropical polynomials. Leveraging this enhancement we rened the choice
of compressed node’s weights that correspond to the K-means clusters from (Misiakos et al.,
2022). Our novel algorithm, TropNNC, applied to linear and convolutional layers of deep
neural networks outperforms Neural Path K-means of Misiakos et al. (2022), and manages to
match or even surpass the performance of ThiNet, particularly for the compression of linear
layers. In non-uniform pruning it performs better than CUP, with signicant improvement
in the case of the VGG network architecture. These achievements underscore the potential of
tropical geometry in the realm of neural network compression. One promising direction for
further investigation could involve optimizing the approximation techniques by considering
the upper hulls of the network’s tropical polynomials.

Appendix A. Proofs of Propositions and Lemmas

A.1 Proof of Lemma 2

Proof Since (aT , b) lies below the upper envelope of P , there exists a point

(aT , b′) =
k

i=1

λivi,

k

i=1

λi = 1

on a face of the upper envelope of P dened by the points v1,    ,vk ∈ VUF (P ) such that
b′ ≥ b. Therefore, we have:

aTx+ b ≤ aTx+ b′ = ⟨(aT , b′), (x, 1)⟩

=

k

i=1

λi⟨vi, (x, 1)⟩ ≤ max
i=1,...,k

⟨vi, (x, 1)⟩ ≤ p(x)

If (aTi , bi) lies strictly below the upper envelope of P , then b′ > b, and the inequality is
strict.

A.2 Proof of Lemma 8

Proof We will prove that

sup
u∈P

dist(u, P̃ ) = max
u∈VP

dist(u, P̃ ),

i.e., the supremum is attained at some vertex of P .
The polytope P , the domain of the supremum, is convex and compact. Thus, it suces

to prove that the function

f(u) = dist(u, P̃ ) = inf
ũ∈P̃

∥u− ũ∥
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is convex in terms of u.
Let u1,u2 ∈ P . By the compactness of P̃ , there exist points ũ1, ũ2 ∈ P̃ such that

f(u1) = dist(u1, P̃ ) = ∥u1 − ũ1∥ and f(u2) = dist(u2, P̃ ) = ∥u2 − ũ2∥.
For every λ ∈ [0, 1], we have that

λf(u1) + (1− λ)f(u2) = λ∥u1 − ũ1∥+ (1− λ)∥u2 − ũ2∥
≥ ∥λ(u1 − ũ1) + (1− λ)(u2 − ũ2)∥
= ∥λu1 + (1− λ)u2 − λũ1 − (1− λ)ũ2∥

By the convexity of P̃ , ũ = λũ1 + (1− λ)ũ2 ∈ P̃ . Hence,

λf(u1) + (1− λ)f(u2) ≥ ∥λu1 + (1− λ)u2 − ũ∥ ≥ f(λu1 + (1− λ)u2),

which concludes the proof.

A.3 Proof of Proposition 10 and Theorem 11

Proof Consider a point x ∈ B and assume that p(x) = aTx+ b and p̃(x) = cTx+ d. Take
an arbitrary (uT , v) ∈ P̃ . This point lies below the upper envelope of P̃ . Thus, by Lemma
2, we have that p̃(x) ≥ uTx+ v. Choose (uT , v) to be the closest point to (aT , b). Then,

p(x)− p̃(x) ≤ p(x)− (uT , v)


x
1



= ((aT , b)− (uT , v))


x
1



≤
(aT , b)− (uT , v)




x
1



≤ dist((aT , b), P̃ ) · ρ
≤ max

(aT ,b)∈VP

dist((aT , b), P̃ ) · ρ,

where the second inequality is due to the Cauchy-Schwarz inequality.
In a similar manner, take an arbitrary (rT , s) ∈ P . This point lies below the upper

envelope of P . Thus, by Lemma 2, we have that p(x) ≥ rTx+ s. Choose (rT , s) to be the
closest point to (cT , d). Then,

p(x)− p̃(x) ≥ (rT , s)


x
1


− p̃(x)

