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Abstract
Chain-of-Thought (CoT) prompting has proven
highly effective for enhancing complex reasoning
in Large Language Models (LLMs) and Multi-
modal Large Language Models (MLLMs). Yet,
it struggles in complex spatial reasoning tasks.
Nonetheless, human cognition extends beyond
language alone, enabling the remarkable capa-
bility to think in both words and images. In-
spired by this mechanism, we propose a new rea-
soning paradigm, Multimodal Visualization-of-
Thought (MVoT). It enables visual thinking in
MLLMs by generating image visualizations of
their reasoning traces. To ensure high-quality vi-
sualization, we introduce token discrepancy loss
into autoregressive MLLMs. This innovation sig-
nificantly improves both visual coherence and fi-
delity. We validate this approach through several
dynamic spatial reasoning tasks. Experimental re-
sults reveal that MVoT demonstrates competitive
performance across tasks. Moreover, it exhibits
robust and reliable improvements in the most chal-
lenging scenarios where CoT fails. Ultimately,
MVoT establishes new possibilities for complex
reasoning tasks where visual thinking can effec-
tively complement verbal reasoning.

1. Introduction
Chain-of-Thought (CoT) prompting has substantially en-
hanced the reasoning capacity of Large Language Models
(LLMs) (Jiang et al., 2023; OpenAI, 2023; Dubey et al.,
2024). By generating explicit reasoning traces, CoT enables
the models to articulate their thought processes step-by-step.
This advancement has enabled step-by-step mathematical
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Figure 1. Multimodal Visualization-of-Thought (MVoT) enables
Multimodal Large Language Models to generate interleaved rea-
soning traces across different modalities. While traditional CoT
relies solely on verbal thought, MVoT facilitates visual thought to
visualize the reasoning traces. This reasoning paradigm resembles
human cognition to think in words and images seamlessly.

reasoning, logical deduction (Lam et al., 2024), and ad-
vanced problem-solving capabilities (Zhang et al., 2024a).
However, its performance deteriorates significantly when
confronted with complex spatial reasoning tasks (Wang
et al., 2024a; Li et al., 2024b; Ray et al., 2024).

Recent research efforts have extended CoT to multimodal
models through two primary approaches. The first approach
utilizes two-stage strategies that initially extract image in-
formation through methods such as captioning (Zhang et al.,
2024b), scene-graph generation (Mitra et al., 2024), or
bounding-box detection (Lei et al., 2024) before conducting
reasoning. The second approach implements ReAct-style
pipelines (Yao et al., 2023) that leverage external tools such
as code interpreters or specialized vision models (Yang et al.,
2023b; Hu et al., 2024; Zhou et al., 2024b), to obtain image
observations from the environment. While these pipelines
successfully handle both text and image input, they remain
heavily dependent on separate visual modules or external
toolsets. This dependency complicates their adaptation to
advanced and more complex spatial reasoning tasks.

Human cognition, however, transcends language (and text)
alone, demonstrating the capacity to think in both words
and images seamlessly. The dual-coding theory (Paivio,
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1991) and working memory model (Baddeley, 1992) explain
this phenomenon, positing that humans process information
through both verbal and non-verbal channels. This dual
processing capability is crucial for reasoning and guides
decision-making. For instance, humans naturally manipu-
late mental images to understand the physical world and
conceptualize visual outcomes (Moulton & Kosslyn, 2009).

In the context of spatial reasoning, similar deficiency of
LLMs and MLLMs, thinking in a single text modality
(termed verbal henceforth) has been observed. Based on
verbal CoT, the Visualization-of-Thought (VoT) (Wu et al.,
2024b) elicits the reasoning process by introducing textual

‘visualizations’ as mental images in spatial reasoning tasks.
Put simply, VoT builds visualizations via simplified, text
proxies. Besides this too simplistic representation of visu-
alization, another significant limitation, which holds both
for CoT as well as for VoT, is the dependence on purely
textual representation of the reasoning paths. This reliance
becomes problematic in complex multimodal tasks, where
textual representations often fail to capture the intricate vi-
sual patterns and spatial layouts of images (Hu et al., 2024).
Users frequently find it challenging to interpret the reason-
ing process without clear and intuitive visual illustrations
that complement textual representation. Furthermore, it
remains unclear whether MLLMs can engage in genuine
reasoning within a visual space while thinking with textual
utterances. Given the reasons above, we pose a key question:
can MLLMs imagine in visual modality while reasoning?

In parallel, recent research has expanded beyond multimodal
understanding of visual inputs to include multimodal gen-
eration, where foundation models can also produce outputs
in the visual modality. This advancement has led to the
development of sophisticated systems such as Chameleon
(Chameleon Team, 2024), Transfusion (Zhou et al., 2024a),
LatentLM (Sun et al., 2024b) and Janus-Pro (Chen et al.,
2025). These multimodal-native models demonstrate pro-
ficiency in both interpreting and producing high-quality
outputs across textual and visual domains. The emerging
capability of multimodal generation opens new possibilities
for extending verbal reasoning to native visual thinking, en-
abling the visualization of reasoning traces through images.

Building upon these advancement, we propose Multi-
modal Visualization-of-Thought (MVoT). It leverages
multimodal-native architectures to transcend the text-form
thinking into multimodal native reasoning through gener-
ating image visualizations of their reasoning traces. This
reasoning paradigm enables the model to ‘think’ in words
and images in combination seamlessly, while avoiding the
potential errors being introduced in captioning the images.
By incorporating native visual thought during reasoning
process, MVoT offers more straightforward illustrations of
the reasoning process and simultaneously enhances both

reasoning quality and model interpretability.

Specifically, in this work, we implement MVoT through fine-
tuning an established autoregressive MLLM: Chameleon-
7B (Chameleon Team, 2024). To enhance visualization
quality during reasoning, we introduce token discrepancy
loss that bridges the gap between separately trained tok-
enizers. We validate MVoT’s effectiveness through con-
trolled experiments across three dynamic spatial reasoning
tasks. MAZE (Ivanitskiy et al., 2023) and MINIBEHAV-
IOR (Jin et al., 2023) focus on interactions with spatial
layouts. FROZENLAKE (Brockman, 2016) emphasizes fine-
grained pattern representations in dynamic environments.
Experimental results demonstrate that MVoT achieves com-
petitive performance across tasks, outperforming traditional
CoT by over 20% in challenging scenarios.

The main contributions of this paper include:

• We propose Multimodal Visualization-of-Thought
(MVoT), a multimodal native reasoning paradigm that
unifies text and vision within the reasoning traces. To
our knowledge, it’s the first to naturally generate visual
thought as part of the reasoning process. It establishes
new possibilities for complex tasks where visual think-
ing effectively complements verbal reasoning.

• We implement MVoT in Chameleon-7B and introduce
token discrepancy loss in auto-regressive MLLM to
bridge the gap between separately trained tokenizer.

• We conduct comprehensive experiments and ablation
studies across three spatial reasoning tasks with newly
collected datasets, demonstrating that MVoT exhibits
superior adaptability and robustness compared to CoT
in complex scenarios.

2. Related Work
Multimodal Chain-of-Thought Reasoning Chain-of-
Thought (CoT) (Wei et al., 2022) prompting has consider-
ably enhanced the reasoning capacities of LLMs. To adapt
CoT for multimodal models, recent research has explored
various methodologies. Some investigations adopt a two-
stage approach, where image information is initially trans-
formed and grounded into text (Zhang et al., 2024b), graph
structure (e.g., scene graphs (Mitra et al., 2024) or knowl-
edge graphs (Mondal et al., 2024)), or bounding boxes (Lei
et al., 2024) before reasoning. Other studies use ReAct-style
pipelines (Yao et al., 2023) that integrate external tools to
process and reason with image observations. These tools in-
clude code interpreters and specialized vision models (Yang
et al., 2023b; Hu et al., 2024; Zhou et al., 2024b; Gao et al.,
2024). Although these approaches effectively manage both
textual and visual inputs, they rely heavily on separate visual
modules or toolsets which limits the expressiveness of the
methods. To address these limitations, we propose MVoT, a
novel reasoning method designed to leverage multimodal-
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native understanding and generative capabilities. MVoT
enables the generation of interleaved reasoning traces across
multiple modalities, providing an integrated and flexible ap-
proach to multimodal reasoning with better interpretability
and more robust reasoning quality.

