

THEORETICAL FOUNDATIONS OF CURRICULUM LEARNING IN LINEAR RNNs

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Pretraining models with a curriculum of simpler tasks is a common approach to
012 speed up training. However, it is unclear what aspects of task structure drive
013 learning speed, and how to practically choose the curriculum based on theoret-
014 ical principles. Using recent advances in the analysis of learning trajectories in
015 linear RNNs (Proca et al., 2025), we study a simple but informative example of
016 performing two integration tasks in sequence, and ask what aspects of their task
017 structure lead to faster overall learning of the second “target” task. We show both
018 analytically and through simulations that even for tasks that are similar in their
019 geometry, sequencing them based on the strength and scale of the input-to-target
020 correlations can provably enhance learning speed. A surprising result from our
021 theory that goes against conventional wisdom is that training intermediate tasks to
022 suboptimal accuracies can be more beneficial to learning speed, rather than train-
023 ing them to convergence. These results provide foundational insight into how task
024 similarity forms both a theoretical and practical basis for curriculum learning.
025
026

1 INTRODUCTION

027 Efficiently training neural network models on complex tasks can be difficult. One approach that
028 often proves useful in practice is pretraining on simpler related tasks. Curriculum learning (CL),
029 or pretraining more generally, are now ubiquitously used across many domains in machine learning
030 (Soviany et al., 2022; Hacohen & Weinshall, 2019; Narvekar & Stone, 2018). Yet, documented
031 counterexamples show that CL does not always help Wu et al. (2020). What makes for good pre-
032 training tasks and how to construct effective curricula remain an open area of study, not only in
033 machine learning but also in cognitive and neural science (Ferguson, 1956; Dekker et al., 2022;
034 Behrens et al., 2018; Kepple et al., 2022).

035 One main reason for this limited understanding is that the effects of curriculum training are almost
036 entirely assessed through simulations, which makes the extraction of general principles difficult.
037 Some progress has been made recently in understanding how feedforward networks can see training
038 speedups due to curricula (Lee et al., 2024; Saglietti et al., 2022), or though structured initial condi-
039 tions (Liu et al., 2024); however a similar mathematical apparatus that can describe recurrent neural
040 network (RNNs) learning has long been missing. Very recent advances in the analysis of learning
041 dynamics for linear RNNs by Proca et al. (2025) open the door for starting to think about effects of
042 RNN pretraining in precise mathematical terms.

043 Existing accounts of CL pretraining largely frame its success in terms of regularizing the loss land-
044 scape (Bengio et al., 2009): simpler pretraining tasks are assumed to have smoother loss surfaces in
045 which solutions are easy to locate. This in turn provides favorable initial conditions for parameter
046 optimization in the target task. While this description seems intuitive, it does assume that the loss
047 landscapes (or at least the regions of good solutions) are well aligned across tasks. It is not clear
048 how to assess this notion of task similarity outside of actually training the model on the two tasks.
049 This brings up more general (and largely unanswered) questions about what makes a pretraining
050 task similar to the target and is the alignment of the losses the only way to measure it?

051 In this work we build on analytical solutions for the learning dynamics of input and output param-
052 eters in linear RNNs to ask in precise mathematical terms how long does it take for a given task
053 to train to convergence either directly or via an intermediate pretraining task (Figure 1A). In this
framing, task similarity is naturally defined in terms of input and output covariances, which allows

054 for a general treatment of CL in this class of problems in terms of the geometry and alignment of
 055 these covariances across tasks.

056 Our approach is organized in the following way: First, we briefly summarize the problem of opti-
 057 mizing the input and output weights of RNNs. Next, we derive our core result that demonstrates how
 058 long it takes to optimize RNNs after they have already learned a separate task with related structure.
 059 We then detail the dimensions of task similarity that most drive fast learning. Finally, we explore
 060 the generalization of these training insights beyond the scope of our theory by studying training
 061 with nonlinear RNNs. In this work we contribute to the fundamental theoretical understanding of
 062 curriculum learning, highlight the significance of task similarity upon its success, and demonstrate
 063 practical principles for choosing the sequence of tasks for effective curricula.

065 2 CURRICULUM LEARNING DYNAMICS IN LINEAR RNNS

066 2.1 PROBLEM FORMULATION

069 Consider the dynamics of a linear RNN (Fig. 1B):

$$070 \quad \mathbf{h}_t = \mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{W}_x \mathbf{x}_t \quad (1)$$

$$072 \quad \mathbf{y}_t = \mathbf{W}_y \mathbf{h}_t, \quad (2)$$

073 which maps time-varying inputs $\mathbf{x}_t \in \mathbb{R}^{N_x \times 1}$ into a network state $\mathbf{h}_t \in \mathbb{R}^{N_h \times 1}$, read out into outputs
 074 $\mathbf{y}_t \in \mathbb{R}^{N_y \times 1}$. The parameters of the network include the recurrent weight matrix $\mathbf{W}_h \in \mathbb{R}^{N_h \times N_h}$,
 075 input matrix $\mathbf{W}_x \in \mathbb{R}^{N_h \times N_x}$, and output matrix $\mathbf{W}_y \in \mathbb{R}^{N_y \times N_h}$.

076 We will focus on a family of tasks in which input streams $\mathbf{x}_{1:T}$ are integrated over time with different
 077 linear filters to yield outputs, $\hat{\mathbf{y}}_T$, at the end of the trial, T .¹ The loss over a batch of P trials for this
 078 single output scenario of generating a target \mathbf{y} is given as:

$$080 \quad \mathcal{L} = \frac{1}{2} \sum_p^P \|\mathbf{y}_p - \hat{\mathbf{y}}_{T,p}\|^2. \quad (3)$$

083 Network parameters are optimized by backpropagation through time to minimize this objective.

085 **Covariances as fundamentals of task structure.** Starting from initial state $\mathbf{h}_0 = \mathbf{0}$, the network
 086 dynamics evolve as $\mathbf{h}_t = \sum_{i=1}^t \mathbf{W}_h^{t-i} \mathbf{W}_x \mathbf{x}_i$, which allows the loss to be rewritten as

$$088 \quad \mathcal{L} = \sum_{t,t'=1}^T \frac{1}{2} \text{Tr} \left[\mathbf{W}_y \mathbf{W}_h^{T-t} \mathbf{W}_x \Sigma_{x_t x_{t'}} \mathbf{W}_x^\top \mathbf{W}_h^{T-t' \top} \mathbf{W}_y^\top - \mathbf{W}_y \mathbf{W}_h^{T-t} \mathbf{W}_x \Sigma_{x_t y} \right] + \text{const.} \quad (4)$$

091 This expression directly highlights what changes in the loss function from task to task: the covari-
 092 ances among inputs $\Sigma_{x_t x_{t'}}$, and the input-output covariance $\Sigma_{x_t y}$.² Specifically, the input covar-
 093 iance function $\Sigma_{x_t x_{t'}} = \mathbb{E}[\mathbf{x}_t \mathbf{x}_{t'}^\top]$ is an $N_x \times N_x \times T \times T$ tensor that captures how inputs co-vary with
 094 each other across both input channels, as well as time. The cross-correlation between time-varying
 095 input and the target output, $\Sigma_{x_t y} = \mathbb{E}[\mathbf{x}_t \mathbf{y}_T^\top]$ is an $N_x \times N_y \times T$ tensor that captures how inputs,
 096 from each input channel and at every time point, relate to targets across different output channels.

