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ABSTRACT

A multitude of work has shown that machine learning-based medical diagnosis
systems can be biased against certain subgroups of people. This has motivated
a growing number of bias mitigation algorithms that aim to address fairness is-
sues in machine learning. However, it is difficult to compare their effectiveness in
medical imaging for two reasons. First, there is little consensus on the criteria to
assess fairness. Second, existing bias mitigation algorithms are developed under
different settings, e.g., datasets, model selection strategies, backbones, and fair-
ness metrics, making a direct comparison and evaluation based on existing results
impossible. In this work, we introduce MEDFAIR, a framework to benchmark
the fairness of machine learning models for medical imaging. MEDFAIR cov-
ers eleven algorithms from various categories, ten datasets from different imaging
modalities, and three model selection criteria. Through extensive experiments, we
find that the under-studied issue of model selection criterion can have a signifi-
cant impact on fairness outcomes; while in contrast, state-of-the-art bias mitiga-
tion algorithms do not significantly improve fairness outcomes over empirical risk
minimization (ERM) in both in-distribution and out-of-distribution settings. We
evaluate fairness from various perspectives and make recommendations for dif-
ferent medical application scenarios that require different ethical principles. Our
framework provides a reproducible and easy-to-use entry point for the develop-
ment and evaluation of future bias mitigation algorithms in deep learning. Code
is available at https://github.com/ys-zong/MEDFAIR.

1 INTRODUCTION

Machine learning-enabled automatic diagnosis with medical imaging is becoming a vital part of the
current healthcare system (Lee et al., 2017). However, machine learning (ML) models have been
found to demonstrate a systematic bias toward certain groups of people defined by race, gender, age,
and even the health insurance type with worse performance (Obermeyer et al., 2019; Larrazabal
et al., 2020; Spencer et al., 2013; Seyyed-Kalantari et al., 2021). The bias also exists in models
trained from different types of medical data, such as chest X-rays (Seyyed-Kalantari et al., 2020),
CT scans (Zhou et al., 2021), skin dermatology images (Kinyanjui et al., 2020), etc. A biased
decision-making system is socially and ethically detrimental, especially in life-changing scenarios
such as healthcare. This has motivated a growing body of work to understand bias and pursue
fairness in the areas of machine learning and computer vision (Mehrabi et al., 2021; Louppe et al.,
2017; Tartaglione et al., 2021; Wang et al., 2020).

Informally, given an observation input x (e.g., a skin dermatology image), a sensitive attribute s
(e.g., male or female), and a target y (e.g., benign or malignant), the goal of a diagnosis model is
to learn a meaningful mapping from x to y. However, ML models may amplify the biases and con-
founding factors that already exist in the training data related to sensitive attribute s. For example,
data imbalance (e.g., over 90% individuals from UK Biobank (Sudlow et al., 2015) originate from
European ancestries), attribute-class imbalance (e.g., in age-related macular degeneration (AMD)
datasets, subgroups of older people contain more pathology examples than that of younger people
(Farsiu et al., 2014)), label noise (e.g., Zhang et al. (2022) find that label noises in CheXpert dataset
(Irvin et al., 2019) is much higher in some subgroups than the others), etc. Bias mitigation algorithms
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Figure 1: Components of MEDFAIR benchmark.

therefore aim to help diagnosis algorithms learn predictive models that are robust to confounding
factors related to sensitive attribute s (Mehrabi et al., 2021).

Given the importance of ensuring fairness in medical applications and the special characteristics
of medical data, we argue that a systematic and rigorous benchmark is needed to evaluate the bias
mitigation algorithms for medical imaging. However, a straightforward comparison of algorithmic
fairness for medical imaging is difficult, as there is no consensus on a single metric for fairness of
medical imaging models. Group fairness (Dwork et al., 2012; Verma & Rubin, 2018) is a popular
and intuitive definition adopted by many debiasing algorithms, which optimises for equal perfor-
mance among subgroups. However, this can lead to a trade-off of increasing fairness by decreasing
the performance of the advantaged group, reducing overall utility substantially. Doing so may vi-
olate the ethical principles of beneficence and non-maleficence (Beauchamp, 2003), especially for
some medical applications where all subgroups need to be protected. There are also other fairness
definitions, including individual fairness (Dwork et al., 2012), minimax fairness (Diana et al., 2021),
counterfactual fairness (Kusner et al., 2017), etc. It is thus important to consider which definition
should be used for evaluations.

In addition to the use of differing evaluation metrics, different experimental designs used by existing
studies prevent direct comparisons between algorithms based on the existing literature. Most obvi-
ously, each study tends to use different datasets to evaluate their debiasing algorithms, preventing
direct comparisons of results. Furthermore, many bias mitigation studies focus on evaluating tabular
data with low-capacity models (Madras et al., 2018; Zhao et al., 2019; Diana et al., 2021), and recent
analysis has shown that their conclusions do not generalise to high-capacity deep networks used for
the analysis of image data (Zietlow et al., 2022). A crucial but less obvious issue is the choice of
model selection strategy for hyperparameter search and early stopping. Individual bias mitigation
studies are divergent or vague in their model selection criteria, leading to inconsistent comparisons
even if the same datasets are used. Finally, given the effort required to collect and annotate medi-
cal imaging data, models are usually deployed in a different domain than the domain used for data
collection. (E.g., data collected at hospital A is used to train a model deployed at hospital B). While
the maintenance of prediction quality across datasets has been well studied, it is unclear if fairness
achieved within one dataset (in-distribution) holds under dataset shift (out-of-distribution).

In order to address these challenges, we provide the first comprehensive fairness benchmark for
medical imaging – MEDFAIR. We conduct extensive experiments across eleven algorithms, ten
datasets, four sensitive attributes, and three model selection strategies to assess bias mitigation algo-
rithms in both in-distribution and out-of-distribution settings. We report multiple evaluation metrics
and conduct rigorous statistical tests to find whether any of the algorithms is significantly better.
Having trained over 7,000 models using 6,800 GPU-hours, we have the following observations:

• Bias widely exists in ERM models trained in different modalities, which is reflected in the
predictive performance gap between different subgroups for multiple metrics.
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• Model selection strategies can play an important role in improving the worst-case perfor-
mance. Algorithms should be compared under the same model selection criteria.

• The state-of-the-art methods do not outperform the ERM with statistical significance in
both in-distribution and out-of-distribution settings.

These results show the importance of a large benchmark suite such as MEDFAIR to evaluate
progress in the field and to guide practical decisions about the selection of bias mitigation algo-
rithms for deployment. MEDFAIR is released as a reproducible and easy-to-use codebase that all
experiments in this study can be run with a single command. Detailed documentation is provided in
order to allow researchers to extend and evaluate the fairness of their own algorithms and datasets,
and we will also actively maintain the codebase to incorporate more algorithms, datasets, model
selection strategies, etc. We hope our codebase can accelerate the development of bias mitigation
algorithms and guide the deployment of ML models in clinical scenarios.

2 FAIRNESS IN MEDICINE

2.1 PROBLEM FORMULATION

We focus on evaluating the fairness of binary classification of medical images. Given an image, we
predict its diagnosis label in a way that is not confounded by any sensitive attributes (age, sex, race,
etc.) so that the trained model is fair and not biased towards a certain subgroup of people.

Formally, Let D ∈ {Di}Ii be a set of domains, where I is the total number of domains. A domain can
represent a dataset collected from a particular imaging modality, hospital, population, etc. Consider
a domain D = (X ,Y,S) to be a distribution where we have input sample x ∈ Rd over input
space X , the corresponding binary label y ∈ {0, 1} over label space Y ,1 , and sensitive attributes
s ∈ {0, 1, ...,m−1} with m classes over sensitive space S. We train a model h ∈ H to output the
prediction ŷ ∈ {0, 1}, i.e., h : X → Y , where H is the hypothesis class of models. Note that for
each dataset Di, there may exist several sensitive attributes at the same time, e.g., there are metadata
of both patients’ age and sex. We only consider one sensitive attribute at one time.

In-distribution Given a domain Di, assume the input samples Xi, their labels Yi, and the sensi-
tive attributes Si are identically and independently distributed (iid) from a joint probability distribu-
tion Pi(Xi, Yi, Si). We define the evaluation where the training and testing on the same domain Di

to be in-distribution, i.e., the training and testing set are from the same distribution. We train models
for each combination of algorithms × datasets × sensitive attributes.

Out-of-distribution In clinical scenarios, due to the lack of training data, it is common to deploy
a model trained in the original dataset to new hospitals/populations that have different data distri-
butions. We define the training on one domain Di and testing on the other unseen domain Dj to
be out-of-distribution settings, where Di and Dj may have different distribution Pi(Xi, Yi, Si) and
Pj(Xj , Yj , Sj). In this case, we assume domains Di and Dj must have the same input space (e.g.,
X-ray imaging), diagnosis labels, and sensitive attributes, but differ in their joint distributions due to
collection from different locations or different imaging protocols. We evaluate if bias mitigation al-
gorithms are robust to distribution shift by directly using the model selected from the in-distribution
setting of the domain Di to test on the domain Dj .

2.2 FAIRNESS DEFINITION IN MEDICINE

Here we consider two most salient fairness definitions for healthcare, i.e., group fairness and Max-
Min fairness. We argue that one should focus on different fairness definitions depending on the
specific clinical application.

Group Fairness Metrics based on group fairness usually aim to achieve parity of predictive per-
formance across protected subgroups. For resource allocation problems that can be considered a
zero-sum game due to the limited resources, e.g., prioritising which patients should be sent to a
limited number of intensive care units (ICUs), it is important to consider group fairness to reduce
the disparity among different subgroups (related discussions in Hellman (2008); Barocas & Selbst

1Our framework can be easily extended to non-binary classification.
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(2016)). We measure the performance gap in diagnosis AUC between the advantaged and disad-
vantaged subgroups as an indicator of group fairness. This is in line with the ”separability” criteria
(Chen et al., 2021; Dwork et al., 2012) that algorithm scores should be conditionally independent of
the sensitive attribute given the diagnostic label (i.e., Ŷ ⊥ S|Y ), which is also adopted by (Gardner
et al., 2019; Fong et al., 2021). On the other hand, Zietlow et al. (2022) find that for high-capacity
models in computer vision, this is typically achieved by worsening the performance of the advan-
taged group rather than improving the disadvantaged group, a phenomenon termed as leveling down
in philosophy that has incurred numerous criticisms (Christiano & Braynen, 2008; Brown, 2003;
Doran, 2001). Worse, practical implementations often lead to worsening the performance of both
subgroups (Zietlow et al., 2022), making it pareto inefficient and comprehensively violating benefi-
cence and non-maleficence principles (Beauchamp, 2003). Thus, we argue that group fairness alone
is not sufficient to analyse the trade-off between fairness and utility.

Max-Min Fairness It is another definition of fairness (Lahoti et al., 2020) following Rawlsian
max-min fairness principle (Rawls, 2001), which is also studied as minimax group fairness (Diana
et al., 2021) or minimax Pareto fairness (Martinez et al., 2020). Here, instead of seeking to equalize
the error rates among subgroups, it treats the model that reduces the worst-case error rates as the
fairer one. It may be a more appropriate definition than group fairness for some medical applications
such as diagnosis, as it better satisfies the beneficence and non-maleficence principles (Beauchamp,
2003; Chen et al., 2018; Ustun et al., 2019), i.e., do the best and do no harm. Formally, for a model
h in the hypothesis class H, denote Us(h) to be a utility function for subgroup s. A model h∗ is
considered to be Max-Min Fair if it maximizes (Max-) the utility of the worst-case (Min) group:

h∗ = argmax
h∈H

min
s∈S

Us(h). (1)

In practice, it is hard to quantify the maximum optimal utility, and therefore we treat a model hk to
be fairer than the other model ht if

min
s∈S

Us(hk) > min
s∈S

Us(ht). (2)

We measure both group fairness and Max-Min fairness to give a more comprehensive evaluation for
fairness in medical applications.

3 MEDFAIR

We implement a reproducible and easy-to-use codebase MEDFAIR to benchmark fairness in ma-
chine learning algorithms for medical imaging. In our benchmark, we conduct large-scale experi-
ments in ten datasets, eleven algorithms, up to three sensitive attributes for each dataset, and three
model selection criteria, where all the experiments can be run with a single command. We provide
source code and detailed documentation, allowing other researchers to reproduce the results and
incorporate other datasets and algorithms easily.

3.1 DATASETS

Ten datasets are included in MEDFAIR: CheXpert (Irvin et al., 2019), MIMIC-CXR (Johnson et al.,
2019), PAPILA (Kovalyk et al., 2022), HAM10000 (Tschandl et al., 2018), Fitzpatrick17k (Groh
et al., 2021), OL3I (Chaves et al., 2021), COVID-CT-MD (Afshar et al., 2021), OCT (Farsiu et al.,
2014), ADNI 1.5T, and ADNI 3T (Petersen et al., 2010), to evaluate the algorithms comprehensively,
which are all publicly available to ensure the reproducibility. We consider five important aspects
during dataset selection:

Imaging modalities. We select datasets covering various 2D and 3D imaging modalities, includ-
ing X-ray, fundus photography, computed tomography (CT), magnetic resonance imaging (MRI),
spectral domain optical coherence tomography (SD-OCT), and skin dermatology images.

Potential sources of bias. We involve datasets that may introduce bias from different sources,
including label noise, data/class imbalance, spurious correlation, etc. Note that each dataset may
contain more than one source of bias.

Sensitive attributes. The selected datasets contain attributes that are commonly treated sensi-
tively and may be biased in clinical practice, including age, sex, race, and skin type.
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Table 1: Detailed statistics of the datasets. ”# images/scans” listed here are the actual numbers used
in this study after removing those missing sensitive attributes. For potential bias, LN, CI, DI, and
SC represent label noise, class imbalance, data imbalance, and spurious correlation, respectively.

Dataset Modality # Images Sensitive Attribute Bias Sources
CheXpert Chest X-ray (2D) 222,793 Age, Sex, Race LN, CI, DI
MIMIC-CXR Chest X-ray (2D) 370,955 Age, Sex, Race LN, CI, DI
PAPILA Fundus Image (2D) 420 Age, Sex DI, CI
HAM10000 Skin Dermatology (2D) 9,948 Age, Sex DI, CI
Fitzpatrick17k Skin Dermatology (2D) 16,012 Skin type LN, DI, CI
OL3I Heart CT (2D) 8139 Age, Sex DI, CI, SC
COVID-CT-MD Lung CT (3D) 308 Age, Sex DI, CI
OCT SD-OCT (3D) 384 Age DI, CI
ADNI 1.5T Brain MRI (3D) 550 Age, Sex SC
ADNI 3T Brain MRI (3D) 110 Age, Sex SC

Size of datasets. As the sizes of medical imaging datasets are often limited by privacy issues,
etc., it is important to inspect whether the fairness algorithms are effective with different sizes of
datasets. The dataset sizes range from 420 ∼ 370, 955 for 2D images and 110 ∼ 550 for 3D scans.

Out-of-distribution evaluation. We include two pairs of datasets with the same modality but
collected from different locations or different imaging protocols for out-of-distribution evaluations.
Specifically, we choose two 2D chest X-ray datasets i.e., CheXpert and MIMIC-CXR, and two 3D
brain MRI datasets i.e., ADNI 1.5T and ADNI 3T.

Table 1 lists the basic datasets information, and more detailed statistics are provided in Appendix B.

3.2 ALGORITHMS

MEDFAIR incorporates 11 algorithms across 5 categories (related work in Appendix A): subgroup
rebalancing, domain-independence, adversarial training, disentanglement, and domain generaliza-
tion. We carefully re-implement the following algorithms based on the original official codes:
• Baseline

– Empirical Risk Minimization (ERM) (Vapnik, 1999) minimizes the average error across the
dataset without considering the sensitive attributes.

• Subgroup Rebalancing
– Resampling method upsampled the minority groups so that all of the subgroups appear dur-

ing training with equal chances.
• Domain-independence

– Domain independent N-way classifier (DomainInd) (Wang et al., 2020) trains separate clas-
sifiers for different subgroups with a shared encoder.

• Adversarial Training
– Learning Adversarially Fair and Transferable Representations (LAFTR) (Madras et al.,

2018) de-biases the representation by minimizing the ability to recognize sensitive attributes.
– Conditional learning of Fair representation (CFair) (Zhao et al., 2019) tries to enforce the

balanced error rate and conditional alignment of representations during training.
– Learning Not to Learn (LNL) (Kim et al., 2019) unlearns the bias information iteratively by

minimizing the mutual information between feature representation and bias.
• Disentanglement

– Entangle and Disentangle (EnD) (Tartaglione et al., 2021) disentangles confounders by in-
serting an “information bottleneck”, while still passing the useful information.

– Orthogonal Disentangled Representations (ODR) (Sarhan et al., 2020) disentangles the use-
ful and sensitive representations by enforcing orthogonality constraints for independence.
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• Domain Generalization (DG)
– Group Distributionally Robust Optimization (GroupDRO) (Sagawa et al., 2019) minimizes

the worst-case training loss with increased regularization.
– Stochastic Weight Averaging Densely (SWAD) (Cha et al., 2021), a state-of-the-art method

in DG, aims to find a robust flat minima by a dense stochastic weight sampling strategy.
– Sharpness-Aware Minimization (SAM) (Foret et al., 2020) seeks parameters that lie in neigh-

borhoods having uniformly low loss during optimization.

The hyper-parameter tuning strategy is described in Appendix B.2.2.

3.3 MODEL SELECTION

The trade-off between fairness and utility has been widely noted (Kleinberg et al., 2016; Zhang et al.,
2022), making hyper-parameter selection criteria particularly difficult to define given the multi-
objective nature of optimising for potentially conflicting fairness and utility. Previous work differs
greatly in model selection. Some use conventional utility-based selection strategies, e.g., overall val-
idation loss, while others have no explicit specification. We provide a summary of model selection
strategies across the literature in Table A1. To investigate the influence of model selection strategies
on the final performance, we study three prevalent selection strategies in MEDFAIR.

Overall Performance-based Selection This is one of the most basic and common strategies for
model selection. It picks the model that has the smallest loss value or highest accuracy/AUC across
the validation set of all sub-populations. However, this strategy tends to select the model with better
performance in the majority group to achieve the best overall performance, leading to a potentially
large performance gap among subgroups, which is illustrated in the red pentagon on the right side
of Figure 2 (note that it is not necessarily Pareto optimal).

Figure 2: Illustration of three different model se-
lection strategies. Each data point represents a dif-
ferent hyper-parameter combination for one algo-
rithm, where the red points are the models lying
on the Pareto front.

Minimax Pareto Selection The concept of
Pareto optimality was proposed by Mas-Colell
et al. (1995) and utilized in fair machine learn-
ing to study the trade-off among subgroup ac-
curacies (Martinez et al., 2020). Intuitively,
for a model on the Pareto front, no group can
achieve better performance without hurting the
performance of other groups. In other words,
it defines the set of best achievable trade-offs
among subgroups (without introducing unnec-
essary harm). Based on this definition, we se-
lect the model that lies on the Pareto front and
achieves the best worst-case AUC (the red star
in the middle top of Figure 2). We present a
formal definition of minimax Pareto selection
in Appendix B.4.

DTO-based Selection Distance to optimal
(DTO) (Han et al., 2021) is calculated by the
normalized Euclidean distance between the performance of the current model and the optimal utopia
point. Here, we construct the utopia point by taking the maximum AUC value of each subgroup
among all models. The DTO strategy selects the model that has the smallest distance to the utopia
point (the red hexagon in Figure 2).

3.4 EVALUATION AND IMPLEMENTATION

We apply the bias mitigation algorithms to medical image classification tasks and evaluate fairness
based on the performance of different subgroups (sensitive attributes). The sensitive attributes are
regarded as available during training (if needed). We consider two settings to evaluate fairness for
medical imaging, i.e., in-distribution and out-of-distribution.

Evaluation Metrics We use the area under the receiver operating characteristic curve (AUC) as
the major metric, which is a commonly used metric for medical binary classification. We evaluate
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the algorithms from three aspects: (1) utility: overall AUC across all subgroups; (2) group fair-
ness: AUC gap between the subgroups that have maximum AUC and minimum AUC; (3) Max-Min
fairness: AUC of the worst-case group. Besides, we also report the values of binary cross entropy
(BCE), expected calibration error (ECE), false positive rate (FPR), false negative rate (FNR), and
true positive rate (TPR) at 80% true negative rate (TNR) of each subgroup, as well as the Equalized
Odd (EqOdd). We provide detailed explanations of these metrics in Appendix B.3.

