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Abstract

Partial label learning (PLL) deals with the problem where each training example is
annotated with a set of candidate labels, among which only one is true. In real-world
scenarios, the candidate labels are generally dependent to the instance features.
However, existing PLL methods focus solely on classification accuracy, whereas the
possibility of exploiting the dependency for causal representation learning remains
unexplored. In this paper, we investigate learning causal representations under
the PLL paradigm and propose a novel framework which learns identifiable latent
factors up to permutation, scaling and translation. Qualitative and quantitative
experiments confirmed the effectiveness of this approach.

1 Introduction

Causal representation learning (CRL) [14] aims to identify latent variables from high-dimensional
observations. A core task in CRL is learning identifiable latent representation, i.e., developing
representation learning algorithms that can provably identify high-level latent factors such as shape,
location, and colour of an object. As previous work has shown that causal representation identification
is impossible for arbitrary data-generating process in an unsupervised fashion [9], much of the recent
efforts have been diverted to learning causal representation from data with additional structures and
supervisions [6, 7]. For example, recent studies have delved into understanding causal representations
with interventions [1, 8] or under specific weak supervision signals [24, 20, 2].

In this paper, we investigate the possibility for identifying causal representation within the context
of Partial Label Learning (PLL) paradigm, a form of weakly-supervised learning that has garnered
significant attention over the past decade. Unlike traditional supervised learning where each instance
is associated with a single class label, each training instance in PLL is annotated with a set of
candidate labels, among which only one is the ground-truth. This problem naturally emerges in
various real-world scenarios, such as web mining [10, 13], multimedia content analysis [21, 5], and
automatic image annotations [3, 15, 16].

In PLL, the candidate labels of a sample typically correlate to the contents and styles of an instance,
e.g., crowd-sourced annotators often output several possible labels for an image based on the context.
Researchers have coined this concept as Instance-Dependent Partial Label Learning, i.e., the candidate
labels are dependent to the instance features [19]. Characterizing this relationship is beneficial for
training effective PLL models and makes partial labeling learning particular interesting for real-world
scenarios.
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However, most of the existing PLL methods are solely designed for classification, with a focus on
how to recover true labels from ambiguous supervisory information. The causal relationship between
candidate set, instance and the ground-truth label still remain mostly unexplored. In this paper, we
will explore the possibility for learning causal representations by exploiting the intrinsic relationships
among candidate labels and the instance within the PLL paradigm.

Our contributions can be summarized as follows:

• We propose a novel VAE framework with mixture priors for learning latent causal models
from partial labels, and show that latent factors learned can be identifiable up to permutation,
scaling and translation.

• We propose CAUSALPLL, which instantiate the above framework by utilizing a latent space
consistency regularization loss to effectively learn causal representations from partial labels.

• We demonstrate the effectiveness of CAUSALPLL for causal representation learning and
classification, with an improved validation protocol that better simulates candidate label
generation in real-world scenarios.

2 Partial Label Learning and Identifiable Causal Representations

2.1 Partial Label Learning

Partial Label Learning (PLL) is a subfield of weakly supervised learning that learns from candidate
label sets which contains one ground truth label and several false positive labels. PLL can be dated
back to [4] and has recently drawn a lot of attention [18, 23, 22].

Early PLL algorithms often assume that the false positive labels of an instance are randomly chosen
from the label space. However, in real-world applications, candidate labels and the instance are
often dependent [19]. Taking the MNIST dataset as an example, crowd labellers are more likely to
include the label "7" for digit "1" in the candidate label set. Consequently, building on this insight,
the concept of Instance-Dependent Partial Label Learning [19] was introduced.

Instance-dependent candidate labels carry information that benefit learning latent representations.
Contrasting to traditional supervised learning where the ground truth label only provide the content
information, candidate labels in PLL provides additional information on the styles.