097 Previous approaches assume white noise in the inputs by shifting any temporal dependence into
 098 $\Sigma_{x_t y}$ (Proca et al., 2025; Saxe et al., 2014), but here we need to consider full spatial and temporal
 099 correlations in $\Sigma_{x_t x_{t'}}$. This is an unavoidable consequence of our multi-task setup: while it is
 100 possible to rotate the coordinates to whiten input for a single task, it is not generally possible to find
 101 a single rotation that will whiten them for both tasks. Since we are studying the learning dynamics of
 102 tasks in sequence, we must embrace the temporal dependence in the inputs.

103 The general goal of our derivation is to determine the time τ that it takes a network to learn a target
 104 task “2”, and to contrast that learning time with a scenario where the network starts by training

106 ¹A generalization to continuous outputs is in principle possible, see Proca et al. (2025) Appendix M.

107 ²Note that we will refer to the transpose of the matrix $\Sigma_{x_t y}$ for a fixed time point via its indices as $\Sigma_{x_t y}^\top =$
 $\Sigma_{y x_t}$.

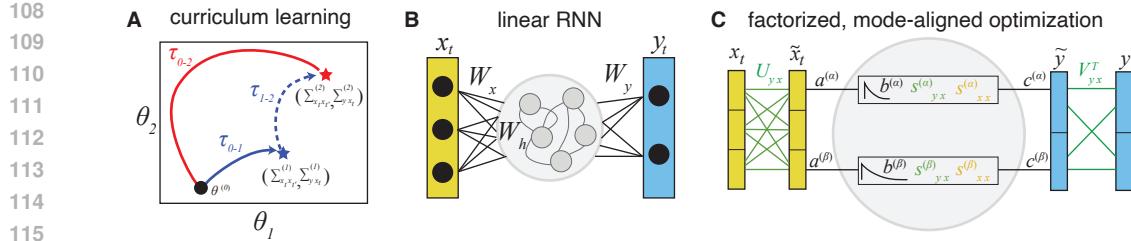


Figure 1: **A.** Curriculum learning from the lens of task similarity. The time τ needed to learn a task \mathcal{T}_2 can be potentially accelerated by first learning a different task \mathcal{T}_1 . The potential speedup $\tau_{0-2} - (\tau_{0-1} + \tau_{1-2})$ will depend upon the similarity between the tasks, which in this work are minimally described by how their inputs co-vary, as well as how inputs vary with targets. **B.** Linear RNN architecture. Only W_x and W_y are trained, and W_h are fixed, to facilitate closed-form solutions for their training dynamics. **C.** We study the problem of RNN parameter learning in a rotated reference frame that demixes and aligns the input and output singular ‘‘modes’’ with eigenmodes of the recurrent network. This allows for factorized learning where each mode of the input and output utilizes individual modes of the network.

on another task ‘‘1’’, then switches to the target. In particular, we want to understand under what circumstances and for what kind of pairs of tasks (each with a similar geometric alignment of their input-input and input-output covariance functions) that training the sequence offers speed benefits relative to training the target alone $\tau_{0-2} > \tau_{0-1} + \tau_{1-2}$ (Fig. 1A).

2.2 LEARNING DYNAMICS

We start by re-deriving a core result from Proca et al. (2025), which is the closed form expressions for the learning time course of the W_x and W_y , for a fixed W_h . Learning the recurrent dynamics –either independently or jointly with the other parameters– does not afford simple closed form expressions, requiring more complex approximations. While focusing on input and output weights seems like a big simplification, the resulting parameter dynamics can nonetheless provide nontrivial insights into the multi-task learning process.

We sketch the key steps of the derivation in the main text, leaving the details to the Appendix. A key assumption in the optimization of W_x and W_y is that the primary axes of (co)variation of the inputs and outputs provided by $\Sigma_{x_t y}$ and $\Sigma_{x_t x'_t}$ can be aligned to the eigenmodes of the RNN, such that parameter learning can happen in a factorized manner (see Proca et al. (2025) for a discussion on the conditions when such alignment is possible). The geometry (*i.e.*, SVD axes) of $\Sigma_{x_t y}$ and $\Sigma_{x_t x'_t}$ are fixed over time, but their singular values can have time dependence. These ‘‘modes’’ of inputs and outputs (*i.e.*, formally the columns and rows of W_x and W_y in a rotated reference frame, respectively) require rotating the loss function based upon the Schur decomposition of $W_h = U_h H_h U_h^\top$, as well as the singular value decomposition (SVD) of the two task covariances

$$\Sigma_{x_t x_{t'}} = \mathbb{E}[x_t x_{t'}^\top] \approx \sum_p^P x_{p,t} x_{p,t'}^\top = \mathbf{U}_{xx} \mathbf{S}_{x_t x_{t'}} \mathbf{U}_{xx}^\top \quad (5)$$

$$\Sigma_{x_t y} = \mathbb{E}[x_t y^\top] \approx \sum_p^P x_{p,t} y_{p,T}^\top = \mathbf{U}_{xy} \mathbf{S}_{x_t y} \mathbf{V}_{xy}^\top. \quad (6)$$

The transformation of the problem in this rotated space is explained graphically in Fig. 1C. The input and output sequences are transformed in a way that recasts the problem into a factorized RNN consisting of a collection of parallel input-integrate-output channels indexed by α , parametrized by a new set of parameters, a_α , b_α and c_α . These modes are the columns of W_x (a_α) eigenvectors of W_h (b_α), and rows of W_y (c_α) in this factorized reference frame, and we refer them as the input, recurrent, and output connectivity modes, respectively. For a small enough learning rate, one can

162 write learning dynamics for the input and output modes as:
 163

$$\frac{\partial \mathbf{a}_\alpha}{\partial \tau} = \sum_{t,t'} b_\alpha^{(T-t)} \mathbf{c}_\alpha \left[s_{yx_t}^\alpha - b_\alpha^{(T-t')} (\mathbf{c}_\alpha \cdot \mathbf{a}_\alpha) s_{x_t x_{t'}}^\alpha \right] \quad (7)$$

$$\frac{\partial \mathbf{c}_\alpha}{\partial t} = \sum_{t,t'} b_\alpha^{(T-t)} \mathbf{a}_\alpha \left[s_{yx_t}^\alpha - b_\alpha^{(T-t')} (\mathbf{c}_\alpha \cdot \mathbf{a}_\alpha) s_{x_t x_{t'}}^\alpha \right]. \quad (8)$$

164 where $s_{x_t x_{t'}}^\alpha$ and $s_{yx_t}^\alpha$ reflect the time-varying singular values of the two covariance functions which
 165 define the task.
 166

