
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THEORETICAL FOUNDATIONS OF CURRICULUM
LEARNING IN LINEAR RNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining models with a curriculum of simpler tasks is a common approach to
speed up training. However, it is unclear what aspects of task structure drive
learning speed, and how to practically choose the curriculum based on theoret-
ical principles. Using recent advances in the analysis of learning trajectories in
linear RNNs (Proca et al., 2025), we study a simple but informative example of
performing two integration tasks in sequence, and ask what aspects of their task
structure lead to faster overall learning of the second “target” task. We show both
analytically and through simulations that even for tasks that are similar in their
geometry, sequencing them based on the strength and scale of the input-to-target
correlations can provably enhance learning speed. A surprising result from our
theory that goes against conventional wisdom is that training intermediate tasks to
suboptimal accuracies can be more beneficial to learning speed, rather than train-
ing them to convergence. These results provide foundational insight into how task
similarity forms both a theoretical and practical basis for curriculum learning.

1 INTRODUCTION

Efficiently training neural network models on complex tasks can be difficult. One approach that
often proves useful in practice is pretraining on simpler related tasks. Curriculum learning (CL),
or pretraining more generally, are now ubiquitously used across many domains in machine learning
(Soviany et al., 2022; Hacohen & Weinshall, 2019; Narvekar & Stone, 2018). Yet, documented
counterexamples show that CL does not always help Wu et al. (2020). What makes for good pre-
training tasks and how to construct effective curricula remain an open area of study, not only in
machine learning but also in cognitive and neural science (Ferguson, 1956; Dekker et al., 2022;
Behrens et al., 2018).

One main reason for this limited understanding is that the effects of curriculum training are almost
entirely assessed through simulations, which makes the extraction of general principles difficult.
While some progress has been made recently in understanding how structured initial conditions may
affect learning speed in feedforward networks (Liu et al., 2024), a similar mathematical apparatus
that can describe recurrent neural network (RNNs) learning has long been missing. Very recent
advances in the analysis of learning dynamics for linear RNNs by Proca et al. (2025) open the door
for starting to think about effects of RNN pretraining in precise mathematical terms.

Existing accounts of CL pretraining largely frame its success in terms of regularizing the loss land-
scape (Bengio et al., 2009): simpler pretaining tasks are assumed to have smoother loss surfaces in
which solutions are easy to locate. This in turn provides favorable initial conditions for parameter
optimization in the target task. While this description seems intuitive, it does assume that the loss
landscapes (or at least the regions of good solutions) are well aligned across tasks. It is not clear
how to assess this notion of task similarity outside of actually training the model on the two tasks.
This brings up more general (and largely unanswered) questions about what makes a pretraining
task similar to the target and is the alignment of the losses the only way to measure it?

In this work we build on analytical solutions for the learning dynamics of input and output param-
eters in linear RNNs to ask in precise mathematical terms how long does it take for a given task
to train to convergence either directly or via an intermediate pretraining task (Figure 1A). In this
framing, task similarity is naturally defined in terms of input and output covariances, which allows

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for a general treatment of CL in this class of problems in terms of the geometry and alignment of
these covariances across tasks.

Our approach is organized in the following way: First, we briefly summarize the problem of opti-
mizing the input and output weights of RNNs. Next, we derive our core result that demonstrates how
long it takes to optimize RNNs after they have already learned a separate task with related structure.
We then detail the dimensions of task similarity that most drive fast learning. Finally, we explore
the generalization of these training insights beyond the scope of our theory by studying training
with nonlinear RNNs. In this work we contribute to the fundamental theoretical understanding of
curriculum learning, highlight the significance of task similarity upon its success, and demonstrate
practical principles for choosing the sequence of tasks for effective curricula.

2 CURRICULUM LEARNING DYNAMICS IN LINEAR RNNS

2.1 PROBLEM FORMULATION

Consider the dynamics of a linear RNN (Fig. 1B):

ht = Whht−1 +Wxxt (1)
yt = Wyht, (2)

which maps time-varying inputs xt ∈ RNx×1 into a network state ht ∈ RNh×1, read out into outputs
yt ∈ RNy×1. The parameters of the network include the recurrent weight matrix Wh ∈ RNh×Nh ,
input matrix Wx ∈ RNh×Nx , and output matrix Wy ∈ RNy×Nh .

We will focus on a family of tasks in which input streams x1:T are integrated over time with different
linear filters to yield outputs, ŷT , at the end of the trial, T .1 The loss over a batch of P trials for this
single output scenario of generating a target y is given as:

L =
1

2

P∑
p

∥yp − ŷT,p∥2. (3)

Network parameters are optimized by backpropagation through time to minimize this objective.

Covariances as fundamentals of task structure. Starting from initial state h0 = 0, the network
dynamics evolve as ht =

∑t
i=1 W

t−i
h Wxxi, which allows the loss to be rewritten as

L =

T∑
t,t′=1

1

2
Tr
[
WyW

T−t
h WxΣxtxt′W

⊤
x W T−t′⊤

h W⊤
y −WyW

T−t
h WxΣxty

]
+ const. (4)

This expression directly highlights what changes in the loss function from task to task: the covari-
ances among inputs Σxtxt′ , and the input-output covariance Σxt,y.2 Specifically, the input covari-
ance function Σxtx′

t
= E[xtx

⊤
t′] is an Nx×Nx×T×T tensor that captures how inputs co-vary with

each other across both input channels, as well as time. The cross-correlation between time-varying
input and the target output, Σxty = E[xty

⊤
T] is an Nx × Ny × T tensor that captures how inputs,

from each input channel and at every time point, relate to targets across different output channels.

Previous approaches assume white noise in the inputs by shifting any temporal dependence into
Σxty (Proca et al., 2025; Saxe et al., 2014), but here we need to consider full spatial and temporal
correlations in Σxtx′

t
. This is an unavoidable consequence of our multi-task setup: while it is

possible to rotate the coordinates to whiten input for a single task, it is not generally possible to find
a single rotation will whiten them for both tasks. Since we are studying the learning dynamics of
tasks in sequence, we must embrace the temporal dependence in the inputs.