= ((rT , s)− (cT , d))


x
1



≥ −
(rT , s)− (cT , d)




x
1



≥ − dist((rT , s), P̃ ) · ρ
≥ − max

(cT ,d)∈VP̃

dist((cT , d), P ) · ρ
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Finally, we obtain that

− max
(cT ,d)∈VP̃

dist((cT , d), P ) · ρ ≤ p(x)− p̃(x) ≤ max
(aT ,b)∈VP

dist((aT , b), P̃ ) · ρ,

which implies

1

ρ
p(x)− p̃(x) ≤ max


max

(aT ,b)∈VP

dist((aT , b), P̃ ), max
(cT ,d)∈VP̃

dist((cT , d), P )


, ∀x ∈ B

Therefore, by Lemma 8, we have,

1

ρ
max
x∈B

p(x)− p̃(x) ≤ H(P, P̃ ),

which concludes the proof of Proposition 10.
Finally, notice that we may write

∥v(x)− ṽ(x)∥1 =
m

j=1

vj(x)− ṽj(x)

=

m

j=1

(pj(x)− qj(x))− (p̃j(x)− q̃j(x))

=

m

j=1

(pj(x)− p̃j(x))− (qj(x)− q̃j(x))

≤
m

j=1

(pj(x)− p̃j(x)+ qj(x)− q̃j(x)) 

By Proposition 10 we derive

1

ρ
max
x∈B

∥v(x)− ṽ(x)∥1 ≤
m

j=1


H(Pj , P̃j) +H(Qj , Q̃j)




A.4 Proof of Proposition 12

Proof For the output function, it holds that

v(x) = p(x)− q(x), ṽ(x) = p̃(x)− q̃(x)

From the triangle inequality, we deduce

1

ρ
v(x)− ṽ(x) ≤ H(P, P̃ ) +H(Q, Q̃)

Thus, it suces to get a bound on H(P, P̃ ) and H(Q, Q̃).
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Let I+ ⊆ [n] and I− ⊆ [n] be the sets of positive and negative generators, respectively.
First, we deal with H(P, P̃ ). Notice that ∀v ∈ VP̃ ,v is the sum of generators of some
clusters of P . Thus ∀v ∈ VP̃ ,v is a vertex of P . Hence,

dist(P,v) = 0, ∀v ∈ VP̃ 

Let Ik ⊆ [n] be the set of generators that belong to cluster k. Let C+ ⊆ [K] be the set
of clusters of positive generators, and C− ⊆ [K] the set of clusters of negative generators.

Consider any vertex u of P . This vertex can be written as the sum of generators
ci(a

T
i , bi), for some subset I ′+ ⊆ I+. Thus,

u =


i∈I′+

ci(a
T
i , bi)

For every positive generator ci(a
T
i , bi) that belongs to cluster k, dene

xi = argmin
x

ci(aTi , bi)− xc̃k(ã
T
k , b̃k)

 ,

i.e., project the generator onto its cluster representative. Since every inner-cluster pair
of generators forms an acute angle, any generator and its cluster representative (sum of
generators of the cluster) will also form an acute angle, and thus xi ≥ 0.

For every cluster k ∈ C+ dene I ′k = Ik  I ′+ and

x̃k =


i∈I′k

xi

Since the cluster representative is the sum of the generators of the cluster, we have



i∈Ik
xi = 1 ⇒ x̃k =



i∈I′k

xi ≤ 1

Thus, for every cluster k ∈ C+, the point x̃k c̃k(ã
T
k , b̃k) lies inside the segment [0, c̃k(ã

T
k , b̃k)]

and thus belongs to P̃ .

For the vertex u, we choose to compare it with the point



k∈C+

x̃k c̃k(ã
T
k , b̃k) ∈ P̃ 
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Thus, we have that

dist(u, P̃ ) ≤




i∈I′+

ci(a
T
i , bi)−



k∈C+

x̃k c̃k(ã
T
k , b̃k)



≤


k∈C+




i∈I′k

ci(a
T
i , bi)− x̃k c̃k(ã

T
k , b̃k)



≤


k∈C+




i∈I′k


ci(a

T
i , bi)− xic̃k(ã

T
k , b̃k)




≤


k∈C+



i∈I′k

ci(aTi , bi)− xic̃k(ã
T
k , b̃k)