167 In general, this problem is not well-posed for any initial conditions of \mathbf{a}_α and \mathbf{c}_α ; however, under
 168 the special assumption that the \mathbf{a}_α and \mathbf{c}_α are initialized onto the same mode of an orthogonal basis
 169 with coefficients a_α and c_α , a closed form solution for their product captures the learning dynamics:
 170

$$a_\alpha(\tau) c_\alpha(\tau) = \frac{1}{\left[\frac{1}{(a_\alpha(0)c_\alpha(0))} - \frac{\beta_{yx}^\alpha}{\beta_{xx}^\alpha} \right] e^{-2\tau\beta_{yx}^\alpha/\gamma} + \frac{\beta_{yx}^\alpha}{\beta_{xx}^\alpha}}, \quad (9)$$

171 where τ is the parameter update timestep, γ is the inverse of the learning rate, and the effect of the
 172 recurrent network strength and singular values of the task covariances is captured by β_{yx}^α and β_{xx}^α :
 173

$$\beta_{yx}^\alpha = \sum_t^T b_\alpha^{(T-t)} s_{yx_t}^\alpha, \quad \beta_{xx}^\alpha = \sum_{t,t'}^T b_\alpha^{(2T-t-t')} s_{x_t x_{t'}}^\alpha. \quad (10)$$

174 We refer to the β terms as *recurrence-weighted singular values* (RWSV), as they account for the
 175 effect of Σ_{xx} and Σ_{yx} , weighted by the effect of recurrent dynamics. Eq. 9 describes training for
 176 a single mode α , so there will be equivalent expressions for each of the $\alpha = \{1, 2, \dots, \min[N_x, N_y]\}$
 177 modes. This important result dictates the time course of parameter learning, and the optimal task
 178 solution. In the following section, we will utilize this expression to derive our core results that relate
 179 training time to task structure in CL.
 180

181 2.3 THE IMPORTANCE OF TASK SIMILARITY FOR CURRICULUM LEARNING

182 Our primary goal is to understand the conditions in which learning an intermediate task accelerates
 183 learning of a target task. As a minimal example, we consider two tasks in sequence, which are
 184 defined by their covariance matrices: $\mathcal{T}_k = \{\Sigma_{xx}^{(k)}, \Sigma_{xy}^{(k)}\}$, $k = 1, 2$. Moving forward we denote
 185 the product of input and outputs mode coefficients as $ac = u$. Starting from initial conditions u_0 ,
 186 consider the optimization time needed until u is within a small ϵ tolerance of the optimal solution
 187 for task \mathcal{T}_1 , denoted by $u^{*(1)}$. To begin, the optimal solution is found for $t \rightarrow \infty$ in Eq. 9,
 188

$$u^{*(k)} = \beta_{yx}^{(k)} / \beta_{xx}^{(k)} = \frac{\sum_i^T b^{T-t} s_{yx_t}^{(k)}}{\sum_{t,t'}^T b^{2T-t-t'} s_{x_t x_{t'}}^{(k)}}. \quad (11)$$

189 We note that in the special case of constant singular values and perfectly stable dynamics ($b = 1$),
 190 this recapitulates the results in Saxe et al. (2014) (Appendix A.4.4).
 191

192 Rearranging Eq. 9, we can solve for the amount of training required to reach a convergence criterion
 193 $u(\tau) = (1 - \epsilon)u^{*(1)}$, where the precision of the final solution relative to the optimum $u^{*(1)}$ is
 194 determined by parameter ϵ :
 195

$$t_{i \rightarrow 1} = \frac{\gamma}{2\beta_{yx}^{(1)}} \left(\log \left| \frac{u^{*(1)}}{u_0} - 1 \right| - \log \left| \frac{\epsilon}{1 - \epsilon} \right| \right). \quad (12)$$

196 Thus, the training time can be separated into the relationship between optimal solutions and initial
 197 conditions, as well as the desired error tolerance. Given this, it is straightforward to calculate the
 198 time to optimize along a sequence of two tasks \mathcal{T}_1 and \mathcal{T}_2 :
 199

$$t_{i \rightarrow 2} = t_{i \rightarrow 1} + t_{1 \rightarrow 2} \quad (13)$$

$$\begin{aligned} &= \frac{\gamma}{2\beta_{yx}^{(1)}} \left(\log \left| \frac{u^{*(1)}}{u_0} - 1 \right| - \log \left| \frac{\epsilon^{(1)}}{1 - \epsilon^{(1)}} \right| \right) \\ &+ \frac{\gamma}{2\beta_{yx}^{(2)}} \left(\log \left| \frac{u^{*(2)}}{(1 - \epsilon^{(1)})u^{*(1)}} - 1 \right| - \log \left| \frac{\epsilon^{(2)}}{1 - \epsilon^{(2)}} \right| \right), \end{aligned} \quad (14)$$

216 where we have denoted the error tolerance for each task as $\epsilon^{(k)}$. Importantly, this training time
 217 only holds if the geometry of \mathcal{T}_1 is equivalent to \mathcal{T}_2 , meaning that the the SVD eigenvectors for the
 218 task covariances are the same in both tasks. Otherwise, after training on \mathcal{T}_1 , the initial conditions
 219 would not lie in an orthogonal basis set by the eigenvectors of \mathcal{T}_2 , and there would be cross-mode
 220 contributions during training (numerical results of this scenario provided in Appendix A.4.2).

221 Our primary result determines the conditions under which training on \mathcal{T}_1 offers a speedup when
 222 learning a task \mathcal{T}_2 with equivalent task geometry,
 223

$$t_{i \rightarrow 2} > t_{i \rightarrow 1} + t_{1 \rightarrow 2}. \quad (15)$$

225 Expanding Eq. 15 highlights the relationships between task singular values, task accuracy, and training
 226 speed:
 227

$$\log \left| \frac{u^{*(2)}}{u_0} - 1 \right| + \frac{\beta_{yx}^{(2)}}{\beta_{yx}^{(1)}} \log \left| \left(\frac{\epsilon^{(1)}}{1 - \epsilon^{(1)}} \right) \left(\frac{u_0}{u^{*(1)} - u_0} \right) \right| - \log \left| \frac{1}{(1 - \epsilon^{(1)})} \frac{\beta_{yx}^{(2)} \beta_{xx}^{(1)}}{\beta_{yx}^{(1)} \beta_{xx}^{(2)}} - 1 \right| > 0 \quad (16)$$