2.2 VAE and Identifiable Causal Representations

Variational Autoencoder (VAE) is a kind of deep generative model that combines neural networks
with variational inference. It uses an encoder and an decoder, respectively, to fit the posterior and
likelihood of the data. VAEs can be trained by maximizing the Evidence Lower BOund (ELBO):

bELBO = Ez∼qϕ(z|x) [ln pθ(x|z)]−KL(qϕ(z|x)||pθ(z)) (1)

VAEs are not only powerful generative models but have also been the subject of extensive research
in terms of their identifiability. Identifiability in VAEs refers to the uniqueness of the learned latent
representations for different data points. In other words, it addresses the question of whether two
different data samples will have distinct latent representations.

Previous studies have shown that VAEs with unconditional prior distributions pθ(z) are generally not
identifiable [9]. However, with a conditionally factorized prior distribution pθ(x|u), the latent factors
z can be identified [6]. The iVAE [6] takes explicit observed variables to satisfy the identifiability
condition. Recently, [7] have shown with a mixture prior, latent factors z can be identified without
explicit observed variables, which is easier to apply in practical situations.

3 Methodology

Let X ⊂ RD denote the D-dimensional instance space and Y = {1, 2, · · · , C} denote the label
space with C distinct labels. Z ⊂ RM is the M -dimensional latent space where M ≪ D. PLL
assumes that the ground-truth label y ∈ Y of an instance x ∈ X is contained within a candidate
label set S ⊂ Y . For simplicity, we use the Boolean vector s ∈ {0, 1}C to represent the partial label
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corresponding to the candidate label set S. The goal of PLL is to learn a classifier h : Z → Y on
a partial label dataset D = {(xi, si)|1 ≤ i ≤ N}. For the classifier h, we use hc(z) to denote the
output of classifier h on label c given input z.

3.1 Identifiable Variational Auto-encoder

Although strict identifiability is difficult to achieve, identification of latent factors is often easier
to be accomplished up to certain transformations. In our work, we focus on identifiability up to
permutation, scaling and translation transformations. Recent results have shown that under the
mixture prior assumption, latent factors z can be identified with a conditionally factorized prior
distribution pθ(x|u), where u represents a specific component of the mixture [7]. Inspired by these
results, we design a novel VAE-based PLL framework with mixture prior that is identifiable up to
permutation, scaling and translation.

Generally speaking, a VAE-based PLL framework that learns identifiable representations should
satisfy the following desiderata [7]:

1. The latent prior p(z) is a (possibly degenerate) Gaussian mixture model with an unknown
number of components K ≥ 1, i.e.

p(z) =

K∑
k=1

λkφ(z;µk,Σk),

K∑
k=1

λk = 1, λk ≥ 0,

where p(z) is the density of the prior with respect to some base measure, and φ(z;µk,Σk)
is the gaussian density with mean µk and covariance Σk).

2. The decoder f is piecewise affine, e.g., a multilayer perceptron with ReLU activations.

3. Zi ⊥⊥Zj | U for all i ̸= j and there exist a pair of states U = u1 and U = u2 such that all
(Σu1 )tt
(Σu2

)tt
, t ∈ {1, 2, · · · ,M} are distinct. (Zi denotes the i-th entry of latent factors Z)

4. f is injective, that is, for every y in the range of f , |f−1(y)| = 1.

These conditions outline the design considerations for our VAE-based framework in causal represen-
tation learning from candidate label sets. For condition 1, we adopt VampPrior [17] as the latent prior
which not only satisfies the requirement of mixed Gaussian priors, but also facilitates model learning;
condition 2 can be satisfied by restricting the activation function of the neural network to ReLU or
LeakyReLU; for condition 4, [12] have shown that a VAE with "gradually shrinking and gradually
expanding" structure satisfying D/M ≥ 10.5, f would be injective with high probabilities. (M is
the input dimensionality of decoder f , and D is the output dimensionality.)

In order to satisfy condition 3, we can regularize the variances of the prior distribution as:

Ω1,2;i,j = −
∥∥∥∥ (Σu1

)ii
(Σu2

)ii
− (Σu1

)jj
(Σu2

)jj

∥∥∥∥2
2

(2)

The term above should be summed pairwisely over K and M , and comprehensive implementation
details will be given in the supplementary materials (section 6.3). By maximizing the distance
between different variance ratios, we can make them distinct from each other, and condition 3 would
be satisfied.