=


k∈C+



i∈I′k

min
x

ci(aTi , bi)− xc̃k(ã
T
k , b̃k)



=


k∈C+



i∈I′k

min
x

ci(aTi , bi)− xIk(ci(aTi , bi) + ϵi)


≤


k∈C+



i∈I′k

min
x


1− xIk ·

ci(aTi , bi)
+ xIk · ∥ϵi∥



=


k∈C+



i∈I′k

min
ci(aTi , bi)

 , ∥ϵi∥


≤


k∈C+



i∈I′k

min
ci(aTi , bi)

 , δmax



=


i∈I′+

min
ci(aTi , bi)

 , δmax


,

where ϵi is the error between generator i and the cluster center/mean of K-means.

The maximum value of the upper bound occurs when I ′+ = I+. Thus,

max
u∈VP

dist(u, P̃ ) ≤


i∈I+
min

ci(aTi , bi)
 , δmax




Finally, we have

H(P, P̃ ) = max


max
u∈VP

dist(u, P̃ ),max
v∈VP̃

dist(P,v)



≤ max






i∈I+
min

ci(aTi , bi)
 , δmax


, 0





=


i∈I+
min

ci(aTi , bi)
 , δmax
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Similarly, for H(Q, Q̃), we have

H(Q, Q̃) ≤


i∈I−
min

ci(aTi , bi)
 , δmax




Combining, we get

1

ρ
v(x)− ṽ(x) ≤



i∈I
min

ci(aTi , bi)
 , δmax


,

which concludes the proof of Proposition 12.

A.5 Proof of Corollary 13

Proof The bound of Misiakos et al. (2022) is the following:

1

ρ
max
x∈B

v(x)− ṽ(x) ≤ Kδmax +


1− 1

Nmax

 n

i=1

ci∥(aTi , bi)∥

We will show that

Kδmax +


1− 1

Nmax

 n

i=1

ci∥(aTi , bi)∥ ≥


i∈I
min

ci(aTi , bi)
 , δmax




This can be rewritten as

Kδmax+


1− 1

Nmax

 n

i=1

ci∥(aTi , bi)∥ ≥


i∈I

ci(aTi , bi)
+


i∈I
min


0, δmax −

ci(aTi , bi)
 

Further simplifying, we get

Kδmax ≥ 1

Nmax

n

i=1

ci∥(aTi , bi)∥+
n

i=1

min

0, δmax −

ci(aTi , bi)
 

It suces to show that for every cluster k, we have:

δmax ≥ 1

Ik


i∈Ik
ci∥(aTi , bi)∥+



i∈Ik
min


0, δmax − ci∥(aTi , bi)∥




However, it holds that



i∈Ik
min


0, δmax − ci∥(aTi , bi)∥


≤ δmax −max

i∈Ik
ci∥(aTi , bi)∥,

and

max
i∈Ik

ci∥(aTi , bi)∥ ≥ 1

Ik


i∈Ik
ci∥(aTi , bi)∥
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Hence, we have



i∈Ik
min


0, δmax − ci∥(aTi , bi)∥


+

1

Ik


i∈Ik
ci∥(aTi , bi)∥

≤ δmax −max
i∈Ik

ci∥(aTi , bi)∥+
1

Ik


i∈Ik
ci∥(aTi , bi)∥ ≤ δmax,

which concludes the proof.

A.6 Proof of Proposition 14

Before we proceed with the proof of Proposition 14, we rst give the denition of null
neurons and generators.

Denition 15 (Null neuron/generator) A neuron/generator i ∈ [n] that belongs to
cluster k ∈ [K] is a null neuron/generator with respect to output j ∈ [m] if c̃jkcji ≤ 0.
Nj is the set of all null neurons with respect to output j.

Proof Assume the algorithm iterative scheme has reached a stationary point (otherwise,
assume the last step is an output weight update and the proof works ne). First, we focus
on a single output, say j-th output. We will bound H(Pj , P̃j), H(Qj , Q̃j) for all j ∈ [m].