Statistical Tests Prior work has empirically evaluated bias mitigation algorithms and occasionally
claimed that some algorithm works well based on results from a couple of datasets. We note that to
make a stronger conclusion that would be more useful to practitioners, e.g., ‘algorithm A works bet-
ter than B for medical imaging’ (i.e., A is better general, rather than better for dataset C specifically),
one needs to evaluate performance across several datasets and perform significance tests that check
for consistently good performance that can not be explained by overfitting to a single dataset. This is
where the MEDFAIR benchmark suite comes in. To rigorously compare the relative performance of
different algorithms, we perform the Friedman test (Friedman, 1937) followed by Nemenyi post-hoc
test (Nemenyi, 1963) for both settings to identify if any of the algorithms is significantly better than
the others, following the authoritative guide of Demšar (2006). We first calculate the relative ranks
among all algorithms on each dataset and sensitive attribute separately, and then take the average
ranks for the Nemenyi test if significance is detected by Friedman test. We consider a p-value lower
than 0.05 to be statistically significant. The testing results are visualized by Critical Difference (CD)
diagrams (Demšar, 2006). In CD diagrams, methods that are connected by a horizontal line are in
the same group, meaning they are not significantly different given the p-value, and methods that are
in different groups (not connected by the same line) have statistically significant difference.

Implementation Details We adopt 2D and 3D ResNet-18 backbone (He et al., 2016; Hara et al.,
2018) for 2D and 3D datasets, respectively. The light backbone is used to avoid overfitting as there
are datasets with small sizes, and also to remain consistent with the backbone used in the original
literature (Kim et al., 2019; Wang et al., 2020; Tartaglione et al., 2021; Sarhan et al., 2020). Binary
cross entropy loss is used as the major objective. To ensure the stability of randomness, for each
experiment, we report the mean values and the standard deviations for three separate runs with three
randomly selected seeds. Further implementation details for all datasets and algorithms can be found
in Appendix B.

4 RESULTS

4.1 BIAS WIDELY EXISTS IN ML MODELS TRAINED IN DIFFERENT MODALITIES AND TASKS

Firstly, we train ERM on different datasets and sensitive attributes, and select models using the
regular overall performance-based strategy. For each dataset and sensitive attribute, we calculate
the maximum and minimum AUC and underdiagnosis rate among subgroups, where we use FNR
for the malignant label and FPR for ”No Finding” label as the underdiagnosis rate. As shown in
Figure 3, most points are to the side of the equality line, showing that the performance gap widely
exists. This confirms a problem that has been widely discussed (Seyyed-Kalantari et al., 2021) but,
until now, has never been systematically quantified for deep learning across a comprehensive variety
of modalities, diagnosis tasks, and sensitive attributes.

4.2 MODEL SELECTION SIGNIFICANTLY INFLUENCES WORST-CASE GROUP PERFORMANCE

We study the impact of model selection strategies on ERM using our three metrics of interest: The
AUC of the worst-case group, the AUC gap, and overall AUC with ERM. We first conduct a hyper-
parameter sweep for ERM while training on all the datasets, and then compute the metrics and the
relative ranks of the three model selection strategies. The results, including statistical significance
tests are summarised in Figure 4, and the raw data in Table A8. Each sub-plot corresponds to a met-
ric of interest (worst-case AUC, AUC Gap, Overall AUC), and the average rank of each selection
strategy (Pareto, DTO, Overall) is shown on a line. Selection strategies not connected by the bold
bars have significantly different performances. The results show that for the worst-case AUC metric
(left), the Pareto-optimal model selection strategy has the highest average rank of around 1.5, which
is statistically significantly better than the overall AUC model selection strategy’s average rank of
around 2.5. Meanwhile, in terms of the overall AUC metric (right) the Pareto selection strategy is
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Figure 3: The AUC (left) and underdiagnosis rates (right) for the advantaged and disadvantaged
subgroups across each dataset and sensitive attribute, when training with ERM. Most points are off
the blue equality line, showing that bias widely exists in conventional ERM-trained models.

AUC GapWorst-case AUC Overall AUC

AUC GapWorst-case AUC Overall AUC

AUC GapWorst-case AUC Overall AUC

Figure 4: Influence of model selection strategies on ERM, illustrated in CD diagrams. The higher
the rank of the AUC Gap, the smaller the gap.

not significantly worse than the overall model selection strategy. Thus, even without any explicit bias
mitigation algorithm, max-min fairness can be significantly improved simply by adopting the corre-
sponding model selection strategy in place of the standard overall strategy - and this intervention
need not impose a significant cost to the overall AUC.

4.3 NO METHOD OUTPERFORMS ERM WITH STATISTICAL SIGNIFICANCE

AUC GapWorst-case AUC Overall AUC

(b)

AUC GapWorst-case AUC Overall AUC

(a)

AUC GapWorst-case AUC Overall AUC

(b)

AUC GapWorst-case AUC Overall AUC

(a)

Figure 5: Performance of bias mitigation algorithms summarised across all datasets as average rank
CD diagrams. (a) in-distribution, (b) out-of-distribution. SWAD is the highest ranked method for
worst- and overall-AUC metrics, but it is still not significantly better than ERM.

We next ask whether any of the purpose-designed bias mitigation algorithms is significantly better
than ERM, and which algorithm is best overall? To answer these questions, we evaluate the perfor-
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mance of all methods using the Pareto model selection strategy. We report the Nemenyi post-hoc test
results on worst-group AUC, AUC gap, and overall AUC in Figure 5 for in-distribution (top row) and
out-of-distribution (bottom row) settings with raw data in Tables A9 and A10. For in-distribution,
while there are some significant performance differences, no method outperforms ERM significantly
for any metric: ERM is always in the highest-rank group of algorithms without significant differ-
ences. The conclusion is the same for the out-of-distribution testing, and some methods that rank
higher than ERM in the in-distribution setting perform worse than ERM when deployed to an unseen
domain, suggesting that preserving fairness across domain-shift is challenging.

It is worth noting there are some methods that consistently perform better, e.g., SWAD ranks a clear
first for the worst-case and overall AUC for both settings, and thus could be a promising method
for promoting fairness. However, from a statistical significance point of view, SWAD is still not
significantly better despite the fact that we use a much larger sample size (number of datasets) than
most of the previous fairness studies. This shows that many studies do not use enough number
of datasets to justify their desired claims. Our benchmark suite provides the largest collection of
medical imaging datasets for fairness to date, and thus provides the best platform for future research
to evaluate the efficacy of any method works in a rigorous statistical way.

5 DISCUSSION

Source of bias There are multiple confounding effects that can lead to bias, rather than any single
easy-to-isolate factor. As summarised in Table 1 and discussed further in Appendix A.4 and E, these
include both measurable and unmeasurable factors spanning imbalance in subgroup size, imbalance
in subgroup disease prevalence, difference in imaging protocols/time/location, spurious correlations,
the intrinsic difference in difficulty of diagnosis for different subgroups, unintentional bias from the
human labellers, etc. It is difficult or even impossible to disentangle all of these factors, making
algorithms that specifically optimise for one particular factor to succeed.

Failure of the bias mitigation algorithms Although most bias mitigation algorithms are not con-
sistently effective across our benchmark suite, we are certainly not trying to disparage them. It is
understandable because some are not originally designed for medical imaging, which contains char-
acteristics distinct from those of natural images or tabular data, and more work may be necessary to
design medical imaging specific solutions. More fundamentally, different algorithms may succeed
if addressing solely the specific confounding factors for which they are designed to compensate,
but fail when presented with other confounders or a mixture of multiple confounders. For example,
resampling specifically targets data imbalance, while disentanglement focuses more on removing
spurious correlations. But real datasets may also simultaneously contain other potential sources of
bias such as label noise. This may explain why SWAD is the most consistently high-ranked algo-
rithm, as it optimises a general notion of robustness without any specific assumption on confounders
or sensitive attributes, and thus may be more broadly beneficial to different confounding factors.

Relation of domain generalization and fairness The aim of domain generalization (DG) algo-
rithms is to maintain stable performance on unseen sub-populations, while the fairness-promoting al-
gorithms try to ensure that no known sub-populations are poorly treated. Despite this difference, they
share the eventual goal — being robust to changes in distribution across different sub-populations.
As shown in section 4, some domain generalization methods, such as SWAD, consistently improve
the performance of all subgroups, and thus overall utility. However, we also notice that they may
also enlarge the performance gap among subgroups. It introduces a question of whether a systemat-
ically better algorithm (i.e., improving Max-Min fairness) is fairer if it increases the disparity (i.e.,
not satisfying group fairness)? This question goes beyond machine learning and depends on appli-
cation scenarios. We suggest that a relevant differentiator may be between diagnosis and zero-sum
resource allocation problems where Max-Min and group fairness could be prioritised respectively.

Are the evaluations enough for now? Although we have tried our best to include a diverse set
of algorithms and datasets in our benchmark, it is certainly not exhaustive. There are methods to
promote fairness from other perspectives, e.g., self-supervised learning may be more robust (Liu
et al., 2021; Azizi et al., 2022). Also, datasets from other medical data modalities (e.g., cardiology,
digital pathology) should be added. Beyond image classification, other important tasks in medical
imaging, such as segmentation, regression, and detection, are underexplored. We will keep our
codebase alive and actively incorporate more algorithms, datasets, and even other tasks in the future.
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REPRODUCIBILITY STATEMENT

We report the data preprocessing in Appendix B.1.2, hyper-parameter space in Appendix B.2.2.
All of the datasets we use are publicly available, and we provide the download links in Table A6.
Source code and documentation are available at https://ys-zong.github.io/MEDFAIR/.
Running all the experiments required ∼ 0.77 NVIDIA A100-SXM-80GB GPU years.
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A RELATED WORK

In Appendix A, We present a broad review of the model selection strategies adopted by existing lit-
erature, current bias mitigation algorithms, existing fairness benchmarks, and domain generalization
methods and their relationship to fairness.

A.1 MODEL SELECTION STRATEGY IN FAIRNESS

Considering the trade-off between fairness and the utility, how to select the appropriate model among
hyper-parameters remains an important problem. We broadly review and summarize the model se-
lection strategies of recent work in Table A1. N/A means they do not explicitly specify their model
selection strategies in their papers (although they may have implemented it in their open-source
code). It can be seen that the model selection strategies differ greatly among existing literature, mak-
ing a direct comparison infeasible. Hence, we investigate the influence of model selection strategies
in our study.

Table A1: Summary of model selection strategies of fairness-aware methods and benchmarks.

Reference Paper Type Selection Strategy Dataset Type Model Type
Locatello et al. (2019) Benchmark N/A Images Deep
Reddy et al. (2021) Benchmark Report best test results for each metric Tabular / Images Shallow
Zhang et al. (2022) Benchmark Best validation worst-group AUC Images Deep
Han et al. (2022) Benchmark Best validation loss / DTO NLP Deep
Friedler et al. (2019) Benchmark N/A Tabular Shallow
Wang et al. (2020) Method Best validation weighted mAP Images Deep
Madras et al. (2018) Method Report fairness/accuracy trade-off Tabular Shallow
Zhao et al. (2019) Method Report fairness/accuracy trade-off Tabular Shallow
Creager et al. (2019) Method Report fairness/accuracy trade-off Tabular/Images Shallow/Deep
Kim et al. (2019) Method N/A Images Deep
Tartaglione et al. (2021) Method Optimized on validation set Images Deep
Sarhan et al. (2020) Method Best validation loss Images Deep
Park et al. (2022) Method N/A Images Deep
Martinez et al. (2020) Method Best validation worst-group risk Images/Tabular Shallow/Deep
Idrissi et al. (2022) Method Best validation worst-group accuracy Images Deep
Lahoti et al. (2020) Method Best validation overall AUC Tabular Shallow
Lee et al. (2021) Method N/A Images Deep

A.2 BIAS MITIGATION ALGORITHMS

According to the stage when bias mitigation methods are introduced, they can be mainly classi-
fied into three categories, namely pre-processing, in-processing, and post-processing. The pre-
processing methods aim to curate the data in the dataset to remove the potential bias before learning
a model (Khodadadian et al., 2021), while the post-processing methods seek to adjust the predic-
tions given a trained model according to the sensitive attributes (Pleiss et al., 2017). In this paper, we
focus on benchmarking in-processing methods, which aim to mitigate the bias during the training of
the models. Below, we review four popular categories of bias mitigation algorithms.

Subgroup Rebalancing For imbalanced data, synthetic minority oversampling technique
(SMOTE) (Chawla et al., 2002) is a classic resampling method that over-samples the minority class
and under-samples the majority class. Recent work found that simply using data balancing can
effectively improve the worst-case group accuracy (Idrissi et al., 2022).

Domain-Independence Wang et al. (2020) develop a domain-independent training strategy that
applies different classification heads to different subgroups. (Royer & Lampert, 2015) propose
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classifier adaption strategies in the prediction time to reduce the error rates when the distribution of
testing domain is different.

Adversarial Learning There are two major categories of adversarial learning: (1) it plays a min-
imax game that the classification head tries to achieve the best classification performance while
minimizing the ability of the discriminator to predict the sensitive attributes (Zhang et al., 2018;
Kim et al., 2019). After training, the sensitive attributes in the representation are expected to be
indistinct. (2) it enforces the fairness constraints (e.g., group fairness) on the representation during
trianing, and the representation is used for downstream tasks later (Xie et al., 2017; Madras et al.,
2018; Zhao et al., 2019).

Disentanglement Disentanglement methods (Tartaglione et al., 2021; Sarhan et al., 2020; Creager
et al., 2019; Lee et al., 2021) isolates independent factors of variation into different and independent
components of a representation vector. In other words, these methods disentangle the sensitive
attributes and task-meaningful information in the representation level. Then, the classification tasks
can be conducted on representation containing only task-specific representation so that the sensitive
attributes and other unobserved factors will not make an impact.

In our benchmark, we select typical in-processing algorithms from these categories to provide a
comprehensive comparison.

A.3 FAIRNESS BENCHMARKS

There are efforts in general machine learning communities to benchmark the performance of the
fairness-aware algorithms, inspecting their effectiveness in different aspects. AIF360 (Bellamy et al.,
2019) implements a wide range of fairness metrics and debiasing algorithms, which is available in
both Python and R language. Fairlearn (Bird et al., 2020) also provides debiasing algorithms and
fairness metrics to evaluate ML models. Friedler et al. (2019) benchmark a series of fairness-aware
machine learning techniques. However, they only study the traditional machine learning models. For
deep learning methods, Reddy et al. (2021) benchmark algorithms from the perspective of represen-
tation learning on tabular and synthetic datasets, and find they can successfully remove spurious
correlation. Locatello et al. (2019) specifically benchmark the disentanglement fair representation
learning methods on 3D shape datasets, suggesting disentanglement can be a useful property to
encourage fairness.

In the area of computational medicine, machine learning models have been found to demonstrate a
systematic bias toward a wide range of attributes, such as race, gender, age, and even the health in-
surance type (Obermeyer et al., 2019; Larrazabal et al., 2020; Spencer et al., 2013; Seyyed-Kalantari
et al., 2021). The bias also exists in different types of medical data, such as chest X-ray (Seyyed-
Kalantari et al., 2020), CT scans (Zhou et al., 2021), skin dermatology (Kinyanjui et al., 2020),
health record (Obermeyer et al., 2019), etc.

The most relevant work to ours is Zhang et al. (2022), which compares a series of algorithms on
chest X-ray images, and finds no method outperforms simple data balancing. However, it is unclear
whether the conclusion can be generalized to other medical imaging modalities, and whether the
selection of methods is comprehensive. In contrast, we benchmark a wider range of algorithms on
different data modalities, study the ultimately more significant issue of model selection, and provide
further analysis of the cause of the bias and the explanation of the effective algorithms. To the
best of our knowledge, we are the first to provide a comprehensive benchmark for a wide range of
algorithms and datasets, and a comprehensive analysis of different model selection criteria.

A.4 SOURCE OF BIAS

Data imbalance across subgroups is one of the most common sources of bias for medical imaging,
as many biomedical datasets lack demographic diversity. For example, many datasets are devel-
oped with individuals originating from European ancestries, such as UK Biobank and The Cancer
Genome Atlas (TCGA) (Sudlow et al., 2015; Liu et al., 2018). Also, more data samples in total will
be from older people if the dataset is collected to study a specific disease that occurs more in older
people, e.g. dataset for Age-related macular degeneration (AMD) (Farsiu et al., 2014). Overall,
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when there are more samples in one subgroup than the other, it can be expected that the machine
learning model may have different prediction accuracy for different subgroups.

Class imbalance can occur along with the data imbalance, where one subgroup has more samples of
some specific classes while the other subgroup has more samples from other classes. For example,
in the AMD dataset, subgroups of older people contain more pathology examples than subgroups of
younger people. Also, the problem of class imbalance happens for rare diseases, which is generally
due to genetic mutations that occur in a very limited number of people (Lee et al., 2020), e.g., 10 in
1,000,000. So, the class imbalance is severe and there would never be enough data (even worldwide)
for a balanced representation in the training set.

Spurious correlation can be learned by machine learning models undesirably from imaging de-
vices. For example, a model can learn to classify skin diseases by looking at the markings placed
by dermatologists near the lesions, instead of really learning the diseases (Winkler et al., 2019). It is
also related to the data imbalance and class imbalance because the spurious correlations may occur
more frequently in a subgroup with a smaller number of examples by simply remembering all the
data points, i.e., overfitting. Moreover, class imbalance itself may lead to a spurious correlation. For
example, the model may try to use age-related features to predict pathology in a dataset where most
of the older patients are unhealthy.

Label noise can also be a source of bias for medical imaging datasets. As the labeling of medical
imaging datasets is labor-intensive and time-consuming, some large-scale datasets are labeled by
automatic tools (Irvin et al., 2019; Johnson et al., 2019), which may not be precisely accurate and
thus introduce noises. Zhang et al (Zhang et al., 2022) recruit a board-certified radiologist to relabel
a subset of the chest X-ray dataset CheXpert, and find that the label noises are much higher in some
subgroups than the others.

Inherent characteristics of the data of certain subgroups can lead to different performance for
different subgroups even if the dataset is balanced, i.e., the tasks in some subgroups are inherently
difficult even for humans. For example, in skin dermatology images, the lesions are usually more
difficult to recognize for darker skin than that for light skin due to the low contrast (Wen et al.,
2021). Thus, even with balanced datasets, a trained ML model can still give lower accuracy to
patients with darker skin. Considering this, other measures beyond algorithms should be adopted to
promote fairness, such as collecting more representative samples and improving imaging devices.

In summary, the bias is usually not from a single source, and different sources of bias also usually
correlate with each other, leading to the unfairness of the machine learning model.

A.5 DOMAIN GENERALIZATION AND FAIRNESS

Domain generalization (DG) algorithms aim to maintain good performance on unseen sub-
population, while fairness-promoting algorithms try to ensure that no known sub-population is
poorly treated. Generally, though differing in detail, their eventual goal is the same — being robust
to distribution changes across different sub-populations, which is also discussed in (Creager et al.,
2020). Hence, in this work, we also explore fairness from the perspective of domain generalization.

One line of work for DG is to treat it as a robust optimization problem (Ben-Tal et al., 2009), where
the goal is to try to minimize the worst-case loss for subgroups of the training set. Duchi et al.
(2016) propose to minimize the worst-case loss for constructed distributional uncertainty sets with
Distributionally Robust Optimization (DRO). GroupDRO (Sagawa et al., 2019) extends this idea
by adding increased regularization to overparameterized networks and achieves good worst-case
performance.

Another line of work focuses on finding flat minima in the loss landscape during optimization. As
flat minima in the loss landscape is considered to be able to generalize better to different domains
(Hochreiter & Schmidhuber, 1997), methods have been proposed to optimize for flatness (Izmailov
et al., 2018; Cha et al., 2021; Keskar et al., 2016; Foret et al., 2020). Stochastic weight averag-
ing (SWA) (Izmailov et al., 2018) finds flat minima by averaging model weights during parameters
updating every K epoch. Stochastic weight averaging densely (SWAD) adopts a similar weight en-
semble strategy to SWA by sampling weights densely, i.e., for every iteration. Also, SWAD searches
the start and end iterations for averaging by considering the validation loss to avoid overfitting.
Sharpness-aware minimization (SAM) (Foret et al., 2020) finds flat minima by seeking parameters
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that lie in neighborhoods having uniformly low loss. We select three popular methods of them in
our benchmark — GroupDRO, SAM, and SWAD.
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B IMPLEMENTATION AND EVALUATION DETAILS

B.1 DATA

B.1.1 DATASET

We summarize the statistics of the subgroups and class labels in Table A2 to A5. The numbers with
percentages out of the brackets are the percentage of the appearing prevalence, and the numbers in
the brackets are the percentage of being unhealthy (class label). The used datasets are all publicly
available, but we cannot directly include the downloading links in our benchmark. Thus we provide
the access links in Table A6 provides.

Table A2: The statistics of the subgroups and class labels. The numbers with percentages out of
the brackets are the percentage of the appearing prevalence, and the numbers in the brackets are the
percentage of being unhealthy (class label).