Multimodal Spatial Reasoning Multimodal spatial rea-
soning involves understanding and reasoning about the spa-
tial relationships among objects, their movements, and in-
teractions with the environment (Chabris et al., 2006; Li
et al., 2024a; Newcombe, 2024; Zhang et al., 2025). Despite
advancements achieved with LLMs and MLLMs, this re-
mains a significant challenge and attracts growing research
interest (Achiam et al., 2023; Yang et al., 2024; Ramakr-
ishnan et al., 2025). To systematically evaluate multimodal
spatial reasoning capabilities, several benchmarks have re-
cently been introduced, covering diverse perspectives and
tasks (Liu et al., 2023a; Wang et al., 2024a; Li et al., 2024b;
Ray et al., 2024). However, few research has touched base
on the interplay between actions and changes in spatial
layout (Li et al., 2024b; Wu et al., 2024a), which requires
dynamic imagination and tracking the states as actions alter
the environment. Various approaches have been proposed
to tackle the challenges associated with spatial reasoning
for MLLMs and LLMs: SpatialVLM (Chen et al., 2024)
and SpatialRGPT (Cheng et al., 2024) improve multimodal
spatial reasoning by leveraging 3D VQA or scene graph data
for supervised finetuning. VoT (Wu et al., 2024b) proposes
a novel prompting approach by introducing textual imagery
representation to facilitate dynamic reasoning for LLMs.
Despite these efforts, existing methods fail to unlock the
inherent reasoning capabilities within the multimodal-native
models to imagine the spatial dynamics. Our approach uni-
fies text and vision within the reasoning traces and improve
the interpretability and robustness by generating mental
images aligned with spatial reasoning.

3. Multimodal Visualization-of-Thought
Humans often create mental images to inform decision-
making. Rather than relying on verbal thoughts as text prox-
ies to mimic these mental images, MVoT enables models to
reason in multimodality by generating image visualizations
as their visual thoughts. By combining thoughts in both
modalities, this novel reasoning paradigm offers a more in-
tuitive and effective way to elicit the multimodal reasoning
process with enhanced expressiveness.

3.1. Formulation

We formulate the process of MVoT as follows. Given a mul-
timodal input sequence, the model is expected to generate
interleaved multimodal thoughts as part of the reasoning
process and ultimately produce a final answer. Let Pθ rep-

resent a pre-trained MLLM with parameters θ, x denote a
multimodal input sequence, z and v a language sequence of
verbal thoughts and an image sequence of visual thoughts.

In multi-hop spatial reasoning tasks with input x, CoT
prompting generates intermediate steps ẑ1, · · · , ẑm, where
each ẑi is sampled sequentially based on the inputs and pre-
vious generated steps. The final output is concluded based
on all prior steps. MVoT enhances this process by adding a
image visualization vi to each intermediate step zi, then the
subsequent step zi+1 is sampled conditioned on prior steps
ẑ1 · · · ẑi and visualizations v̂1 · · · v̂i, as shown in Figure 1.

As defined in the Equation 1 and 2, it forms interleaved
reasoning traces and image visualizations.

v̂i ∼ Pθ(vi | ẑ1, v̂1, · · · , v̂i−1, ẑi) (1)

ẑi+1 ∼ Pθ(zi+1 | x, ẑ1, v̂1, · · · , ẑi, v̂i) (2)

To empower MLLMs with MVoT capabilities, we train
the model on multimodal inputs x and their correspond-
ing output labels, which include multimodal rationales
z1, v1 · · · zn, vn and the final answer. This training strat-
egy enables the model to learn interleave verbal reasoning
steps and corresponding visual thoughts, enhancing its abil-
ity to handle complex reasoning tasks that require thinking
in multimodality.

3.2. Training with Autoregressive MLLMs

In this section, we focus on autoregressive MLLMs with dis-
crete image tokens for both training and inference. However,
as a reasoning paradigm, MVoT can be extended to other
model architectures and modalities, provided they meet the
requirements for interleaved multimodal generation.

Multimodal Sequence Modeling As shown in 3, we fol-
low the architecture of Chameleon (Chameleon Team, 2024),
which leverages a unified Transformer to process both image
and text tokens. The architecture integrates two tokenizers:
an image tokenizer based on Esser et al. (2021) and a text
tokenizer, which convert images and text into discrete token
sequences, respectively. The image tokenizer uses a discrete
codebook to encode input images into a sequence of im-
age tokens, while the text tokenizer maps textual data into
corresponding token sequences. These token sequences are
concatenated and processed by a causal transformer model.

Notation We denote MLLM’s codebook as C ∈ RN×D,
where N is the number of codebook entries, and D is the
dimensionality of codebook entries. Let tvis and evis denote
the visual codebook indices and embeddings. The predicted
values are indicated with a hat symbol.
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Figure 2. Illustrations of MVoT reasoning process. Interleaved verbal thoughts and visual thoughts are generated by MLLM seamlessly.
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Figure 3. MVoT training with token discrepancy loss LD .

Token Discrepancy Loss While language modeling uni-
fies both text tokens and image tokens within a single autore-
gressive model, the discrepancy between these separately
trained tokenizers can degrade the quality of generated im-
ages. To mitigate this issue, we introduce token discrepancy
loss into the autoregressive MLLM architecture, as shown in
Figure 3. This loss design bridges the gap between language
modeling and visual embedding space while ensuring that
gradients remain intact.

Token discrepancy loss LD minimizes the discrepancy be-
tween the predictions and labels in visual embedding space.
Equation 3 and 4 illustrate the token discrepancy loss LD.
To capture relationship among image tokens, we first com-
pute the similarity matrix S ∈ RN×N . The similarity be-
tween tvisi and other image tokens is measured using their
pairwise distances in the visual embedding space. Specifi-
cally, the similarity is determined by the mean squared error

(MSE), as described in Equation 3, where larger distances
indicate lower similarity.

Stvisi
= [MSE(evisi , evis1), · · · ,MSE(evisi , evisN )] (3)

The model predicts the probability distribution P(ti) ∈
R1×N for the i-th image token over the image token vocab-
ulary. LD penalizes probabilities assigned to tokens that
deviate significantly from their corresponding label tvisi in
the visual embedding space. By aligning the visual embed-
dings of predictions with those of the ground-truth tokens,
LD aims to enhance the quality of the generated images.

LD =

n∑
i=1

Stvisi
· P(ti) (4)

Training The causal Transformer model is fine-tuned us-
ing the next-token prediction objective, while the image
tokenizer and text tokenizer are kept frozen throughout the
process. With token discrepancy loss LD for image tokens,
and the cross-entropy loss LC for both text tokens and image
tokens, the loss function is described as follows.

L = LC + LD (5)

4. Spatial Reasoning Tasks
Motivated by Ray et al. (2024), we select three dynamic
reasoning tasks in space that requires the model to dy-
namically locate objects, understand how the environ-
ment evolves, and predict outcomes when actions are ap-
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plied. To assess the MLLMs with controllability for anal-
ysis, we ground these spatial reasoning tasks within grid-
based environments: MAZE navigation (Ivanitskiy et al.,
2023), InstallingAPrinter from MINIBEHAVIOR (Jin et al.,
2023) and FROZENLAKE simulation (Brockman, 2016; Wu
et al., 2024a). MAZE navigates in abstract mazes and
MINIBEHAVIOR includes the spatial properties of the ob-
jects and interactions with the environmental layouts, while
FROZENLAKE contains fine-grained pattern details instead
of abstract symbols. The tasks encompass various levels of
controlled complexity as the abstraction of the real world.