Let Ij+, Ij− be the sets of positive and negative generators of output j. Let Ik be the
set of neurons that belong to cluster k. Let Cj+ be the set of positive clusters for output j
(i.e. clusters for which c̃jk > 0), and Cj− be the set of negative clusters for output j. Let
Ijk = Ik  Ij+ if k is a positive cluster, else Ijk = Ik  Ij−

Consider any vertex u of Pj . This vertex can be written as the sum of generators
cji(a

T
i , bi), for some subset I ′j+ ⊆ Ij+. Thus,

u =


i∈I′j+

cji(a
T
i , bi)

For every generator cji(a
T
i , bi), i ∈ Ij+ that belongs to positive cluster k ∈ Cj+, dene

xji = argmin
x

cji(aTi , bi)− xc̃jk(ã
T
k , b̃k)

 ,

i.e., project the generator onto c̃jk(ã
T
k , b̃k) of its cluster k.

Assume a variant of the algorithm, where the optimization criterion is the following:

m

j=1


C̃jk(ãTk , b̃k)−



i∈Ijk
Cji(aTi , bi)



2



The sign of C̃jk never changes and gets xed based on the initial solution. The set Ijk of
the non-null generators of cluster k in terms of output j depends on the sign of C̃jk, and it
is determined by the initial solution. The output weight update rule changes: We update
the absolute value of the weight C̃jk. The update is performed as normal if the result
is positive, otherwise we set C̃jk = 0. We deduce that throughout the execution of the
algorithm, after every output weight update step the following holds:

36



TropNNC

• If C̃jk = 0 then, every generator of cluster k is a null generator by denition.

• If C̃jk > 0 then the following argument holds.

By hypothesis, for every cluster k, the vectors of the set (aTi , bi)i ∈ Ik form pair-wise
acute angles. Every vector of the set of vectors i∈Ijk cji(a

T
i , bi)j ∈ [m] lies inside

the cone of the set of vectors (aTi , bi)i ∈ Ik. It is easy to verify that the representative
c̃jk(ãk, b̃k) that the iterative algorithm produces lies inside the cone of the set of vectors
i∈Ijk cji(a

T
i , bi)j ∈ [m], which is a subset of the cone of the set of vectors (aTi , bi)i ∈

Ik. Thus, the representative forms an acute angle with every vector of the set (aTi , bi)i ∈
Ik, and thus xji ≥ 0.

For every cluster k ∈ Cj+ dene I ′jk = Ik  I ′j+ and

x̃jk =


i∈I′jk

xji

Since xji ≥ 0, and by the denition of the update step for the output weights, we have



i∈Ijk
xji = 1 ⇒ x̃jk =



i∈I′jk

xji ≤ 1

Thus, for every cluster k ∈ Cj+, the point x̃jk c̃jk(ã
T
k , b̃k) lies inside the segment [0, c̃jk(ã

T
k , b̃k)],

and thus belongs to P̃j .

For the vertex u, we choose to compare it with the point



k∈Cj+

x̃jk c̃jk(ã
T
k , b̃k) ∈ P̃j 

We have that

c̃jk(ã
T
k , b̃k) =



i∈Ijk
cji(a

T
i , bi)+ ljk = Ijk


i∈Ijk cji(a

T
t , bi)

Ijk
+ ljk = Ijk(cji(aTi , bi)+ϵji)+ ljk,

where
m

j=1 ∥ljk∥2 = l2k the optimization criterion loss, and ϵji is the error between cji(a
T
i , bi)

and the mean


i∈Ijk

cji(a
T
t ,bi)

|Ijk| . It is easy to verify that ϵji tends to zero as δmax tends to 0.
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Thus, we have that

dist(u, P̃j) ≤




i∈I′j+

cji(a
T
i , bi)−



k∈Cj+

x̃jk c̃jk(ã
T
k , b̃k)



≤


k∈Cj+




i∈I′jk

cji(a
T
i , bi)− x̃jk c̃jk(ã

T
k , b̃k)


+


i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+




i∈I′jk


cji(a

T
i , bi)− xjic̃jk(ã

T
k , b̃k)



+


i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+



i∈I′jk

cji(aTi , bi)− xjic̃jk(ã
T
k , b̃k)