CheXpert MIMIC-CXR HAM10000
# Images 222,793 370,955 9,948
# Patients 64,428 222,793 Unknown

Male 59.34% (90.12%) 52.16% (62.64%) 54.28% (16.81%)
Female 40.65% (89.78%) 47.83% (57.11%) 45.72% (11.65%)

White 56.39% (90.02%) 60.56% (65.2%) Unknown
non-White 43.61% (89.92%) 39.44% (52.01%) Unknown

Age 0-20 0.8% (78.62%) 0.75% (25.37%) 2.42% (0.41%)
Age 20-40 16.05% (79.56%) 13.3% (36.66%) 45.01% (5.71%)
Age 40-60 31.07% (87.6%) 15.2% (53.46%) 6.98% (9.51%)
Age 60-80 39.01% (93.0%) 31.13% (67.24%) 29.2% (23.92%)
Age 80+ 13.08% (96.3%) 39.63% (76.65%) 16.39% (32.13%)

Table A3: The statistics of the subgroups and class labels. The numbers with percentages out of
the brackets are the percentage of the appearing prevalence, and the numbers in the brackets are the
percentage of being unhealthy (class label). Age group 0 and age group 1 range from 0-60 and 60+
except for the OCT dataset, whose age groups are from 55-75 and 75+.

PAPILA OCT ADNI ADNI3T
# Images 420 384 550 182
# Patients 210 269 417 80

Male 34.76% (23.97%) Unknown 52.55% (44.98%) 34.62% (42.86%)
Female 65.24% (18.98%) Unknown 47.45% (43.30%) 65.38% (39.50%)

Age Group 0 42.38% (8.43%) 40.89% (52.23%) 49.82% (44.16%) 46.70% (45.36%)
Age Group 1 57.62% (29.75%) 59.11% (14.54%) 50.18% (44.20%) 53.30% (35.29%)

B.1.2 DATA PREPROCESSING

Data splitting for experiments: unless otherwise specified, we randomly split the whole dataset into
training/validation/testing sets with a proportion of 80/10/10 for 2D datasets and 70/10/20 for 3D
datasets.
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Table A4: The statistics of the Fitzpatrick17k dataset.

Skin Type I II III IV V VI
% Images 18.40% 30.03% 20.66% 17.37% 9.57% 3.97%
% Malignant 15.37% 15.43% 13.78% 10.82% 10.82% 9.61%

Table A5: The statistics of the subgroups and class labels. The numbers with percentages out of
the brackets are the percentage of the appearing prevalence, and the numbers in the brackets are the
percentage of being unhealthy (class label). Age group 0 and age group 1 range from 0-60 and 60+.

COVID-CT-MD OL3I
# Images 305 8139
# Patients 305 8139

Male 60.00% (59.02%) 40.46% (5.53%)
Female 40.00% (50.00%) 59.54% (3.57%)

Age Group 0 73.11%(56.50%) 67.91% (2.26%)
Age Group 1 26.89%(52.44%) 32.09% (8.81%)

CheXpert We first incorporate ethnicity labels (Gichoya et al., 2022) and the original data (Links
in Table A6), dropping those images without sensitive attribute labels. The ”No Finding” label is
used for training and testing. We use all of the available frontal and lateral images, and images of
the same patient do not share across train/validation/test split.

MIMIC-CXR The race data is available via MIMIC-IV (Johnson et al., 2020) dataset, which is
also deposited in the PhysioNet database (Goldberger et al., 2000). We merge it to the original
MIMIC-CXR metadata based on ”subject ID”. Other preprocessing steps are similar to that of
CheXpert.

PAPILA We exclude the ”suspect” label class and use images with labels of glaucomatous and
non-glaucomatous for binary classification tasks. The dataset contains right-eye and left-eye images
of the same patient. We split the train/validation/test in a proportion of 70/10/20, and images of the
same patient do not share across the train/validation/test split.

HAM10000 We split 7 diagnostic labels into binary labels, i.e., benign and malignant follow-
ing Maron et al. (2019). Benign contains basal cell carcinoma (bcc), benign keratosis-like lesions
(solar lentigines / seborrheic keratoses and lichen-planus like keratoses, bkl), dermatofibroma (df),
melanocytic nevi (nv), and vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and
hemorrhage, vasc). malignant contains Actinic keratoses and intraepithelial carcinoma / Bowen’s
disease (akiec), and melanoma (mel). We discard images whose sensitive attributes are not recorded,
resulting in 9948 images in total.

Fitzpatrick17k We split the three partition labels into binary labels i.e., benign and malignant.
We treat ”non-neoplastic” and ”benign” as the benign label, and use ”malignant” as the malignant
label. Fitzpatrick skin type labels are used as sensitive attributes.

OL3I Opportunistic L3 computed tomography slices for Ischemic heart disease risk assessment
(OL3I) dataset provides 8,139 axial computed tomography (CT) slices at the third lumbar vertebrae
(L3) level of individuals. We design the task to predict whether the individual would be diagnosed
with ischemic heart disease one year after the scan according to the labels provided (i.e. prognosis).
Sex and age are treated as sensitive attributes.
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Table A6: Access to the datasets.

Dataset Access

CheXpert

Original data: https://stanfordmlgroup.github.io/competitions/
chexpert/
Demographic data: https://stanfordaimi.azurewebsites.net/
datasets/192ada7c-4d43-466e-b8bb-b81992bb80cf

MIMIC-CXR https://physionet.org/content/mimic-cxr-jpg/2.0.0/

PAPILA https://www.nature.com/articles/s41597-022-01388-1#Sec6

HAM10000 https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/DBW86T

OCT https:
//people.duke.edu/˜sf59/RPEDC_Ophth_2013_dataset.htm

OL3I https://stanfordaimi.azurewebsites.net/datasets/
3263e34a-252e-460f-8f63-d585a9bfecfc

Fitzpatrick17k https://github.com/mattgroh/fitzpatrick17k

COVID-CT-MD https://doi.org/10.6084/m9.figshare.12991592

ADNI-1.5T
ADNI-3T https://ida.loni.usc.edu/login.jsp?project=ADNI

OCT The task is to predict if the patients have age-related macular degeneration (AMD). The
dataset only contains people whose ages are over 55. Thus, we treat age as a binary attribute splitting
from 75 years old, i.e., group-0: 55-75, group-1: 75+. Scans are resized to 224 × 224 × 100, and
random cropping of the size of 192× 192× 96 is used for training.

COVID-CT-MD We design the task to predict whether the patients are infected by COVID-19,
i.e., COVID-19 in one class, Community Acquired Pneumonia (CAP) and Normal in the other class.
We resize each slice to a resolution of 256× 256, and then take the central 80 slices for training, as
the crucial signal associated with infection of COVID and CAP is often present in the middle slices
(Chaudhary et al., 2021). random cropping of size of 224× 224× 80 is used for training. We split
train/validation/test in a proportion of 70/10/20.

ADNI-1.5T/ANDI-3T We design the task to predict if patients have Alzheimer’s disease (AD).
MRI scans from ADNI have been preprocessed. We resize the height and width of scans of both
1.5T and 3T to the same size of 224 × 224 × 144 to reduce the variance for cross-domain testing.
Random cropping of the size of 196× 196× 128 is used for training.

B.2 TRAINING

B.2.1 IMPLEMENTATION DETAILS

The experiments are conducted on a Scientific Linux release version 7.9 with one NVIDIA A100-
SXM-80GB GPU. We trained over 7,000 models using ∼ 0.77 GPU year. The implementation is
based on Python 3.9 and PyTorch 1.10. We adapt the source code released by the original authors to
our framework. We use ResNet-18 for 2D images and 3D ResNet-18 for 3D images as the backbone
network for all experiments except otherwise specified.

For 2D datasets, we resize the images to the size of 256×256, and apply standard data augmentation
strategies, i.e., random cropping to 224 × 224, random horizontal flipping, and random rotation of
up to 15 degrees. The backbone network is initialized using ImageNet (Deng et al., 2009) pretrained
weights and images are normalized with the ImageNet mean and standard deviation values. For 3D
datasets, we resize 3D images according to the original imaging characteristics as described in B.1.2.
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The backbone network is initialized using kinetics (Carreira & Zisserman, 2017) pretrained weights
and images are normalized with the kinetics mean and standard deviation values. Dataset-specific
preprocessing and hyper-parameters can be found below.

B.2.2 HYPER-PARAMETERS

To achieve the optimal performance of each algorithm for fair comparisons, we perform a Bayesian
hyper-parameter optimization search for each algorithm and each combination of datasets and sensi-
tive attributes using a machine learning platform Weights & Bias (Biewald, 2020). We use the batch
size 1024 and 8 for 2D and 3D images respectively. SGD optimizer is used for all methods and we
apply early stopping if the validation worst-case AUC does not improve for 5 epochs. The follow-
ing hyper-parameter space is searched (20 runs for each method per dataset × sensitive attribute),
where [ ] means the value range, and {} means the discrete values:

ERM/Resampling/DomainInd Learning rate lr ∈ [1e−3, 1e−5].

LAFTR Learning rate lr ∈ [1e−3, 1e−4]. Adversarial coefficients η ∈ [0.01, 5].

CFair Learning rate lr ∈ [1e−3, 1e−4]. Adversarial coefficients η ∈ [0.01, 5].

LNL Learning rate lr ∈ [1e−3, 1e−4]. Adversarial coefficients η ∈ [0.01, 5].

EnD Learning rate lr ∈ [1e−3, 1e−4]. Entangling term coefficients α ∈ [0.01, 5]. Disentangling
term coefficients β ∈ [0.01, 5].

ODR Learning rate lr ∈ [1e−3, 1e−4]. Entropy Weight coefficients λE ∈ [0.01, 5]. Orthogonal-
Disentangled loss coefficients λOD ∈ [0.01, 5]. KL divergence loss coefficients γOD ∈ [0.01, 5].
Entropy Gamma γE ∈ [0.1, 5].

GroupDRO Learning rate lr ∈ [1e−3, 1e−4]. Group adjustments η ∈ [0.01, 5]. Weight decay
L2 ∈ {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}.

SWAD Learning rate lr ∈ [1e−3, 1e−4]. Starting epoch Es ∈ {3, 5, 7, 9}. Tolerance epochs
Et ∈ {3, 5, 7, 9}. Tolerance ratio Tr ∈ [0.01, 0.3].

SAM Learning rate lr ∈ [1e−1, 1e−4]. Neighborhood size rho ∈ [0.01, 5].

Empirically, we find the best learning rate for all methods is around 1e−4 except SAM, which
requires a higher learning rate at around [1e−1, 1e−3] depending on the datasets.

B.2.3 METHODS

We summarize the benchmarked methods in Table A7. We show their categories, whether they can
accept multiple sensitive attributes for training, and whether they require the information of sensitive
attributes for training and testing.

B.3 METRICS

We explain the metrics used in this study in detail below:

AUC Area under the receiver operating characteristic curve (AUROC) is a standard metric to
measure the performance of binary classification tasks, whose value is not affected by the imbalance
of class labels. We use the name AUC in our text for simplicity. We measure the average AUC and
the AUC of each subgroup. We pay particular attention to the AUC gap and the worst-case AUC to
evaluate group fairness and max-min fairness.

ECE Expected calibration error (ECE) (Guo et al., 2017; Nixon et al., 2019) is an indicator of
group sufficiency (Castelnovo et al., 2022). A high ECE value may result in a different optimal best
decision threshold.

BCE Binary cross entropy (BCE) is the objective function we optimize for the classification task.
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Table A7: A list of methods used in the benchmark. SA is short for Sensitive Attributes. Y and N
represent Yes and No, respectively.

Method Category Multiple SA SA for Training SA for Testing
ERM (Vapnik, 1999) Baseline Y N N

Resampling (Idrissi et al.,
2022)

Subgroup
Rebalancing Y Y N

DomainInd (Wang et al.,
2020)

Domain-Independence Y Y N

LAFTR (Madras et al.,
2018)

Adversarial N Y N

CFair (Zhao et al., 2019) Adversarial N Y N
LNL (Kim et al., 2019) Adversarial Y Y N
EnD (Tartaglione et al.,
2021)

Disentanglement Y Y N

ODR (Sarhan et al., 2020) Disentanglement Y Y N

GroupDRO (Sagawa et al.,
2019)

Domain
Generalization Y Y N

SWAD (Cha et al., 2021) Domain
Generalization Y N N

SAM (Foret et al., 2020) Domain
Generalization Y N N

TPR, FPR, FNR, FPR Define true positive (TP) and true negative (TN) are values that are ac-
tually positive (negative) and correctly predicted positive (negative). Define false positive (FP) and
false negative (FN) are values that are actually negative (positive) but wrongly predicted positive
(negative). Then, we define true positive rate (TPR), true negative rate (TNR), false positive rate
(FPR), and false negative rate (FNR) as

TPR =
TP

TP + FN
= 1− FNR (3)

TNR =
TN

TN + FP
= 1− FPR. (4)

We report the overall FPR, FNR, and their values for each subgroup. The threshold is selected based
on the minimum F1 score following (Seyyed-Kalantari et al., 2021). We also report the value of
TPR at 80% TNR, which indicates the true positive rate of a given desirable true negative rate.

EqOdd Equalized Odds is a widely used group fairness metric that the true positive and false
positive rates should be equalized across subgroups. Denote the input, label, and sensitive attribute
as x, y, s, the prediction and the output probability as ŷ, p. Following (Reddy et al., 2021), we define
Equality of Opportunity w.r.t. y = 0 and 1, i.e., EqOpp0 and EqOpp1, as

EqOpp0 = 1− |p(ŷ = 1|y = 0, s = group-0)− p(ŷ = 1|y = 0, s = group-1)|, (5)
EqOpp1 = 1− |p(ŷ = 1|y = 1, s = group-0)− p(ŷ = 1|y = 1, s = group-1)|. (6)

Then, we have EqOdd = 0.5× (EqOpp0 + EqOpp1).

B.4 MINIMAX PARETO SELECTION

Following (Martinez et al., 2020) and the dominance definition (Miettinen, 2008), we give a formal
definition of the Pareto optimal regarding AUC.

Dominant vector A vector t
′ ∈ Rk is said to dominate t ∈ Rk if t

′

i ≥ ti,∀i = 1, ..., k and
∃j : t′j > tj (namely strictly inequality on at least one component), denoted as t

′ ≻ t.

25



Published as a conference paper at ICLR 2023

Dominant Classifier Given a set of group-specific metrics function T (h), i.e. AUC in our case, a
model h

′
is said to dominate h

′′
if T (h

′
) ≻ T (h

′′
), denote h

′ ≻ h
′′

. Likewise, a model h
′ ⪰ h

′′
if

T (h
′
) ⪰ T (h

′′
).

Pareto Optimality Given a set of models H , and a set of group-specific metrics function T (h), a
Pareto front model is PS,H = {h ∈ H : ∄h′ ∈ H|h′ ≻ h} = {h ∈ H : h ⪰ h

′∀h′ ∈ H}. We call
a model h a Pareto optimal solution iff h ∈ PA,H .

Finally, a model h∗ is a minimax Pareto fair classifier if it maximizes the worst-group AUC among
all Pareto front models. For example, in Figure 2, each data point represents a different hyper-
parameter combination for one algorithm, where the red points are models lying on the Pareto front.
As we can see from the figure, the Pareto optimal points cannot improve the AUC of group 0 without
hurting the AUC of group 1, and vice versa, indicating the best trade-off between different groups.
The worst-case group is group 1, as the best AUC achieved for group 1 is lower than the best AUC
achieved for group 0. In this case, we select the model that achieves the best AUC of group 1 (red
star point) – the disadvantaged group, to make the selection as fair as possible.
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C ADDITIONAL RESULTS

Table A8 are the results of ERM under different model selection strategies behind Figure 4. Table
A9 presents in-distribution results of the maximum and minimum AUC, and the gap between them
for all datasets, as well as their average ranks. Table A10 presents out-of-distribution results. The
highest maximum and minimum AUC values, and the smallest value of the performance gap are in
bold.

We also report the BCE, ECE, TPR @80 TNR, FPR, FNR and EqOdd (for binary attributes) of
each subgroup for a complete evaluation in the in-distribution setting in Table A11 to A13, and
out-of-distribution setting in Table A14 and A15.

Table A8: Performance of different model selection strategies of ERM. The numbers separated by
slashes are the mean values and ranks of overall AUC, the worst-case AUC, and the AUC gap,
respectively. Mean values are reported.

Dataset/Attr. Overall Performance-based DTO Minimax Pareto Optimal
ADNI 1.5T / Age 91.83 / 87.53 / 4.70 91.55 / 91.37 / 1.43 91.20 / 92.38 /1.04
ADNI 1.5T / Sex 82.77 / 76.97 / 18.72 81.57 / 75.33 / 22.73 81.36 / 78.52 / 24.90
COVID-CT-MD / Age 73.89 / 57.03 / 8.73 72.51 / 60.02 / 7.99 71.93 / 65.00 / 8.91
COVID-CT-MD / Sex 73.41 / 69.48 / 0.11 74.26 / 73.30 / 0.17 74.49 / 75.34 / 0.09
CheXpert / Age 89.50 / 78.01 / 10.80 89.62 / 77.92 / 10.92 88.09 / 78.36 / 10.33
CheXpert / Sex 89.01 / 88.12 / 0.13 88.43 / 88.01 / 0.08 88.90 / 88.70 / 0.02
CheXpert / Race 88.64 / 87.53 / 0.20 88.23 / 88.07 / 0.29 87.92 / 87.84 / 0.16
Fitzpatrick17k / Skin Type 90.38 / 91.37 / 3.72 90.71 / 90.42 / 4.05 91.51 / 90.67 / 3.70
HAM10000 / Sex 84.15 / 84.07 / 3.52 85.74 / 84.21 / 2.99 85.20 / 83.12 / 3.31
HAM10000 / Age 89.23 / 76.77 / 16.73 88.67 / 78.42 / 15.82 90.00 / 77.53 / 14.72
MIMIC-CXR / Age 86.13 / 80.64 / 6.19 85.98 / 81.97 / 5.78 86.40 / 81.06 / 5.32
MIMIC-CXR / Race 87.04 / 85.44 / 0.73 87.52 / 85.02 /1.26 86.26 / 85.52 / 0.85
MIMIC-CXR / Sex 87.10 / 85.40 / 2.37 86.39 / 85.49 / 1.32 86.45 / 85.62 / 1.41
OCT / Age 98.37 / 98.25 / 0.74 97.88 / 91.24 / 5.88 95.92 / 91.44 / 7.31
PAPILA / Age 66.27 / 55.88 / 25.34 64.07 / 56.31 / 23.48 64.98 / 53.22 / 24.90
PAPILA / Sex 80.97 / 73.14 / 3.25 80.04 / 74.39 /2.49 81.36 / 78.52 / 3.02
OL3I / Sex 74.25 / 67.41 / 9.27 74.01 / 68.55 / 9.13 73.87 / 68.93 / 8.57
OL3I / Age 69.13/ 57.94 / 9.27 67.99 / 58.22/ 8.93 66.58 / 58.43 / 8.48

Avg. Rank 1.56 / 2.53 / 2.29 2.19 / 1.93 / 2.05 2.29 / 1.49 / 1.65
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Table A9: Results of the in-distribution evaluation.