The general goal of our derivation is to determine the time τ that it takes a network to learn a target
task “2”, and to contrast that learning time with a scenario where the network starts by training

1A generalization to continuous outputs is in principle possible, see Proca et al. (2025) Appendix M.
2Note that we will refer to the transpose of the matrix Σxty for a fixed time point via its indices as Σ⊤

xty =
Σyxt .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Wx

x yt t

B

Wy

Wh

yy~ ~
Uy x Vy x

T

s(α)
y x

s(β)
y x

s(α)
x x

s(β)
x x

b(α)

b(β)

xt xt

factorized, mode-aligned optimization

a(α)

a(β)

c(α)

c(β)

θ1

θ2

θ (0)

τ0-2

τ0-1

τ1-2 ∑x xt t'
∑y xt

(2) (2)((,

∑x xt t'
∑y xt

(1) (1)((,

curriculum learning A Clinear RNN

Figure 1: A. Curriculum learning from the lens of task similarity. The time τ needed to learn a
task T2 can be potentially accelerated by first learning a different task T1. The potential speedup
τ0−2 − (τ0−1 + τ1−2) will depend upon the similarity between the tasks, which in this work are
minimally described by how their inputs co-vary, as well as how inputs vary with targets. B. Linear
RNN architecture. Only Wx and Wy are trained, and Wh are fixed, to facilitate closed-form solutions
for their training dynamics. C. We study the problem of RNN parameter learning in a rotated
reference frame that demixes and aligns the input and output singular “modes” with eigenmodes of
the recurrent network. This allows for factorized learning where each mode of the input and output
utilizes individual modes of the network.

on another task “1”, then switches to the target. In particular, we want to understand under what
circumstances and for what kind of pairs of tasks (each with a similar geometric alignment of their
input-input and input-output covariance functions) that training the sequence offers speed benefits
relative to training the target alone τ0−2 > τ0−1 + τ1−2 (Fig. 1A).

2.2 LEARNING DYNAMICS

We start by re-deriving a core result from Proca et al. (2025), which is the closed form expressions for
the learning time course of the Wx and Wy , for a fixed Wh. Learning the recurrent dynamics –either
independently or jointly with the other parameters– does not afford simple closed form expressions,
requiring more complex approximations. While focusing on input and output weights seems like a
big simplification, the resulting parameter dynamics can nonetheless provide nontrivial insights into
the multi-task learning process.

We sketch the key steps of the derivation in the main text, leaving the details to the Appendix. A key
assumption in the optimization of Wx and Wy is that the primary axes of (co)variation of the inputs
and outputs provided by Σxty and Σxtx′

t
can be aligned to the eigenmodes of the RNN, such that

parameter learning can happen in a factorized manner (see Proca et al. (2025) for a discussion on
the conditions when such alignment is possible). The geometry (i.e., SVD axes) of Σxty and Σxtx′

t

are fixed over time, but their singular values can have time dependence. These “modes” of inputs
and outputs (i.e., formally the columns and rows of Wx and Wy in a rotated reference frame, respec-
tively) require rotating the loss function based upon the Schur decomposition of Wh = UhHhU

⊤
h ,

as well as the singular value decomposition (SVD) of the two task covariances

Σxtxt′ = E[xtx
⊤
t′] ≈

P∑
p

xp,tx
⊤
p,t′ = UxxSxtxt′U

⊤
xx (5)

Σxty = E[xty
⊤
T] ≈

P∑
p

xp,ty
⊤
p,T = UxySxtyV

⊤
xy. (6)

The transformation of the problem in this rotated space is explained graphically in Fig. 1C. The
input and output sequences are transformed in a way that recasts the problem into a factorized RNN
consisting of a collection of parallel input-integrate-output channels indexed by α, parametrized by
a new set of parameters, aα, bα and cα. These modes are the columns of Wx (aα) eigenvectors of
Wh (bα), and rows of Wy (cα) in this factorized reference frame, and we refer them as the input,
recurrent, and output connectivity modes, respectively. For a small enough learning rate, one can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

write learning dynamics for the input and output modes as:
∂aα

∂τ
=
∑
t,t′

b(T−t)
α cα

[
sαyxt

− b(T−t′)
α (cα · aα)s

α
xtxt′

]
(7)

∂cα
∂t

=
∑
t,t′

b(T−t)
α aα

[
sαyxt

− b(T−t′)
α (cα · aα)s

α
xtxt′

]
. (8)

where sαxtxt′
and sαyxt

reflect the time-varying singular values of the two covariance functions which
define the task.

In general, this problem is not well-posed for any initial conditions of aα and cα; however, under
the special assumption that the aα and cα are initialized onto the same mode of an orthogonal basis
with coefficients aα and cα, a closed form solution for their product captures the learning dynamics:

aα(τ)cα(τ) =
1[

1
(aα(0)cα(0)) −

βα
xx

βα
yx

]
e−2τβα

yx/γ +
βα
xx

βα
yx

, (9)

where τ is the parameter update timestep, γ is the inverse of the learning rate, and the effect of the
recurrent network strength and singular values of the task covariances is captured by βα

yx and βα
xx:

βα
yx =

T∑
t

b(T−t)
α sαyxt

, βα
xx =

T∑
t,t′

b(2T−t−t′)
α sαxtxt′

. (10)

We refer to the β terms as recurrence-weighted singular values (RWSV), as they account for the
effect of Σxx and Σyx, weighted by the effect of recurrent dynamics. Eq. 9 describes training for
a single mode α, so there will be equivalent expressions for each of the α = {1, 2, ..min[Nx, Ny]}
modes. This important result dictates the time course of parameter learning, and the optimal task
solution. In the following section, we will utilize this expression to derive our core results that relate
training time to task structure in CL.

2.3 THE IMPORTANCE OF TASK SIMILARITY FOR CURRICULUM LEARNING

Our primary goal is to understand the conditions in which learning an intermediate task accelerates
learning of a target task. As a minimal example, we consider two tasks in sequence, which are
defined by their covariance matrices: Tk = {Σ(k)

xx ,Σ
(k)
xy }, k = 1, 2. Moving forward we denote

the product of input and outputs mode coefficients as ac = u. Starting from initial conditions u0,
consider the optimization time needed until u is within a small ϵ tolerance of the optimal solution
for task T1, denoted by u∗(1). To begin, the optimal solution is found for t → ∞ in Eq. 9,

u∗(k) = β(k)
yx /β(k)

xx =

∑T
i bT−ts

(k)
yxt∑T

t,t′ b
2T−t−t′s

(k)
xtxt′

. (11)

We note that in the special case of constant singular values and perfectly stable dynamics (b = 1),
this recapitulates the results in Saxe et al. (2014).