3.2 CausalPLL

The overall framework for CAUSALPLL is shown in Figure 1 (left). Following the variational
inference paradigm, the generation and inference process of CAUSALPLL can be written as follows:

p(x, y, z1, z2, s) = p(s|x, y) · p(x|z1, y) · p(z1|z2) · p(z2) (3)

q(z2, z1, y|x, s) = q(z1|z2, y) · q(y|z2, s) · q(z2|x) (4)

3



Figure 1: (Left) The framework of CAUSALPLL. (Right) The causal graph of the generation process.
The "hammer" icons represent interventions which will be applied in the qualitative experiments.

Figure 1 (right) illustrate the data generation process under the PLL settings. Latent variables z1 and
z2 could be considered as low-dimensional causal representations of the original instance. Meanwhile,
since the ground-truth must be included in the candidate label set in PLL, y also makes a difference
in the generation process of s. Consequently, we have p(s|x, y).
Specifically, our model contains two encoder networks which model distributions q(z1|z2, y),
q(z2|x) in series and a decoder network which models the likelihood p(x|z1, y). Besides, the
classifier and label transition network can also be considered as an encoder and a decoder, respec-
tively. The former is used to model q(y|z2, s), while the latter is used to fit p(s|x, y). Additionally,
s is implicitly provided in the loss function, consequently resulting in the classifier q(y|z2, s) simpli-
fying to q(y|z2). According to the conditional independence relationship implied in the factorization
above, we can simplify the variational posterior and derive the ELBO as follows. For detailed
assumptions and derivations, please refer to supplementary materials (section 6.1).

bELBO = Ez1,y∼q(z1,y|z2)[ln p(x|z1, y)] + Ey∼q(y|z2)[p(s|x, y)]−KL(q(z2|x)||p(z2))

− Ey∼q(y|z2)[KL(q(y|z2)||p(y))]− Ez2,y∼q(z2,y|x)[KL(q(z1|z2, y)||p(z1|z2))]
(5)

In Formula 5, the first two terms of ELBO are reconstruction errors and the last three are KL
divergence or its expectation. The fourth term Ey∼q(y|z2)[KL(q(y|z2)||p(y))] can be seen as the
supervision on the classifier which could be converted into other forms:

L(h(z2), s) + λΨ(h(z2), s) =

C∑
c=1

(1− sc) · ln(1− hc(z2)) + λ
∑

z̃2∈Rz2

KL(p||h(z̃2)) (6)

Rz2
= {z̃2,1, z̃2,2, · · · , z̃2,R} is the set of perturbed latent codes. For the supervision, we were

inspired by [18] and adopted a modified version of consistency regularization loss. Original con-
sistency regularization loss relies on semantic-preserving data augmentation, which is operated on
the instance space. Meanwhile, semantic-preserving data augmentation is generally very limited in
number and varies across different domains (CV, NLP, etc.) which limits its large-scale application.
But if the perturbation could be applied to the data on high-level feature space, limitations mentioned
above would not exist any longer. And this aligns precisely with the characteristics of VAE-based
causal representation learning. To make predictions of Rz2 similar to a conformal distribution p, we
could utilize the manifold structure in feature space and carried out PLL more effectively.

L = BCE(x, x̂) + BCE(s, ŝ) + KL
(
q(z1|z2, y)

∣∣∣∣∣∣N (0,E)
)

+ L(ŷ, s) + Ψ(ŷ, s) + KL
(
q(z2|x)

∣∣∣∣∣∣p(z2)
)
+Ω

(
p(z2)

) (7)

From the derivations above, we could obtain the loss function (Formula 7). By minimizing recon-
struction errors on s, the label transition network captures the intricate relationships among x, y and
s, thereby directing the model towards more effective classification.
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Table 1: Accuracy (mean±std) comparisons on Fashion-MNIST, Kuzushiji-MNIST and MNIST with
instance-dependent partial labels on different ambiguity levels.