Dataset Attr. Metrics ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM

H
A

M
10

00
0

Sex
Overall 85.20 86.94 86.63 86.48 86.24 86.58 86.92 86.36 87.03 91.44 89.90

Min. 83.12 85.04 84.93 86.00 83.56 86.03 84.96 83.54 85.92 91.14 89.55
Gap 3.31 3.09 2.79 0.48 5.12 0.93 3.29 4.59 1.80 0.44 0.73

Age
Overall 90.00 90.10 89.03 89.26 89.06 88.78 86.92 90.23 89.32 89.61 90.23

Min. 77.53 82.73 78.23 80.03 82.95 81.18 71.21 79.56 80.00 86.66 80.54
Gap 14.72 9.68 13.95 11.59 9.31 11.43 21.96 13.61 13.01 5.72 12.77

C
he

X
pe

rt

Age
Overall 88.09 86.64 87.85 87.69 86.85 85.62 86.73 87.19 84.93 88.75 86.73

Min. 78.36 61.16 59.06 83.46 82.32 54.61 59.39 82.83 79.91 84.54 81.22
Gap 10.33 18.88 21.86 4.99 5.69 24.30 21.25 4.56 6.13 4.79 5.75

Sex
Overall 88.09 87.72 88.13 87.77 87.97 86.87 86.54 87.98 86.27 88.79 88.09

Min. 88.07 87.51 88.11 87.64 88.01 86.78 86.48 87.96 86.24 88.72 87.99
Gap 0.02 0.48 0.03 0.20 0.13 0.20 0.50 0.01 0.06 0.13 0.15

Race
Overall 87.92 87.76 88.01 88.01 87.77 86.65 86.84 87.82 86.30 88.75 87.75

Min. 87.84 87.66 87.88 87.98 87.73 86.57 86.82 87.80 85.99 88.65 87.64
Gap 0.16 0.16 0.23 0.04 0.06 0.12 0.01 0.03 0.65 0.21 0.23

M
IM

IC
-C

X
R

Age
Overall 86.40 85.53 86.22 86.05 85.69 84.13 85.12 86.12 83.49 87.08 82.80

Min. 81.06 70.97 70.87 81.11 81.05 66.60 73.18 70.78 78.62 82.15 77.97
Gap 5.32 6.99 7.42 4.87 4.73 9.18 5.16 7.76 5.38 5.10 3.95

Sex
Overall 86.45 86.21 86.31 86.28 86.36 85.18 85.97 86.42 85.89 87.05 83.65

Min. 85.62 85.31 85.53 85.36 85.55 84.22 85.35 85.64 84.96 86.23 82.69
Gap 1.41 1.53 1.35 1.60 1.41 1.70 1.19 1.34 1.61 1.39 1.75

Race
Overall 86.26 86.07 86.24 86.36 86.20 85.04 85.57 86.26 85.65 87.10 83.06

Min. 85.52 85.31 85.52 85.67 85.53 84.27 84.95 85.58 84.90 86.38 82.54
Gap 0.85 0.88 0.82 0.75 0.70 0.87 0.53 0.69 0.80 0.88 0.12

O
C

T

Age
Overall 95.92 98.35 98.83 99.16 98.74 97.93 99.71 99.35 98.02 94.88 97.44

Min. 91.44 96.26 96.79 97.50 96.97 96.08 99.11 98.93 97.60 91.98 96.79
Gap 7.31 3.01 3.21 2.50 2.93 3.71 0.89 1.07 0.26 3.64 0.71

A
D

N
I1

.5
T Age

Overall 91.20 92.51 84.89 84.47 94.07 87.08 77.61 88.97 83.96 85.98 66.54
Min. 92.38 90.79 89.21 84.13 88.89 87.57 71.43 83.17 72.70 81.90 64.33
Gap 1.04 3.65 0.56 4.76 8.19 4.81 14.10 9.52 17.21 7.28 7.42

Sex
Overall 81.36 92.17 84.81 84.39 81.82 66.75 84.76 92.26 92.05 91.33 66.54

Min. 78.52 88.52 75.93 81.85 78.97 69.63 84.82 85.56 90.74 88.15 62.90
Gap 3.02 6.32 10.38 4.08 4.73 2.49 1.85 9.58 2.22 6.59 7.47

PA
PI

L
A Age

Overall 64.98 74.07 61.50 77.78 77.10 69.36 75.42 75.87 75.65 82.27 72.62
Min. 53.22 56.02 47.34 59.94 60.78 56.58 54.90 56.58 58.26 66.39 56.30
Gap 24.90 43.98 34.95 39.02 31.93 31.96 45.10 43.42 41.74 33.61 36.41

Sex
Overall 78.40 67.45 67.23 74.86 66.78 82.10 80.70 77.33 79.69 76.66 72.95

Min. 78.04 64.58 63.54 70.31 61.98 81.76 78.12 76.56 79.17 66.67 64.58
Gap 0.08 6.01 5.87 6.55 7.82 1.05 4.23 1.87 1.22 16.08 13.07

Fi
tz

17
k

Skin Type
Overall 91.51 90.00 87.88 90.04 89.69 90.55 85.82 89.46 91.98 93.31 90.24

Min. 90.67 88.33 86.53 86.51 86.25 86.64 80.29 85.20 89.97 90.94 87.93
Gap 3.70 6.24 7.05 8.00 6.74 6.88 11.46 6.69 5.71 6.75 5.06

C
O

V
ID

-C
T-

M
D

Age
Overall 71.93 69.95 70.20 62.01 64.86 70.60 68.11 74.68 75.94 78.43 71.39

Min. 65.00 62.78 57.78 56.67 59.44 65.56 61.67 63.89 66.67 71.67 68.53
Gap 8.91 7.27 13.17 5.03 3.36 3.25 3.34 11.20 10.97 6.66 1.47

Sex
Overall 74.49 71.50 72.22 73.99 71.14 69.41 67.39 73.48 67.82 76.44 71.50

Min. 75.34 66.24 72.91 72.59 73.93 67.52 64.97 73.02 67.09 74.92 70.90
Gap 0.09 13.03 1.45 8.39 1.52 5.28 8.75 3.48 3.64 7.99 6.88

O
L

3I

Age
Overall 66.58 67.76 58.96 62.12 68.74 64.43 52.43 67.25 62.63 72.73 52.03

Min. 58.43 52.58 54.24 55.97 51.02 58.51 49.49 55.41 57.83 61.59 46.65
Gap 8.48 24.30 4.79 12.00 27.04 8.12 10.36 16.75 1.87 11.91 15.59

Sex
Overall 73.87 74.47 58.98 66.27 62.61 70.17 51.38 67.54 69.06 71.78 61.15

Min. 68.93 68.34 56.07 61.70 56.82 65.45 47.31 64.37 61.36 64.23 58.22
Gap 8.57 13.49 10.29 9.05 12.62 8.80 8.43 4.00 16.23 15.88 3.08

Avg. Overall Rank 4.63 5.52 6.72 5.25 6.22 7.80 8.33 4.74 6.32 2.80 7.67
Avg. Min. Rank 5.12 6.13 7.10 4.55 6.60 7.05 8.19 4.79 5.69 2.79 7.83
Avg. Gap. Rank 5.64 7.49 6.48 5.58 6.38 5.64 5.35 5.71 5.20 6.41 6.35
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Table A10: Results of the out-of-distribution evaluation. In the dataset column, the dataset in the
first row is the training domain, and the second row is the testing domain.

Dataset Attr. Metrics ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM

C
he

X
pe

rt
M

IM
IC

-C
X

R

Age
Overall 83.05 80.71 79.85 83.10 82.44 80.80 79.87 79.75 79.32 83.56 82.26

Min. 76.50 75.09 72.43 76.06 76.11 74.83 74.05 74.28 70.35 76.66 75.91
Gap 6.92 5.15 7.01 7.13 6.25 5.24 5.97 5.02 8.67 7.00 6.01

Sex
Overall 82.73 82.92 82.86 82.51 82.73 81.96 82.65 83.34 81.94 83.91 83.68

Min. 81.63 81.97 81.93 81.49 81.84 81.25 81.84 82.44 80.83 83.04 82.73
Gap 1.96 1.67 1.65 1.79 1.59 1.21 1.53 1.54 1.94 1.50 1.67

Race
Overall 82.50 82.39 83.30 82.63 81.68 81.46 82.33 82.91 81.72 83.50 83.25

Min. 81.40 81.49 82.50 81.76 80.98 80.60 81.60 82.20 80.46 82.55 82.43
Gap 1.28 0.90 0.70 0.76 0.43 0.69 0.50 0.50 1.63 1.02 0.73

M
IM

IC
-C

X
R

C
he

X
pe

rt

Age
Overall 85.87 84.10 86.06 85.17 84.60 84.71 83.68 85.33 85.10 86.80 83.43

Min. 78.84 77.29 78.70 76.89 76.84 77.58 79.27 77.77 76.61 79.18 77.97
Gap 8.57 7.68 8.80 10.43 9.95 8.00 7.05 9.49 10.18 9.32 6.18

Sex
Overall 86.26 85.67 85.42 86.04 85.77 85.47 85.44 85.77 85.26 86.95 84.89

Min. 85.72 85.34 85.09 85.56 85.49 85.16 84.96 85.25 84.51 86.56 84.29
Gap 0.90 0.58 0.55 0.86 0.50 0.69 0.99 0.89 1.26 0.66 1.01

Race
Overall 85.91 85.64 85.69 85.92 84.99 84.86 82.94 84.62 85.90 86.87 83.78

Min. 85.85 85.55 85.68 85.76 84.62 84.77 81.94 84.46 85.82 86.77 83.61
Gap 0.13 0.16 0.02 0.29 0.67 0.16 1.82 0.29 0.12 0.20 0.34

A
D

N
I1

.5
T

A
D

N
I3

T Age
Overall 89.52 87.46 84.55 79.89 78.04 89.30 76.06 86.65 80.19 88.16 52.92

Min. 91.22 89.03 85.06 80.80 75.29 87.45 75.63 87.99 82.54 88.36 48.86
Gap 0.18 0.52 6.22 2.44 9.27 6.76 3.78 0.52 0.91 1.31 11.63

Sex
Overall 84.33 86.36 83.05 79.40 83.75 62.05 86.16 89.91 86.45 86.47 52.92

Min. 84.31 83.74 82.63 77.63 82.68 62.21 85.66 89.05 85.96 85.45 49.87
Gap 0.24 4.03 0.18 2.73 1.92 0.24 1.05 1.35 0.41 1.46 8.92

Avg. Overall Rank 3.81 5.88 5.75 5.38 7.0 7.62 8.5 5.06 7.62 1.38 8.0
Avg. Min. Rank 3.88 5.5 6.0 6.38 7.19 7.88 6.81 5.12 8.25 1.75 7.25
Avg. Gap. Rank 5.94 5.06 4.75 8.19 6.25 4.19 5.44 4.81 7.88 6.0 7.5
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Table A11: Results of other metrics for HAM10000, CheXpert, and ADNI 1.5T dataset

Dataset Attr. Metrics Group ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM
H

A
M

10
00

0

Sex

BCE Grp. 0 0.30±0.01 0.28±0.02 0.43±0.07 0.31±0.01 0.29±0.02 0.30±0.01 0.52±0.00 0.30±0.01 0.28±0.01 0.27±0.01 0.27±0.01
Grp. 1 0.28±0.01 0.28±0.04 0.42±0.02 0.27±0.04 0.29±0.02 0.27±0.01 0.51±0.00 0.31±0.02 0.26±0.01 0.23±0.02 0.23±0.01

ECE Grp. 0 0.03±0.01 0.03±0.01 0.10±0.01 0.04±0.01 0.05±0.04 0.04±0.01 0.26±0.01 0.05±0.01 0.03±0.01 0.05±0.01 0.05±0.01
Grp. 1 0.04±0.01 0.04±0.01 0.09±0.00 0.04±0.01 0.05±0.01 0.04±0.01 0.27±0.00 0.06±0.01 0.03±0.01 0.04±0.01 0.03±0.01

TPR@80
TNR

Grp. 0 73.45±2.3 76.65±3.4 77.71±4.7 75.23±3.9 78.51±0.9 78.00±4.2 77.20±4.5 78.80±3.2 76.93±3.4 85.51±4.1 79.59±1.7
Grp. 1 71.23±4.4 70.31±14.2 71.02±5.5 72.30±7.4 69.91±7.9 73.21±2.5 69.37±5.0 70.71±1.3 74.70±6.1 87.00±3.5 81.10±3.6

FPR Grp. 0 9.68±4.5 13.74±3.8 10.88±3.5 10.36±1.6 9.91±1.0 12.24±5.1 17.04±4.4 10.21±3.8 10.28±3.7 7.43±2.5 8.78±3.7
Grp. 1 7.14±2.8 10.92±4.7 8.73±3.9 6.80±1.5 7.81±3.9 8.82±4.2 10.58±2.4 7.56±2.2 8.06±2.5 5.21±1.8 5.29±2.1

FNR Grp. 0 41.77±10.8 30.80±9.5 35.02±8.1 40.93±9.0 32.49±1.9 32.49±8.2 25.32±12.7 38.82±10.3 37.55±7.0 32.49±3.9 34.60±6.5
Grp. 1 52.56±7.3 44.23±18.3 52.56±13.5 44.23±7.7 58.97±11.1 45.52±12.8 45.51±6.2 52.56±10.6 39.74±2.9 41.03±6.2 44.87±7.8

EqOdd - 93.13±4.0 90.89±5.8 90.12±4.5 91.87±0.8 85.20±5.4 91.78±1.9 86.67±5.4 91.80±3.2 96.06±1.5 94.62±0.8 93.12±1.8

Age

BCE

Grp. 0 0.17±0.02 0.19±0.03 0.65±0.29 0.16±0.04 0.18±0.01 0.24±0.04 0.48±0.03 0.14±0.01 0.25±0.08 0.16±0.01 0.18±0.02
Grp. 1 0.19±0.01 0.22±0.01 0.66±0.23 0.26±0.01 0.22±0.03 0.21±0.02 0.48±0.01 0.26±0.07 0.25±0.03 0.21±0.01 0.19±0.01
Grp. 2 0.40±0.04 0.47±0.02 1.76±0.78 0.46±0.03 0.42±0.06 0.39±0.03 0.54±0.01 0.42±0.02 0.76±0.29 0.36±0.03 0.37±0.01
Grp. 3 0.43±0.03 0.65±0.13 2.89±1.58 0.58±0.19 0.47±0.07 0.43±0.02 0.56±0.03 0.58±0.29 0.80±0.21 0.47±0.10 0.42±0.03

ECE

Grp. 0 0.04±0.01 0.05±0.01 0.09±0.01 0.04±0.01 0.04±0.01 0.08±0.02 0.32±0.02 0.04±0.02 0.07±0.01 0.04±0.01 0.06±0.02
Grp. 1 0.03±0.00 0.04±0.00 0.08±0.01 0.06±0.01 0.05±0.02 0.05±0.01 0.29±0.01 0.05±0.02 0.06±0.01 0.04±0.01 0.03±0.00
Grp. 2 0.09±0.01 0.09±0.00 0.16±0.02 0.09±0.01 0.09±0.03 0.06±0.03 0.23±0.01 0.09±0.02 0.11±0.02 0.07±0.03 0.05±0.01
Grp. 3 0.10±0.02 0.18±0.05 0.28±0.05 0.16±0.03 0.12±0.04 0.13±0.01 0.26±0.00 0.14±0.05 0.20±0.04 0.13±0.04 0.13±0.03

TPR@80
TNR

Grp. 0 76.60±10.5 65.70±13.8 63.70±7.5 81.09±3.4 57.43±10.1 66.68±3.0 46.79±7.5 78.11±6.5 70.86±11.6 69.67±8.6 78.15±3.1
Grp. 1 91.55±2.0 90.47±2.9 90.37±6.4 87.06±3.2 89.48±2.7 89.62±5.2 92.51±2.7 89.29±2.1 94.76±2.3 93.17±3.0 89.84±0.6
Grp. 2 73.86±4.9 78.09±1.2 76.87±1.3 76.40±3.5 69.35±2.8 73.01±3.1 70.92±1.4 78.91±2.9 76.95±1.9 77.81±2.5 73.48±2.2
Grp. 3 75.22±2.2 69.10±1.1 77.69±5.0 74.07±11.6 72.22±5.6 66.90±19.4 59.52±32.7 72.96±8.4 76.28±5.5 71.85±10.3 75.47±2.9

FPR

Grp. 0 4.36±1.0 4.36±3.3 4.36±4.7 6.32±1.0 7.41±2.9 6.10±3.1 10.89±2.1 6.97±3.1 5.66±4.7 4.14±1.0 5.45±1.6
Grp. 1 5.37±0.8 5.02±2.2 3.12±2.5 6.84±2.0 5.89±2.5 5.20±2.6 6.40±0.7 6.06±2.3 5.20±3.1 5.20±0.7 5.36±0.2
Grp. 2 10.73±3.2 10.73±6.2 10.58±3.9 10.00±4.3 10.14±1.8 11.30±3.9 11.45±1.4 9.28±4.9 11.16±6.2 9.71±0.9 13.91±0.8
Grp. 3 18.79±4.2 23.03±6.4 23.03±8.4 17.58±9.0 18.79±5.2 16.97±11.0 25.45±5.5 21.82±4.8 18.79±10.7 17.58±5.8 24.24±4.6

FNR

Grp. 0 75.83±7.2 54.17±7.2 70.83±28.9 29.17±19.1 66.67±7.2 50.00±12.5 58.33±7.2 29.17±14.4 50.00±12.5 54.17±7.2 33.33±7.2
Grp. 1 36.01±4.8 35.66±12.8 53.49±18.5 37.21±10.1 42.64±5.9 40.31±2.7 34.11±3.6 40.31±3.6 40.31±12.8 44.96±3.6 37.21±4.0
Grp. 2 38.71±4.8 33.87±9.8 32.26±4.3 38.17±10.5 42.48±5.7 38.17±5.2 34.41±0.9 33.34±8.1 30.64±11.3 31.72±4.1 34.95±3.4
Grp. 3 24.08±6.4 25.93±11.6 18.52±3.2 35.19±22.5 29.63±11.6 27.78±9.6 24.07±3.2 25.93±8.5 25.92±6.4 27.78±5.6 18.52±3.2

C
he

X
pe

rt

Age

BCE

Grp. 0 0.37±0.00 0.52±0.01 0.74±0.14 0.40±0.01 0.41±0.05 0.45±0.04 0.44±0.08 0.40±0.04 0.81±0.10 0.35±0.01 0.43±0.01
Grp. 1 0.33±0.00 0.38±0.01 0.79±0.06 0.33±0.01 0.36±0.02 0.39±0.01 0.36±0.02 0.34±0.01 0.59±0.08 0.32±0.00 0.35±0.00
Grp. 2 0.26±0.00 0.27±0.00 0.70±0.07 0.26±0.00 0.27±0.01 0.30±0.01 0.28±0.00 0.27±0.00 0.57±0.08 0.25±0.00 0.27±0.00
Grp. 3 0.20±0.00 0.21±0.00 0.61±0.06 0.21±0.01 0.21±0.00 0.23±0.01 0.24±0.01 0.21±0.00 0.56±0.07 0.20±0.00 0.21±0.00
Grp. 4 0.12±0.00 0.13±0.00 0.39±0.02 0.13±0.00 0.14±0.00 0.15±0.01 0.16±0.00 0.13±0.01 0.48±0.07 0.12±0.00 0.13±0.00

ECE

Grp. 0 0.07±0.01 0.12±0.02 0.16±0.02 0.11±0.02 0.09±0.03 0.12±0.04 0.08±0.01 0.09±0.01 0.34±0.07 0.07±0.01 0.09±0.01
Grp. 1 0.03±0.01 0.05±0.01 0.13±0.01 0.02±0.01 0.07±0.02 0.06±0.01 0.03±0.01 0.03±0.01 0.25±0.06 0.01±0.00 0.02±0.00
Grp. 2 0.02±0.00 0.02±0.00 0.09±0.01 0.02±0.00 0.03±0.01 0.04±0.02 0.03±0.01 0.02±0.01 0.28±0.05 0.01±0.00 0.01±0.00
Grp. 3 0.01±0.00 0.01±0.00 0.06±0.00 0.02±0.01 0.02±0.00 0.04±0.03 0.07±0.01 0.02±0.01 0.30±0.05 0.01±0.00 0.01±0.00
Grp. 4 0.01±0.00 0.01±0.01 0.03±0.00 0.02±0.01 0.02±0.01 0.05±0.02 0.06±0.00 0.02±0.00 0.29±0.05 0.01±0.00 0.01±0.00

TPR@80
TNR

Grp. 0 76.37±3.1 61.24±7.8 73.52±2.6 62.81±7.2 67.20±6.4 62.76±2.2 69.67±4.1 66.28±8.9 61.80±8.7 79.14±1.5 61.70±3.9
Grp. 1 82.30±0.6 77.76±1.6 83.20±1.7 83.53±0.2 82.76±1.7 71.81±1.8 80.31±1.8 81.51±1.3 76.11±2.3 85.37±1.0 78.67±1.0
Grp. 2 83.26±1.5 80.65±0.9 82.37±0.7 83.00±0.9 83.38±1.5 74.68±2.8 80.75±0.5 80.54±1.1 78.05±1.2 85.29±0.4 80.03±0.4
Grp. 3 72.69±1.7 71.49±2.1 73.12±0.7 73.27±1.5 72.50±0.8 67.30±2.2 71.11±0.5 72.98±0.7 68.95±1.0 74.59±0.7 73.49±0.9
Grp. 4 75.18±3.0 69.80±3.2 71.50±1.0 73.73±2.0 67.72±1.5 66.73±1.9 69.13±0.3 73.02±1.8 65.09±2.0 77.76±0.9 69.93±0.4

FPR

Grp. 0 27.56±7.2 23.40±3.9 33.66±3.3 26.92±9.5 19.87±1.1 37.50±12.6 19.23±2.5 29.49±5.8 27.24±2.0 25.00±1.9 44.87±1.1
Grp. 1 18.66±3.0 18.95±0.9 19.40±1.2 18.63±2.9 14.87±0.8 22.96±3.0 15.27±0.7 18.28±0.8 18.01±1.1 18.36±0.5 21.87±0.8
Grp. 2 13.05±1.6 13.47±0.9 11.93±1.3 11.95±0.9 11.49±0.7 15.30±1.0 13.53±1.8 11.51±1.1 13.12±1.0 11.51±0.6 12.09±0.4
Grp. 3 7.48±1.3 8.02±0.6 6.59±1.1 6.74±1.4 9.53±1.7 8.13±2.2 11.62±2.8 6.37±0.6 10.60±1.7 5.99±0.6 6.10±0.5
Grp. 4 3.74±0.4 3.15±0.3 2.17±0.4 2.26±0.8 5.45±2.0 3.15±2.8 6.18±2.7 2.36±0.6 6.40±1.9 1.72±0.3 1.54±0.2