Rearranging Eq. 9, we can solve for the amount of training required to reach a convergence criterion
u(τ) = (1 − ϵ)u∗(1), where the precision of the final solution relative to the optimum u∗(1) is
determined by parameter ϵ:

ti→1 =
γ

2β
(1)
yx

(
log

∣∣∣∣u∗(1)

u0
− 1

∣∣∣∣− log

∣∣∣∣ ϵ

1− ϵ

∣∣∣∣) . (12)

Thus, the training time can be separated into the relationship between optimal solutions and initial
conditions, as well as the desired error tolerance. Given this, it is straightforward to calculate the
time to optimize along a sequence of two tasks T1 and T2:

ti→2 =ti→1 + t1→2 (13)

=
γ

2β
(1)
yx

(
log

∣∣∣∣u∗(1)

u0
− 1

∣∣∣∣− log

∣∣∣∣ ϵ(1)

1− ϵ(1)

∣∣∣∣)
+

γ

2β
(2)
yx

(
log

∣∣∣∣ u∗(2)

(1− ϵ(1))u∗(1) − 1

∣∣∣∣− log

∣∣∣∣ ϵ(2)

1− ϵ(2)

∣∣∣∣) , (14)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where we have denoted the error tolerance for each task as ϵ(k). Importantly, this training time
only holds if the geometry of T1 is equivalent to T2, meaning that the the SVD eigenvectors for the
task covariances are the same in both tasks. Otherwise, after training on T1, the initial conditions
would not lie in an orthogonal basis set by the eigenvectors of T2, and there would be cross-mode
contributions during training.

Our primary result determines the conditions under which training on T1 offers a speedup when
learning a task T2 with equivalent task geometry,

ti→2 > ti→1 + t1→2. (15)

Expanding Eq. 15 highlights the relationships between task singular values, task accuracy, and train-
ing speed:

log

∣∣∣∣u∗(2)

u0
− 1

∣∣∣∣+ β
(2)
yx

β
(1)
yx

log

∣∣∣∣(ϵ(1)

1− ϵ(1)

)(
u0

u∗(1) − u0

)∣∣∣∣− log

∣∣∣∣∣ 1

(1− ϵ(1))

β
(2)
yx

β
(1)
yx

β
(1)
xx

β
(2)
xx

− 1

∣∣∣∣∣ > 0

(16)

Eq. 16 details the conditions under which there will be a speedup in first training on T1. The
different aspects of task structure that drive faster learning are nonlinearly related, so to gain insight
we examine each term individually to hypothesize what it implies about relative task structure in CL.
The first term simply implies that –provided the initial conditions are suitably small– there will be
a speedup, which does not relate task structure to training time. The second term does relate input-
target singular values across tasks, and suggests that when β

(1)
yx > β

(2)
yx , CL sees faster training. The

third term also shows this (provided that β(1)
xx = β

(2)
xx), as well as the inverse relationship that CL is

faster when β
(1)
xx < β

(2)
xx (also provided β

(1)
yx = β

(2)
xx). Finally, we re-write the 3rd term with respect

to the optimal solutions to show a surprising result that training intermediate tasks to potentially low
accuracies can be beneficial

− log

∣∣∣∣ u∗(2)

(1− ϵ)u∗(1) − 1

∣∣∣∣ > 0. (17)

There is a singularity in this expression whenever T1 has been optimized to exactly be the solution
to task T2, which can produce a CL speedup when it is in the neighborhood of this singularity.
Interestingly, depending on the magnitude of the two optimal solutions, this speedup can occur for
small accuracy on the first task.

These regimes from eq. 17 are general conditions where CL is worthwhile, and for a given task
type they have intuitive and practical explanations. In short, these conditions spell out what makes
an intermediate task “easier” than the second one. For example, in our integration tasks studied
here, our theory predicts that when inputs strongly correlate with the target output, it is easier than
a weakly correlated task and will help training. This is a consequence of our first observation that
β
(1)
yx > β

(2)
yx . Additionally, if inputs are highly similar to one another then the integration problem

reduces instead to simply scaling a single input to a target value, a much “easier” problem than full
integration of a time-varying signal. This is a consequence of β(1)

xx < β
(2)
xx , which occurs for weaker

overall input covariance strength, as well as for very temporally correlated inputs.

In summary our theory predicts three broad effects on CL speed that are related to task structure
that have practical benefits, and relate to intuitive ideas of task “easiness” commonly found in CL
sequences: 1) β(1)

yx > β
(2)
yx , 2) β(1)

xx < β
(2)
xx , and 3) training to suboptimal accuracies on an interme-

diate task can be beneficial. We next turn to numerical simulations to validate our theory, as well as
to explore how the strength and temporal correlations of task covariances support these effects.

3 NUMERICAL VALIDATION

In the above section we showed analytically that recurrence weighted singular values can drive CL,
which we verify here. We examine the numerical optimization of two tasks in sequence, and com-
pare that training time to a second task. For ease of visualization and to demonstrate core features of
the theory, we study networks with a single input and output channel. Additionally, because Eq. 16

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1.4

1.2

task 1 accuracy 1-ε

1.0

0.8

0.6

0.1 0.3 0.5 0.7 0.9

training progress

s yx
(1

)

2.5

2.0

1.5

1.0

0.5

0.0
0.1 0.3 0.5 0.7 0.9

∑x xt strengtht'

task 1 accuracy 1-ε
0 100 200 300 400 500 600

training time (epochs)

∑y xt strength
1.75

1.50

1.25

0.75

0.50

s xx
(1

)

0.25

1.00ac

simulation
theory T1
theory T1-T2
theory T2

training progress
A B C D∆τ ∆τ

-1000
-750
-500
-250
0
250
500

750
1000

-400

-200

0

200

400

0 100 200 300 400

training time (epochs)

1.75
1.50

1.25

1.00
0.75

0.50

ac

0.00
0.25

Figure 2: A. Phase portrait of difference in training time between direct T2 training and a curriculum
of T1 (to accuracy 1− ϵ) followed by task T2. T1 accuracy and singular value strength or Σyxt

were
modulated. Dotted red line shows singular value of T2. Cyan denotes singularity when T1 solution
corresponds to T2 optimum, requiring no training time. B-C. Predicted vs. numerical optimization
training trajectories for individual parameter settings, denoted by square and circle in panel A . D
Similar phase portraits as in A, but for modulating singular value of Σxt,x′

t
.

nonlinearly relates multiple parameters, we will study different aspects of task structure individu-
ally, while also varying task accuracy. In the simulations below we assume the accuracy of task T2
is 1− ϵ(2) = 0.99, and we set the recurrence mode b = 0.96 to ensure ideal RNN performance when
comparing to numerical optimization, while still capturing the effects of recurrence. In all cases,
networks contained 128 hidden units, trials were 50 timesteps long, and numerical comparisons to
theory trained with batches of 1000 samples.