232 Eq. 16 details the conditions under which there will be a speedup in first training on \mathcal{T}_1 . The
 233 different aspects of task structure that drive faster learning are nonlinearly related, so to gain insight
 234 we examine each term individually to hypothesize what it implies about relative task structure in CL.
 235 The first term simply implies that –provided the initial conditions are suitably small– there will be
 236 a speedup, which does not relate task structure to training time. The second term does relate input-
 237 target singular values across tasks, and suggests that when $\beta_{yx}^{(1)} > \beta_{yx}^{(2)}$, CL sees faster training. The
 238 third term also shows this (provided that $\beta_{xx}^{(1)} = \beta_{xx}^{(2)}$), as well as the inverse relationship that CL is
 239 faster when $\beta_{xx}^{(1)} < \beta_{xx}^{(2)}$ (also provided $\beta_{yx}^{(1)} = \beta_{yx}^{(2)}$). Finally, we re-write the 3rd term with respect
 240 to the optimal solutions to show a surprising result that training intermediate tasks to potentially low
 241 accuracies can be beneficial
 242

$$- \log \left| \frac{u^{*(2)}}{(1 - \epsilon)u^{*(1)}} - 1 \right| > 0. \quad (17)$$

245 There is a singularity in this expression whenever \mathcal{T}_1 has been optimized to exactly be the solution
 246 to task \mathcal{T}_2 , which can produce a CL speedup when it is in the neighborhood of this singularity.
 247 Interestingly, depending on the magnitude of the two optimal solutions, this speedup can occur for
 248 small accuracy on the first task.
 249

250 These regimes from eq. 17 are general conditions where CL is worthwhile, and for a given task
 251 type they have intuitive and practical explanations. In short, these conditions spell out what makes
 252 an intermediate task “easier” than the second one. For example, in our integration tasks studied
 253 here, our theory predicts that when inputs strongly correlate with the target output, it is easier than
 254 a weakly correlated task and will help training. This is a consequence of our first observation that
 255 $\beta_{yx}^{(1)} > \beta_{yx}^{(2)}$. Additionally, if inputs are highly similar to one another then the integration problem
 256 reduces instead to simply scaling a single input to a target value, a much “easier” problem than full
 257 integration of a time-varying signal. This is a consequence of $\beta_{xx}^{(1)} < \beta_{xx}^{(2)}$, which occurs for weaker
 258 overall input covariance strength, as well as for very temporally correlated inputs.
 259

260 In summary our theory predicts three broad effects on CL speed that are related to task structure
 261 that have practical benefits, and relate to intuitive ideas of task “easiness” commonly found in CL
 262 sequences: 1) $\beta_{yx}^{(1)} > \beta_{yx}^{(2)}$, 2) $\beta_{xx}^{(1)} < \beta_{xx}^{(2)}$, and 3) training to suboptimal accuracies on an inter-
 263 mediate task can be beneficial. We next turn to numerical simulations to validate our theory, as well as
 264 to explore how the strength and temporal correlations of task covariances support these effects.
 265

3 NUMERICAL VALIDATION

266 In the above section we showed analytically that recurrence weighted singular values can drive CL,
 267 which we verify here. We examine the numerical optimization of two tasks in sequence, and com-
 268 pare that training time to a second task. For ease of visualization and to demonstrate core features of
 269 the theory, we study networks with a single input and output channel. Additionally, because Eq. 16

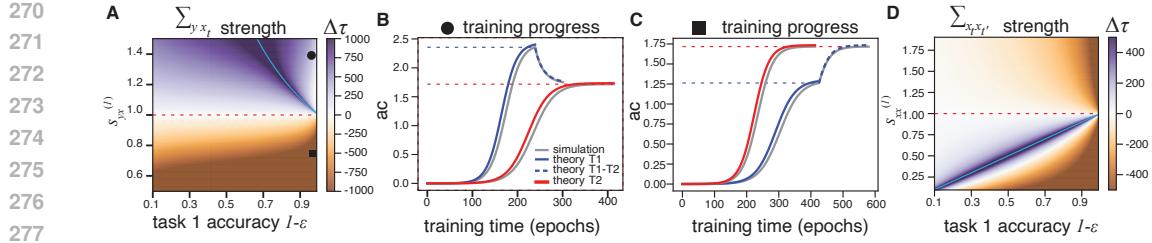


Figure 2: **A.** Phase portrait of difference in training time between direct \mathcal{T}_2 training and a curriculum of \mathcal{T}_1 (to accuracy $1 - \epsilon$) followed by task \mathcal{T}_2 . \mathcal{T}_1 accuracy and singular value strength or $\sum_{y_{xt}}$ were modulated. Dotted red line shows singular value of \mathcal{T}_2 . Cyan denotes singularity when \mathcal{T}_1 solution corresponds to \mathcal{T}_2 optimum, requiring no training time. **B-C.** Predicted vs. numerical optimization training trajectories for individual parameter settings, denoted by square and circle in panel A . **D** Similar phase portraits as in A, but for modulating singular value of Σ_{x_t, x'_t} .

nonlinearly relates multiple parameters, we will study different aspects of task structure individually, while also varying task accuracy. In the simulations below we assume the accuracy of task \mathcal{T}_2 is $1 - \epsilon^{(2)} = 0.99$, and we set the recurrence mode $b = 0.96$ to ensure ideal RNN performance when comparing to numerical optimization, while still capturing the effects of recurrence. In all cases, networks contained 128 hidden units, trials were 50 timesteps long, and numerical comparisons to theory trained with batches of 1000 samples.

3.1 TASK COVARIANCE STRENGTH

We first focus on scenarios in which there is no temporal correlation in the task covariances, and only the strength of covariance can modulate training speed. When examining the input-to-target covariance, our theory predicts that intermediate tasks with larger $\Sigma_{y_{xt}}$ singular values will be beneficial, so to isolate this effect we studied a set of tasks no temporal correlation ($\Sigma_{x_t, x'_t} = a\delta_{t, t'}$). We used Eq. 12 to compute the training time for \mathcal{T}_2 , as well as Eq. 13 for the training time for learning \mathcal{T}_1 to accuracy $1 - \epsilon$, followed by learning \mathcal{T}_2 . We then examined the difference in training time for a range of \mathcal{T}_1 accuracy and singular value amplitudes for \mathcal{T}_1 as a phase portrait in Fig. 2A. Sample numerical training trajectories compared to theory are provided in Fig. 2B-C.

We found that our hypothesis from Eq. 16 holds, where first training on tasks with larger singular values led to faster training. Practically, this implies that tasks with inputs that are more saliently related to the targets are ideal candidates for curricula. Somewhat surprisingly, this means that tasks that tune input and output weights to initially larger values aid in learning later tasks with smaller weights. We additionally see in Fig. 2A that training \mathcal{T}_1 to even modest accuracies still improve performance, where a larger range of accuracies is beneficial when \mathcal{T}_1 has relatively larger singular values. This is due to the singularity in training time when the final solution for \mathcal{T}_1 is near the the optimal solution for \mathcal{T}_2 , which creates a basin of parameter values that provide a CL speedup (2A, cyan line). We next examined the variance of inputs in the same manner in Fig. 2D. Here, we found that the relationship in training speed was generally flipped as expected, with \mathcal{T}_1 tasks containing weaker input variances being more beneficial to training speed. Sample learning trajectories and numerical comparison to theory are provided in the appendix (Supp. Fig. 5).