FNR

Grp. 0 16.66±5.8 31.11±5.1 11.11±5.1 23.34±5.8 34.45±6.9 18.89±21.2 33.33±13.3 15.55±3.9 27.78±6.9 14.44±1.9 17.78±1.9
Grp. 1 19.13±3.5 23.95±3.0 17.59±2.2 18.90±4.1 26.80±2.1 23.11±5.9 30.30±1.3 20.20±1.3 27.63±0.6 16.87±1.1 18.66±0.7
Grp. 2 32.67±4.1 30.49±2.9 31.63±3.0 31.74±2.5 32.19±2.2 33.04±1.7 31.52±3.3 34.81±3.1 33.89±2.1 27.72±1.2 34.29±1.8
Grp. 3 60.77±3.2 54.70±4.6 56.69±5.2 57.99±3.5 49.66±5.4 60.77±5.5 44.56±5.5 60.14±2.3 50.17±2.3 58.73±3.8 63.78±1.5
Grp. 4 77.78±4.4 70.96±3.4 74.49±2.4 76.01±4.3 64.90±9.1 78.03±15.3 58.34±7.7 76.01±5.6 67.17±11.4 74.75±6.1 83.84±1.9

Sex

BCE Grp. 0 0.23±0.00 0.23±0.00 0.28±0.01 0.23±0.00 0.23±0.01 0.25±0.00 0.24±0.01 0.23±0.00 0.49±0.04 0.22±0.00 0.23±0.00
Grp. 1 0.22±0.00 0.22±0.00 0.27±0.01 0.22±0.00 0.22±0.00 0.23±0.00 0.23±0.00 0.22±0.00 0.43±0.03 0.21±0.00 0.22±0.00

ECE Grp. 0 0.01±0.01 0.01±0.01 0.05±0.01 0.01±0.00 0.02±0.01 0.02±0.01 0.03±0.00 0.01±0.01 0.23±0.03 0.01±0.00 0.01±0.00
Grp. 1 0.02±0.01 0.01±0.00 0.04±0.01 0.01±0.00 0.02±0.01 0.01±0.01 0.02±0.01 0.02±0.01 0.20±0.03 0.01±0.00 0.01±0.00

TPR@80
TNR

Grp. 0 83.17±1.0 80.99±0.6 83.10±0.3 83.06±0.5 83.38±0.4 78.62±0.6 81.26±0.1 82.16±0.2 79.13±1.3 84.04±0.2 83.09±0.2
Grp. 1 81.35±0.4 81.21±1.4 81.13±0.5 81.16±1.3 81.35±1.5 77.99±1.1 79.73±0.8 80.78±0.4 78.96±0.7 82.58±0.4 81.35±0.3

FPR Grp. 0 7.65±1.1 8.41±0.6 9.10±0.8 9.68±0.7 8.05±0.8 11.63±0.9 10.17±3.6 7.55±0.3 12.46±0.3 8.45±0.6 8.25±1.0
Grp. 1 6.75±0.7 7.88±0.8 7.96±0.6 8.16±0.4 9.02±1.2 8.17±3.4 7.44±2.7 6.60±0.1 9.61±0.4 7.50±0.3 6.76±1.0

FNR Grp. 0 42.39±3.2 41.50±3.2 37.28±2.6 36.92±2.0 42.44±3.1 37.07±2.0 37.10±7.2 41.71±0.5 34.66±2.4 36.66±2.2 39.48±3.6
Grp. 1 40.91±2.2 37.21±1.3 36.85±1.5 37.72±0.8 35.02±2.6 43.69±9.2 41.93±6.9 41.35±1.4 36.33±1.9 36.84±1.0 40.58±3.0

EqOdd - 98.54±0.5 97.59±1.4 98.43±0.4 98.50±0.7 95.80±2.8 93.48±5.8 96.21±1.0 99.05±0.2 97.74±0.7 99.08±0.4 98.71±0.5

Race

BCE Grp. 0 0.22±0.00 0.22±0.00 0.27±0.01 0.22±0.00 0.22±0.00 0.23±0.01 0.23±0.00 0.22±0.01 0.43±0.06 0.22±0.00 0.22±0.00
Grp. 1 0.23±0.00 0.23±0.00 0.28±0.01 0.23±0.00 0.23±0.00 0.24±0.01 0.24±0.00 0.23±0.00 0.44±0.06 0.23±0.00 0.23±0.00

ECE Grp. 0 0.01±0.00 0.01±0.00 0.04±0.00 0.01±0.01 0.01±0.01 0.02±0.01 0.02±0.00 0.02±0.01 0.20±0.04 0.01±0.00 0.01±0.00
Grp. 1 0.01±0.00 0.02±0.00 0.04±0.00 0.01±0.01 0.01±0.00 0.02±0.01 0.02±0.01 0.02±0.01 0.20±0.04 0.01±0.00 0.01±0.00

TPR@80
TNR

Grp. 0 81.57±0.6 81.06±0.8 81.69±0.3 82.06±0.3 81.32±0.8 79.72±0.7 80.58±0.5 81.54±1.1 78.01±0.7 82.11±0.2 81.31±0.5
Grp. 1 82.91±1.0 82.34±0.4 82.65±0.4 83.05±0.2 82.21±1.0 79.53±0.4 81.44±0.4 82.40±0.3 79.73±0.2 83.47±0.5 82.83±0.8

FPR Grp. 0 8.05±0.7 8.73±1.3 8.62±0.6 7.14±0.6 8.63±0.4 9.61±1.6 8.97±1.0 8.44±0.2 9.77±1.0 7.90±0.5 8.04±1.3
Grp. 1 8.70±0.5 9.18±1.3 9.12±0.7 7.67±0.6 9.51±0.4 10.57±1.7 9.54±0.9 8.84±0.3 10.71±1.0 8.58±0.5 8.62±1.5

FNR Grp. 0 39.33±1.8 38.97±4.5 37.92±2.0 41.49±1.8 38.45±1.7 38.09±3.4 37.29±2.3 38.86±0.6 38.22±2.7 38.95±1.5 40.10±4.3
Grp. 1 37.64±2.7 36.78±4.0 36.94±2.7 41.54±2.6 35.58±0.8 38.23±4.6 37.17±2.5 38.43±1.1 37.21±2.7 37.24±0.9 38.63±4.8

EqOdd - 98.83±0.5 98.68±0.2 99.26±0.4 99.41±0.3 98.13±0.4 99.07±0.3 99.65±0.1 99.55±0.2 99.02±0.2 98.81±0.3 98.97±0.4

A
D

N
I1

.5
T

Age

BCE Grp. 0 0.52±0.28 0.37±0.09 0.92±0.55 0.75±0.09 0.72±0.10 0.73±0.19 0.66±0.15 0.48±0.10 0.55±0.18 0.41±0.03 0.78±0.14
Grp. 1 0.33±0.11 0.52±0.09 0.56±0.09 0.43±0.12 0.55±0.35 0.33±0.11 0.51±0.06 0.43±0.03 0.33±0.01 0.41±0.12 0.60±0.13

ECE Grp. 0 0.22±0.08 0.17±0.02 0.25±0.06 0.26±0.02 0.30±0.06 0.26±0.01 0.28±0.04 0.20±0.02 0.23±0.06 0.16±0.01 0.29±0.10
Grp. 1 0.14±0.04 0.21±0.05 0.14±0.05 0.18±0.03 0.21±0.18 0.16±0.04 0.21±0.00 0.18±0.04 0.14±0.01 0.17±0.01 0.25±0.15

TPR@80
TNR

Grp. 0 84.56±11.3 82.98±4.0 72.28±4.3 68.07±5.8 68.77±11.6 69.82±4.7 70.53±3.6 86.14±7.1 75.79±6.6 86.99±3.4 28.77±23.2
Grp. 1 72.22±9.2 56.00±12.5 68.44±12.0 74.67±21.9 60.67±31.9 92.00±13.9 50.00±8.7 47.23±13.9 80.67±1.2 66.12±23.4 33.33±25.8

FPR Grp. 0 16.67±8.3 8.33±8.3 25.00±14.4 19.44±9.6 8.33±8.3 22.22±4.8 38.89±17.3 13.89±12.7 16.67±8.3 13.89±4.8 50.00±38.2
Grp. 1 20.63±14.5 22.23±13.7 28.57±20.8 14.29±14.3 28.57±14.3 11.11±12.0 44.44±27.9 20.63±9.9 11.11±2.8 22.22±7.3 55.56±23.5

FNR Grp. 0 15.79±9.1 24.56±6.1 17.54±16.1 24.56±12.2 36.84±9.1 21.05±10.5 14.03±8.0 19.30±12.2 24.56±8.0 15.79±5.3 15.79±13.9
Grp. 1 20.00±0.0 26.67±11.5 20.00±0.0 40.00±20.0 26.67±23.1 26.67±11.5 33.33±30.6 13.33±11.5 20.00±0.0 13.33±11.5 20.00±20.0

EqOdd - 91.24±4.3 87.79±0.9 91.98±6.9 84.65±3.8 81.99±7.6 87.43±3.8 81.91±9.3 86.35±4.0 93.14±2.8 93.20±2.9 86.05±0.4

Sex

BCE Grp. 0 0.47±0.14 0.52±0.14 1.01±0.25 0.53±0.04 0.40±0.14 0.66±0.11 0.51±0.06 0.53±0.04 0.38±0.09 0.34±0.09 0.68±0.04
Grp. 1 0.48±0.01 0.63±0.15 1.03±0.44 0.80±0.28 0.42±0.05 0.81±0.16 0.52±0.02 1.03±0.30 0.38±0.05 0.51±0.18 0.73±0.09

ECE Grp. 0 0.16±0.03 0.17±0.07 0.23±0.05 0.19±0.02 0.17±0.06 0.19±0.03 0.19±0.04 0.14±0.02 0.16±0.03 0.12±0.03 0.22±0.04
Grp. 1 0.21±0.01 0.30±0.08 0.26±0.04 0.30±0.07 0.23±0.04 0.34±0.07 0.20±0.04 0.25±0.04 0.19±0.02 0.19±0.06 0.33±0.06

TPR@80
TNR

Grp. 0 74.52±15.4 65.71±16.5 61.75±3.7 81.83±6.9 85.71±11.2 52.86±14.3 76.43±10.5 77.05±7.4 87.78±9.8 88.57±10.8 37.26±24.2
Grp. 1 76.33±4.5 66.00±13.7 57.67±14.8 73.67±11.6 74.67±28.3 49.67±16.5 68.56±23.0 70.33±9.7 59.83±18.0 71.67±7.5 60.00±13.7

FPR Grp. 0 20.84±7.2 16.67±21.7 9.72±6.4 18.05±4.8 22.22±10.5 72.22±21.4 22.22±25.5 6.95±8.7 23.61±10.5 16.67±7.2 48.61±32.4
Grp. 1 22.22±11.1 29.63±33.9 14.81±17.0 11.11±11.1 14.81±6.4 40.74±23.1 11.11±11.1 14.81±17.0 18.52±23.1 18.52±12.8 66.67±22.2

FNR Grp. 0 21.43±24.7 30.95±4.1 40.48±10.9 23.81±4.1 4.76±4.1 9.52±10.9 16.67±18.0 21.43±12.4 14.29±7.1 14.28±12.4 26.19±20.6
Grp. 1 13.33±15.3 30.00±17.3 46.67±5.8 23.33±11.5 30.00±10.0 16.67±20.8 33.33±5.8 33.33±15.3 6.67±5.8 16.67±11.5 3.33±5.8

EqOdd - 85.79±8.6 84.03±8.8 91.58±5.1 92.49±1.4 83.21±5.9 73.54±23.3 86.11±13.7 88.72±4.4 88.99±3.6 86.60±7.4 76.77±12.4
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Table A12: Results of other metrics for MIMIC-CXR, OCT, and Fitzpatrick17k dataset

Dataset Attr. Metrics Group ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM

M
IM

IC
-C

X
R

Age

BCE

Grp. 0 0.40±0.02 0.47±0.05 0.86±0.04 0.42±0.03 0.42±0.02 0.49±0.02 0.44±0.01 0.46±0.02 0.48±0.06 0.41±0.03 0.62±0.12
Grp. 1 0.43±0.01 0.48±0.02 1.02±0.01 0.45±0.02 0.44±0.00 0.48±0.00 0.46±0.01 0.46±0.01 0.49±0.01 0.43±0.01 0.62±0.13
Grp. 2 0.46±0.00 0.48±0.00 1.04±0.04 0.47±0.01 0.47±0.01 0.50±0.01 0.47±0.00 0.48±0.01 0.52±0.01 0.46±0.01 0.71±0.18
Grp. 3 0.46±0.00 0.47±0.00 1.05±0.05 0.46±0.00 0.47±0.01 0.49±0.01 0.48±0.01 0.47±0.01 0.54±0.03 0.46±0.00 0.72±0.18
Grp. 4 0.44±0.00 0.44±0.00 1.05±0.07 0.43±0.00 0.46±0.01 0.46±0.01 0.47±0.01 0.46±0.00 0.55±0.06 0.44±0.01 0.69±0.16

ECE

Grp. 0 0.06±0.02 0.08±0.03 0.14±0.00 0.06±0.04 0.05±0.02 0.05±0.02 0.09±0.01 0.08±0.01 0.08±0.03 0.06±0.02 0.16±0.07
Grp. 1 0.02±0.00 0.05±0.01 0.15±0.00 0.04±0.02 0.02±0.01 0.02±0.00 0.04±0.02 0.06±0.02 0.05±0.02 0.03±0.01 0.16±0.08
Grp. 2 0.02±0.01 0.03±0.01 0.17±0.00 0.05±0.02 0.04±0.01 0.04±0.02 0.04±0.02 0.05±0.02 0.08±0.04 0.03±0.01 0.22±0.10
Grp. 3 0.02±0.00 0.03±0.01 0.17±0.01 0.03±0.01 0.05±0.01 0.04±0.02 0.07±0.02 0.05±0.02 0.13±0.04 0.03±0.01 0.26±0.11
Grp. 4 0.03±0.00 0.02±0.01 0.16±0.01 0.03±0.00 0.06±0.01 0.04±0.01 0.08±0.01 0.06±0.01 0.15±0.04 0.03±0.01 0.28±0.10

TPR@80
TNR

Grp. 0 78.33±2.7 71.08±6.5 79.55±1.2 77.91±2.4 71.63±9.2 64.81±5.6 74.51±3.3 70.61±3.8 71.67±4.6 76.86±2.8 68.68±6.9
Grp. 1 77.24±1.2 72.14±0.4 74.12±0.1 73.74±3.1 75.03±1.4 67.98±1.7 73.69±2.3 74.78±1.3 68.81±1.1 77.67±0.6 62.41±1.7
Grp. 2 77.01±0.3 74.49±0.8 76.39±0.3 76.49±0.5 76.95±0.1 71.53±0.5 76.34±0.3 76.33±0.8 72.23±1.1 77.76±0.5 67.32±1.8
Grp. 3 73.30±0.6 71.88±0.4 73.49±0.5 73.29±0.2 72.74±0.7 69.30±0.5 72.57±0.4 72.69±0.4 69.71±0.6 73.60±0.4 65.93±1.6
Grp. 4 65.85±0.3 65.99±1.7 66.39±1.9 66.33±0.2 66.53±0.9 61.45±1.6 66.44±0.2 64.73±0.3 62.34±0.8 66.64±0.4 59.96±1.1

FPR

Grp. 0 54.17±3.5 53.79±3.3 47.35±2.9 53.41±5.2 45.46±3.0 62.88±6.5 43.94±2.9 45.83±6.8 36.37±5.2 45.45±2.0 69.32±4.1
Grp. 1 39.68±1.3 42.69±1.2 40.89±0.9 42.21±3.0 37.16±1.5 46.40±3.7 36.00±2.7 38.14±2.2 35.04±1.7 38.97±1.0 50.70±1.0
Grp. 2 30.75±1.3 33.21±0.3 31.20±1.5 31.38±1.8 29.20±0.9 35.70±1.9 30.35±2.4 30.81±0.9 32.77±1.4 29.66±2.0 37.66±1.4
Grp. 3 21.55±1.1 23.92±1.5 21.89±2.4 21.12±1.2 21.51±0.8 23.79±0.8 24.78±1.5 22.61±1.2 29.65±2.0 20.71±1.9 26.87±1.5
Grp. 4 15.10±1.5 16.77±0.7 15.14±2.4 14.14±2.3 16.76±1.2 14.05±0.3 19.71±0.8 16.53±1.4 26.22±2.7 14.67±1.6 18.38±2.7

FNR

Grp. 0 2.08±0.5 2.43±1.7 3.47±1.8 3.65±1.0 5.04±0.3 5.90±2.0 6.08±1.3 6.60±0.3 12.33±2.6 5.04±1.2 5.73±1.4
Grp. 1 5.83±0.2 5.99±0.7 5.82±0.4 5.37±0.4 6.90±0.3 6.48±1.3 8.57±1.4 7.00±0.6 12.17±0.5 6.11±0.6 6.13±0.4
Grp. 2 12.20±0.7 11.61±0.2 12.14±0.8 12.51±1.1 13.63±0.6 12.55±0.8 13.26±1.6 12.99±0.3 13.98±0.7 12.64±1.3 13.77±1.2
Grp. 3 24.79±1.0 22.93±1.9 23.81±2.6 25.16±1.9 25.13±1.2 25.62±1.3 21.60±1.1 23.80±1.8 19.28±1.9 25.26±2.0 24.78±1.4
Grp. 4 41.81±1.7 39.34±2.7 42.44±4.9 43.49±4.1 38.87±1.3 49.03±0.7 34.01±1.0 41.00±2.2 30.26±3.9 42.86±3.4 41.87±3.0

Sex

BCE Grp. 0 0.45±0.00 0.46±0.00 0.55±0.01 0.46±0.00 0.46±0.01 0.47±0.00 0.46±0.01 0.46±0.00 0.46±0.00 0.44±0.00 1.11±0.10
Grp. 1 0.45±0.00 0.45±0.00 0.51±0.02 0.45±0.00 0.45±0.00 0.47±0.00 0.46±0.01 0.45±0.00 0.46±0.00 0.44±0.00 1.01±0.09

ECE Grp. 0 0.02±0.01 0.03±0.01 0.10±0.01 0.02±0.01 0.04±0.02 0.03±0.01 0.04±0.03 0.03±0.01 0.02±0.01 0.02±0.00 0.40±0.05
Grp. 1 0.01±0.01 0.02±0.02 0.09±0.01 0.02±0.02 0.02±0.01 0.02±0.00 0.04±0.02 0.03±0.02 0.02±0.01 0.02±0.00 0.35±0.04

TPR@80
TNR

Grp. 0 76.88±0.7 75.92±0.2 76.11±0.2 76.40±0.1 76.87±0.1 73.92±0.4 76.61±0.3 77.15±0.3 75.49±0.2 78.28±0.2 71.02±0.5
Grp. 1 78.32±0.3 77.55±0.6 78.21±0.6 77.89±0.2 77.65±0.5 75.45±0.4 77.37±0.5 78.31±0.7 77.35±0.2 79.23±0.4 72.82±0.9

FPR Grp. 0 21.93±0.6 23.30±0.4 23.66±0.1 23.13±1.3 23.03±0.9 25.29±1.8 24.87±1.8 22.46±0.2 24.04±1.2 21.52±0.7 27.95±1.1
Grp. 1 25.64±1.5 26.66±0.8 26.69±0.8 26.98±1.0 24.13±1.9 28.66±2.2 25.18±2.3 26.08±0.6 27.71±0.4 25.16±0.6 29.13±0.8

FNR Grp. 0 20.87±0.0 20.06±0.4 19.82±0.2 19.99±1.2 19.93±0.7 20.02±1.9 18.29±1.3 19.93±0.1 20.02±1.0 20.07±0.6 20.03±0.7
Grp. 1 15.80±1.4 15.12±0.7 14.88±0.8 14.66±0.6 17.51±1.7 15.67±1.6 16.81±1.9 15.48±0.5 14.53±0.2 15.29±0.7 16.94±0.2

EqOdd - 95.60±1.3 95.85±0.6 96.02±0.8 95.41±1.9 98.24±1.1 95.81±3.1 99.08±0.6 95.97±0.6 95.42±1.0 95.79±0.1 97.86±0.4

Race

BCE Grp. 0 0.45±0.00 0.45±0.00 0.54±0.01 0.45±0.00 0.44±0.00 0.46±0.00 0.46±0.01 0.45±0.01 0.46±0.00 0.44±0.00 0.99±0.19
Grp. 1 0.46±0.00 0.47±0.01 0.55±0.01 0.46±0.01 0.46±0.00 0.48±0.01 0.47±0.01 0.47±0.01 0.47±0.00 0.46±0.00 0.95±0.17

ECE Grp. 0 0.01±0.01 0.03±0.02 0.10±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.02 0.04±0.02 0.03±0.01 0.02±0.00 0.40±0.06
Grp. 1 0.02±0.01 0.03±0.02 0.10±0.00 0.02±0.02 0.01±0.00 0.03±0.02 0.02±0.01 0.04±0.02 0.03±0.01 0.02±0.00 0.34±0.05