Dataset Method τ = 16 τ = 32 τ = 64

Fashion-MNIST

CausalPLL 87.55 ± 0.13% 86.91 ± 0.13% 86.14 ± 0.11%
PRODEN 87.32 ± 0.19% 86.34 ± 0.08% 85.15 ± 0.24%
VALEN 88.36 ± 0.20% 87.25 ± 0.19% 85.67 ± 0.24%

Fully Supervised 93.92 ± 0.07%

KMNIST

CausalPLL 88.13 ± 0.26% 87.19 ± 0.16% 86.47 ± 0.26%
PRODEN 88.50 ± 0.24% 86.27 ± 0.33% 82.92 ± 0.45%
VALEN 86.08 ± 0.37% 82.23 ± 0.36% 77.18 ± 0.56%

Fully Supervised 98.31 ± 0.05

MNIST

CausalPLL 97.37 ± 0.08% 97.07 ± 0.08% 96.86 ± 0.09%
PRODEN 98.22 ± 0.06% 98.09 ± 0.04% 97.86 ± 0.04%
VALEN 97.96 ± 0.05% 96.98 ± 0.11% 95.57 ± 0.09%

Fully Supervised 98.32 ± 0.02

4 Experiments

In this section, we first propose a novel method of generating instance-dependent PLL data from
fully-supervised datasets, and then we evaluate the prediction performances of CausalPLL against
PLL baselines, including PRODEN [11] and VALEN [19].

4.1 The Method of Generating Instance-Dependent PLL Data from Fully-Supervised
Datasets

In previous partial label learning researches, a common practice is to manually corrupting the existing
fully-supervised datasets into partially labeled versions by using a flipping probability [19]. However,
the current candidate label generation strategies are not suitable for evaluation under the setting of
causal representation learning and suffer from issues such as small flipping probabilities, confidence
contradictions, and the lack of direct control over the difficulty of the task. To address these issues,
we propose a new approach in this paper

Our approach first train a neural network with clean labels and generate candidate labels using
temperature-adjusted flipping probabilities. In the generalized form of softmax function y =
softmax(xτ ), τ is the temperature parameter which could adjust the smoothness of the output. The
larger the τ , the smoother the output; The smaller the τ , the steeper the output.

ξc = ŷc/max
c′∈Y

ŷc′ (8)

If τ is sufficiently large, the small flipping probabilities problem would not occur even if we directly
use the maximum in all prediction outputs. Moreover, because all information from the prediction
outputs is preserved, the confidence conflict problem also does not arise. Meanwhile, since parameter
τ could change the smoothness of the output, thus affecting the magnitude of the flipping probability,
it can controls the size of candidate label set. As a result, the difficulty of the problem is altered. And
a method which is able to explicitly adjust the hardness of the problem as with uniform assumptions
is obtained.

4.2 Quantitative Results

We first evaluate the quantitative performances of CausalPLL in Table 1. It is worth noting that as
CausalPLL is a generative approach that emphasize on the identifiability of causal representation, we
do not expect CausalPLL to exhibit superior accuracy than methods that focus solely on classification
because causal representations/relationships do not necessarily performs the best for classification.
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Figure 2: (Left) The t-SNE visualization of the latent space Z2 (i.e. Encoder-I). Each dot represents
a sample, and different colors indicate different categories. (Right) Reconstructed images from
Fashion-MNIST with different z1 and y. Images from the same row are generated from the same
z1, but have labels which vary from 0 to C (from left to right). Images from the same column are
generated from the same label y, but have different latent embeddings z1.

However, the performance of CausalPLL is still comparable to existing PLL baselines, and outper-
forms baselines when τ is high, i.e., CausalPLL performs better when the candidate label set is more
difficult. Meanwhile, it is worth noting that CausalPLL gave high accuracy on Fashion-MNIST and
KMNIST, but performed slightly worse on MNIST. This may be explained by the fact that MNIST is
an easier task for classification-oriented baselines as the ambiguity in the candidate label sets is lower
than other tasks, while CausalPLL may loses some accuracy due to ignoring spurious features.