3.1 TASK COVARIANCE STRENGTH

We first focus on scenarios in which there is no temporal correlation in the task covariances, and
only the strength of covariance can modulate training speed. When examining the input-to-target
covariance, our theory predicts that intermediate tasks with larger Σyxt

singular values will be bene-
ficial, so to isolate this effect we studied a set of tasks no temporal correlation (Σxt,x′

t
= aδt,t′). We

used Eq. 12 to compute the training time for T2, as well as Eq. 13 for the training time for learning
T1 to accuracy 1− ϵ, followed by learning T2. We then examined the difference in training time for
a range of T1 accuracy and singular value amplitudes for T1 as a phase portrait in Fig.2A. Sample
numerical training trajectories compared to theory are provided in Fig. 2B-C.

We found that our hypothesis from Eq. 16 holds, where first training on tasks with larger singular
values led to faster training. Practically, this implies that tasks with inputs that are more saliently
related to the targets are ideal candidates for curricula. Somewhat surprisingly, this means that tasks
that tune input and output weights to initially larger values aid in learning later tasks with smaller
weights. We additionally see in Fig. 2A that training T1 to even modest accuracies still improve
performance. where a larger range of accuracies is beneficial when T1 has relatively larger singular
values. This is due to the singularity in training time when the final solution for T1 is near the the
optimal solution for T2, which creates a basin of parameter values that provide a CL speedup (2A,
cyan line). We next examined the variance of inputs in the same manner in Fig. 2D. Here, we found
that the relationship in training speed was generally flipped as expected, with T1 tasks containing
weaker input variances being more beneficial to training speed. Sample learning trajectories and
numerical comparison to theory are provided in the appendix (Supp. Fig. 5).

3.2 TEMPORAL CORRELATIONS IN TASK COVARIANCES

We next turn to investigating how changes to the temporal structure of the task covariances can
facilitate CL. To see how the temporal properties of the task can support this, we study correlated
inputs generated by an AR1 process as

xt = Kxt−1 + wt, (18)

where wt ∼ N (0,Σ0) is white noise with covariance Σ0, and K defines the strength of the temporal
correlation. For this process, input covariances depend only upon the lag between time-points (Fig.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

task 1 accuracy 1-ε

D

-20 -10 10 200

2.5

1.5

0.5
0.0

1.0

0.8

0.6

0.2

0.0

0.4

0.1 0.3 0.7 0.90.5

0.08

0.06

0.02

0.00

0.04

400

200

-200
-400

0

1000

500

-500

-1000

0

2.0

lag t-t'

K=0.2
K=0.5
K=0.8

∆τ ∆τ

task 1 accuracy 1-ε

K

0.10

0.6

0.2
0.0

0.4

0.8
1.0

0 10 30 4020 50
trial timesteps

к = 0.0
к = 0.5/T
к = 2.5/T
к = 5.0/T

leaky integration profilesinput correlations ∑x xt
correlation

t'
∑yxt

correlation

0.1 0.3 0.7 0.90.5

к

A B C

At
si

ng
ul

ar
 v

al
ue

s

Figure 3: Temporal correlations affect CL. A. We studied inputs drawn from AR1 process in which
strength of singular values is lag-dependent, given by strength K (see main text). B. Phase portrait
showing difference in training time for CL sequence vs. direct target task training. Accuracy and
correlation of T1 were varied relative to T2 being trained to 99% accuracy (K for T2, dotted red line).
C. Integration profile for leaky integration tasks. Time-dependent Σyxt

corresponds to targets that
perform leaky integration with exponentially decaying profiles with timescale κ. D. Phase portrait as
in B, but for varying time κ. Cyan denotes singularity when T1 solution corresponds to T2 optimum,
requiring no training time.

3A) 3. Here we consider integration tasks that do not simply perform perfect integration across all
time, but are instead leaky integration tasks that weight later time points in a trial

yt =

T∑
t

Atxt, At = A0e
−κ(t−T) (19)

where A0 is the Ny × Nx matrix that mixes inputs to output channels, and κ is the decay of the
integration profile (Fig. 3C).

We again calculated the difference in time to train a target task T2 vs. training intermediate task
T1 first, followed by T2, but with varying accuracy and temporal properties K and κ of the task
covariances. When modulating input correlations K (Fig. 3A), we find that stronger correlations
in the inputs of T1 improve training speed (Fig. 3B). From the perspective of our CL theory, there
is improvement when β

∗(1)
xx < β

∗(1)
xx and Eq. 10 suggests that this can occur if the sum of singular

values over time is smaller in task 1. This is the case for stronger temporal correlations, which have
weaker time-dependent singular values over time (see Fig. 3A).

We next looked at the tradeoffs in task accuracy of task 1, and the timescale κ of its temporal
integration profile for leaky integration tasks (Fig. 3C). We find that intermediate tasks with longer
integration windows lead to faster training on task T2. This is a scenario where determining what
constitutes an “easy” task is less clear, but that is easily explained by our CL theory. Integrating over
longer timescales would conventionally be thought of as more difficult (e.g., requiring longer time
horizons), but larger integration profiles produce a larger β(1)

yx (Eq. 10), which our theory predicts
will produce an increase in training speed for CL. We again see evidence of suboptimal task 1
accuracy providing a speedup because it places initial conditions for task 2 training near a singularity
(Fig. 3D, cyan line). Sample learning trajectories and numerical comparison to theory are provided
in the appendix (Supp. Fig. 5).

In summary, we find that the time-dependent aspects of task covariances are an equally important
dimension that can predict the success of CL. In the final section, we investigate if the insights
from our theory of CL in linear RNNs will generalize once we relax assumptions about the network
architecture.

3.3 NONLINEAR RNNS

Finally, we wished to see if the insights found in our linear RNN analysis would hold in a more
practical scenario. So we performed the same CL studies, using the same integration tasks, but with
RNNs containing a ReLU nonlinearity. For individual RNNs, we compared the training time for
networks that had either a linear or ReLU activation function, and we investigated four different

3correlations that are purely lag-dependent hold only in the infinite-time limit, and we account for finite
time correlations when we calculate Σxtx

′
t
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

∑y xt strength
linear RNN ReLU

B

D ∑y x temporal correlation
t'

linear RNN ReLUlinear RNN ReLU
t

∑x x temporal correlation
t'