TPR@80
TNR

Grp. 0 76.19±0.4 75.81±0.3 76.00±0.6 76.50±0.4 76.53±0.4 73.54±0.8 75.76±0.4 75.97±0.7 75.29±0.3 76.84±0.2 69.48±0.6
Grp. 1 76.92±0.4 76.43±0.5 77.01±0.6 77.10±0.5 77.39±0.7 74.47±0.7 76.34±0.9 77.16±0.5 75.84±0.4 77.83±0.4 69.36±1.9

FPR Grp. 0 21.20±1.1 21.16±0.2 22.74±2.3 21.57±0.9 21.76±1.3 23.60±2.0 21.97±2.0 21.38±1.7 22.21±1.1 20.94±0.4 25.55±0.9
Grp. 1 31.14±1.3 31.38±0.2 32.20±2.5 31.07±0.3 30.33±0.9 33.65±1.4 29.60±0.8 30.91±2.0 32.24±0.7 30.40±0.5 36.74±1.1

FNR Grp. 0 22.22±1.2 22.64±0.5 20.77±1.9 21.51±0.7 21.42±1.2 22.14±1.7 21.99±1.7 22.20±1.5 22.03±0.8 21.88±0.4 23.66±0.8
Grp. 1 12.38±1.0 12.60±0.3 11.81±1.4 12.38±0.3 13.05±0.7 12.76±1.3 14.53±1.0 13.01±0.5 12.39±0.5 12.25±0.4 14.18±1.0

EqOdd - 90.11±0.1 89.87±0.3 90.79±0.2 90.69±0.7 91.53±0.8 90.28±2.3 92.45±1.5 90.64±0.3 90.17±0.5 90.45±0.2 89.66±0.6

O
C

T

Age

BCE Grp. 0 0.19±0.02 0.25±0.14 0.33±0.07 0.19±0.06 0.23±0.05 0.31±0.03 0.55±0.00 0.22±0.06 0.21±0.01 0.33±0.04 6.10±1.31
Grp. 1 0.04±0.02 0.11±0.03 0.02±0.00 0.04±0.01 0.07±0.02 0.11±0.03 0.52±0.01 0.07±0.08 0.17±0.11 0.21±0.04 3.65±0.85

ECE Grp. 0 0.09±0.01 0.10±0.03 0.11±0.01 0.07±0.02 0.11±0.02 0.13±0.05 0.33±0.03 0.09±0.01 0.10±0.03 0.15±0.03 0.39±0.00
Grp. 1 0.03±0.01 0.07±0.02 0.02±0.00 0.03±0.01 0.05±0.00 0.08±0.02 0.37±0.03 0.04±0.03 0.09±0.02 0.06±0.02 0.24±0.00

TPR@80
TNR

Grp. 0 87.10±4.0 80.45±3.9 82.45±5.7 83.12±13.2 87.11±4.2 84.63±2.6 73.85±30.5 40.78±36.0 91.56±0.3 76.42±5.1 87.73±4.3
Grp. 1 20.00±0.0 67.30±41.0 20.00±0.0 20.00±0.0 43.91±41.4 41.16±36.7 67.53±41.2 20.00±0.0 41.63±37.5 90.05±5.1 82.35±21.2

FPR Grp. 0 5.88±5.9 5.88±0.0 5.88±5.9 0.00±0.0 3.92±6.8 5.88±5.9 5.88±5.9 0.00±0.0 3.92±3.4 1.96±3.4 1.96±3.4
Grp. 1 1.04±1.8 1.04±1.8 0.00±0.0 0.00±0.0 2.08±3.6 1.04±1.8 1.04±1.8 3.13±5.4 2.08±3.6 5.21±1.8 1.04±1.8

FNR Grp. 0 12.12±5.2 15.15±10.5 18.18±9.1 18.18±9.1 18.18±9.1 21.21±10.5 15.15±5.2 12.12±5.2 12.12±5.2 27.27±9.1 15.15±5.2
Grp. 1 0.00±0.0 6.67±5.8 0.00±0.0 3.33±5.8 3.33±5.8 3.33±5.8 6.67±5.8 3.33±5.8 10.00±10.0 20.00±10.0 20.00±10.0

EqOdd - 91.52±2.3 93.03±4.9 87.97±4.0 92.27±6.7 91.66±4.9 88.34±6.1 92.30±2.5 94.04±2.8 93.96±5.8 94.13±5.4 94.39±0.3

Fi
tz

pa
tr

ic
k1

7k

Skin
type

BCE

Grp. 0 27.45±5.7 38.66±13.2 165.16±59.7 31.00±4.5 27.13±2.0 30.07±2.3 56.64±1.4 24.13±2.7 32.86±3.4 31.19±4.0 34.10±8.7
Grp. 1 31.60±3.3 41.80±13.4 119.70±30.1 38.82±9.9 29.94±1.7 30.05±2.5 58.18±1.6 34.27±2.4 34.42±5.8 32.79±1.9 36.78±8.9
Grp. 2 29.18±6.7 37.36±20.9 152.13±57.5 28.49±5.5 22.50±0.3 24.95±0.8 56.74±1.3 27.41±2.7 27.92±4.5 25.45±3.7 33.20±10.9
Grp. 3 24.10±6.3 27.79±21.6 49.76±18.0 19.75±4.6 21.64±0.8 23.93±4.8 55.35±1.6 21.16±2.4 18.68±4.1 12.34±0.5 25.30±9.8
Grp. 4 20.78±7.0 25.96±16.5 80.73±41.9 18.18±6.4 17.84±0.8 19.07±4.0 54.41±1.4 18.62±3.1 15.54±1.9 14.07±0.5 22.77±10.2
Grp. 5 23.21±7.7 31.20±14.2 88.83±80.4 20.11±6.6 15.48±0.8 12.32±2.3 54.04±1.3 15.44±4.1 20.07±1.8 13.39±4.3 19.87±10.1

ECE

Grp. 0 6.52±3.6 11.70±10.1 17.42±8.7 6.19±1.7 4.35±1.2 5.71±0.4 31.46±0.8 3.91±0.9 8.78±2.6 6.28±1.4 9.16±5.5
Grp. 1 5.78±2.5 11.72±9.0 15.58±5.7 7.95±2.6 3.87±1.0 5.34±1.0 29.55±1.2 6.56±0.9 6.88±1.9 5.92±0.8 10.05±5.3
Grp. 2 6.32±4.5 11.56±10.2 12.42±4.8 5.79±2.3 3.30±0.9 4.59±0.8 33.07±1.1 4.81±1.2 6.24±2.5 4.56±0.3 9.32±6.2
Grp. 3 6.58±5.1 11.47±11.9 9.94±4.8 3.57±2.3 3.51±0.4 4.75±2.0 34.39±0.7 4.76±0.0 5.85±2.9 3.08±0.0 7.99±8.2
Grp. 4 7.20±3.7 11.06±12.0 7.63±2.5 3.90±0.7 4.14±2.6 4.63±0.5 35.08±1.0 4.07±0.3 4.32±1.3 2.41±0.2 7.72±6.7
Grp. 5 11.68±6.5 14.29±10.4 9.93±3.5 6.65±1.5 5.68±2.1 4.73±0.5 37.13±1.1 7.27±1.9 5.88±1.4 5.84±1.9 9.48±5.1

TPR@80
TNR

Grp. 0 84.21±3.1 87.39±3.3 80.89±4.7 77.55±2.2 80.64±4.0 80.15±6.4 77.77±0.8 83.60±5.5 89.45±2.3 86.75±2.4 77.20±2.8
Grp. 1 82.79±2.4 82.06±3.2 75.65±10.5 80.99±2.6 84.02±3.7 84.83±1.2 77.15±2.5 79.26±5.6 85.09±2.6 87.12±2.0 81.47±4.8
Grp. 2 84.94±2.0 84.48±8.9 78.37±3.8 87.10±5.4 87.11±2.2 88.32±1.2 81.78±2.2 83.15±3.8 88.12±3.0 91.97±1.8 83.87±1.2
Grp. 3 83.59±1.5 93.28±6.5 85.30±11.5 93.50±2.0 86.96±3.0 86.30±4.9 88.95±1.7 83.39±10.0 96.41±0.6 94.86±3.8 91.19±1.0
Grp. 4 81.76±5.8 79.55±14.4 86.48±10.3 83.02±8.0 74.54±11.6 74.53±14.1 69.73±5.6 69.91±14.2 87.89±5.1 83.99±3.4 75.49±4.0
Grp. 5 66.13±9.1 76.66±0.4 56.08±19.9 61.99±18.1 77.38±0.4 57.80±1.6 56.73±20.4 68.08±9.3 70.60±11.6 71.03±12.5 76.36±0.7

FPR

Grp. 0 5.18±0.8 7.97±1.7 6.50±2.4 4.91±1.0 7.84±2.2 7.83±4.2 8.63±1.8 5.84±1.5 8.37±2.9 6.51±1.6 7.57±0.7
Grp. 1 5.39±1.5 7.58±3.5 5.56±2.3 5.05±0.5 7.32±1.8 6.65±2.0 11.20±3.5 7.66±1.5 6.82±2.4 5.22±1.2 5.47±1.9
Grp. 2 7.09±2.1 7.78±4.1 4.88±1.3 6.04±1.3 6.04±1.3 5.81±2.0 9.29±2.3 8.36±1.3 7.08±2.2 5.46±1.1 5.22±2.4
Grp. 3 4.74±2.6 7.18±3.3 2.58±0.2 5.56±2.1 4.74±1.8 5.15±3.3 4.61±0.2 5.28±0.8 4.88±0.4 4.47±0.8 5.69±0.0
Grp. 4 3.48±1.9 3.98±1.1 2.99±0.7 5.47±3.0 2.98±1.3 2.49±1.7 2.49±0.9 3.98±0.4 2.49±1.1 3.24±0.4 4.23±0.9
Grp. 5 4.76±3.2 7.94±0.0 4.23±1.8 6.35±4.2 3.70±1.8 3.17±3.2 2.65±1.8 5.29±0.9 3.70±0.9 5.82±2.4 6.35±1.6

FNR

Grp. 0 31.62±1.5 26.50±3.0 35.04±5.3 37.61±1.5 28.21±6.8 38.46±7.7 33.34±4.4 29.92±1.5 25.64±6.8 25.64±8.9 38.46±0.0
Grp. 1 33.70±2.3 32.23±6.6 41.76±4.0 38.10±5.5 30.77±4.8 29.30±5.2 31.87±1.9 36.27±4.8 28.94±2.8 24.17±5.0 32.97±4.0
Grp. 2 30.67±4.6 27.33±8.1 34.67±4.2 32.00±3.5 28.00±4.0 29.33±3.1 28.67±6.4 30.67±9.9 24.00±5.3 18.67±8.3 34.67±5.8
Grp. 3 39.79±3.7 24.73±8.1 46.24±6.7 29.03±11.6 38.71±11.6 37.63±15.9 33.33±4.9 34.41±4.9 27.96±6.7 11.83±4.9 33.33±3.7
Grp. 4 56.67±5.8 36.67±11.5 56.67±5.8 33.33±15.3 46.67±5.8 50.00±10.0 66.67±5.8 50.00±20.0 36.67±15.3 20.00±0.0 50.00±10.0
Grp. 5 58.33±14.4 41.67±14.4 50.00±43.3 50.00±43.3 50.00±25.0 33.33±14.4 58.33±38.2 41.67±52.0 58.33±14.4 25.00±25.0 41.67±14.4
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Table A13: Results of other metrics for COVID-CT-MD, PAPILA, and OL3I dataset.

Dataset Attr. Metrics Group ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM

C
O

V
ID

-C
T-

M
D

Age

BCE Grp. 0 0.76±0.24 0.73±0.08 1.18±0.71 0.71±0.04 0.72±0.02 0.77±0.08 0.69±0.00 1.21±0.80 1.04±0.20 0.58±0.04 1.46±1.31
Grp. 1 0.72±0.03 0.77±0.16 1.30±0.55 0.77±0.08 0.78±0.15 0.87±0.09 0.74±0.01 1.06±0.35 0.95±0.18 0.60±0.07 1.24±0.90

ECE Grp. 0 0.26±0.09 0.22±0.09 0.26±0.09 0.19±0.05 0.18±0.03 0.23±0.05 0.17±0.04 0.31±0.17 0.34±0.04 0.16±0.02 0.30±0.14
Grp. 1 0.31±0.04 0.34±0.07 0.40±0.05 0.35±0.05 0.33±0.14 0.37±0.02 0.31±0.04 0.34±0.10 0.30±0.12 0.26±0.05 0.41±0.16

TPR@80
TNR

Grp. 0 49.91±8.7 46.96±3.1 38.86±9.3 33.86±14.8 34.54±17.6 33.51±4.5 32.86±2.9 51.59±11.3 52.17±5.7 50.43±7.6 40.29±0.5
Grp. 1 38.67±8.3 27.56±13.9 37.33±9.2 24.00±13.9 32.00±13.9 37.60±10.0 29.33±2.3 46.67±2.3 30.93±15.0 45.33±2.4 36.44±9.6

FPR Grp. 0 47.62±20.8 74.60±11.0 58.73±2.7 74.61±27.5 79.36±7.3 63.49±18.0 77.78±2.7 52.38±9.5 50.79±7.3 50.79±9.9 55.55±21.5
Grp. 1 41.67±8.3 44.44±9.6 44.44±12.7 55.55±41.1 52.78±24.1 41.67±25.0 33.33±0.0 44.45±4.8 52.78±17.3 33.33±8.3 27.78±12.7

FNR Grp. 0 14.49±9.0 7.25±2.5 10.15±2.5 13.04±15.1 5.80±5.0 10.15±6.6 5.80±2.5 14.49±6.6 11.60±5.0 8.70±7.5 11.60±12.6
Grp. 1 40.00±20.0 33.33±11.5 40.00±0.0 26.67±46.2 33.33±11.5 26.67±11.5 40.00±0.0 33.33±11.5 26.67±11.5 33.33±11.5 46.67±23.1

EqOdd - 80.30±12.7 71.88±6.1 77.93±5.1 80.77±19.9 72.94±11.8 80.83±6.0 60.68±0.1 86.61±4.8 88.30±3.9 78.95±3.6 68.57±10.8

Sex

BCE Grp. 0 0.66±0.08 1.20±0.36 1.14±0.61 0.96±0.35 0.73±0.06 0.86±0.30 0.71±0.00 0.85±0.20 0.80±0.21 0.66±0.10 0.74±0.03
Grp. 1 0.63±0.06 0.96±0.49 1.06±0.43 0.99±0.63 0.78±0.17 0.73±0.10 0.69±0.00 0.69±0.13 0.64±0.13 0.59±0.12 0.57±0.06

ECE Grp. 0 0.23±0.03 0.33±0.05 0.30±0.09 0.28±0.07 0.22±0.04 0.27±0.10 0.25±0.10 0.30±0.09 0.25±0.11 0.22±0.05 0.28±0.01
Grp. 1 0.24±0.07 0.26±0.12 0.31±0.02 0.31±0.11 0.26±0.07 0.23±0.03 0.21±0.03 0.25±0.06 0.20±0.10 0.25±0.10 0.20±0.04

TPR@80
TNR

Grp. 0 51.56±11.1 35.56±6.7 42.96±4.5 47.70±10.5 32.44±11.1 39.67±7.8 34.67±3.5 52.44±19.1 47.44±8.1 57.33±12.2 46.71±4.3
Grp. 1 42.05±12.3 61.71±10.1 40.00±5.3 61.88±5.6 43.59±10.2 42.05±4.4 47.18±10.8 50.43±28.5 53.33±16.0 48.63±10.6 53.33±15.8

FPR Grp. 0 44.44±9.9 63.49±12.0 53.97±15.3 57.14±9.5 68.25±7.3 63.49±7.3 58.73±2.7 41.27±30.2 52.38±23.8 41.27±12.0 55.55±2.7
Grp. 1 30.56±12.7 61.11±21.0 50.00±0.0 47.22±12.7 47.22±9.6 50.00±22.0 77.78±4.8 47.22±33.7 44.44±12.7 36.11±17.3 44.44±9.6

FNR Grp. 0 17.78±7.7 17.78±16.8 13.33±6.7 6.67±6.7 4.45±3.9 13.33±6.7 13.33±0.0 17.78±20.4 11.11±3.8 17.78±13.9 17.78±10.2
Grp. 1 25.64±4.4 7.69±0.0 10.25±4.4 10.25±4.4 23.07±13.3 12.82±4.4 5.13±4.4 23.07±20.4 12.82±4.4 20.51±8.9 20.51±16.0

EqOdd - 89.12±6.4 86.84±5.0 92.28±4.8 91.36±4.1 80.17±5.4 90.78±6.2 86.37±1.9 81.22±7.0 93.59±3.0 92.82±0.8 85.21±12.2

PA
PI

L
A

Age

BCE Grp. 0 0.34±0.04 0.27±0.02 0.52±0.03 0.15±0.13 0.20±0.13 0.28±0.03 0.53±0.02 0.16±0.02 0.23±0.05 0.09±0.08 0.72±0.43
Grp. 1 0.74±0.05 0.82±0.04 1.36±0.15 1.42±0.65 0.86±0.17 0.87±0.18 0.68±0.01 0.67±0.06 0.76±0.03 4.50±2.60 1.25±0.22

ECE Grp. 0 0.15±0.04 0.17±0.06 0.11±0.00 0.08±0.04 0.10±0.03 0.15±0.01 0.41±0.01 0.12±0.02 0.12±0.02 0.04±0.03 0.11±0.00
Grp. 1 0.25±0.02 0.26±0.01 0.31±0.02 0.32±0.10 0.28±0.06 0.30±0.08 0.24±0.03 0.25±0.05 0.26±0.03 0.35±0.03 0.31±0.05

TPR@80
TNR

Grp. 0 24.59±8.6 20.00±0.0 32.10±19.2 32.44±21.6 28.57±14.8 24.67±22.8 20.00±0.0 20.00±0.0 20.00±0.0 20.00±0.0 28.00±13.9
Grp. 1 23.27±4.7 21.90±3.3 17.02±3.6 16.67±7.9 19.21±5.1 30.48±16.2 15.24±5.9 16.49±11.0 25.08±8.3 25.08±3.1 19.81±2.9

FPR Grp. 0 6.25±6.2 0.00±0.0 6.25±6.2 2.08±3.6 2.08±3.6 18.75±27.2 2.08±3.6 14.58±13.0 0.00±0.0 4.17±7.2 6.25±6.2
Grp. 1 56.86±3.4 56.86±3.4 60.78±3.4 47.06±15.6 47.06±5.9 52.94±27.0 54.90±6.8 66.67±3.4 60.78±9.0 37.25±14.8 62.75±3.4

FNR Grp. 0 83.33±28.9 50.00±0.0 66.67±28.9 16.67±28.9 16.67±28.9 50.00±50.0 16.67±28.9 0.00±0.0 33.33±28.9 16.67±28.9 50.00±50.0
Grp. 1 23.81±8.2 19.05±8.2 33.33±8.3 28.57±14.3 28.57±0.0 28.57±14.3 33.33±8.3 19.05±8.2 19.05±8.2 33.33±8.3 19.05±8.2

EqOdd - 44.93±18.2 56.09±5.8 56.07±12.4 64.42±1.3 64.42±2.0 67.43±10.1 58.11±2.7 64.43±10.1 57.70±2.1 72.74±10.4 46.75±17.5

Sex

BCE Grp. 0 0.64±0.12 1.08±0.19 0.57±0.04 0.55±0.05 0.57±0.12 4.93±2.90 0.57±0.01 0.45±0.03 0.77±0.30 1.10±0.17 0.64±0.26
Grp. 1 0.77±0.53 1.13±0.59 0.53±0.06 0.47±0.00 0.56±0.10 3.61±2.61 0.59±0.02 0.42±0.05 0.81±0.32 1.08±0.14 0.61±0.27

ECE Grp. 0 0.19±0.03 0.30±0.04 0.23±0.04 0.27±0.02 0.20±0.01 0.25±0.02 0.27±0.04 0.15±0.06 0.22±0.05 0.23±0.05 0.23±0.02
Grp. 1 0.24±0.06 0.30±0.06 0.19±0.01 0.17±0.06 0.18±0.03 0.33±0.05 0.26±0.03 0.16±0.08 0.18±0.02 0.25±0.07 0.22±0.03

TPR@80
TNR

Grp. 0 27.64±24.0 45.00±31.2 11.00±6.9 13.00±14.7 20.33±12.9 50.83±17.7 54.50±4.8 25.00±26.5 46.67±20.8 38.81±25.0 17.50±11.5
Grp. 1 46.67±6.1 35.00±9.0 37.16±8.0 30.67±4.6 34.11±12.3 56.67±18.6 60.27±6.7 40.89±7.8 19.71±15.7 40.00±10.6 43.67±7.5

FPR Grp. 0 20.83±3.6 20.83±7.2 39.58±25.3 45.83±7.2 50.00±38.0 16.67±7.2 8.33±9.5 22.92±3.6 18.75±6.2 22.92±7.2 39.58±9.5
Grp. 1 31.37±3.4 25.49±12.2 41.18±27.0 43.14±9.0 47.06±32.7 19.61±14.8 21.57±9.0 31.37±9.0 23.53±10.2 33.33±6.8 41.18±5.9