4.1. MAZE

In maze navigation, the model is provided with an initial
image describing the maze layout and the starting position of
the agent in the maze. The agent should navigate through the
maze and reach the destination. In our work, we define the
MAZE task as follows. Given an initial maze with a starting
point and a sequence of actions, the model is supposed to
follow the actions and predict the final destination chosen
from the locations labeled A, B, C or D in the maze.

4.2. MINIBEHAVIOR

We select InstallingAPrinter from MINIBEHAVIOR (Jin
et al., 2023) embodied AI tasks as a representative sce-
nario for our experiments. It requires the agent to first locate
the printer on the floor, pick it up and carry it to the ta-
ble to toggle it on. As shown in Figure 2, the printer is
represented by a small printer symbol, the agent is repre-
sented by a red triangle and the table is represented by a
brown area. Aligned with previous settings, we define the
MINIBEHAVIOR task in our work as follows. Given a se-
quence of actions and an environment layout in image, the
model should predict the outcome of conducting the actions.
The outcomes include whether the agent successfully ex-
ecutes tasks, such as picking up the printer or placing it
on the table, and whether objects are missing from the en-
vironment. This task expands the action space of MAZE
by introducing the interaction with the environment, while
maintains a similar level of perception difficulty with simple
symbolic representations.

4.3. FROZENLAKE

FROZENLAKE is initially proposed by Wu et al. (2024a)
implemented with Gym (Brockman, 2016), which is similar
to maze navigation but with more complex patterns and
details. As shown in Figure 2, it simulates a grid-based
frozen lake. The agent is supposed to start from the des-
ignated position and reach the destination safely without
falling into the ‘holes’. Based on the spatial reasoning task
from Wu et al. (2024a), we define the FROZENLAKE task
as follows. Given a sequence of actions and the grid-based

frozen lake layout with the start and goal position, the model
has to determine the consequence of following given actions.
Compared to MAZE and MINIBEHAVIOR, FROZENLAKE
contains more diverse image details and its environment is
more complex considering the number of key entities such
as holes.

5. Experiments
5.1. Experimental Setups

Data. We construct datasets for three spatial reasoning tasks,
as described in Section 4, encompassing varying levels of
complexity in patterns and action spaces. The dataset statis-
tics are presented in Table 4. Detailed information on data
collection is provided in App. B. We structure the data as
interleaved text-image pair to train MVoT, as in Section 3.

Model and Experiments. We use Anole-7B (Chern et al.,
2024) model as the backbone. Anole is tuned on Chameleon
(Chameleon Team, 2024) and can generate interleaved text
and image, making it well-suited for MVoT. We only tune
part of the model’s parameters with LoRA (Hu et al., 2021)
in an instruction tuning manner (Liu et al., 2023b) on
MI300X for 40 epochs, where only the loss from the pre-
dictions is optimized. Additionally, we evaluate the perfor-
mance of GPT-4o (OpenAI, 2024) with zero-shot inference,
CoT and MVoT in the ReAct-style pipeline (Yang et al.,
2023b). Detailed prompting templates and hyperparameters
for each task and system variant are provided in App. C.

We compare the MVoT with the following families of system
variants: 1) Direct Prompting (Direct): The model directly
outputs the choice index without intermediate reasoning. 2)
Chain-of-Thought (CoT): The model is instruction-tuned
to reason step-by-step, incorporating coordinates and envi-
ronment layout described in text, before concluding with
the final answer. 3) Training with Interleaved Text-Image
Pairs (Interleaved): This method follows the standard train-
ing approach for MLLMs, interleaving text and image data.
However, Interleaved calculates the loss only on text tokens
while excluding image tokens. In contrast, MVoT computes
the loss across all token types. The comparisons among
these system variants are summarized in Table 1.

Metrics We extract the predicted answer from model out-
put by pattern matching with ‘the answer is’. Accuracy for
multiple-choice question answering is calculated by com-
paring the predicted choice with the ground-truth answer.

5.2. Experimental Results

MVoT outperforms Direct and GPT-4o with inter-
pretability. Experimental results across all three simulation
tasks reveal that Direct struggles with overfitting to spatial
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Table 1. Experimental results from different system variants across all tasks. Coord denotes whether the system is instructed to use textual
coordinates during inference; Layout denotes whether the system first caption the environment with text for further inference; Image refers
to whether the images of intermediate states are visible to the model during training. Best and second best performance are illustrated
with corresponding colors. Methods with underlines are fine-tuned on our datasets. ↓ indicates worse performance than Direct baseline.

Model Method
Training Variants

Output
Task

Coord Layout Image MAZE MINIBEHAVIOR FROZENLAKE

GPT-4o
Zero-Shot Direct - - - Text 0.7100 0.4576 0.4976

Zero-Shot CoT - - - Text 0.7386 0.4676 0.4664

With Visual Thought* - - - Text 0.8556 0.6440 0.8021

Anole 7B

Direct ✗ ✗ ✗ Text 0.7171 0.7250 0.7788

CoT ✓ ✓ ✗ Text 0.9792 0.9812 0.6148 ↓
- w/o layout ✓ ✗ ✗ Text 0.7023 ↓ 0.6000 ↓ 0.5974 ↓

Interleaved ✗ ✗ ✓ Text 0.8678 0.8406 0.6460 ↓
MVoT ✗ ✗ ✓ Text, Image 0.9295 0.9514 0.8560

* Visual thought is generated by Anole 7B implemented with MVoT.

reasoning tasks, achieving an accuracy of approximately
70%. GPT-4o performs even worse, both with and without
CoT prompting, underscoring the inherent difficulty of these
reasoning tasks. In contrast, MVoT demonstrates consis-
tent improvements. It surpasses Direct by 7% on FROZEN-
LAKE and achieves over 90% accuracy on both MAZE and
MINIBEHAVIOR. Beyond its superior performance, MVoT
also provides verbal and visual thoughts of intermediate rea-
soning states. This feature enhances interpretability, offering
a clearer and more intuitive understanding of its reasoning
process compared to Direct.

MVoT achieves comparable or better performance than
CoT with enhanced robustness. CoT achieves over 95%
accuracy on the MAZE and MINIBEHAVIOR by explicitly
describing the environment layout and agent location with
textual coordinates. However, it performs worse than Di-
rect baseline on FROZENLAKE. In contrast, MVoT demon-
strates comparable performance on MAZE (92.95%) and
MINIBEHAVIOR (95.14%), while achieving a higher accu-
racy of 85.60% on FROZENLAKE compared to both Direct
and CoT. This demonstrates better stability and robustness
of MVoT than CoT.

Although CoT desmonstrates strong results on MAZE and
MINIBEHAVIOR, it shows vulnerabilities and limitations:

(1) CoT is sensitive to environment complexity. CoT under-
performs on FROZENLAKE, where the environment is more
complex due to the presence of additional key entities (e.g.,
holes), compared to the other tasks. Error analysis reveals
that 90.80% of CoT’s mistakes on FROZENLAKE stem from
inaccurate coordinate descriptions of holes in the environ-
ment. An illustration of this type of error is presented in
Figure 9 in the Appendix. In contrast, no such errors are ob-
served in MAZE and MINIBEHAVIOR. Furthermore, CoT’s
performance on FROZENLAKE deteriorates as grid size in-
creases, dropping from 0.9401 on a 3× 3 grid to 0.3911 on

a 6× 6 grid, as detailed in Table 15 in the Appendix.

(2) CoT relies heavily on textual description of the environ-
ment. CoT performs well on MAZE and MINIBEHAVIOR
when the environment layout is accurately described through
text. Captioning the environment layout simplifies the task
into a textual reasoning process, eliminating the need for vi-
sual references. However, as shown in Table 1, when reason-
ing is performed using only the agent’s coordinates without
explicit textual descriptions of the environment, CoT con-
sistently underperforms the Direct baseline. This reliance is
particularly evident in FROZENLAKE, where flawed predic-
tions stem from inaccurate environment descriptions. These
limitations constrain the generalization and reliability of
CoT, particularly in complex environments.