C

∑x xt strengtht'
linear RNN

ReLU
A

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε

250

300

350
400

tri
al

 e
po

ch
s

=1.40s1
y x

=0.75s1
y x

=1.00s2
y x

0.2

300

400

500

tri
al

 e
po

ch
s

=1.3s1
x x

=0.7s1
x x

=1.00s2
x x

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε
0.2

200

100

200

300
400

tri
al

 e
po

ch
s

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε
0.2

K1=0.8

K1=0.2

K2=0.5

tri
al

 e
po

ch
s

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε
0.2

600

700

800

900 =1.40s1
y x

=0.75s1
y x

=1.00s2
y x

0
200
400
600
800

1000

tri
al

 e
po

ch
s

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε
0.2

=0.7s1
x x

=1.00s2
x x

=1.3s1
x x

0
200
400
600
800

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε
0.2

K1=0.8

K1=0.2

K2=0.5

0.4 0.6 0.8 1.0
task 1 accuracy 1-ε
0.2

200

300

400

tri
al

 e
po

ch
s κ1=0.08

κ1=0.02

κ2=0.05

100
150
200
250

tri
al

 e
po

ch
s

50
0.4 0.6 0.8 1.0

task 1 accuracy 1-ε
0.2

κ1=0.08

κ1=0.02

κ2=0.05

tri
al

 e
po

ch
s

Figure 4: CL effects in nonlinear RNNs compared linear RNN theoretical predictions. Total train-
ing times for individual RNNs across a range of T1 accuracies for two different task covariance
parameter settings: Red lines denote directly training on T2 to 99% accuracy and blue lines denote
a CL sequence training on T1 first, with either a larger (dark blue) or smaller (light blue) parameter.
Parameter values for each scenario are provided as legends. A-B Modulating input-target covariance
strength as in section 3.1. C-D Modulating temporal correlations in task covariance as in section 3.2

parameter regimes that characterize the main aspects of task covariances (Fig. 4). While there are
numerical differences in the optimization time, we nfound evidence that the same qualitative trends
seen for linear RNNs can hold even for nonlinear networks, meaning the the relative amplitude
of task covariance strength and temporal correlations between two tasks appears to hold. Sample
learning trajectories are provided in the appendix (Supp. Fig. 5)

4 DISCUSSION

Our work set out to provide a theoretical understanding of the benefits of curriculum learning for
speeding up learning in a target task. To make progress, we distilled this goal into a concrete math-
ematical question: what aspects of similarity between two tasks support faster learning in linear
RNNs? Building upon recent theoretical results Proca et al. (2025), we derived how the strength
and temporal structure of the covariances between inputs and between inputs and outputs shape pre-
training efficiency. Our theory predicted three primary drivers of CL success: 1) stronger singular
values in input-target covariances and larger target integration windows in the first task, 2) weaker
singular values in the input-input covariance and more temporally correlated inputs; In our example
system we showed how these relationships comported with conventional ideas about task ‘easiness.’
Finally we found that 3) training speed can benefit from suboptimal task accuracy in the first task.
This was not simply due to avoiding a sunk cost in over-training on the first task, but rather an effect
of strong overlap between task 1 solutions at low accuracy and the target task solution.

While our general approach follows recent results on the learning dynamics of input and output
weights in linear RNNs (Proca et al., 2025), it expands technically on them in several important
ways. First, unlike previous work we had to take into account the temporal dependencies in input and
outputs. This is something that can be avoided with appropriate re-parametrization when considering
single tasks, but needs to be considered explicitly once multiple tasks are analyzed together in the
same coordinate system. The second technical contribution is directly deriving time to convergence
for single tasks and sequences of tasks. This advance enabled us to build explicit phase plane
analyses for what kind of tasks lead to learning speedups across a range of scenarios, the results of
which we were able to confirm numerically.

The main limitations of our current approach is the restriction to similar pairs of tasks with common
structure, and the focus on the learning of input and output parameters. First, to be able to make

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mathematical progress, we had to assume that sequences of tasks maintain the same general “task
geometry.” The next natural step would be to relax this constraint by investigating the time required
to rotate a linear system into a factorized training regime (Fig. 1C), perhaps by taking advantage
of recent work demonstrating a natural alignment effect into such diagonalized regimes (Atanasov
et al., 2021). As a counterpart for this focus on alignment, one could perhaps embrace the inherent
mixing of network modes to study tasks with compositional structure, which combine computations
from separate modes to perform new ones. This is an interesting arena to study CL, as there has been
evidence that CL is required for complex compositional tasks in RNNs (Hocker et al., 2025; Krueger
& Dayan, 2009), and would complement existing efforts to characterize compositional pretraining
in feed-forward networks (Lee et al., 2024).

With respect to the second main limitation, here we restricted our analysis to training input and
output weights in RNNs with predefined recurrence. While this is certainly restrictive, it is nonethe-
less directly applicable to transfer-learning scenarios when the network’s internal representations
are reused, while input/output weights are adapted to novel inputs and targets (Pan & Yang, 2009).
There is also a rich body of numerical results in computational neuroscience that examine how banks
of dynamical motifs can be reused and composed to perform complex tasks Driscoll et al. (2024).
Going forward, it would be important to jointly study the effect of recurrence in shaping task similar-
ity and influencing the outcomes of curriculum learning. Incorporating recurrence into our analysis
is potentially possible, as there is already a theoretical basis for learning recurrence in the domain of
computations at long timescales (Schuessler et al., 2020).

Finally, here we have mainly focused on learning speed as a metric of success for CL, at the detri-
ment of other benefits such as robustness of the solution, generalization quality, or sensitivity to
noise. These other factors have important practical relevance and will need to be considered in sub-
sequent analyses. The ultimate goal with a theoretical description like ours is to inform practical
machine learning problems. Given the recent demonstrations that even highly simplified mathemat-
ical analyses can still carry insight into mathematically intractable but practically relevant scenarios
(Liu et al., 2024), we hope that our approach can make an impact throughout the the breadth of the
CL ecosystem (Soviany et al., 2022).

REPRODUCIBILITY STATEMENT

In order to facilitate reproducibility of our results we have included a full derivation of the theory
in the Appendix. We have also provided details for the simulation and training of RNNs that lead
to the results. All code for generating the results in the manuscript will be provided at the time of
publication.

REFERENCES

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. arXiv preprint arXiv:2111.00034, 2021.

Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B Baram,
Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing knowledge
for flexible behavior. Neuron, 100(2):490–509, 2018.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Ronald B Dekker, Fabian Otto, and Christopher Summerfield. Curriculum learning for human
compositional generalization. Proceedings of the National Academy of Sciences, 119(41):
e2205582119, 2022.

Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349–1363, 2024.

George A Ferguson. On transfer and the abilities of man. Canadian Journal of Psychology/Revue
canadienne de psychologie, 10(3):121, 1956.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In International conference on machine learning, pp. 2535–2544. PMLR, 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

David Hocker, Christine M Constantinople, and Cristina Savin. Compositional pretraining improves
computational efficiency and matches animal behaviour on complex tasks. Nature Machine Intel-
ligence, pp. 1–14, 2025.