3.2 TEMPORAL CORRELATIONS IN TASK COVARIANCES

We next turn to investigating how changes to the temporal structure of the task covariances can facilitate CL. To see how the temporal properties of the task can support this, we study correlated inputs generated by an AR1 process as

$$x_t = Kx_{t-1} + w_t, \quad (18)$$

where $w_t \sim \mathcal{N}(0, \Sigma_0)$ is white noise with covariance Σ_0 , and K defines the strength of the temporal correlation. For this process, input covariances depend only upon the lag between time-points (Fig.

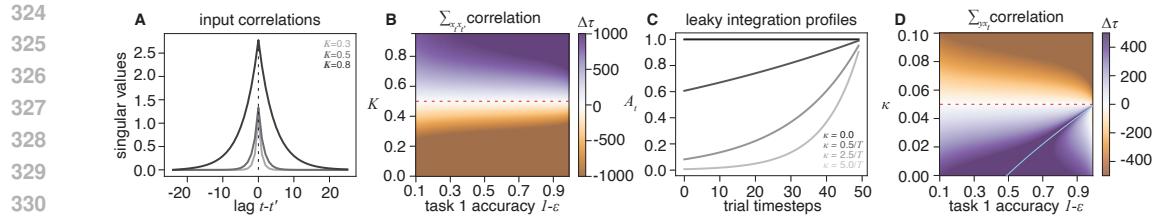


Figure 3: Temporal correlations affect CL. **A.** We studied inputs drawn from AR1 process in which strength of singular values is lag-dependent, given by strength K (see main text). **B.** Phase portrait showing difference in training time for CL sequence vs. direct target task training. Accuracy and correlation of \mathcal{T}_1 were varied relative to \mathcal{T}_2 being trained to 99% accuracy (K for \mathcal{T}_2 , dotted red line). **C.** Integration profile for leaky integration tasks. Time-dependent $\sum_{y_{xt}}$ corresponds to targets that perform leaky integration with exponentially decaying profiles with timescale κ . **D.** Phase portrait as in **B**, but for varying time κ . Cyan denotes singularity when \mathcal{T}_1 solution corresponds to \mathcal{T}_2 optimum, requiring no training time.

3A)³. Here we consider integration tasks that do not simply perform perfect integration across all time, but are instead leaky integration tasks that weight later time points in a trial

$$y_t = \sum_t^T A_t x_t, \quad A_t = A_0 e^{-\kappa(t-T)} \quad (19)$$

where A_0 is the $N_y \times N_x$ matrix that mixes inputs to output channels, and κ is the decay of the integration profile (Fig. 3C).

We again calculated the difference in time to train a target task \mathcal{T}_2 vs. training intermediate task \mathcal{T}_1 first, followed by \mathcal{T}_2 , but with varying accuracy and temporal properties K and κ of the task covariances. When modulating input correlations K (Fig. 3A), we find that stronger correlations in the inputs of \mathcal{T}_1 improve training speed (Fig. 3B). We next looked at the tradeoffs in task accuracy of task 1, and the timescale κ of its temporal integration profile for leaky integration tasks (Fig. 3C). We find that intermediate tasks with longer integration windows lead to faster training on task \mathcal{T}_2 . This is a scenario where determining what constitutes an “easy” task is less clear, but that is easily explained by our CL theory. Integrating over longer timescales would conventionally be thought of as more difficult (e.g., requiring longer time horizons), but larger integration profiles produce a larger $\beta_{yx}^{(1)}$ (Eq. 10), which our theory predicts will produce an increase in training speed for CL. We again see evidence of suboptimal task 1 accuracy providing a speedup because it places initial conditions for task 2 training near a singularity (Fig. 3D, cyan line). Sample learning trajectories and numerical comparison to theory are provided in the appendix (Supp. Fig. 5).

In summary, we find that the time-dependent aspects of task covariances are an equally important dimension that can predict the success of CL. In the final section, we investigate if the insights from our theory of CL in linear RNNs will generalize once we relax assumptions about the network architecture.

3.3 NONLINEAR RNNs

Finally, we wished to see if the insights found in our linear RNN analysis would hold in a more practical scenario. So we performed the same CL studies, using the same integration tasks, but with RNNs containing a ReLU nonlinearity. For individual RNNs, we compared the training time for networks that had either a linear or ReLU activation function, and we investigated four different parameter regimes that characterize the main aspects of task covariances (Fig. 4). Without the ability to generate theoretical predictions for nonlinear networks, we instead focused on whether or not the same qualitative principles identified in our linear theory would hold in nonlinear networks. While there are numerical differences in the optimization time, we found evidence that the same qualitative

³correlations that are purely lag-dependent hold only in the infinite-time limit, and we account for finite time correlations when we calculate $\sum_{x_t x_t'}$.

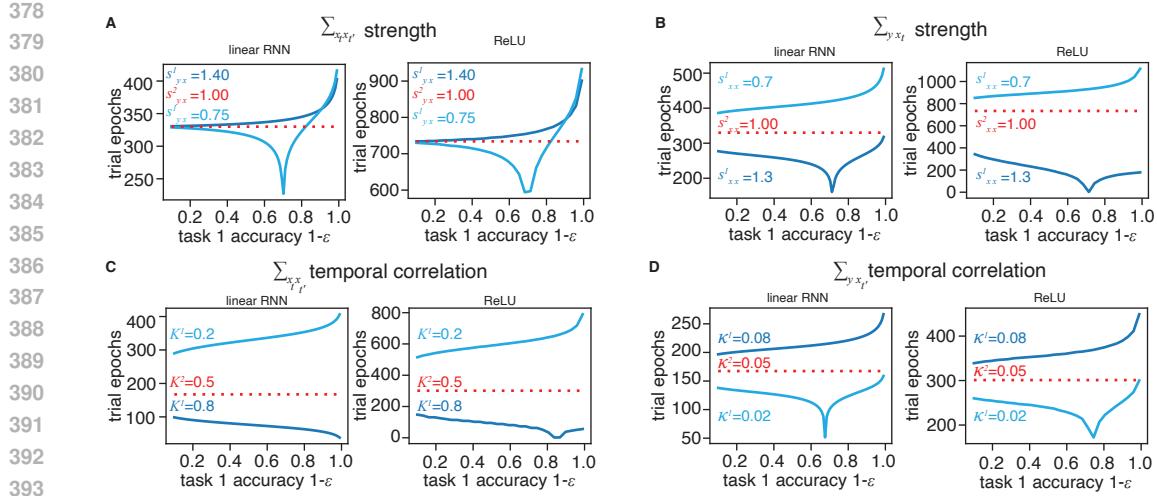


Figure 4: CL effects in nonlinear RNNs compared linear RNN theoretical predictions. Total training times for individual RNNs across a range of \mathcal{T}_1 accuracies for two different task covariance parameter settings: Red lines denote directly training on \mathcal{T}_2 to 99% accuracy and blue lines denote a CL sequence training on \mathcal{T}_1 first, with either a larger (dark blue) or smaller (light blue) parameter. Parameter values for each scenario are provided as legends. **A-B** Modulating input-target covariance strength as in section 3.1. **C-D** Modulating temporal correlations in task covariance as in section 3.2

trends seen for linear RNNs can hold even for nonlinear networks, meaning the the relative amplitude of task covariance strength and temporal correlations between two tasks appears to hold. Sample learning trajectories are provided in the appendix (Supp. Fig. 5). Finally, we also studied additional extensions beyond our theory where its qualitative trends still hold, including tasks with mismatched task geometry (Supp. Fig. 6), as well as jointly training recurrent and input/output weights (Supp. Fig. 8).