Meanwhile, MVoT doesn’t have the ineffectiveness above.

(1) MVoT is more robust to environment complexity com-
pared to CoT. MVoT maintains stable performance across
varying grid sizes within each task, as shown in Table 15
in the Appendix. In FROZENLAKE, even as the environ-
ment becomes more complex with larger grid sizes and
increased number of ‘holes’, as shown in Table 7, MVoT
consistently achieves over 83% task performance. In con-
trast, CoT shows a significant decline in performance as
environmental complexity rises, highlighting the robustness
of MVoT in handling more challenging scenarios.

(2) MVoT demonstrates better interpretability than CoT.
Rather than solely relying on textual descriptions, MVoT
elicits reasoning process by visualizations, effectively miti-
gating potential errors introduced by inaccurate text-based
captions for complex environments. Moreover, visual
thought provides a more direct and interpretable way to
track the reasoning process compared to aligning textual
coordinates within images. This calls for the need of incor-
porating multimodal reasoning, leveraging both textual and
other modalities, such as vision, rather than reasoning solely
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Table 2. Performance upper bounds achieved by combining predic-
tions from CoT and MVoT across three tasks.

MAZE MINIBEHAVIOR FROZENLAKE

CoT 0.9792 0.9812 0.6148
MVoT 0.9295 0.9514 0.8560
Upperbound 0.9984 1.0000 0.9246

in text as the primary modality.

Learning from interleaved multimodal rationales for
better and grounded reasoning. Data-wise, our findings
suggest that incorporating interleaved training data, even
without generating visualizations, improves reasoning per-
formance. Method-wise, MVoT achieves higher and more
consistent improvements across all tasks. Compared be-
tween Direct and Interleaved, we observe that the inclu-
sion of interleaved visualizations during training, despite
not contributing directly to the loss, improves performance
on MAZE and MINIBEHAVIOR by over 10%. This em-
pirically indicates that these interleaved images helps the
model in leveraging visual cues for reasoning during op-
timization. However, despite the advantages of the Inter-
leaved paradigm, we witness a drop in task performance on
FROZENLAKE. We conjecture that this may be attributed
to the complexity of the visual cues in FROZENLAKE for
Interleaved. This highlights the unique challenges of the
FROZENLAKE task and illustrates the limitations of the tra-
ditional Interleaved training paradigm. In contrast, when
interleaved multimodal rationales serve as supervision sig-
nals for visual tokens as in MVoT, the model explicitly
grounds its reasoning by generating visualizations, leading
to improved performance across all tasks. These findings
provide valuable insights into leveraging interleaved mul-
timodal thoughts to enhance reasoning with MLLMs and
emphasize the need for further research.

Equip Proprietary Models with MVoT In addition to use
a single 7B open-sourced model to generate multimodal
thought and conclude the answer, MVoT also provides flexi-
bility of being used as plug-ins for other proprietary models
including those accessible via APIs. We provide GPT-4o
with the visual thoughts from fine-tuned MVoT model after
GPT-4o generates the verbal thought. We witness an im-
provement in performance by over 15% accuracy across all
the tasks as shown in Table 1. We hope this work inspires
further exploration and fosters advancements in multimodal
agent reasoning with multimodal thoughts.

MVoT Complements CoT in Reasoning. To investigate
whether MVoT and CoT share similar reasoning capabilities
and fail on the same data, we combine their predictions
and calculate the upper-bound performance. In this setting,
a data point is considered correct if either MVoT or CoT
generates the correct prediction. Table 2 shows the upper-

bound performance reaches nearly 100% accuracy on Maze
and MINIBEHAVIOR, and 92% accuracy on FROZENLAKE.
These findings suggest that MVoT complements CoT by
offering an alternative reasoning strategy, enabling the en-
semble of approaches to further enhance performance.

In summary, MVoT demonstrates its effectiveness in per-
formance, better generalization than CoT in eliciting the
reasoning state during spatial reasoning.

6. Discussions and Ablations on Visualization
During training, the model generates the next visual thought
based on the previous golden image. On the other hand,
MVoT recursively generate multimodal thoughts (texts and
image visualizations) based on the previously generated
thoughts, illustrating the difference between paradigms. We
refer to these two approaches as ‘image editing’ and ‘MVoT’
in the following discussion. Given that MVoT operates
through recursive generation, our focus in this section is
primarily on discussing the visualization quality of MVoT.

Qualitative Analysis Figure 4 illustrate examples of cor-
rect and incorrect generated images for FROZENLAKE.
More generated visualization are shown in Figure 6 and 7
in Appendix D.2. We classify errors of visualization genera-
tion into the following categories: (1) Wrong Visualization:
The generated visualization is inaccurate. (2) Redundant
Patterns: Unnecessary or irrelevant patterns are visualized
outside the intended area for modification. Furthermore, in
the FROZENLAKE task, we observe that generated image de-
tails often blur as pattern complexity increases compared to
MAZE and MINIBEHAVIOR. Patterns, such as background
details in FROZENLAKE MVoT visualizations, often show
minor inconsistencies between generated visual thoughts.
Similar differences are also noted between original images
and reconstructed images through tokenization and detok-
enization. The variability frequently results in a loss or per-
turbation of fine-grained details and highlights limitations in
the expressiveness of MLLMs. These findings underscore
the need for further research to improve the fidelity of image
tokenization and generation in autoregressive MLLMs.

Quantitative Metrics To evaluate the quality of generated
visual rationales, we define automatic evaluation metrics
based on the identified types of errors:

• Visualization Accuracy (V-Acc.): Measures the accu-
racy of visualizing the intended modifications in the
grid corresponding to the next action.

• Visualization Pattern Redundancy (V-Red.): Assesses
the presence of unintended visual patterns in regions
outside the targeted area of modification.

• Visualization Correctness Step (V-Steps): the aver-
age length of first k consecutive correct visualizations
within an action sequence.
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Target Image Visualization with 𝑳𝑫 Visualization without 𝑳𝑫

 Wrong Visualization Correct Visualization

 Correct Visualization  Redundant Visualization

Image Reconstruction

 Blurred Details

Previous Image

Go down.

Go left.

 Blurred Details

Figure 4. Qualitative analysis illustrating: 1) FROZENLAKE visualization quality by comparing systems trained with and without token
discrepancy loss (LD); and 2) differences in reconstructed images using the image detokenizer on tokenized inputs.

Table 3. Quantitative metrics for MVoT visual thoughts with or without token discrepancy loss LD . Best results are highlighted in bold.
Metrics with ↑ indicate that higher values mean better performance and vice versa.

Visualization Quality Task Performance
V-Acc.↑ V-Red.↓ V-Steps↑ V-Ratio↑ Accuracy↑

MAZE

MVoT with LD 0.9339 0.1010 8.4439 0.9449 0.9295
MVoT without LD 0.6391 0.4931 5.6563 0.6930 0.7468

MINIBEHAVIOR

MVoT with LD 0.9681 0.0419 6.7532 0.9618 0.9514
MVoT without LD 0.7939 0.2633 5.2333 0.7793 0.7228

• Visualization Correctness Ratio (V-Ratio): the average
proportion of first k consecutive correct visualizations
across the action sequence.

Due to the complexity of FROZENLAKE’s image details,
which makes automatic evaluation challenging, we only
report quantitative results of visualizing the agent position
in MAZE and MINIBEHAVIOR.