+


i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+



i∈I′jk

min
x

cji(aTi , bi)− x

Ijk(cji(aTi , bi) + ϵji) + ljk

+


i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+



i∈I′jk

min
x

(1− xIjk)cji(aTi , bi)− xljk − xIjkϵji
+



i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+



i∈I′jk

min
x


1− xIjk∥cji(aTi , bi)∥+ xIjk


ljk
Ijk

+ ϵji




+


i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+



i∈I′jk

min


∥cji(aTi , bi)∥,


ljk
Ijk

+ ϵji



+


i∈Nj+

cji∥(aTi , bi)∥

≤


k∈Cj+



i∈I′jk

min


∥cji(aTi , bi)∥,

∥ljk∥
Ijk

+ ∥ϵji∥

+


i∈Nj+

cji∥(aTi , bi)∥

The maximum value of the upper bound occurs when I ′j+ = Ij+. Thus, we have

max
u∈VPj

dist(u, P̃j) ≤


k∈Cj+



i∈Ijk
min


∥cji(aTi , bi)∥,

∥ljk∥
Ijk

+ ∥ϵji∥

+


i∈Nj+

cji∥(aTi , bi)∥

To obtain a bound for maxv∈VP̃j
dist(Pj ,v), we write v =


k∈C′

j+
c̃jk(ã

T
k , b̃k) ∈ P̃j and

choose vertex u =


i∈I′j+ cji(a
T
i , bi), with I ′j+ = i ∈ Ij+i ∈ Ik, k ∈ C ′

j+. For this set we

have x̃jk = 1, and thus this distance has already been taken into account in the calculation
of maxu∈VPj

dist(u, P̃j).

At last, we have

H(Pj , P̃j) ≤


k∈Cj+



i∈Ijk
min


∥cji(aTi , bi)∥,

∥ljk∥
Ijk

+ ∥ϵji∥

+


i∈Nj+

cji∥(aTi , bi)∥

Similarly, for H(Qj , Q̃j) we have

H(Qj , Q̃j) ≤


k∈Cj−



i∈Ijk
min


∥cji(aTi , bi)∥,

∥ljk∥
Ijk

+ ∥ϵji∥


+


i∈Nj−

cji∥(aTi , bi)∥
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Combining, we obtain

1

ρ
max
x∈B

vj(x)− ṽj(x) ≤
m

k=1



i∈Ijk
min


∥cji(aTi , bi)∥,

∥ljk∥
Ijk

+ ∥ϵji∥


+


i∈Nj

cji∥(aTi , bi)∥

Using the fact that Ijk ⊆ Ik and Nmin ≤ Ijk, ∀j, k we have

1

ρ
max
x∈B

vj(x)− ṽj(x) ≤
m

k=1



i∈Ik
min


∥cji(aTi , bi)∥,

∥ljk∥
Nmin

+ ∥ϵji∥

+


i∈Nj

cji∥(aTi , bi)∥

We make use of the following inequality, which is a direct consequence of Cauchy-Schwartz
Inequality

m

j=1

uj  ≤
√
m


m

j=1

uj 2 =
√
m∥(u1,    , um)∥

We have
m

j=1

cji ≤
√
m∥C:,i∥,

m

j=1

∥ljk∥ ≤ √
m


m

j=1

∥ljk∥2 =
√
m · lk,

m

j=1

∥ϵji∥ ≤ √
m


m

j=1

∥ϵji∥2 =
√
m∥ϵ:,i∥F 

Using the above inequalities, the fact that


min ≤ min


, and the fact that max
 ≤

max we get

1

ρ
max
x∈B

∥v(x)− ṽ(x)∥1 ≤
m

k=1



i∈Ik
min





m

j=1

cji∥(aTi , bi)∥,
m

j=1 ∥ljk∥
Nmin

+

m

j=1

∥ϵji∥





+

m

j=1



i∈Nj

cji∥(aTi , bi)∥

≤ √
m

n

i=1

min


∥C:,i∥∥(aTi , bi)∥,

lk(i)

Nmin
+ ∥ϵ:,i∥F



+

m

j=1



i∈Nj

cji∥(aTi , bi)∥,

as desired.
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