FNR Grp. 0 50.00±0.0 33.33±14.4 25.00±25.0 25.00±0.0 25.00±0.0 41.67±14.4 58.33±14.4 41.67±14.4 58.33±14.4 33.33±14.4 25.00±0.0
Grp. 1 13.33±11.5 33.33±11.5 33.33±23.1 0.00±0.0 26.67±30.6 33.33±11.5 20.00±20.0 13.33±23.1 13.33±11.5 20.00±0.0 13.33±11.5

EqOdd - 76.40±5.8 92.43±2.2 82.59±5.6 83.95±3.3 84.39±7.2 92.16±0.4 74.22±13.2 76.61±12.1 74.74±11.2 87.51±8.5 92.39±5.5

O
L

3I

Age

BCE Grp. 0 0.49±0.48 0.10±0.01 0.15±0.07 0.10±0.01 0.17±0.12 0.15±0.06 0.67±0.01 0.11±0.01 0.53±0.31 0.10±0.01 0.15±0.02
Grp. 1 0.64±0.54 0.37±0.03 0.32±0.05 0.31±0.01 0.37±0.07 0.30±0.03 0.67±0.01 0.36±0.08 0.59±0.27 0.33±0.07 0.29±0.02

ECE Grp. 0 0.30±0.27 0.02±0.00 0.07±0.08 0.02±0.00 0.09±0.12 0.08±0.06 0.47±0.01 0.02±0.01 0.36±0.19 0.02±0.00 0.08±0.03
Grp. 1 0.28±0.31 0.07±0.01 0.09±0.07 0.05±0.01 0.10±0.07 0.06±0.04 0.41±0.01 0.06±0.03 0.32±0.18 0.06±0.04 0.05±0.02

TPR@80
TNR

Grp. 0 41.37±10.1 67.76±4.2 30.45±14.1 66.27±17.6 50.28±21.7 49.12±15.6 28.07±1.3 51.00±10.6 36.75±30.0 56.81±11.7 53.02±7.7
Grp. 1 22.33±10.1 18.85±7.8 26.24±7.1 26.48±0.4 29.36±2.9 28.30±4.5 19.09±6.5 26.39±6.6 23.09±10.1 27.73±16.0 28.49±8.3

FPR Grp. 0 15.61±13.5 13.06±9.0 18.60±15.3 14.12±6.9 9.02±4.3 4.04±2.0 6.40±4.0 11.94±11.6 21.33±6.8 8.21±12.3 9.95±9.0
Grp. 1 27.32±20.5 30.60±22.6 35.65±16.3 34.97±12.3 17.90±12.4 12.43±4.0 5.19±2.7 24.18±21.0 34.02±8.6 27.46±29.6 11.61±8.9

FNR Grp. 0 63.89±17.3 50.00±22.0 63.89±17.3 38.89±19.2 66.67±22.1 80.56±9.6 80.56±9.6 66.67±25.0 58.33±30.0 69.44±17.3 66.67±22.0
Grp. 1 62.12±18.4 63.63±27.6 45.46±23.6 51.51±16.0 72.73±13.6 78.79±6.9 92.42±6.9 63.64±19.8 51.51±6.9 62.12±26.6 78.79±17.2

EqOdd - 90.23±6.7 84.41±5.2 82.25±7.6 78.71±4.8 90.76±5.7 94.16±0.8 91.50±5.0 90.34±2.0 83.43±2.4 84.44±11.5 93.11±2.4

Sex

BCE Grp. 0 0.33±0.14 0.31±0.11 0.52±0.24 0.25±0.02 0.28±0.08 0.27±0.04 0.67±0.01 0.30±0.09 0.28±0.06 0.25±0.03 0.24±0.01
Grp. 1 0.25±0.18 0.24±0.15 0.35±0.32 0.13±0.02 0.15±0.01 0.19±0.06 0.67±0.01 0.21±0.14 0.18±0.10 0.12±0.00 0.16±0.02

ECE Grp. 0 0.14±0.14 0.14±0.11 0.19±0.17 0.04±0.00 0.05±0.01 0.09±0.05 0.42±0.01 0.11±0.11 0.09±0.08 0.04±0.01 0.04±0.01
Grp. 1 0.15±0.15 0.14±0.14 0.18±0.25 0.03±0.03 0.04±0.01 0.11±0.06 0.46±0.01 0.11±0.14 0.08±0.10 0.03±0.01 0.06±0.03

TPR@80
TNR

Grp. 0 40.07±9.8 42.58±1.8 23.43±11.3 39.86±4.5 35.99±12.1 36.35±9.1 16.04±6.7 34.76±8.4 33.07±8.7 38.08±4.0 37.44±2.5
Grp. 1 54.11±10.0 65.09±13.5 40.71±26.1 51.16±10.8 37.11±3.8 54.78±2.7 18.09±8.1 51.06±34.5 53.04±9.8 58.25±11.0 31.83±2.5

FPR Grp. 0 22.56±14.9 21.44±10.5 33.89±26.5 9.33±7.8 25.55±14.7 16.44±10.6 45.00±36.3 21.44±9.1 29.56±7.1 16.11±8.2 9.44±5.5
Grp. 1 13.82±10.7 17.64±11.7 34.38±33.4 5.42±3.7 19.72±14.6 10.90±7.0 43.12±35.2 11.53±7.3 18.06±4.1 10.07±6.6 6.81±5.8

FNR Grp. 0 51.67±28.4 46.67±22.5 61.67±25.7 75.00±13.2 53.33±5.8 70.00±8.7 51.67±37.9 60.00±20.0 48.33±2.9 68.33±7.6 73.33±5.8
Grp. 1 50.00±18.9 40.48±27.0 38.09±27.0 80.95±10.9 64.29±18.9 61.90±20.6 35.71±43.4 64.29±24.7 42.86±18.9 54.76±18.0 83.34±16.5

EqOdd - 91.94±3.2 93.32±4.6 75.69±4.4 94.59±4.5 88.55±8.7 91.28±4.6 91.09±5.8 89.57±0.4 86.75±2.0 90.19±5.9 91.78±4.8
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Table A14: Results of other metrics in out-of-distribution setting. In the dataset column, the dataset
in the first row is the training domain, and the second row is the testing domain.

Dataset Attr. Metrics Group ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM

C
he

X
pe

rt
M

IM
IC

-C
X

R

Age

BCE

Grp. 0 0.64±0.03 0.91±0.09 1.86±0.31 0.68±0.05 0.79±0.15 0.76±0.09 1.03±0.17 0.84±0.14 0.70±0.09 0.82±0.03 0.67±0.03
Grp. 1 0.70±0.01 0.90±0.08 2.07±0.30 0.71±0.03 0.82±0.14 0.74±0.07 0.97±0.17 0.86±0.10 0.72±0.09 0.93±0.01 0.72±0.03
Grp. 2 0.72±0.01 0.80±0.08 2.16±0.23 0.69±0.03 0.73±0.09 0.67±0.05 0.76±0.12 0.77±0.06 0.69±0.08 0.95±0.02 0.71±0.03
Grp. 3 0.73±0.01 0.74±0.06 2.33±0.22 0.69±0.05 0.68±0.06 0.63±0.04 0.65±0.08 0.71±0.03 0.66±0.06 0.95±0.02 0.70±0.02
Grp. 4 0.68±0.00 0.64±0.05 2.18±0.22 0.62±0.05 0.59±0.04 0.56±0.04 0.55±0.04 0.61±0.02 0.60±0.04 0.86±0.02 0.64±0.02

ECE

Grp. 0 0.28±0.01 0.36±0.03 0.43±0.05 0.30±0.03 0.36±0.08 0.32±0.07 0.45±0.07 0.36±0.06 0.28±0.07 0.36±0.01 0.27±0.02
Grp. 1 0.29±0.00 0.35±0.04 0.43±0.03 0.29±0.02 0.34±0.07 0.29±0.06 0.40±0.07 0.35±0.04 0.27±0.08 0.38±0.00 0.29±0.02
Grp. 2 0.26±0.00 0.27±0.04 0.36±0.03 0.24±0.02 0.25±0.05 0.21±0.04 0.24±0.07 0.26±0.02 0.21±0.07 0.32±0.00 0.25±0.01
Grp. 3 0.23±0.00 0.22±0.03 0.30±0.02 0.21±0.02 0.20±0.03 0.17±0.03 0.16±0.06 0.21±0.01 0.17±0.05 0.27±0.00 0.21±0.01
Grp. 4 0.18±0.00 0.17±0.02 0.23±0.01 0.16±0.02 0.15±0.02 0.13±0.02 0.11±0.03 0.15±0.01 0.14±0.03 0.21±0.00 0.17±0.01

TPR@80
TNR

Grp. 0 73.58±6.0 60.45±6.0 63.12±12.0 70.07±4.0 72.05±4.0 59.42±9.0 65.48±8.0 53.00±7.0 56.11±7.0 76.22±3.0 53.54±3.0
Grp. 1 67.32±1.0 58.35±3.0 57.29±8.0 65.94±2.0 64.42±2.0 55.56±3.0 58.52±4.0 56.04±6.0 57.77±1.0 69.43±1.0 61.52±0.0
Grp. 2 69.51±0.0 62.95±3.0 60.63±6.0 70.23±1.0 67.61±2.0 62.88±1.0 63.95±5.0 61.08±9.0 61.46±1.0 71.51±1.0 66.99±1.0
Grp. 3 64.15±0.0 60.47±3.0 57.93±6.0 65.12±1.0 63.23±1.0 59.91±2.0 61.36±4.0 56.24±8.0 56.35±1.0 65.89±1.0 63.84±0.0
Grp. 4 55.47±1.0 54.00±2.0 51.37±5.0 56.47±2.0 55.29±2.0 54.18±1.0 54.18±2.0 50.95±7.0 48.18±2.0 57.50±1.0 55.60±0.0

FPR

Grp. 0 59.85±4.0 53.79±7.0 60.61±6.0 56.82±9.0 60.23±9.0 71.21±9.0 45.08±11.0 59.47±3.0 68.18±2.0 52.27±2.0 72.35±1.0
Grp. 1 52.75±1.0 48.85±2.0 53.50±1.0 49.07±4.0 47.43±6.0 58.15±3.0 42.23±5.0 54.97±5.0 60.03±3.0 46.60±1.0 57.02±1.0
Grp. 2 38.62±1.0 41.28±2.0 42.91±2.0 37.82±3.0 38.17±4.0 46.61±2.0 39.02±4.0 44.94±7.0 44.41±3.0 35.38±1.0 40.67±1.0
Grp. 3 24.22±1.0 29.32±2.0 30.27±3.0 25.07±1.0 28.53±2.0 30.35±1.0 31.80±4.0 34.99±8.0 28.59±2.0 23.94±0.0 25.55±1.0
Grp. 4 12.89±1.0 18.76±3.0 20.52±4.0 14.02±2.0 20.21±2.0 16.68±3.0 22.58±4.0 25.31±10.0 16.38±2.0 14.87±1.0 13.82±0.0

FNR

Grp. 0 2.26±2.0 11.11±7.0 4.86±1.0 3.12±3.0 4.86±4.0 4.34±1.0 9.98±5.0 4.51±2.0 4.51±2.0 3.82±1.0 2.95±0.0
Grp. 1 4.00±0.0 8.92±3.0 5.87±2.0 4.86±1.0 6.21±3.0 4.69±1.0 11.98±3.0 6.56±1.0 4.93±1.0 5.40±0.0 4.23±0.0
Grp. 2 10.90±1.0 13.28±1.0 13.05±3.0 11.55±2.0 12.01±2.0 10.85±1.0 13.95±2.0 11.79±1.0 13.58±1.0 12.43±1.0 12.01±0.0
Grp. 3 29.16±2.0 27.08±2.0 28.58±3.0 27.37±2.0 24.63±2.0 26.12±3.0 23.33±2.0 24.07±2.0 31.66±2.0 28.31±1.0 27.74±1.0
Grp. 4 58.00±3.0 47.82±4.0 48.38±1.0 53.67±2.0 43.78±4.0 51.15±5.0 42.17±5.0 40.79±8.0 57.51±4.0 51.07±0.0 56.45±1.0

Sex

BCE Grp. 0 0.70±0.04 0.63±0.08 0.92±0.05 0.72±0.07 0.70±0.07 0.65±0.00 0.64±0.05 0.69±0.11 0.73±0.01 0.90±0.01 0.65±0.02
Grp. 1 0.73±0.03 0.66±0.09 0.94±0.09 0.76±0.08 0.70±0.05 0.68±0.03 0.70±0.05 0.71±0.14 0.75±0.01 0.92±0.00 0.68±0.03

ECE Grp. 0 0.22±0.02 0.18±0.06 0.22±0.02 0.23±0.04 0.22±0.04 0.20±0.00 0.19±0.03 0.21±0.06 0.23±0.01 0.28±0.00 0.20±0.01
Grp. 1 0.25±0.02 0.21±0.06 0.25±0.04 0.26±0.04 0.24±0.03 0.23±0.02 0.23±0.03 0.23±0.07 0.26±0.01 0.30±0.01 0.24±0.02

TPR@80
TNR

Grp. 0 68.33±1.0 69.40±2.0 69.25±1.0 68.06±2.0 68.37±2.0 67.97±1.0 69.98±0.0 70.41±1.0 67.32±1.0 71.88±0.0 71.14±0.0
Grp. 1 70.98±1.0 71.25±1.0 71.25±1.0 70.76±1.0 70.03±2.0 68.78±2.0 71.31±1.0 71.41±1.0 70.04±1.0 72.95±0.0 72.33±0.0

FPR Grp. 0 28.89±1.0 28.73±3.0 27.97±1.0 29.47±2.0 28.04±3.0 28.62±2.0 27.28±1.0 28.41±1.0 28.37±1.0 26.48±1.0 28.05±2.0
Grp. 1 31.91±1.0 30.96±2.0 31.05±1.0 32.19±2.0 36.26±2.0 33.96±3.0 27.28±1.0 32.02±1.0 31.83±2.0 30.20±1.0 31.09±2.0

FNR Grp. 0 21.03±1.0 20.65±1.0 21.47±1.0 20.86±3.0 21.63±2.0 21.81±2.0 22.49±1.0 20.06±0.0 23.08±2.0 20.71±1.0 20.16±2.0
Grp. 1 16.45±1.0 16.99±1.0 17.40±2.0 16.82±1.0 13.45±1.0 16.28±2.0 20.53±2.0 15.86±1.0 17.45±2.0 16.81±1.0 16.04±2.0

EqOdd - 96.20±1.0 97.05±0.0 96.43±1.0 96.62±1.0 91.80±1.0 94.57±4.0 98.74±0.0 96.09±1.0 95.46±1.0 96.19±0.0 96.42±0.0

Race

BCE Grp. 0 0.68±0.02 0.66±0.04 0.95±0.12 0.69±0.02 0.55±0.03 0.68±0.01 0.62±0.04 0.67±0.05 0.71±0.05 0.89±0.00 0.65±0.01
Grp. 1 0.72±0.04 0.72±0.08 0.95±0.12 0.75±0.04 0.60±0.05 0.75±0.01 0.71±0.06 0.74±0.06 0.75±0.03 0.97±0.01 0.71±0.01

ECE Grp. 0 0.20±0.01 0.19±0.02 0.23±0.02 0.21±0.01 0.10±0.04 0.21±0.01 0.18±0.02 0.20±0.01 0.21±0.01 0.26±0.00 0.20±0.01
Grp. 1 0.24±0.02 0.24±0.03 0.27±0.03 0.26±0.02 0.15±0.05 0.26±0.01 0.25±0.03 0.26±0.02 0.26±0.01 0.33±0.00 0.25±0.01

TPR@80
TNR

Grp. 0 68.42±1.0 67.77±3.0 69.90±0.0 69.04±1.0 67.13±1.0 65.60±2.0 68.46±2.0 68.83±2.0 66.73±1.0 70.39±1.0 69.85±1.0
Grp. 1 68.99±1.0 68.24±4.0 70.34±0.0 68.47±1.0 67.01±1.0 65.95±2.0 68.04±3.0 68.96±2.0 68.33±1.0 70.96±0.0 69.97±0.0

FPR Grp. 0 24.51±1.0 27.57±4.0 24.10±1.0 24.98±1.0 27.67±3.0 29.97±3.0 24.57±1.0 27.55±3.0 26.56±1.0 24.69±1.0 24.05±2.0
Grp. 1 36.49±1.0 38.83±3.0 36.23±2.0 37.09±1.0 39.88±3.0 42.18±2.0 35.81±1.0 38.82±4.0 38.75±1.0 36.10±1.0 36.26±2.0

FNR Grp. 0 26.11±0.0 22.98±2.0 24.76±2.0 24.87±1.0 23.98±2.0 22.47±2.0 25.65±1.0 21.93±2.0 25.44±2.0 23.91±1.0 25.17±2.0
Grp. 1 13.78±1.0 12.75±0.0 13.60±2.0 13.19±1.0 13.83±1.0 12.30±0.0 15.17±1.0 12.49±1.0 13.46±1.0 13.26±0.0 13.49±1.0

EqOdd - 87.84±1.0 89.25±1.0 88.35±1.0 88.10±0.0 88.82±1.0 88.81±1.0 89.13±1.0 89.64±0.0 87.91±1.0 88.97±0.0 88.05±0.0

M
IM

IC
-C

X
R

C
he

X
pe

rt

Age

BCE

Grp. 0 0.48±0.03 0.63±0.10 0.80±0.11 0.52±0.05 0.48±0.04 0.64±0.08 0.47±0.04 0.44±0.02 0.50±0.02 0.87±0.03 0.91±0.18
Grp. 1 0.39±0.01 0.46±0.02 0.70±0.05 0.42±0.03 0.41±0.00 0.44±0.02 0.39±0.01 0.39±0.02 0.40±0.01 0.70±0.00 0.77±0.21
Grp. 2 0.33±0.01 0.35±0.01 0.55±0.04 0.35±0.02 0.35±0.01 0.36±0.02 0.35±0.02 0.33±0.02 0.34±0.01 0.61±0.00 0.74±0.23
Grp. 3 0.29±0.01 0.30±0.02 0.45±0.03 0.30±0.02 0.33±0.02 0.31±0.03 0.34±0.02 0.29±0.02 0.29±0.01 0.53±0.00 0.71±0.24
Grp. 4 0.23±0.01 0.23±0.02 0.25±0.01 0.24±0.02 0.28±0.03 0.25±0.03 0.30±0.02 0.23±0.02 0.23±0.01 0.43±0.01 0.63±0.20

ECE

Grp. 0 0.15±0.03 0.17±0.03 0.16±0.01 0.18±0.04 0.17±0.02 0.26±0.05 0.11±0.04 0.13±0.02 0.15±0.02 0.34±0.01 0.42±0.08
Grp. 1 0.11±0.02 0.11±0.02 0.13±0.00 0.13±0.03 0.12±0.01 0.14±0.03 0.09±0.02 0.09±0.03 0.11±0.02 0.28±0.00 0.36±0.09
Grp. 2 0.11±0.02 0.12±0.02 0.10±0.00 0.13±0.03 0.13±0.02 0.14±0.02 0.13±0.02 0.11±0.03 0.12±0.01 0.27±0.00 0.38±0.10
Grp. 3 0.12±0.01 0.12±0.02 0.08±0.00 0.14±0.02 0.15±0.03 0.15±0.03 0.17±0.01 0.12±0.02 0.13±0.01 0.26±0.00 0.40±0.11
Grp. 4 0.13±0.01 0.12±0.02 0.04±0.00 0.14±0.02 0.16±0.03 0.15±0.03 0.19±0.01 0.13±0.02 0.13±0.01 0.25±0.00 0.39±0.10

TPR@80
TNR

Grp. 0 70.66±4.0 66.39±8.0 70.65±4.0 71.05±1.0 72.94±4.0 56.94±5.0 69.71±4.0 71.65±5.0 66.65±6.0 75.09±3.0 59.25±3.0
Grp. 1 79.15±2.0 74.96±2.0 79.80±2.0 79.88±2.0 78.30±1.0 74.56±1.0 80.04±2.0 79.77±2.0 78.19±2.0 83.09±1.0 72.68±1.0
Grp. 2 79.56±1.0 76.94±1.0 79.11±1.0 78.12±1.0 77.38±3.0 75.84±1.0 76.69±1.0 78.49±1.0 77.97±1.0 81.50±0.0 71.92±1.0
Grp. 3 69.59±1.0 67.66±2.0 70.69±1.0 66.28±2.0 66.74±4.0 66.72±2.0 69.47±1.0 68.81±1.0 68.29±2.0 72.24±0.0 64.09±2.0
Grp. 4 63.10±3.0 63.24±3.0 62.55±2.0 60.50±5.0 61.11±2.0 63.16±2.0 63.92±2.0 61.32±3.0 59.01±3.0 66.67±4.0 63.60±1.0