4 DISCUSSION

Our work set out to provide a theoretical understanding of the benefits of curriculum learning for speeding up learning in a target task. To make progress, we distilled this goal into a concrete mathematical question: what aspects of similarity between two tasks support faster learning in linear RNNs? Building upon recent theoretical results Proca et al. (2025), we derived how the strength and temporal structure of the covariances between inputs and between inputs and outputs shape pre-training efficiency. Our theory predicted three primary drivers of CL success: 1) stronger singular values in input-target covariances and larger target integration windows in the first task, 2) weaker singular values in the input-input covariance and more temporally correlated inputs; In our example system we showed how these relationships comported with conventional ideas about task ‘easiness.’ Finally we found that 3) training speed can benefit from suboptimal task accuracy in the first task. This was not simply due to avoiding a sunk cost in over-training on the first task, but rather an effect of strong overlap between task 1 solutions at low accuracy and the target task solution.

While our general approach follows recent results on the learning dynamics of input and output weights in linear RNNs (Proca et al., 2025), it expands technically on them in several important ways. First, unlike previous work we had to take into account the temporal dependencies in input and outputs. This is something that can be avoided with appropriate re-parametrization when considering single tasks, but needs to be considered explicitly once multiple tasks are analyzed together in the same coordinate system. The second technical contribution is directly deriving time to convergence for single tasks and sequences of tasks. This advance enabled us to build explicit phase plane analyses for what kind of tasks lead to learning speedups across a range of scenarios, the results of which we were able to confirm numerically.

432 Our results spell out the key properties about task relationships that allow for faster training, and an
 433 ultimate goal of this work is to provide simple heuristics for how to harness these relationships to
 434 build straightforward stopping criteria on pre-training tasks. Our theoretical work demonstrated the
 435 existence of a singularity condition for training time improvement (eq. 17), and through numerical
 436 simulations we found that this singularity provided a broad range of support for nearby solutions to
 437 have tangible training speedups (Fig. 2A,2D, 3D). The nonlinear relationship between relative task
 438 covariances and training speedup suggests a general guiding strategy for when to stop training on
 439 an initial task: the larger the differences in task covariances, the earlier one should stop training
 440 on the first task. In particular, the mean-squared error tasks studied here have sigmoidal training
 441 trajectories (eq. 9) and unique optima (eq. 11), which provides a simple diagnostic for when to
 442 stop training on task 1: Monitoring the second task for a steep decrease in its loss, following by a
 443 saturation hints that training on task 1 has placed you in the neighborhood of the optimal solution
 444 for task 2. This is highly specific to the nature of the loss function for this task, and different tasks
 445 will have different signatures. Future work aims to determine such practical stopping heuristics in
 446 other task classes.

447 The main limitations of our current approach is the restriction to similar pairs of tasks with common
 448 structure, and the focus on the learning of input and output parameters. First, to be able to make
 449 mathematical progress, we had to assume that sequences of tasks maintain the same general “task
 450 geometry.” The next natural step would be to relax this constraint by investigating the time required
 451 to rotate a linear system into a factorized training regime (Fig. 1C), perhaps by taking advantage
 452 of recent work demonstrating a natural alignment effect into such diagonalized regimes (Atanasov
 453 et al., 2021). As a counterpart for this focus on alignment, one could perhaps embrace the inherent
 454 mixing of network modes to study tasks with compositional structure, which combine computations
 455 from separate modes to perform new ones. This is an interesting arena to study CL, as there has been
 456 evidence that CL is required for complex compositional tasks in RNNs (Hocker et al., 2025; Krueger
 457 & Dayan, 2009), and would complement existing efforts to characterize compositional pretraining
 458 in feed-forward networks (Lee et al., 2024).

459 With respect to the second main limitation, here we restricted our analysis to training input and
 460 output weights in RNNs with predefined recurrence. While this is certainly restrictive, it is nonetheless
 461 directly applicable to transfer-learning scenarios when the network’s internal representations
 462 are reused, while input/output weights are adapted to novel inputs and targets (Pan & Yang, 2009).
 463 There is also a rich body of numerical results in computational neuroscience that examine how banks
 464 of dynamical motifs can be reused and composed to perform complex tasks Driscoll et al. (2024).
 465 Going forward, it would be important to jointly study the effect of recurrence in shaping task similar-
 466 ity and influencing the outcomes of curriculum learning. Incorporating recurrence into our analysis
 467 is potentially possible, as there is already a theoretical basis for learning recurrence in the domain of
 468 computations at long timescales (Schuessler et al., 2020).

469 Finally, here we have mainly focused on learning speed as a metric of success for CL, at the detri-
 470 ment of other benefits such as robustness of the solution, generalization quality, or sensitivity to
 471 noise. These other factors have important practical relevance and will need to be considered in sub-
 472 sequent analyses. The ultimate goal with a theoretical description like ours is to inform practical
 473 machine learning problems. Given the recent demonstrations that even highly simplified mathemat-
 474 ical analyses can still carry insight into mathematically intractable but practically relevant scenarios
 475 (Liu et al., 2024), we hope that our approach can make an impact throughout the the breadth of the
 476 CL ecosystem (Soviany et al., 2022).

477 REPRODUCIBILITY STATEMENT

478 In order to facilitate reproducibility of our results we have included a full derivation of the theory
 479 in the Appendix. We have also provided details for the simulation and training of RNNs that lead
 480 to the results. All code for generating the results in the manuscript will be provided at the time of
 481 publication.

482

483 REFERENCES

484 Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
 485 The silent alignment effect. *arXiv preprint arXiv:2111.00034*, 2021.

486 Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B Baram,
 487 Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing knowledge
 488 for flexible behavior. *Neuron*, 100(2):490–509, 2018.

489

490 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 491 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

492

493 Ronald B Dekker, Fabian Otto, and Christopher Summerfield. Curriculum learning for human
 494 compositional generalization. *Proceedings of the National Academy of Sciences*, 119(41):
 495 e2205582119, 2022.

496

497 Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
 498 networks utilizes shared dynamical motifs. *Nature Neuroscience*, 27(7):1349–1363, 2024.

499

500 George A Ferguson. On transfer and the abilities of man. *Canadian Journal of Psychology/Revue
 501 canadienne de psychologie*, 10(3):121, 1956.

502

503 Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
 504 works. In *International conference on machine learning*, pp. 2535–2544. PMLR, 2019.

505

506 David Hocker, Christine M Constantinople, and Cristina Savin. Compositional pretraining improves
 507 computational efficiency and matches animal behaviour on complex tasks. *Nature Machine Intel-
 508 ligence*, pp. 1–14, 2025.