Token discrepancy loss enhances accuracy and reduces
redundancy in visualizations. Table 3 shows that MVoT,
enhanced with token discrepancy loss (LD), produces highly
accurate visualizations with minimal pattern redundancy.
Even in recursive generation scenarios, MVoT with LD

achieves an average of 95% correct and consecutive visual-
izations during reasoning. In contrast, the absence of LD

significantly degrades the generation quality: without LD,
MVoT frequently generates redundant patterns and fails
to accurately capture state transitions. These results align
with findings from the image-editing scenario, as illustrated
in Figure 10, which tracks quantitative metrics for MAZE
at various epochs. Furthermore, poor visualization qual-
ity negatively impacts task performance, as highlighted in

the last column of Table 3, emphasizing the critical role of
high-quality visualizations for better task outcomes. We also
witness a performance drop on FROZENLAKE without token
discrepancy loss from 0.8560 to 0.7260. Empirical evidence
suggests that incorporating visual embedding with LD in
addition to LC helps to bridge the gap between embeddings
and improve the visual generation quality. This aligns with
the findings by Tschannen et al. (2024) which noted similar
limitations in embedding alignment for MLLMs.

7. Conclusion
We introduced Multimodal Visualization-of-Thought
(MVoT), a novel reasoning framework that elicit reason-
ing process with multimodal thoughts using multimodal
native generative models. MVoT outperformed textual rea-
soning baselines across a variety of tasks, meanwhile demon-
strating better robustness to state complexity and offering
enhanced interpretability. To ensure the generation of high-
quality visualizations, we proposed the token discrepancy
loss, addressing embedding misalignment in autoregressive
MLLMs. This helps to alleviate the issues of redundant
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patterns and inaccurate visual thought generation, leading
to better task performance with MVoT. Furthermore, the
complementary strengths of MVoT and Chain-of-Thought
(CoT), as evidenced by their combined upper-bound per-
formance, highlight the promise of hybrid multimodal rea-
soning approaches. This work underscores the value of
multimodal cues and paves the way for future research into
reasoning thoughts of hybrid modalities in complex tasks.

Impact Statement
This paper aims to advance the field of multimodal reasoning
and machine learning. While our work has potential societal
implications, the specific datasets used in this study do not
present any immediate concerns of this work that require
explicit attention here.
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A. Additional Related Work
In addition to Section 2, we provide additional related work for the comprehensive understanding of this work.

Video Generation World Model World models aim to predict the future for better understanding of the world, while
video generation world models focus on the generation of videos to simulate and comprehend real-world dynamics (Zhu
et al., 2024). Recent developments in generative models have markedly enhanced the capacity to capture physics and
motion (Blattmann et al., 2023a;b; Esser et al., 2023; Zeng et al., 2024). The Sora model (Brooks et al., 2024) has
demonstrated exceptional capabilities in this domain through its advanced generative techniques. World models extend
beyond visual synthesis into numerous fields. In robotics, these models facilitate the simulation of physical interactions
for diverse tasks (Zhen et al., 2024; Liu et al., 2024). They contribute to autonomous driving by predicting environmental
changes (Wang et al., 2023; 2024b). Additionally, they function as effective simulators for data collection purposes (Yang
et al., 2023a). Previous work typically generates outputs in a single modality. In contrast, our proposed MVoT introduces
a novel reasoning method supporting multi-modal generation. This enhanced capability enables superior understanding,
reasoning, and simulation of complex scenarios.

B. Data
B.1. Dataset Collection

MAZE dataset is generated using the maze-dataset framework (Ivanitskiy et al., 2023), leveraging an iterative depth-first
search algorithm. Mazes of sizes 3, 4, 5, and 6 are created with varying random seeds. Navigation paths are generated, and
we remove repetitive paths to prevent knowledge leakage between training and development sets. For each maze, potential
destination candidates (three random coordinates) are selected alongside the true destination.

MINIBEHAVIOR dataset originates from the INSTALLINGAPRINTER simulation environment, where reinforcement learning
(RL) agents are trained on grid environments of sizes 7 to 10 using stable-baseline3 (Raffin et al., 2021). Action
sequences that successfully complete the task are retained, ensuring no overlap with previously seen environments. For
cases involving repeated action sequences or previously seen environments, the simulator layout is modified with specified
probabilities: 40% chance of altering the printer or table coordinates respectively, 20% chance of randomly removing
either the printer or table. The modified environments are re-evaluated using the previous action sequences to validate the
outcomes.

FROZENLAKE dataset is based on Gym environments (Brockman, 2016) and scripts from Wu et al. (2024a). Trajectories
are collected from RL agents selecting actions with maximum expected rewards using Q-table. Successful action sequences
are retained if they are not seen in this environment. For unsuccessful sequences, cases where the agent falls into a hole
have a 50% probability of being saved as-is or 50% with appended random actions. If the agent neither falls into a hole nor
reaches the destination, the sequence is saved in accordance to Section 4. To increase the variance of the action sequences,
we also randomly sample the paths when learning the Q-table following similar practice as above.

B.2. Dataset Statistics

The statistics of the datasets are illustrated in Table 4. We also provide additional details about the datasets used in this work.

MAZE

• Entities: The starting point is marked with a red dot, with potential destination candidates labeled as A, B, C, and D.
• Actions: Go up, down, left, or right. All action sequences are valid, ensuring no collisions with walls and that every

action is executable.
• Visual Pattern: Abstract sketch illustrating the maze layout and navigation path. The agent’s path is visualized

incrementally with red arrows, preserving all previous movements.

MINIBEHAVIOR

• Entities: The agent’s current location represented by a red triangle, with a printer symbol and a brown-colored table.
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Table 4. Statistics of the collected datasets, covering varying levels of complexity in actions and patterns.

Task MAZE MINIBEHAVIOR FROZENLAKE

Grid Sizes 3-6 5-8 3-6
Entity Types 5 3 3
Entities Numbers 5 3 7.16
Action Length 9.11 7.83 6.56
Action Types 4 7 4
Pattern Details ✗ ✗ ✓
Train Set Size 5007 6400 6846
Test Set Size 1255 1604 1664

Table 5. Dataset statistical distributions of options.

A B C D Total

MAZE
Train 1187 1269 1305 1246 5007
Dev 323 326 293 313 1255

MINIBEHAVIOR
Train 3321 1092 1456 531 6400
Dev 834 297 349 124 1604

FROZENLAKE
Train 3043 2377 1426 - 6846
Dev 735 580 349 - 1664

• Actions: Go up, down, left, or right; pick up; drop; toggle. The pick up action removes the printer from the map if next
to the agent, while the drop action places the printer on the table if the agent is carrying it and next to the table.

• Visual Pattern: Abstract sketch of the environment layout. Unlike MAZE, only the agent’s current position is visualized
on the map, and whether the agent carries the printer is described in text.

FROZENLAKE

• Entities: The agent’s current location depicted as an elf wearing a green hat, a gift and multiple holes on the frozen
lake.

• Actions: Go up, down, left, or right.
• Visual Pattern: Comic-style illustrations with detailed depictions of the elf, background, and holes. Similar to

MINIBEHAVIOR, the visualization is not incremental, focusing only on the current state.

Table 5 illustrates the distribution of correct choices of the train and dev split for each task. The distribution of different
grid sizes in train and dev split for each task is listed in Table 6. Specifically, Table 7 shows how environmental complexity
evolves with larger grid sizes in FROZENLAKE.

C. Experiments
C.1. Hyper-Parameters

Table 8 and 9 show the hyper-parameters for training MVoT and doing inference with GPT-4o.

All models were trained on MI300X GPUs. Table 8 provides the details of GPU configurations and hyperparameters for
various experimental settings. For GPT-4o, we utilized the 2024-07-01 version hosted on the Azure platform, with
inference parameters outlined in Table 9.

During MVoT training, as visual thoughts are recursively generated during inference, we applied input augmentation to
improve visualization robustness and mitigate noise introduced by image reconstruction during tokenization and detokeniza-
tion, as illustrated in Figure 4. This augmentation applies tokenization and detokenization over the input image for multiple
times, with the iteration count randomly determined between 0 and 10.
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Table 6. Dataset statistical distributions of grid sizes.