Kai A Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps. Cognition,
110(3):380–394, 2009.

JH Lee, SS Mannelli, and A Saxe. Why do animals need shaping? a theory of task 778 composition
and curriculum learning, 2024.

Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and
Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits,
2024. URL https://arxiv.org/abs/2310.08513.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. arXiv
preprint arXiv:1812.00285, 2018.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Alexandra Maria Proca, Clémentine Carla Juliette Dominé, Murray Shanahan, and Pedro A. M.
Mediano. Learning dynamics in linear recurrent neural networks. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
KGOcrIWYnx.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. In The Second International Conference on
Learning Representations, 2014. URL https://arxiv.org/abs/1312.6120.

Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri
Barak. The interplay between randomness and structure during learning in rnns. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 13352–13362. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526–1565, 2022.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? arXiv preprint
arXiv:2012.03107, 2020.

A APPENDIX

A.1 EXTENDED DERIVATION OF LEARNING DYNAMICS

In this section we derive Eq. 9. Our approach is based on Proca et al. (2025) and Saxe et al. (2014),
and considers a slightly broader range of tasks with fewer constraints on the task geometry. While
we ultimately consider a regime that is similar to Proca et al. (2025), we aim to keep the derivation
as general as possible and highlight when assumptions are required to yield tractable analytical
solutions. We hope that this exposes future directions for the theory of learning in RNNS.

We begin with a linear RNN of the form

ht = Whht−1 +Wxxt (20)
yt = Wyht, (21)

which maps time-varying inputs xt ∈ RNx×1 into a network state ht ∈ RNh×1, read out into
outputs yt ∈ RNy×1. The learnable parameters of the network include the recurrent weight matrix
Wh ∈ RNh×Nh , input matrix Wx ∈ RNh×Nx , and output matrix Wy ∈ RNy×Nh . The RNN will
be optimized to perform on task pulled from a family of leaky integration tasks, where inputs x1:T

are integrated over time with different linear filters to yield target outputs, ŷT , at the end of the trial,

10

https://arxiv.org/abs/2310.08513
https://openreview.net/forum?id=KGOcrIWYnx
https://openreview.net/forum?id=KGOcrIWYnx
https://arxiv.org/abs/1312.6120
https://proceedings.neurips.cc/paper_files/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

T . The loss over a batch of P trials for this single output scenario of generating a target y is given
as

L =
1

2

P∑
p

∥yp − ŷT,p∥2. (22)

Starting from initial state h0 = 0, the network dynamics evolve as

ht =

t∑
i=1

W t−i
h Wxxi, (23)

which allows the loss to be rewritten as

L =

T∑
t,t′=1

1

2
Tr
[
WyW

T−t
h WxΣxtxt′W

⊤
x W T−t′⊤

h W⊤
y −WyW

T−t
h WxΣxty

]
+ const. (24)

The autocorrelation function of the inputs, Σxtx′
t
= E[xtx

⊤
t′], together with the cross-correlation

between time-varying input and targets, Σxty = E[xty
⊤
T] fully specify an instance of the task.

Different tasks will have different Σxtx′
t

and Σxty , with varying degrees of overlap.

The loss in Eq. 24 depends on the learnable parameters, as well as data-averaged task covariances
Σxtxt′ that describe how inputs co-vary over time and input dimensions, as well as input-target co-
variances Σxty that describe how inputs co-vary with target values. These covariances have singular
value decompositions (SVD) given by

Σxtxt′ = E[xtx
⊤
t′] ≈

P∑
p

xp,tx
⊤
p,t′ = UxxSxtxt′U

⊤
xx (25)

Σxty = E[xtŷ
⊤
T] ≈

P∑
p

xp,tŷ
⊤
p,T = UxySxtyV

⊤
xy (26)

Consistent with the previous work (Proca et al., 2025), we make additional assumption regarding the
form of the task covariances: 1) we assume a static ”task geometry,” meaning that that the SVD axes
(Uxx,Uxy,Vxy) are constant over time, which implies a constant input-to-output mapping during
the task. Unlike previous work, we do not assume fully whitened inputs here. When considering
learning a sequence of tasks this assumption would be too restrictive: while it is possible to fully
whiten a target task, the corresponding coordinate system will not necessarily whiten inputs for the
pretraining tasks.

Next, we recast the loss function in a rotated space that couples singular values of Σxty with recur-
rent modes provided by a Schur decomposition as Wh = UhHhU

⊤
h , where Hh is upper-triangular

for non-normal dynamics, and diagonal for normal dynamics. Rotating the input and output weights
as Wx = UhW̃xU

⊤
xx, Wy = VxyW̃yU

⊤
h , the loss function becomes

L =

T∑
t,t′

1

2
Tr
[
W̃yH

T−t
h W̃xSxtxt′W̃

⊤
x HT−t′⊤

h W̃⊤
y

]
− Tr

[
W̃yH

T−t
h W̃x(U

⊤
xxUxy)Sxty

]
.

(27)

We make a further assumption here that that U⊤
xxUxy = I , which holds only for Uxx = Uxy .

This implies a connection between the axes of the input covariability and the SVD modes of the
input-to-output mapping, which is that the directions of variability in the inputs must be aligned
with the primary SVD modes of Σxty . 4 At this stage, we do not assume that input and output
matrices are naturally aligned to the network and singular values modes, meaning W̃x and W̃y are

4This was also noted in Saxe et al. (2014) Appendix

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

not assumed to be diagonal. We will implement this in practice when by choosing a privileged set
of initial conditions for training, but our derivation does not require this.

We restrict the learning dynamics to how input and output parameters to the network update over
learning, as the learning dynamics for recurrent weights do not have analytical solutions without
introducing approximations. By denoting the learning trajectory by a variable τ , these updates are
given by

∂W̃x

∂τ
= − ∂L

∂W̃x

=
∑
t,t′

HT−t⊤
h W̃⊤

y Syxi
−HT−t′⊤

h W̃⊤
y W̃yH

T−t
h W̃xSxtxt′ (28)

∂W̃y

∂τ
= − ∂L

∂W̃y

=
∑
t,t′

SyxtW̃
⊤
x HT−t⊤

h − W̃yH
T−t
h W̃xSxtxt′W̃

⊤
x HT−t′⊤

h . (29)

We note that Eqs. 28-29 hold for both non-normal dynamics and normal dynamics. Moving forward,
though, we restrict our attention to the case of normal dynamics (diagonal Hh).We also now make
the same diagonalized matrix assumptions in Proca et al. (2025), which is that W̃x and W̃y have
only diagonal entries. This yields update equations where H can combine