4.3 Qualitative Results

4.3.1 The Effect of Latent Factors on Image Reconstruction

In this section, we visualize the reconstructed images from Fashion-MNIST with different z1 and y,
i.e., the latent embedding given by encoder-II and the prediction of classifier. These images were
generated by the decoder p(x|z1, y). We selected 10 images from different categories, inferenced the
latent factors, and obtained 10 latent embedding z1. For each z1, we then fed them into the decoder
with 10 different labels y ∈ 1, 2, · · · , C. Finally, we got 10× 10 = 100 images. In Figure 2, images
in the same row have the same z1 and those in the same column share the same y.

From Figure 2, we can see that the second column (from the left to right, the same below) which has
the label "trousers" all appear to have a slit in the middle and look likes real trousers. Moreover, in
the fifth and seventh row of the last column, where there should have been coats and shirts appears
what looked like boots. Similarly, this situation also appeared in sneakers and sandals. Beyond these,
images on the diagonal are usually clearer than the other images in the same role, because these
images have been given the correct labels. These results demonstrate that z1 and y actually play
causal factor roles. Both of them have an important impact on the generation of images. By adjusting
the value of z1 and y, we can achieve different reconstruction effects.

4.3.2 Visualization of Latent Space

In this section, we visualize the latent space of z2 (i.e. Encoder-I). We calculated the posterior
q(z2,n|xn) ∼ N (µn, σ

2
n) for every instance in Fashion-MNIST dataset, and carried out t-SNE

visualization on their mean vectors ({µn|1 ≤ n ≤ N}). From Figure 2 we can see that the points
representing ankle boots, bags, sneakers and sandals (at the bottom left of the figure) formed clusters
that have clear boundaries. But the points corresponding to t-shirts, pullovers, dresses and coats
showed significant aliasing at the boundaries but still are separable.

The above phenomena, to some extent, confirmed that CAUSALPLL could capture the causal factors
of instances rather than simply classifying the samples. T-shirts, pullovers, dresses and coats are all
tops and shares similar features. As a consequence, the model tend to cluster them together and this
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aliasing reflects the natural structure of the data. Meanwhile, ankle boots, bags, sneakers and sandals
are all categories with distinct characteristics and are very different from each other. Therefore,
between clusters of these classes, there are clear divides.

5 Conclusion

In this paper, we proposed CAUSALPLL, a VAE-based framework that learns semantically meaningful
causal representations from partially labeled data, and investigated the causal factors in the context of
instance-dependent PLL tasks. This model not only achieved comparable classification performance
with state-of-the-art PLL baselines, but also learned causal factors that can significantly affect the
reconstructed images. Meanwhile, there are also some limitations in our works and many future
directions worth investigating. CAUSALPLL relies heavily on high-quality pre-train models and
hyperparameter tuning, which implicitly increases the difficulty of its use. Quantitative evaluating the
disentanglement of content and style in the latent space is also worth exploring.
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6 Supplementary Materials

6.1 The Derivation of the ELBO

The generation and inference process of CAUSALPLL can be written as follows:

p(x, y,z1, z2, s) = p(s|x, y) · p(x|z1, y) · p(z1|z2) · p(z2) · p(y)

q(z2, z1, y|x, s) = q(z1|z2, y,x, s) · q(y|z2,x, s) · q(z2|x, s)

According to the conditional independence relationship implied in the causal factorization, we have:
q(z1|z2, y,x, s) = q(z1|z2, y), q(y|z2,x, s) = q(y|z2, s), q(z2|x, s) = q(z2|x).
Then we can simplify the variational posterior as:

q(z2, z1, y|x, s) = q(z1|z2, y) · q(y|z2, s) · q(z2|x)

Therefore, we have:

ln
p(x, y, z1, z2, s)

q(z2, z1, y | x, s)

= ln
p(s|x, y) · p(x|z1, y) · p(z1|z2) · p(z2) · p(y)

q(z1|z2, y) · q(y|z2, s) · q(z2|x)