MAZE

Grid Size 3 4 5 6
Train 1481 1722 1823 1820
Dev 334 418 462 450

MINIBEHAVIOR

Grid Size 7 8 9 10
Train 1600 1600 1600 1600
Dev 401 401 401 401

FROZENLAKE

Grid Size 3 4 5 6
Train 308 1080 1397 2222
Dev 78 271 350 556

Table 7. Average number of key entities in FROZENLAKE with different grid sizes.

Grid Size 3 4 5 6
Train 4.7097 5.7166 7.4723 9.5049
Dev 4.6737 5.4689 7.4589 10.2267
Total 4.7030 5.6682 7.4696 9.648

Table 8. Hyper-parameters of fine-tuning Anole 7B for different system variants.

Hyper-Parameters Direct CoT Interleaved MVoT
Random Seed 42 42 42 42
Epochs 40 40 40 40
Learning Rate 0.0002 0.0002 0.0002 0.0002
Train Batch Size 4 4 4 4
Val Batch Size 16 16 8 8
Grad Accumulation 4 4 2 2
GPUs 8 8 32 32

Table 9. Hyper-parameters for GPT-4o

Temperature Max Tokens Top P Frequency Penalty Presence Penalty Stop
GPT-4o 0 800 1 0 0 None

15



Multimodal Visualization-of-Thought

C.2. Prompting Templates

Table 10, 11, 12 shows examples of prompting templates and responses for each tasks with different system variants. Table
13 illustrate the prompting template for GPT-4o with MAZE and Table 14 shows an example for GPT-4o with MVoT on
MINIBEHAVIOR. The other two tasks follow similar patterns.

C.3. Reproducibility

We will release the code and the datasets at URL-ANONYMOUS upon acceptance for reproducibility purposes.

D. Results
D.1. Task Performance

Table 15 presents the detailed task performance metrics across varying grid sizes. For FROZENLAKE, we observe a
noticeable decline in performance for both CoT and GPT-4o as the grid size increases, reflecting the growing complexity of
the environment. This drop in performance highlights the limitations of these models in handling more intricate spatial
reasoning tasks as the state complexity expands.

In contrast, MVoT demonstrates consistent performance across all grid sizes and tasks, underscoring its robustness to
environmental complexity. Unlike CoT-based approaches, which struggle to generalize effectively in larger and more
complex settings, MVoT’s ability to integrate verbal and visual thoughts allows it to maintain stability and accuracy. The
underlying intuition is that, even in more complex environments, MVoT focuses solely on the intended areas of the image
without modifying irrelevant parts, thereby maintaining a consistent level of reasoning difficulty for the model. These results
emphasize MVoT’s resilience and adaptability, making it a better choice for tasks involving complex reasoning in dynamic
environments.

D.2. Visualizations

Table 16 presents fine-grained visualization metrics for MAZE and MINIBEHAVIOR across varying grid sizes. The consistent
performance across grid sizes underscores the robustness of the visualizations. Compared to MVoT models trained without
token discrepancy loss, those incorporating token discrepancy loss (LD) achieve better visualization accuracy and reduced
redundancy, demonstrating the effectiveness of LD in enhancing visualization quality.

Figures 6 and 7 provide examples of visualizations generated for MAZE and MINIBEHAVIOR. These examples clearly
illustrate the improvement in visualization quality achieved by introducing token discrepancy loss.

Figure 10 illustrates the quantitative metrics for MAZE at various epochs in image-editing setting. With token discrepancy
loss, the visualizations are more accurate and less redundant in the end, while converging faster as well.

k=10 k=20 k=50

12

16

20

24 LVM (Image Vocab=8192)
Chameleon 7B (Image Vocab=8192)
LlamaGen (Image Vocab=16384)

Figure 5. Average percentage of top-k
overlapping tokens.

Image Tokenization in Autoregressive MLLMs To understand why token dis-
crepancy loss LD helps to improve the quality of generated visual thoughts, we
examine the two sets of embeddings introduced in autoregressive MLLMs: token
embeddings for language modeling and visual embeddings for image tokenization.
These embeddings originate from distinct systems because the visual codebook,
image tokenizer, and detokenizer are trained separately from the autoregressive de-
coder, which creates a potential discrepancy between the two embedding spaces. To
investigate their alignment, we compare the two embedding sets from Chameleon
(Chameleon Team, 2024), LVM (Bai et al., 2024) and LlamaGen (Sun et al., 2024a)
by calculating the average overlap ratio of the top-k similar tokens based on cosine
similarity. Results in Figure 5 reveal that, on average, only one token overlaps
among the top 10 similar tokens, and approximately 20% of tokens overlap among
the top 50 similar tokens. To further illustrate this discrepancy, we replace the
image tokens with their most similar tokens in the token embeddings and visual
embeddings, reconstructing the images (Figure 8 in Appendix D.2). After 10
iterations of tokenization and detokenization, the reconstructed images based on
token embeddings exhibit significant differences from the originals, such as altered colors and distorted symbols (e.g., the
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Table 10. Example of input and output for Direct reasoning. Italic text is the expected response.

Direct

MAZE

Task: Maze Navigation Simulation
Determine the final destination (A, B, C or D) from the starting point (red point) following the action sequence. The
definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Full Action Sequence: Go down. Go left. Go left. Go up. Go up.
Initial maze: <image>
Response: The answer is A.

MINIBEHAVIOR

Task: Mini-Behavior Installing the Printer
Determine whether the agent (red triangle) can pick up the printer (printer symbol) on the floor and place it on the
table (brown area) and toggle it on. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
* Pick up: pick up the printer from the any of the grid next to the agent. If there is no printer next to the agent, the
action fails.
* Drop: drop the printer to the table that is next to the agent. If there is no table next to the agent, the action fails.
* Toggle: toggle the printer that is on the table and next to the agent.
Return A, B, C or D.
Full Action Sequence: Go up. Go up. Go right. Go down. Go down. Pick up. Go right. Drop. Toggle.
A. Action Success.
B. Action Failed: Drop Error.
C. Action Failed: Pick Up Error.
D. Missing Key Objects.
Initial State: <image>
Response: The answer is A.

FROZENLAKE

Task: FrozenLake
Determine whether the agent (elf character) can safely reach the gift following the action sequence without falling
into the holes. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Return A, B or C.
Full Action Sequence: Go right. Go up.
A. Action Success.
B. Action Failed: Fall into the Hole.
C. Action Failed: Agent Safe but Fail to Reach Destination.
Initial State: <image>
Response: The answer is A.
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Table 11. Example of input and output for CoT with environment layout. Italic text is the expected response.

CoT with Environment Layout

MAZE
Task: Maze Navigation Simulation
Determine the final destination (A, B, C or D) from the starting point (red point) following the action sequence. The
definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Full Action Sequence: Go down. Go left. Go left. Go up. Go up.
Initial maze: <image>
Response: Destination Coordinates: A Coordinate: [0, 0]. B Coordinate: [2, 0]. C Coordinate: [0, 1]. D
Coordinate: [1, 1]. Initial Agent Coordinate: [2, 1]. Go down. Agent Coordinate: [2, 2]. Go left. Agent Coordinate:
[1, 2]. Go left. Agent Coordinate: [0, 2]. Go up. Agent Coordinate: [0, 1]. Go up. Agent Coordinate: [0, 0]. Action
sequence finished. The answer is A.