FPR

Grp. 0 22.28±2.0 25.16±6.0 19.39±6.0 25.32±2.0 23.08±6.0 44.07±7.0 16.83±4.0 18.75±6.0 23.88±6.0 19.55±2.0 34.62±11.0
Grp. 1 16.71±1.0 18.78±2.0 16.67±2.0 18.10±1.0 17.03±1.0 20.09±2.0 14.29±2.0 16.98±2.0 16.82±2.0 17.77±1.0 21.98±2.0
Grp. 2 11.30±1.0 13.05±2.0 10.94±1.0 11.31±0.0 12.65±1.0 12.19±1.0 10.90±1.0 12.41±1.0 11.18±2.0 11.87±1.0 15.60±2.0
Grp. 3 8.20±1.0 9.91±2.0 7.80±1.0 7.08±0.0 10.10±1.0 8.27±1.0 10.08±2.0 9.72±1.0 8.12±1.0 7.81±1.0 11.92±2.0
Grp. 4 4.26±1.0 5.76±1.0 3.77±1.0 3.04±1.0 7.46±2.0 3.77±1.0 7.93±2.0 6.25±1.0 3.88±1.0 3.65±1.0 6.76±2.0

FNR

Grp. 0 26.67±3.0 28.89±7.0 28.33±5.0 25.56±2.0 24.45±7.0 21.11±8.0 36.11±8.0 27.22±5.0 30.56±7.0 23.33±3.0 30.00±3.0
Grp. 1 25.58±2.0 26.92±4.0 26.23±5.0 23.29±2.0 26.98±2.0 24.93±5.0 32.89±4.0 25.49±4.0 27.04±5.0 20.91±1.0 23.53±4.0
Grp. 2 36.34±2.0 36.82±2.0 37.16±3.0 39.17±2.0 37.77±5.0 37.99±3.0 39.80±3.0 35.63±3.0 39.30±4.0 33.26±1.0 36.14±4.0
Grp. 3 57.93±4.0 54.62±5.0 58.90±3.0 63.44±2.0 53.34±4.0 61.17±5.0 52.49±5.0 53.74±3.0 60.43±5.0 57.37±2.0 53.85±3.0
Grp. 4 76.89±2.0 75.13±4.0 77.91±5.0 83.59±4.0 66.92±4.0 81.56±8.0 66.79±7.0 72.47±4.0 81.94±4.0 81.31±2.0 70.20±6.0

Sex

BCE Grp. 0 0.30±0.00 0.32±0.02 0.30±0.02 0.29±0.03 0.32±0.01 0.33±0.01 0.33±0.04 0.30±0.02 0.30±0.01 0.56±0.00 1.25±0.17
Grp. 1 0.30±0.00 0.32±0.02 0.28±0.02 0.29±0.04 0.31±0.01 0.32±0.03 0.30±0.03 0.29±0.02 0.29±0.01 0.55±0.01 1.18±0.18

ECE Grp. 0 0.12±0.00 0.13±0.02 0.06±0.01 0.10±0.03 0.13±0.01 0.14±0.01 0.14±0.04 0.11±0.02 0.10±0.01 0.26±0.00 0.54±0.07
Grp. 1 0.12±0.01 0.14±0.02 0.05±0.01 0.11±0.04 0.12±0.01 0.14±0.02 0.11±0.03 0.10±0.03 0.10±0.01 0.26±0.00 0.52±0.08

TPR@80
TNR

Grp. 0 80.62±1.0 78.88±0.0 77.95±1.0 79.46±0.0 78.89±1.0 78.83±0.0 79.07±0.0 79.59±1.0 78.48±1.0 81.61±1.0 77.28±0.0
Grp. 1 76.90±1.0 76.31±0.0 75.77±1.0 77.08±1.0 76.86±2.0 76.19±0.0 76.37±1.0 76.50±2.0 75.80±1.0 78.75±0.0 74.92±2.0

FPR Grp. 0 9.24±1.0 9.05±1.0 10.36±1.0 9.59±1.0 10.63±1.0 10.85±2.0 10.34±1.0 10.38±0.0 11.22±1.0 8.82±1.0 12.10±1.0
Grp. 1 8.69±1.0 9.10±0.0 8.82±1.0 9.60±3.0 9.64±1.0 10.65±4.0 7.86±1.0 9.69±1.0 9.48±2.0 8.18±1.0 10.33±0.0

FNR Grp. 0 42.01±4.0 42.96±2.0 40.32±1.0 41.99±1.0 39.79±4.0 40.89±6.0 38.74±2.0 39.68±2.0 39.78±2.0 40.45±3.0 37.99±2.0
Grp. 1 43.65±3.0 42.55±0.0 44.56±3.0 41.57±6.0 41.60±2.0 41.53±8.0 46.32±4.0 42.22±1.0 42.04±4.0 43.58±3.0 41.56±1.0

EqOdd - 98.42±1.0 98.94±1.0 97.11±2.0 97.49±2.0 97.91±1.0 95.27±3.0 94.97±1.0 98.38±0.0 97.96±1.0 98.12±0.0 97.33±1.0

Race

BCE Grp. 0 0.31±0.02 0.29±0.01 0.28±0.01 0.31±0.02 0.30±0.02 0.32±0.00 0.35±0.04 0.28±0.01 0.31±0.01 0.57±0.00 1.09±0.22
Grp. 1 0.32±0.03 0.30±0.01 0.29±0.01 0.32±0.02 0.31±0.01 0.33±0.00 0.36±0.04 0.29±0.01 0.32±0.01 0.58±0.00 1.09±0.22

ECE Grp. 0 0.13±0.03 0.11±0.02 0.05±0.01 0.13±0.02 0.11±0.02 0.13±0.01 0.15±0.03 0.09±0.02 0.13±0.01 0.27±0.00 0.54±0.07
Grp. 1 0.12±0.03 0.11±0.02 0.05±0.01 0.13±0.02 0.11±0.02 0.13±0.00 0.15±0.04 0.08±0.02 0.13±0.01 0.27±0.00 0.54±0.07

TPR@80
TNR

Grp. 0 78.40±1.0 77.71±1.0 79.24±0.0 78.88±1.0 78.61±2.0 75.59±2.0 76.24±2.0 76.21±3.0 79.38±0.0 80.59±0.0 73.78±1.0
Grp. 1 78.62±1.0 76.37±0.0 77.68±1.0 77.54±2.0 76.14±2.0 74.87±1.0 73.83±2.0 73.89±4.0 78.36±0.0 80.33±0.0 73.84±1.0

FPR Grp. 0 9.11±1.0 10.05±0.0 9.31±1.0 8.71±1.0 11.06±1.0 11.35±2.0 9.12±1.0 9.72±2.0 9.89±1.0 8.96±1.0 13.10±0.0
Grp. 1 9.45±1.0 10.27±0.0 9.58±1.0 9.06±2.0 11.29±1.0 11.71±1.0 9.49±1.0 9.94±2.0 10.47±1.0 9.43±0.0 13.68±0.0

FNR Grp. 0 42.12±3.0 40.93±1.0 42.98±3.0 43.03±5.0 37.98±3.0 39.11±4.0 43.78±2.0 43.39±2.0 39.63±4.0 39.58±1.0 39.00±1.0
Grp. 1 43.30±3.0 41.58±0.0 44.26±3.0 43.99±6.0 39.95±2.0 40.25±5.0 46.54±2.0 45.88±4.0 40.42±5.0 41.08±1.0 36.97±1.0

EqOdd - 99.24±0.0 99.15±0.0 99.23±0.0 99.34±0.0 98.90±1.0 99.25±1.0 98.43±0.0 98.65±1.0 99.32±0.0 99.01±0.0 98.70±1.0
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Table A15: Results of other metrics in out-of-distribution setting. In the dataset column, the dataset
in the first row is the training domain, and the second row is the testing domain.

Dataset Attr. Metrics Group ERM Resample DomainInd LAFTR CFair LNL EnD ODR GroupDRO SWAD SAM

A
D

N
I1

.5
T

A
D

N
I3

T

Age

BCE Grp. 0 0.68±0.30 0.72±0.30 1.25±0.51 1.05±0.57 0.66±0.06 0.64±0.26 0.65±0.01 0.60±0.14 0.81±0.22 0.51±0.12 0.72±0.03
Grp. 1 0.44±0.11 0.48±0.14 0.49±0.13 0.56±0.13 0.51±0.09 0.34±0.04 0.58±0.04 0.44±0.06 0.54±0.08 0.56±0.17 0.72±0.09

ECE Grp. 0 0.23±0.08 0.24±0.07 0.29±0.05 0.26±0.05 0.19±0.05 0.21±0.06 0.22±0.10 0.22±0.04 0.26±0.04 0.16±0.03 0.19±0.02
Grp. 1 0.16±0.03 0.16±0.05 0.14±0.04 0.20±0.04 0.16±0.05 0.14±0.01 0.13±0.03 0.14±0.05 0.16±0.03 0.13±0.01 0.25±0.11

TPR@80
TNR

Grp. 0 88.88±5.0 79.80±12.0 72.16±10.0 66.48±11.0 55.28±20.0 78.69±17.0 55.28±17.0 77.96±8.0 68.08±23.0 78.17±9.0 31.94±10.0
Grp. 1 81.89±6.0 82.21±7.0 80.21±7.0 68.75±21.0 68.24±16.0 92.10±8.0 60.00±3.0 77.59±1.0 69.63±13.0 84.70±13.0 26.11±12.0

FPR Grp. 0 16.67±9.0 14.94±7.0 13.79±8.0 17.82±13.0 32.76±30.0 11.49±2.0 39.08±24.0 18.39±17.0 18.96±15.0 9.19±5.0 81.61±17.0
Grp. 1 28.50±9.0 30.11±13.0 27.96±7.0 38.71±19.0 41.94±27.0 17.20±7.0 55.91±29.0 29.03±12.0 43.01±26.0 11.83±2.0 92.47±5.0

FNR Grp. 0 15.97±8.0 22.92±9.0 36.81±10.0 33.33±16.0 25.00±15.0 34.72±17.0 15.28±13.0 23.61±17.0 28.48±8.0 31.95±5.0 6.95±5.0
Grp. 1 5.56±0.0 5.56±0.0 3.70±5.0 9.26±7.0 10.18±13.0 3.71±3.0 14.82±21.0 12.97±13.0 7.41±6.0 14.82±3.0 3.71±3.0

EqOdd - 88.12±5.0 83.74±7.0 76.37±8.0 77.52±10.0 83.30±8.0 80.26±6.0 88.11±7.0 87.00±13.0 77.44±10.0 88.75±3.0 92.48±8.0

Sex

BCE Grp. 0 0.62±0.14 0.55±0.14 0.84±0.25 0.76±0.20 0.59±0.22 0.66±0.06 0.59±0.03 1.18±0.38 0.52±0.09 0.55±0.15 0.71±0.04
Grp. 1 0.63±0.14 0.50±0.10 1.00±0.48 0.70±0.20 0.66±0.24 0.66±0.04 0.54±0.01 1.16±0.42 0.53±0.10 0.59±0.06 0.73±0.05

ECE Grp. 0 0.21±0.03 0.22±0.03 0.27±0.07 0.27±0.06 0.21±0.05 0.21±0.08 0.11±0.02 0.28±0.07 0.19±0.05 0.16±0.04 0.21±0.04
Grp. 1 0.19±0.04 0.17±0.05 0.23±0.04 0.20±0.05 0.20±0.05 0.15±0.05 0.12±0.02 0.27±0.07 0.14±0.04 0.15±0.02 0.18±0.04

TPR@80
TNR

Grp. 0 59.78±8.0 69.99±14.0 54.89±18.0 51.67±11.0 64.66±23.0 30.44±19.0 60.86±12.0 80.07±10.0 62.22±21.0 75.72±15.0 26.89±9.0
Grp. 1 71.23±11.0 75.58±8.0 67.33±14.0 62.35±16.0 64.69±10.0 40.41±19.0 74.81±10.0 80.66±5.0 78.27±12.0 77.17±4.0 17.65±5.0

FPR Grp. 0 28.03±11.0 24.24±9.0 38.63±9.0 42.42±11.0 32.58±14.0 60.60±32.0 19.70±26.0 28.79±16.0 26.51±10.0 19.70±5.0 87.88±13.0
Grp. 1 28.51±9.0 16.23±11.0 34.21±22.0 34.65±14.0 26.76±14.0 59.21±26.0 16.67±24.0 14.91±5.0 21.05±6.0 17.55±8.0 86.85±9.0

FNR Grp. 0 8.89±11.0 20.00±20.0 3.33±6.0 7.78±8.0 6.66±7.0 12.22±24.0 33.33±29.0 11.11±8.0 12.22±11.0 22.22±15.0 0.00±0.0
Grp. 1 19.13±12.0 21.60±11.0 14.81±4.0 17.90±7.0 23.46±11.0 22.22±18.0 20.99±12.0 19.75±9.0 19.13±7.0 22.22±7.0 8.64±6.0

EqOdd - 89.40±5.0 90.89±5.0 87.66±5.0 89.33±7.0 86.49±6.0 88.02±7.0 89.84±3.0 88.74±4.0 89.93±3.0 93.55±4.0 93.96±3.0
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D INCORPORATE NEW DATASETS AND ALGORITHMS IN MEDFAIR

We implement MEDFAIR using the PyTorch framework. We show example pseudo codes to demon-
strate how to incorporate new datasets and algorithms. Detailed documentation can be found at
https://ys-zong.github.io/MEDFAIR/.

D.1 ADDING NEW DATASETS

We implement a base dataset class BaseDataset, and a new dataset can be added by creating a new
file and inheriting it.

from datasets.BaseDataset import BaseDataset
class DatasetX(BaseDataset):

def __init__(self, metadata, path_to_images, sens_name, sens_classes,
transform):

super(DatasetX, self).__init__(metadata, sens_name, sens_classes,
transform)

def __getitem__(self, idx):
item = self.metadata.iloc[idx]
img = Image.open(path_to_images[idx])

# apply image transform/augmentation
img = self.transform(img)
label = torch.FloatTensor([int(item[’binaryLabel’])])

# convert to sensitive attributes to numerical values
sensitive = self.get_sensitive(self.sens_name, self.sens_classes,

item)

return img, label, sensitive, idx

D.2 ADDING NEW ALGORITHM

We implement a base algorithm class BaseNet, which contains basic configuration and regular train-
ing/validation/testing loop. A new algorithm can be added by inheriting it and rewriting the training
loop, loss, etc. if needed.

For example, SAM (Foret et al., 2020) algorithm can be added by re-implementing the training loop.

class SAM(BaseNet):
def __init__(self, opt):

super(SAM, self).__init__(opt)
def _train(self, loader):

self.network.train()
for i, (images, targets, sensitive_attr, index) in

enumerate(loader):

enable_running_stats(self.network)
outputs, features = self.network(images)

loss = self._criterion(outputs, targets)
loss.mean().backward()
self.optimizer.first_step(zero_grad=True)
self.scheduler.step()

disable_running_stats(self.network)
outputs, features = self.network(images)
self._criterion(outputs, targets).mean().backward()
self.optimizer.second_step(zero_grad=True)
self.scheduler.step()
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E ANALYSIS OF SOURCE OF BIAS

We take two datasets HAM10000 and MIMIC-CXR as case studies to analyze the source of bias.
As shown in Table A2, we can observe severe data and class imbalance as the direct sources of
bias for both datasets. Thus, we utilize resampling strategies to explicitly mitigate the imbalance.
We use three types of resampling to upsample the minority subgroup, class, or both subgroup and
class so that all groups appear with equal chances during training, i.e. subgroup resampling, class
resampling, and subgroup and class resampling, respectively.

For the HAM10000 dataset, we take the cartesian product of age and sex subgroups to construct
8 intersectional subgroups, whose statistics are shown in Table A16 (excluding age 0-20 as it has
too few samples). The results of the ERM, resampling strategies, and the best-performing SWAD
method are shown in Table A17. The worst-performing subgroup is “40-60 Male”, which neither
contains the least number of images nor not the most class-imbalanced subgroup. Also, it can be
seen that for intersectional subgroups, different resampling strategies produce a similar performance
as the ERM and sometimes even worse, where all of them are worse than SWAD. In other words,
there are other sources of bias beyond the observable data/class imbalance, which explains why
resampling methods do not lead to better performance. For example, the skin type can be a potential
source of bias (not recorded by metadata) as it is a dermatology dataset, and lesions on darker skin
are intrinsically more difficult to diagnose than that on lighter skin. Overall, they are difficult or
impossible to disentangle given the metadata as the sensitive attributes of different datasets can be
correlated in different ways. Therefore, methods specifically optimizing for one particular factor are
usually less effective.

Table A16: The statistics of the intersectional subgroup HAM10000 dataset. M. represents Male
and F. represents female.

Subgroup 20-40 M. 40-60 M. 60-80 M. 80+ M. 20-40 F. 40-60 F. 60-80 F. 80+ F.
% Images 7.27% 9.52% 23.09% 23.05% 18.97% 10.96% 5.16% 1.99%
% Malignant 4.53% 6.60% 10.93% 8.09% 25.75% 20.77% 31.14% 34.72%

Table A17: The performance of different methods on HAM10000 dataset.

Attr. Metric ERM Subgroup-R Class-R Subgroup class-R SWAD

Sex
Overall 87.24 88.03 87.89 88.76 91.46

Min. 86.48 86.23 87.42 88.11 91.14
Gap 1.59 4.43 1.13 1.28 0.54

Age
Overall 90.00 89.72 87.38 88.60 89.61

Min. 77.53 82.73 79.41 85.02 86.66
Gap 14.72 9.68 8.85 5.52 5.72

Intersection
Overall 88.13 88.03 88.78 87.75 89.32

Min. 78.60 69.33 79.59 75.12 81.25
Gap 17.23 24.02 17.29 18.43 15.02

Following a similar procedure, we further analyze the intersectional subgroup of MIMIC-CXR
dataset, where we obtain 20 subgroups by taking the cartesian product of the age, sex, and race
subgroups. As it can be seen from Table A18, the number of images and the value of labels (”No
Finding”) vary greatly among different subgroups. The worst-performing subgroup is the “60-80
non-White Female”, which is imbalanced in data and class, but also does not contain the least num-
ber of images nor not the most class-imbalanced subgroup.

From the results of Table A19, we do observe a slight performance increase of the worst-case sub-
group after resampling the minority subgroup, class, or both, while there are also decreases in the
overall performance. A possible reason is that the label noises in some subgroups are more severe
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than the other subgroups as identified by Zhang et al. (2022), and the upsampled subgroups may
contain more noisy labels to worsen the overall performance.

To summarize, most of the medical imaging datasets contain multiple sources of bias instead of only
one, where they are correlated in different ways and it is difficult or impossible to fully disentangle
for separate analyses. The mixture of multiple confounders makes the algorithms that specifically
optimize for one particular factor (e.g. data imbalance) fail to succeed, i.e. do not outperforms
ERM. This, to some extent, explains why the domain generalization method SWAD is the most
consistently high-ranked algorithm as it does not have a specific assumption of the source of bias.
Increasing the general notion of robustness may be beneficial to various kinds of confounders.

Table A18: The statistics of the intersectional subgroup MIMIC-CXR dataset.

Subgroup % Images % ”No Finding”
0-20 non-White Female 0.12% 57.48%
20-40 non-White Female 0.22% 72.18%
40-60 non-White Female 0.11% 81.27%
60-80 non-White Female 0.3% 80.72%
80+ non-White Female 2.50% 50.69%
0-20 White Female 4.01% 62.38%
20-40 White Female 2.58% 59.98%
40-60 White Female 4.22% 73.8%
60-80 White Female 10.18% 40.51%
80+ White Female 6.75% 47.58%
0-20 non-White Male 7.03% 44.91%
20-40 non-White Male 7.17% 55.74%
40-60 non-White Male 15.27% 29.67%
60-80 non-White Male 6.12% 34.17%
80+ White Male 11.35% 32.43%
0-20 White Male 6.88% 38.9%
20-40 White Male 5.41% 22.04%
40-60 White Male 1.60% 21.54%
60-80 White Male 6.03% 23.64%
80+ White Male 2.17% 27.14%

Table A19: The performance of different methods on MIMIC-CXR dataset.

Attr. Metric ERM Subgroup-R Class-R Subgroup class-R SWAD

Race
Overall 86.26 86.07 86.20 86.33 87.10

Min. 85.52 85.31 85.46 85.56 86.38
Gap 0.85 0.88 0.86 0.95 0.88

Sex
Overall 86.45 86.21 86.37 86.24 87.05

Min. 85.62 85.31 85.45 85.39 86.23
Gap 1.41 1.53 1.60 1.46 1.39

Age
Overall 86.40 85.53 86.02 85.43 87.08

Min. 81.06 70.97 74.69 73.24 82.15
Gap 5.32 6.99 5.87 6.08 5.10

Intersection
Overall 86.26 85.06 86.25 85.37 86.35

Min. 72.43 74.31 73.31 74.18 75.96
Gap 18.92 11.59 16.06 15.45 14.78
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