= ln p(x|z1, y) + ln p(s|x, y)− ln
q(z1|z2, y)

p(z1|z2)
− ln

q(y|z2, s)

p(y)
− ln

q(z2|x)
p(z2)
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The evidence lower bound can be written as:

bELBO =

∫
z1,y

q(z1|z2, y) · q(y|z2) · ln p(x|z1, y) dz1dy

+

∫
y

q(y|z2) · ln p(s|x, y) dy

−
∫
z2,z1,y

q(z1|z2, y) · q(y|z2, s) · q(z2|x) · ln
q(z1|z2, y)

p(z1|z2)
dz2dz1dy

−
∫
z2,y

q(y|z2) · q(z2|x) · ln
q(y|z2)

p(y)
dz2dy

−
∫
z2

q(z2|x) · ln
q(z2|x)
p(z2)

dz2

∫
z1,y

q(z1|z2, y) · q(y|z2) · ln p(x|z1, y) dz1dy = Ez1,y∼q(z1,y|z2)[ln p(x|z1, y)]∫
y

q(y|z2) · ln p(s|x, y) dy = Ey∼q(y|z2)[p(s|x, y)]∫
z2,z1,y

q(z1|z2, y) · q(y|z2, s) · q(z2|x) · ln
q(z1|z2, y)

p(z1|z2)
dz2dz1dy

= Ez2,y∼q(z2,y|x,s)

[
KL

(
q(z1|z2, y)||p(z1|z2)

)]
∫
z2,y

q(y|z2) · q(z2|x) · ln
q(y|z2)

p(y)
dz2dy = Ey∼q(y|z2)[KL(q(y|z2)||p(y))]∫

z2

q(z2|x) · ln
q(z2|x)
p(z2)

dz2 = KL(q(z2|x)||p(z2))

Therefore:

L = BCE(x, x̂) + BCE(s, ŝ) + KL
(
q(z1|z2, y)

∣∣∣∣∣∣N (0,E)
)

+ L(ŷ, s) + Ψ(ŷ, s) + KL
(
q(z2|x)

∣∣∣∣∣∣p(z2)
)
+Ω

(
p(z2)

)
6.2 Consistency Regularization loss

Manifold consistency regularization, which assumes that the manifold structure in the feature space
should also be preserved in the label space, has been shown very effective in traditional PLL tasks.
Inspires by this, [18] revisited the utilization of consistency regularization to guide the design of
deep PLL method, which is proven to be effective. However, original consistency regularization
loss relies on semantic-preserving data augmentation, which is operated on the original sample
space. Meanwhile, semantic-preserving data augmentation is generally very limited in number, and
varies across different domains (CV, NLP, etc.). And this limits its large-scale application. But
if the perturbation could be applied to the data on high-level feature space, limitations mentioned
above would not exist any longer. And this aligns precisely with the characteristics of Variational
Autoencoders (VAE).

L(h(z2), s) + λ ·Ψ(h(z2), s)

The consistency regularization loss in our work consists of two parts. The first part, supervised loss
L(h(z2), s), is the same as in [18]. The main idea of this term can be summarized as "only the
negative samples counts". Because the candidate label might be a false positive label, which will
introduce noise into the training process. But the negative label must be accurate.

L(h(z2), s) =

C∑
c=1

(1− sc) · ln(1− hc(z2))

9



The second part is the Consistency Regularization term. In original CR loss, a latent embedding
has different "incarnations" which are obtained from different data augmentation approaches. And
the model would align the output distribution of these different augmentations of each instance to
their conformal label distribution p. The reason for this is that the network’s output is expected to be
invariant to small changes applied to the feature space.