∂W̃x

∂τ
= − ∂L

∂W̃x

=
∑
t,t′

HT−t
h W̃⊤

y Syxi
−H2T−t′−t

h W̃⊤
y W̃yW̃xSxtxt′ (30)

∂W̃y

∂τ
= − ∂L

∂W̃y

=
∑
t,t′

SyxtW̃
⊤
x HT−t

h − W̃yH
2T−t−t′

h W̃xSxtxt′W̃
⊤
x . (31)

Rather than track how updates for the entire weight matrices unfold under time, it is useful to con-
sider how their columns and vectors, or “modes”, of these matrices update over time Saxe et al.
(2014); Proca et al. (2025). Specifically, we define the columns of W̃x as aα, and the rows of W̃y

as cβ . The diagonal entries of Hh are given by bα (the eigenvalues of Wh), and similarly sαxty and
sαxtxt′

are the diagonal entries of the task covariance matrices. The modes are then given as

a(τ) = W̃x:,α =
∑
α

aα(τ)rα, b(τ) = W̃yα,: =
∑
α

bα(τ)rα, (32)

where {rα} ∈ RNh×1 is a basis set of vectors for the modes.

By tracking the α-th columns of W̃x and α-th rows of W̃y in eqs. 30-31, we can express the update
equations for the input and output modes:

∂aα

∂t
=
∑
t,t′

∑
γ

b(T−t)
γ cγs

γ
yxi

− b(T−t)
α b(T−t′)

α (cα · aα)s
α
xtxt′

=
∑
t,t′

b(T−t)
α cα

[
sαyxt

− b(T−t′)
α (cα · aα)s

α
xtxt′

]
−
∑
γ ̸=α

b(T−t)
γ cγs

γ
yxt

(33)

∂cα
∂t

=
∑
t,t′

b(T−t)
α aα

[
sαyxt

− b(T−t′)
α (cα · aα)s

α
xtxt′

]
−
∑
γ ̸=α

bγ
(T−i)

aγsγyxi
(34)

Eqs. 33-34 contain contributions from their own mode α, as well as cross term from other modes
γ. Analytical solutions for this form are not generally tractable because of the contribution from all
modes to learning, and so to address this we restrict our analysis to a special set of initial conditions
to remove the cross-mode contribution. This is performed by initializing modes in a distinct set

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

of non overlapping basis set vectors {rα} ∈ RNh×1, rα · rβ = δαβ : As has been shown previously
Saxe et al. (2014), if a and c are initialized onto the same set of orthogonal modes {rα}, then we
can track the evolution of the coefficients on these modes, and importantly, any interaction terms
among these modes are strictly zero with these initial conditions.

The update equations for the weighting coefficients are then given as

∂aα
∂τ

=
∑
t,t′

b(T−t)
α cα

[
sαyxt

− b(T−t′)
α cαaαs

α
xtxt′

]
(35)

∂cα
∂t

=
∑
t,t′

b(T−t)
α aα

[
sαyxt

− b(T−t′)
α cαaαs

α
xtxt′

]
(36)

Because we ignored the mode cross terms, the updates in Eqs. 35-36 minimize an effective loss
function, which can be seen by integrating them with respect to the mode coefficients:

E =
∑
α

T∑
t,t′

[
aαcαb

T−t
α sα

1/2

xtxt′
− sαyxt

sα
−1/2

xtx′
t

] [
aαcαb

T−t′

α sα
1/2

xtxt′
− sαyxt

sα
−1/2

xtxt′

]
. (37)

The product aαcα has symmetry condition of this energy (aαcα = [aα/k][cαk]), which guarantees
an invariance condition a2 = c2 Saxe et al. (2014). Moving forward, we omit the α index unless
it is strictly necessary. Introducing a collective network parameter u = ac, the collective update
equation follows a similar functional form

∂u

∂t
=

∂a

∂τ
c+ a

∂c

∂τ
= 2

∑
i,j

b(T−t)u
[
syxt − b(T−t′)usxtxt′

]
(38)

where we used the equivalence a2 = c2. Eq. 38 is a separable differential equation with a closed
form solution. To simplify notation, we collect the effect of recurrence and task covariances into
terms βyx and βxx

βα
yx =

T∑
t

b(T−t)
α sαyxt

, βα
xx =

T∑
t,t′

b(2T−t−t′)
α sαxtxt′

(39)

The separable equation is then ∂u
∂t = 2u [βyx − 2uβxx], which in its partial fraction decomposed

form is

t =
1

2βyx

∫ uf

u0

du

u
− 1

2βyx

∫ uf

u0

du

u− βyx/βxx
(40)

Integration of Eq. 40 yields

t =
1

2βyx
log |u|uf

u0
− 1

2βyx
log |u− βyx/βxx|uf

u0
(41)

which upon reorganization gives the solution for training dynamics u(τ) = a(τ)c(τ)

a(τ)c(τ) =
1[

1
(a(0)c(0)) −

βxx

βyx

]
e−2τβyx/γ + βxx

βyx

, (42)

where γ is the inverse of the learning rate. Eq. 42 is for a single mode α, and there will be equivalent
expressions for each of the α = {1, 2, ..min[Nx, Ny]} modes.

In summary, we provided an expression for the learning dynamics of input and output modes in
linear RNNs that encompass tasks with temporally correlated inputs. The primary assumptions that
limit our current approach are 1) requiring input variability to be aligned with input-to-target map-
pings, 2) assuming normal recurrent dynamics, and most importantly 3) requiring that initial con-
ditions of task parameters are in an orthogonal space with respect to the task geometry to facilitate
factorized training with individual network modes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 EXPANSION OF CL TRAINING TIME IMPROVEMENT

Here we add in a few intermediate steps to show the our core results of the conditions for training
time improvement. Starting from the general condition:

ti→2 > ti→1 + t1→2. (43)

we first expand the the optimal solutions and initial conditions in terms of the recurrence-weighted
singular values for all except solo task 1 and task 2 training,:

γ

2β
(2)
yx

(
log

∣∣∣∣u∗(2)

u0
− 1

∣∣∣∣− log

∣∣∣∣ ϵ(2)

1− ϵ(2)

∣∣∣∣) >

γ

2β
(1)
yx

(
log

[
u∗(1)

u0
− 1

]
− log

∣∣∣∣ ϵ(1)

1− ϵ(1)

∣∣∣∣)+

γ

2β
(2)
yx

(
log

∣∣∣∣∣ β
(2)
yx /β

(2)
xx

(1− ϵ(1))β
(1)
yx /β

(1)
xx

− 1

∣∣∣∣∣− log

∣∣∣∣ ϵ(2)

1− ϵ(2)

∣∣∣∣
)