MINIBEHAVIOR
Task: Mini-Behavior Installing the Printer
Determine whether the agent (red triangle) can pick up the printer (printer symbol) on the floor and place it on the
table (brown area) and toggle it on. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
* Pick up: pick up the printer from the any of the grid next to the agent. If there is no printer next to the agent, the
action fails.
* Drop: drop the printer to the table that is next to the agent. If there is no table next to the agent, the action fails.
* Toggle: toggle the printer that is on the table and next to the agent.
Return A, B, C or D.
Full Action Sequence: Go up. Go up. Go right. Go down. Go down. Pick up. Go right. Drop. Toggle.
A. Action Success.
B. Action Failed: Drop Error.
C. Action Failed: Pick Up Error.
D. Missing Key Objects.
Initial State: <image>Carrying objects: None.
Response: Initial Agent Coordinate: [2, 7]. Initial Environment Layout: Printer Initial Coordinate: [3, 8]. Table
Coordinates: [[5, 6], [5, 7], [6, 6], [6, 7], [7, 6], [7, 7]]. Go up. Agent Coordinate: [2, 6]. Carrying objects: None.
Go up. Agent Coordinate: [2, 5]. Carrying objects: None. Go right. Agent Coordinate: [3, 5]. Carrying objects:
None. Go down. Agent Coordinate: [3, 6]. Carrying objects: None. Go down. Agent Coordinate: [3, 7]. Carrying
objects: None. Pick up. Agent Coordinate: [3, 7]. Carrying objects: printer 0. Go right. Agent Coordinate: [4, 7].
Carrying objects: printer 0. Drop. Agent Coordinate: [4, 7]. Carrying objects: None. Toggle. Agent Coordinate:
[4, 7]. Carrying objects: None. Action sequence stopped. The answer is A.

FROZENLAKE
Task: FrozenLake
Determine whether the agent (elf character) can safely reach the gift following the action sequence without falling
into the holes. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Return A, B or C.
Full Action Sequence: Go right. Go up.
A. Action Success.
B. Action Failed: Fall into the Hole.
C. Action Failed: Agent Safe but Fail to Reach Destination.
Initial State: <image>
Response: Initial Agent Coordinate: [1, 2]. Initial Environment Layout: Holes Coordinate: [[1, 0], [0, 1]]. Gift
Coordinate: [2, 1]. Go right. Agent Coordinate: [2, 2]. Go up. Agent Coordinate: [2, 1]. Action sequence stopped.
The answer is A.
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Table 12. Example of input and output for CoT without environment layout. Italic text is the expected response.

CoT without Environment Layout

MAZE
Task: Maze Navigation Simulation
Determine the final destination (A, B, C or D) from the starting point (red point) following the action sequence. The
definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Full Action Sequence: Go down. Go left. Go left. Go up. Go up.
Initial maze: <image>
Response: Initial Agent Coordinate: [2, 1]. Go down. Agent Coordinate: [2, 2]. Go left. Agent Coordinate: [1, 2].
Go left. Agent Coordinate: [0, 2]. Go up. Agent Coordinate: [0, 1]. Go up. Agent Coordinate: [0, 0]. Action
sequence finished. The answer is A.

MINIBEHAVIOR
Task: Mini-Behavior Installing the Printer
Determine whether the agent (red triangle) can pick up the printer (printer symbol) on the floor and place it on the
table (brown area) and toggle it on. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
* Pick up: pick up the printer from the any of the grid next to the agent. If there is no printer next to the agent, the
action fails.
* Drop: drop the printer to the table that is next to the agent. If there is no table next to the agent, the action fails.
* Toggle: toggle the printer that is on the table and next to the agent.
Return A, B, C or D.
Full Action Sequence: Go up. Go up. Go right. Go down. Go down. Pick up. Go right. Drop. Toggle.
A. Action Success.
B. Action Failed: Drop Error.
C. Action Failed: Pick Up Error.
D. Missing Key Objects.
Initial State: <image>Carrying objects: None.
Response: Initial Agent Coordinate: [2, 7]. Go up. Agent Coordinate: [2, 6]. Carrying objects: None. Go up.
Agent Coordinate: [2, 5]. Carrying objects: None. Go right. Agent Coordinate: [3, 5]. Carrying objects: None. Go
down. Agent Coordinate: [3, 6]. Carrying objects: None. Go down. Agent Coordinate: [3, 7]. Carrying objects:
None. Pick up. Agent Coordinate: [3, 7]. Carrying objects: printer 0. Go right. Agent Coordinate: [4, 7]. Carrying
objects: printer 0. Drop. Agent Coordinate: [4, 7]. Carrying objects: None. Toggle. Agent Coordinate: [4, 7].
Carrying objects: None. Action sequence stopped. The answer is A.

FROZENLAKE
Task: FrozenLake
Determine whether the agent (elf character) can safely reach the gift following the action sequence without falling
into the holes. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Return A, B or C.
Full Action Sequence: Go right. Go up.
A. Action Success.
B. Action Failed: Fall into the Hole.
C. Action Failed: Agent Safe but Fail to Reach Destination.
Initial State: <image>
Response: Initial Agent Coordinate: [1, 2]. Go right. Agent Coordinate: [2, 2]. Go up. Agent Coordinate: [2, 1].
Action sequence stopped. The answer is A.

19



Multimodal Visualization-of-Thought

Table 13. Prompting template for GPT-4o zero-shot direct and CoT inference, with MAZE as example.

GPT-4o on MAZE

GPT-4o zero-shot inference

Task: Maze Navigation Simulation
Determine the final destination (A, B, C or D) from the starting point (red point) following the action sequence. The
definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Full Action Sequence: Go down. Go left. Go left. Go up. Go up.
Initial maze: <image>
Conclude your final answer between <ANSWER>and </ANSWER >.

GPT-4o zero-shot CoT

Task: Maze Navigation Simulation
Determine the final destination (A, B, C or D) from the starting point (red point) following the action sequence. The
definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
Full Action Sequence: Go down. Go left. Go left. Go up. Go up.
Initial maze: <image>
Let’s think step by step. Conclude your final answer between <ANSWER>and </ANSWER >.

elf’s appearance). This contrast highlights the misalignment between the two embedding systems. By introducing token
discrepancy loss, we hope to bridge this gap, enabling better alignment between visual and token embeddings, thus allowing
the model to generate higher-quality visual rationale.

Figure 9 provides an example where CoT fails on FROZENLAKE while MVoT succeeds. This example clearly and intuitively
demonstrates that CoT is highly sensitive to environmental complexity and generates incorrect coordinate descriptions of
holes when dealing with FROZENLAKE. In contrast, MVoT successfully avoids this issue by leveraging the visualization of
thought during reasoning.

E. Limitation
MVoT unifies the verbal and visual thoughts to elicit the reasoning process through image visualizations. However, we
observe that the generated visualizations often attempt to reconstruct task-irrelevant details, such as the background patterns
in FROZENLAKE, while overlooking the intended alterations in the visualizations. This can be mitigated by incorporating the
guidance techniques as in image generation with diffusion models (Sadat et al., 2024), which we propose as a direction for
future improvement. Additionally, explicitly generating visualizations introduces computational overhead during inference.
To address this, we advocate for further research into compact image representations using fewer tokens (Choudhury et al.,
2024; Yu et al., 2024), thereby reducing the computational cost of visualization generation.
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Table 14. Prompting template for GPT-4o with MVoT, with MINIBEHAVIOR as example. <VISUALIZATION> is generated by MVoT
as the plug-in. Italic text is the response generated by GPT-4o.

GPT-4o with MVoT on MINIBEHAVIOR

To predict the consequence of a sequence of actions, you need to simulate the action sequence with ‘one action‘ at a
time. Each time after simulating one action, ‘your turn is finished‘ and you should wait for the environment to
provide the corresponding image observation.
When all the actions are completed or a target situation is achieved, conclude the final answer.
The interaction between you and the environment at step i is as following:
Your turn:
First conduct reasoning to determine to simulate ‘action‘ or to conclude the ‘answer‘ based on the previous
observation ‘Observation {i-1}‘.
Reasoning {i}: {your thinking before simulating ‘action‘ or concluding ‘answer‘ if all actions are completed or a
target situation aligned with one of the options is achieved. }

If to simulate the next action, return as follows.
Reasoning {i}: {your thinking before simulating ‘action i‘ based on the full action sequence}
Action {i}: {i-th action to simulate} # from the full action sequence

If to conclude the answer based on the observation that aligns with one of the options, return as follows.
Reasoning {i}: {answer can be concluded or actions are completed based on the observation i-1. }
Answer: The answer is {Choose from multiple-choice options}

In reasoning, don’t describe the image, only determine whether to conclude the answer if previous obser-
vation aligns with one of the options (pay attention to the key objects) or to simulate the next action.