Ψ(h(z2), s) =
∑

z̃2∈Rz2

KL(p||h(z̃2))

However, in our work, we adopted a novel approach which does not rely on semantic-preserving data
augmentations. We know that, latent code z2 is generated using reparameterization tricks.

z2 = µ2 + σ2 ⊙ ε, ε ∼ N (0,E)

In our framework, we do not use data augmentations, but directly apply perturbation to the data on
latent space. Because epsilon was randomly sampled from the standard normal distribution, in this
way, we can get any number of "incarnations" of a latent code. Let R = {z̃[r]

2 | 1 ≤ r ≤ R}.

z̃
[r]
2 = µ2 + σ2 ⊙ ε̃[r], ε̃[r] ∼ N (0,E)

And each element of p∗ on the candidate labels can be easily calculated as:

p∗c =

|Rz|
√∏

z̃∈Rz
hc(z̃)∑C

c′=1
|Rz|
√∏

z̃∈Rz
hc′(z̃)

6.3 Variance Regularization

Ω1,2 =

M∑
i=1

i∑
j=1

∥∥∥∥ (Σu1)ii
(Σu2

)ii
− (Σu1)jj

(Σu2
)jj

∥∥∥∥2
2

Ωall =

K∑
i=1

i∑
j=1

Ωi,j

In section 3.1, we briefly introduced the implementation of variance regularization. However, if we
calculate Ωall directly (i.e. sum Ωi,j pairwisely over K and M ), we have to calculate C 2

K ·C 2
M terms,

which is very expensive, or almost computational-prohibited. One possible solution is to randomly
select a fixed number (in our settings, 10000) of Ωi,j at a time from C 2

K items and optimize them.
Practice has proves that this solution is effective and reduces the computation cost of the model.

6.4 The Method of Generating Instance-Dependent PLL Data from Fully-Supervised
Datasets

In previous partial label learning researches, it is a popular way to convert the existing fully-supervised
dataset into the partial label dataset. For instance-dependent PLL, a common method comes from
[19]. In this approach, these datasets are manually corrupted into partially labeled versions by
using a flipping probability ξ ∈ [0, 1]C . To synthesize the flipping probability, a clean neural
network is trained with the original clean labels and gives the confidence prediction ŷ. The flipping
probability to ground-truth label c∗ is necessarily 1. For other labels, flipping probability can be
obtained by dividing their own predicted outputs by the largest output in the candidate label set
respectively, i. e., ξc = ŷc/maxc′ ̸=c∗ ŷc′ . Then, the candidate labels can be randomly sampled from
the Bernoulli distribution with ξ as the parameter. The authors may have taken this approach because
sometimes the output of the neural network may be concentrated on a particular label (for example,
(1e − 6, 1e − 6, 1.0)). At this time, if the maximum value is directly selected in all prediction
outputs, the flipping probability may be too small, so that the partial label data cannot be effectively
obtained. Therefore, the largest output in the candidate label set is adopted as denominator, which
could alleviate this issue.

However, this may lead to some problems. If the outputs are about the same size except for the
ground-truth label, doing so results in a flipping probability very close to 1 for all label. For
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example, for a instance whose ground-truth label y is (0, 0, 0, 0, 1)T , if we have a very confident
prediction ŷ = (.01, .01, .01, .01, .96)T , the corresponding s would be (1, 1, 1, 1, 1)T , which is
very unconfident. And the contradiction appeared. Since neural networks have a tendency to be
overconfident, this is very likely to happen. Moreover, in the traditional uniform partial label
generation paradigm, there is a parameter q that explicitly controls the amount of candidate labels,
which represents the difficulty of the PLL problem, to some extent. But in IDPLL, lack of such a
method can adjust the difficulty of the task. To solve these problems, we proposed a new approach.
We know that in softmax function, there can be a temperature parameter τ .

y = softmax(
x

τ
)

This parameter could adjust the smoothness of the output. The larger the τ , the smoother the output;
The smaller the τ , the steeper the output.

ξc = ŷc/max
c′∈Y

ŷc′

If we make τ sufficiently large, even if we directly use the maximum in all prediction outputs,
we would not have the problem that the flipping probability is too small. Moreover, because all
information from the prediction outputs is preserved, the confidence conflict problem also does not
arise. Meanwhile, since parameter τ could change the smoothness of the output, thus affecting the
magnitude of the flipping probability, it can controls the size of candidate label set. As a result, the
difficulty of the problem is altered. And a method which is able to explicitly adjust the hardness of
the problem as with uniform assumptions is obtained.
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