509

510 Daniel R Kepple, Rainer Engelken, and Kanaka Rajan. Curriculum learning as a tool to uncover
 511 learning principles in the brain. In *International Conference on Learning Representations*, 2022.

512

513 Kai A Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps. *Cognition*,
 514 110(3):380–394, 2009.

515

516 JH Lee, SS Mannelli, and A Saxe. Why do animals need shaping? a theory of task 778 composition
 517 and curriculum learning, 2024.

518

519 Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and
 520 Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits,
 521 2024. URL <https://arxiv.org/abs/2310.08513>.

522

523 Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. *arXiv
 524 preprint arXiv:1812.00285*, 2018.

525

526 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on knowledge
 527 and data engineering*, 22(10):1345–1359, 2009.

528

529 Alexandra Maria Proca, Clémentine Carla Juliette Dominé, Murray Shanahan, and Pedro A. M.
 530 Mediano. Learning dynamics in linear recurrent neural networks. In *Forty-second International
 531 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=KGOcrIWYnx>.

532

533 Luca Saglietti, Stefano Mannelli, and Andrew Saxe. An analytical theory of curriculum learning in
 534 teacher-student networks. *Advances in Neural Information Processing Systems*, 35:21113–21127,
 2022.

535

536 Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
 537 namics of learning in deep linear neural networks. In *The Second International Conference on
 538 Learning Representations*, 2014. URL <https://arxiv.org/abs/1312.6120>.

539

Friedrich Schuessler, Francesca Mastrogiovanni, Alexis Dubreuil, Srdjan Ostojic, and Omri
 Barak. The interplay between randomness and structure during learning in rnns. In
 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 540 ral Information Processing Systems*, volume 33, pp. 13352–13362. Curran Associates, Inc.,
 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf.

540 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
 541 *International Journal of Computer Vision*, 130(6):1526–1565, 2022.
 542

543 Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? *arXiv preprint*
 544 *arXiv:2012.03107*, 2020.

545 A APPENDIX

546 A.1 EXTENDED DERIVATION OF LEARNING DYNAMICS

550 In this section we derive Eq. 9. Our approach is based on Proca et al. (2025) and Saxe et al. (2014),
 551 and considers a slightly broader range of tasks with fewer constraints on the task geometry. While
 552 we ultimately consider a regime that is similar to Proca et al. (2025), we aim to keep the derivation
 553 as general as possible and highlight when assumptions are required to yield tractable analytical
 554 solutions. We hope that this exposes future directions for the theory of learning in RNNS.

555 We begin with a linear RNN of the form

$$556 \quad \mathbf{h}_t = \mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{W}_x \mathbf{x}_t \quad (20)$$

$$558 \quad \mathbf{y}_t = \mathbf{W}_y \mathbf{h}_t, \quad (21)$$

559 which maps time-varying inputs $\mathbf{x}_t \in \mathbb{R}^{N_x \times 1}$ into a network state $\mathbf{h}_t \in \mathbb{R}^{N_h \times 1}$, read out into
 560 outputs $\mathbf{y}_t \in \mathbb{R}^{N_y \times 1}$. The learnable parameters of the network include the recurrent weight matrix
 561 $\mathbf{W}_h \in \mathbb{R}^{N_h \times N_h}$, input matrix $\mathbf{W}_x \in \mathbb{R}^{N_h \times N_x}$, and output matrix $\mathbf{W}_y \in \mathbb{R}^{N_y \times N_h}$. The RNN will
 562 be optimized to perform on task pulled from a family of leaky integration tasks, where inputs $\mathbf{x}_{1:T}$
 563 are integrated over time with different linear filters to yield target outputs, $\hat{\mathbf{y}}_T$, at the end of the trial,
 564 T . The loss over a batch of P trials for this single output scenario of generating a target \mathbf{y} is given
 565 as

$$566 \quad \mathcal{L} = \frac{1}{2} \sum_p^P \|\mathbf{y}_p - \hat{\mathbf{y}}_{T,p}\|^2. \quad (22)$$

569 Starting from initial state $\mathbf{h}_0 = \mathbf{0}$, the network dynamics evolve as

$$571 \quad \mathbf{h}_t = \sum_{i=1}^t \mathbf{W}_h^{t-i} \mathbf{W}_x \mathbf{x}_i, \quad (23)$$

574 which allows the loss to be rewritten as

$$577 \quad \mathcal{L} = \sum_{t,t'=1}^T \frac{1}{2} \text{Tr} \left[\mathbf{W}_y \mathbf{W}_h^{T-t} \mathbf{W}_x \Sigma_{x_t x_{t'}} \mathbf{W}_x^\top \mathbf{W}_h^{T-t' \top} \mathbf{W}_y^\top - \mathbf{W}_y \mathbf{W}_h^{T-t} \mathbf{W}_x \Sigma_{x_t y} \right] + \text{const.} \quad (24)$$

581 The autocorrelation function of the inputs, $\Sigma_{x_t x_{t'}} = \mathbb{E}[\mathbf{x}_t \mathbf{x}_{t'}^\top]$, together with the cross-correlation
 582 between time-varying input and targets, $\Sigma_{x_t y} = \mathbb{E}[\mathbf{x}_t \mathbf{y}_T^\top]$ fully specify an instance of the task.
 583 Different tasks will have different $\Sigma_{x_t x_{t'}}$ and $\Sigma_{x_t y}$, with varying degrees of overlap.

584 The loss in Eq. 24 depends on the learnable parameters, as well as data-averaged task covariances
 585 $\Sigma_{x_t x_{t'}}$ that describe how inputs co-vary over time and input dimensions, as well as input-target co-
 586 variances $\Sigma_{x_t y}$ that describe how inputs co-vary with target values. These covariances have singular
 587 value decompositions (SVD) given by

$$589 \quad \Sigma_{x_t x_{t'}} = \mathbb{E}[\mathbf{x}_t \mathbf{x}_{t'}^\top] \approx \sum_p^P \mathbf{x}_{p,t} \mathbf{x}_{p,t'}^\top = \mathbf{U}_{xx} \mathbf{S}_{x_t x_{t'}} \mathbf{U}_{xx}^\top \quad (25)$$

$$592 \quad \Sigma_{x_t y} = \mathbb{E}[\mathbf{x}_t \hat{\mathbf{y}}_T^\top] \approx \sum_p^P \mathbf{x}_{p,t} \hat{\mathbf{y}}_{p,T}^\top = \mathbf{U}_{xy} \mathbf{S}_{x_t y} \mathbf{V}_{xy}^\top \quad (26)$$

594 Consistent with the previous work (Proca et al., 2025), we make additional assumption regarding the
 595 form of the task covariances: 1) we assume a static "task geometry," meaning that that the SVD axes
 596 ($\mathbf{U}_{xx}, \mathbf{U}_{xy}, \mathbf{V}_{xy}$) are constant over time, which implies a constant input-to-output mapping during
 597 the task. Unlike previous work, we do not assume fully whitened inputs here. When considering
 598 learning a sequence of tasks this assumption would be too restrictive: while it is possible to fully
 599 whiten a target task, the corresponding coordinate system will not necessarily whiten inputs for the
 600 pretraining tasks.