Don’t mention misleading word such as safe or anything will cause hurt.

Task: Mini-Behavior Installing the Printer
Determine whether the agent (red triangle) can pick up the printer (printer symbol) on the floor and place it on the
table (brown area) and toggle it on. If not, identify the failure reason. The definitions of the actions are as below.
* Go up/left/down/right: move one grid space in the absolute up/left/down/right direction.
* Pick up: pick up the printer from the any of the grid next to the agent. If there is no printer next to the agent, the
action fails.
* Drop: drop the printer to the table that is next to the agent. If there is no table next to the agent, the action fails.
* Toggle: toggle the printer that is on the table and next to the agent.
Return A, B, C or D.
Full Action Sequence: Go right. Pick up. Go up. Drop. Toggle.
A. Action Success.
B. Action Failed: Drop Error.
C. Action Failed: Pick Up Error.
D. Missing Key Objects.
<image>
Conduct reasoning first to determine whether 1) to simulate the action sequence with ‘one step’ at a time in the
format of ‘Step’/‘Conclusion’, ‘Reasoning’ and ‘Action’, or 2) to onclude the answer when ‘previous observation
aligns with one of the options’ or ‘all the actions are completed’. Do not generate the observation by yourself.

Reasoning 1: The agent (red triangle) is currently positioned next to the printer. The first action in the
sequence is to move right. I will simulate this action to see if the agent can move closer to the printer.
Action 1: right.
Observation 1: <VISUALIZATION>
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Table 15. Fine-grained task performance on different grid sizes

MAZE

Grid size 3 4 5 6 Overall
GPT-4o Direct 0.6667 0.7196 0.7457 0.6888 0.7100
GPT-4o CoT 0.9103 0.7639 0.7457 0.6978 0.7386
Direct 0.5385 0.7528 0.7457 0.7067 0.7171
CoT (w env layout) 1.0000 0.9926 0.9800 0.9690 0.9792
Interleaved 0.9487 0.9188 0.8857 0.8197 0.8677
MVoT 0.9103 0.9668 0.9257 0.9162 0.9295

MINIBEHAVIOR

Grid size 7 8 9 10 Overall
GPT-4o Direct 0.3965 0.4389 0.4838 0.5112 0.4576
GPT-4o CoT 0.4663 0.4439 0.4788 0.4813 0.4676
Direct 0.6733 0.7207 0.7758 0.7307 0.7250
CoT (w env layout) 0.9800 0.9825 0.9723 0.9900 0.9813
Interleaved 0.8279 0.8329 0.8615 0.8404 0.8406
MVoT 0.9651 0.9676 0.9528 0.9202 0.9514

FROZENLAKE

Grid size 3 4 5 6 Overall
GPT-4o Direct 0.6916 0.5215 0.4372 0.3933 0.4976
GPT-4o CoT 0.6018 0.5000 0.4113 0.3911 0.4664
Direct 0.8263 0.8038 0.7468 0.7533 0.7788
CoT (w env layout) 0.9401 0.7225 0.5000 0.3911 0.6148
Interleaved 0.7305 0.6818 0.6017 0.5956 0.6460
MVoT 0.8623 0.8397 0.8377 0.8876 0.8560

Table 16. Fine-grained task performance and visualization metrics on different grid sizes.

MAZE

3 4 5 6

MVoT w/ LD MVoT w/o LD MVoT w/ LD MVoT w/o LD MVoT w/ LD MVoT w/o LD MVoT w/ LD MVoT w/o LD

Task Acc 0.9103 0.7949 0.9668 0.7970 0.9257 0.7657 0.9162 0.7031

V-Acc. 0.9654 0.8447 0.9719 0.7858 0.9549 0.6786 0.9094 0.5609

V-Red. 0.0769 0.1923 0.0553 0.3284 0.0829 0.4200 0.1275 0.5993

V-Steps 4.6538 4.0513 6.8930 5.4576 7.9771 5.5943 10.0346 6.0219

V-Ratio 0.9489 0.8314 0.9677 0.7897 0.9545 0.7195 0.9264 0.6087

MINIBEHAVIOR

7 8 9 10

MVoT w/ LD MVoT w/o LD MVoT w/ LD MVoT w/o LD MVoT w/ LD MVoT w/o LD MVoT w/ LD MVoT w/o LD

Task Acc 0.9651 0.7606 0.9676 0.7980 0.9528 0.6850 0.9202 0.6425

V-Acc. 0.9781 0.7960 0.9694 0.8525 0.9791 0.7928 0.9479 0.7497

V-Red. 0.0349 0.2668 0.0399 0.1696 0.0367 0.2651 0.0898 0.3290

V-Steps 5.6708 4.3666 6.1147 5.0374 7.6640 5.6089 8.6259 5.9663

V-Ratio 0.9693 0.7791 0.9608 0.8350 0.9786 0.7752 0.9313 0.7258
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Previous Image Target ImageAction Visualization with 𝑳𝑫 Visualization without 𝑳𝑫

Go left.

Go down. 

Go up.

Go down. 

Go up. 

 Wrong Visualization

 Wrong Visualization

 Redundant Visualization

 Redundant Visualization

 Redundant Visualization

 Perturbed Details

 Blurred Patterns

 Redundant Visualization

Figure 6. Qualitative analysis of MAZE visualization quality from systems trained with and without token discrepancy loss (LD) in
image-editing setting.
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Previous Image Target ImageAction Visualization with 𝑳𝑫 Visualization without 𝑳𝑫

Go down. 

Pick up. 

Go down. 

Go right. 

Go left. 

 Wrong Visualization
        Pick up action failed. 

 Wrong Visualization

 Redundant Visualization

 Redundant Visualization

 Redundant Visualization

 Perturbed Details

Figure 7. Qualitative analysis of MINIBEHAVIOR visualization quality from systems trained with and without token discrepancy loss
(LD) in image-editing setting.

Token Embedding Visual Embedding

Replace with most similar image tokens
Token Embedding Visual Embedding

Tokenize & Detokenize 10 times
Original image

Figure 8. Reconstruct the image with Anole by 1) replacing the image tokens with most similar tokens in BPE and visual embeddings; 2)
tokenizing and detokenizing the image after replacement for 10 times.
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Chain-of-Thought (CoT)
Initial Agent Coordinate: [0, 4]. 
Holes Coordinate:
 [1, 1], [3, 1], [0, 2], [2, 2], [3, 2], [4, 2], [2, 4]. 
Gift Coordinate: [0, 3]. 
Go up. Agent Coordinate: [0, 3]. 
Go right. Agent Coordinate: [1, 3]. 
Go up. Agent Coordinate: [1, 2]. 
Go down. Agent Coordinate: [1, 3]. 
Go down. Agent Coordinate: [1, 4]. 
Go up. Agent Coordinate: [1, 3]. 
Action sequence stopped. 
The answer is C. Verbal Thought🤔

Determine whether the agent can safely reach 
the gift following the action sequence without 
falling into the holes. If not, identify the failure 
reason.
 

Full Action Sequence: Go up. Go right. Go up. 
Go down. Go down. Go up.

Return A, B or C.
A. Action Success.
B. Action Failed: Fall into the Hole.
C. Action Failed: Agent Safe but Fail to Reach Destination.

Multimodal Visualization-of-Thought (MVoT)

Go up.                                              Go right.                                             Go up.                  Action sequence stopped. 

The answer is B.
With Visual Thought😃

Figure 9. An example where CoT fails on FROZENLAKE while MVoT succeeds. Because of sensitivity to the environment, CoT generated
incorrect coordinate descriptions of holes, leading to the wrong answer.
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Figure 10. Visualization metrics for image editing on MAZE, evaluated using 800 randomly sampled examples.
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