(44)

Removing the common term (learning rate, accuracy term for task 2), and bringing all terms to both
sides gives

1

β
(2)
yx

(
log

∣∣∣∣u∗(2)

u0
− 1

∣∣∣∣)− 1

β
(1)
yx

(
log

[
u∗(1)

u0
− 1

]
− log

∣∣∣∣ ϵ(1)

1− ϵ(1)

∣∣∣∣)

− 1

β
(2)
yx

(
log

∣∣∣∣∣ β
(2)
yx /β

(2)
xx

(1− ϵ(1))β
(1)
yx /β

(1)
xx

− 1

∣∣∣∣∣
)

> 0 (45)

Finally, multiplying everything by β
(2)
yx and combining the logs of the middle term gives our final

expression

log

∣∣∣∣u∗(2)

u0
− 1

∣∣∣∣+ β
(2)
yx

β
(1)
yx

log

∣∣∣∣(ϵ(1)

1− ϵ(1)

)(
u0

u∗(1) − u0

)∣∣∣∣− log

∣∣∣∣∣ 1

(1− ϵ(1))

β
(2)
yx

β
(1)
yx

β
(1)
xx

β
(2)
xx

− 1

∣∣∣∣∣ > 0

(46)

A.3 SIMULATION AND TRAINING METHODS

All simulations were performed in Python (3.11.6, torch 2.0.1). Numerical simulations were per-
formed using gradient descent using a learning rate of 0.001 unless otherwise noted. Networks were
custom linear RNNs with 128 units and a single input and output channel. All initial conditions
were initialized into a single input-output mode as specified by eq. 32 with the value a = c = 0.01.
In practice, this meant setting a single entry Wx[0, 1] and Wy[0, 1] to 0.01, with the rest of the values
initialized to zero. The recurrent weights were set to a diagonal matrix where all eigenvalues were
b = 0.96.

For linear RNN simulations fitting that compared learning trajectories to theory, we first calculated
the theoretical optimal solution using eq. 11, then trained the network until it converged to weights in
an ϵ window of the optimal value. To calculate this optimal value, and to produce the theoretical wait
time predictions and learning trajectory curves, we used analytically defined covariance matrices
based on the defined task structure.

For nonlinear RNNs, we approximated the optimal solution by training the RNN until convergence,
and then calculated the numerical training time in each task by retraining the network from scratch
until it reached an ϵ window of the optimal solution.

When generating phase portraits and results for nonlinear RNNs across a range of task T1 accuracies,
we only modulated one task parameter at a time, and kept all parameters across T1 and T2 equal.
When modulating covariance strength Sxty , we held Sxtxt′ = 1.0. Similarly, when modulating
Sxtxt′ , we held Sxty=1.0 In sec. 3.2, when modulating K we held κ=0.5; when modulating κ, we
held K = 0.5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 SUPPLEMENTAL FIGURES

Here we show numerical simulation fits to theory for each parameter regime studied in the main
work, as well as the corresponding optimization trajectory for ReLU Rnns.

0 100 200 300 400 500 600
training time (epochs)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

ac

linear RNN, Syx_1 = 0.5, Syx_2 = 1.0

ac

0 200 400 600 800 1000
training time (epochs)

0.0

0.2

0.4

0.6

0.8

ReLU, Syx_1 = 0.5, Syx_2 = 1.0

0 100 200 300 400
training time (epochs)

0.0

0.5

1.0

1.5

2.0

2.5

ac

linear RNN, Syx_1 = 1.4, Syx_2 = 1.0

0 200 400 600
training time (epochs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ac

ReLU, Syx_1 = 1.4, Syx_2 = 1.0

0 100 200 300 400
training time (epochs)

0.0

0.5

1.0

1.5

2.0

2.5

ac

linear RNN, Sxx_1 = 0.7, Sxx_2 = 1.0

ac

0 100 200 300 400 500 600 700
training time (epochs)

0.0

0.2

0.4

0.6

0.8

1.0
ReLU, Sxx_1 = 0.7, Sxx_2 = 1.0

0 100 200 300 400
training time (epochs)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

ac

linear RNN, Sxx_1 = 1.3, Syx_2 = 1.0

ac

0 200 400 600 800
training time (epochs)

0.0

0.2

0.4

0.6

0.8

ReLU, Sxx_1 = 1.3, Syx_2 = 1.0

0 50 100 150 200
training time (epochs)

0.0

0.2

0.4

0.6

0.8

ac

linear RNN, K_1 = 0.3, K_2 = 0.5

ac

0 100 200 300 400
training time (epochs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ReLU, K_1 = 0.3, K_2 = 0.5

0 25 50 75 100 125 150
training time (epochs)

0.0

0.2

0.4

0.6

0.8

ac

linear RNN, K_1 = 0.7, K_2 = 0.5

ac

0 50 100 150 200 250
training time (epochs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ReLU, K_1 = 0.7, K_2 = 0.5

0 25 50 75 100 125 150
training time (epochs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ac

linear RNN, kappa_1 = 0.02, kappa+2 = 0.05

0 50 100 150 200 250
training time (epochs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac

ReLU, kappa_1 = 0.02, kappa+2 = 0.05

0 50 100 150 200 250
training time (epochs)

0.0

0.2

0.4

0.6

0.8

ac

linear RNN, kappa_1 = 0.08, kappa+2 = 0.05

0 100 200 300 400
training time (epochs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ac

ReLU, kappa_1 = 0.08, kappa+2 = 0.05

∑x xt strengtht'

∑y xt strength

t
∑x x temporal correlation

t'

∑y x temporal correlation
t'T1 parameter < T2 T1 parameter > T2

T1 parameter < T2

T1 parameter < T2

T1 parameter < T2

T1 parameter > T2

T1 parameter > T2

T1 parameter > T2

simulation
theory T1
theory T1-T2
theory T2

Figure 5: Numerical fits of optimizations using Curriculum learning (blue) vs. direct training of the
target task (red). ReLU learning trajectories are also shown. Each row corresponds to manipulating
one aspect of task covariance structure, and here we provide examples for both a parameter setting
in task 1 that is smaller than task 2 (left 2 plots) as well as larger (right two plots). Theoreetical
optima are shown for each task with horizontal dotted lines

15

	Introduction
	Curriculum learning dynamics in linear RNNs
	Problem formulation
	Learning dynamics
	The importance of task similarity for curriculum learning

	Numerical validation
	Task covariance strength
	temporal correlations in task covariances
	Nonlinear RNNs

	Discussion
	Appendix
	Extended derivation of learning dynamics
	Expansion of CL training time improvement
	Simulation and training methods
	Supplemental Figures