601 Next, we recast the loss function in a rotated space that couples singular values of $\Sigma_{x,y}$ with recur-
 602 rent modes provided by a Schur decomposition as $\mathbf{W}_h = \mathbf{U}_h \mathbf{H}_h \mathbf{U}_h^\top$, where \mathbf{H}_h is upper-triangular
 603 for non-normal dynamics, and diagonal for normal dynamics. Rotating the input and output weights
 604 as $\mathbf{W}_x = \mathbf{U}_h \tilde{\mathbf{W}}_x \mathbf{U}_{xx}^\top$, $\mathbf{W}_y = \mathbf{V}_{xy} \tilde{\mathbf{W}}_y \mathbf{U}_h^\top$, the loss function becomes
 605

$$606 \mathcal{L} = \sum_{t,t'}^T \frac{1}{2} \text{Tr} \left[\tilde{\mathbf{W}}_y \mathbf{H}_h^{T-t} \tilde{\mathbf{W}}_x \mathbf{S}_{x_t x_{t'}} \tilde{\mathbf{W}}_x^\top \mathbf{H}_h^{T-t'\top} \tilde{\mathbf{W}}_y^\top \right] - \text{Tr} \left[\tilde{\mathbf{W}}_y \mathbf{H}_h^{T-t} \tilde{\mathbf{W}}_x (\mathbf{U}_{xx}^\top \mathbf{U}_{xy}) \mathbf{S}_{x_t y} \right]. \quad (27)$$

609 We make a further assumption here that that $\mathbf{U}_{xx}^\top \mathbf{U}_{xy} = \mathbf{I}$, which holds only for $\mathbf{U}_{xx} = \mathbf{U}_{xy}$.
 610 This implies a connection between the axes of the input covariability and the SVD modes of the
 611 input-to-output mapping, which is that the directions of variability in the inputs must be aligned
 612 with the primary SVD modes of $\Sigma_{x,y}$.⁴ At this stage, we do not assume that input and output
 613 matrices are naturally aligned to the network and singular values modes, meaning $\tilde{\mathbf{W}}_x$ and $\tilde{\mathbf{W}}_y$ are
 614 not assumed to be diagonal. We will implement this in practice when by choosing a privileged set
 615 of initial conditions for training, but our derivation does not require this.
 616

617 We restrict the learning dynamics to how input and output parameters to the network update over
 618 learning, as the learning dynamics for recurrent weights do not have analytical solutions without
 619 introducing approximations. By denoting the learning trajectory by a variable τ , these updates are
 620 given by

$$621 \frac{\partial \tilde{\mathbf{W}}_x}{\partial \tau} = -\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}_x} = \sum_{t,t'} \mathbf{H}_h^{T-t\top} \tilde{\mathbf{W}}_y^\top \mathbf{S}_{y_{x_t}} - \mathbf{H}_h^{T-t'\top} \tilde{\mathbf{W}}_y^\top \tilde{\mathbf{W}}_y \mathbf{H}_h^{T-t} \tilde{\mathbf{W}}_x \mathbf{S}_{x_t x_{t'}} \quad (28)$$

$$625 \frac{\partial \tilde{\mathbf{W}}_y}{\partial \tau} = -\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}_y} = \sum_{t,t'} \mathbf{S}_{y_{x_t}} \tilde{\mathbf{W}}_x^\top \mathbf{H}_h^{T-t\top} - \tilde{\mathbf{W}}_y \mathbf{H}_h^{T-t} \tilde{\mathbf{W}}_x \mathbf{S}_{x_t x_{t'}} \tilde{\mathbf{W}}_x^\top \mathbf{H}_h^{T-t'\top}. \quad (29)$$

627 We note that Eqs. 28-29 hold for both non-normal dynamics and normal dynamics. Moving forward,
 628 though, we restrict our attention to the case of normal dynamics (diagonal \mathbf{H}_h). We also now make
 629 the same diagonalized matrix assumptions in Proca et al. (2025), which is that $\tilde{\mathbf{W}}_x$ and $\tilde{\mathbf{W}}_y$ have
 630 only diagonal entries. This yields update equations where \mathbf{H} can combine
 631

$$633 \frac{\partial \tilde{\mathbf{W}}_x}{\partial \tau} = -\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}_x} = \sum_{t,t'} \mathbf{H}_h^{T-t} \tilde{\mathbf{W}}_y^\top \mathbf{S}_{y_{x_t}} - \mathbf{H}_h^{2T-t'-t} \tilde{\mathbf{W}}_y^\top \tilde{\mathbf{W}}_y \tilde{\mathbf{W}}_x \mathbf{S}_{x_t x_{t'}} \quad (30)$$

$$637 \frac{\partial \tilde{\mathbf{W}}_y}{\partial \tau} = -\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{W}}_y} = \sum_{t,t'} \mathbf{S}_{y_{x_t}} \tilde{\mathbf{W}}_x^\top \mathbf{H}_h^{T-t} - \tilde{\mathbf{W}}_y \mathbf{H}_h^{2T-t-t'} \tilde{\mathbf{W}}_x \mathbf{S}_{x_t x_{t'}} \tilde{\mathbf{W}}_x^\top. \quad (31)$$

640 Rather than track how updates for the entire weight matrices unfold under time, it is useful to con-
 641 sider how their columns and vectors, or "modes", of these matrices update over time Saxe et al.
 642 (2014); Proca et al. (2025). Specifically, we define the columns of $\tilde{\mathbf{W}}_x$ as \mathbf{a}_α , and the rows of $\tilde{\mathbf{W}}_y$
 643 as \mathbf{c}_β . The diagonal entries of \mathbf{H}_h are given by b_α (the eigenvalues of W_h), and similarly $s_{x_t y}^\alpha$ and
 644 $s_{x_t x_{t'}}^\alpha$ are the diagonal entries of the task covariance matrices. The modes are then given as

$$645 \mathbf{a}(\tau) = \tilde{\mathbf{W}}_{x:, \alpha} = \sum_{\alpha} a_\alpha(\tau) \mathbf{r}_\alpha, \quad 646 \mathbf{b}(\tau) = \tilde{\mathbf{W}}_{y \alpha, :} = \sum_{\alpha} b_\alpha(\tau) \mathbf{r}_\alpha, \quad (32)$$

647 ⁴This was also noted in Saxe et al. (2014) Appendix

648 where $\{\mathbf{r}_\alpha\} \in \mathbb{R}^{N_h \times 1}$ is a basis set of vectors for the modes.
 649

650 By tracking the α -th columns of \tilde{W}_x and α -th rows of \tilde{W}_y in eqs. 30-31, we can express the update
 651 equations for the input and output modes:
 652

$$\begin{aligned} \frac{\partial \mathbf{a}_\alpha}{\partial t} &= \sum_{t,t'} \sum_{\gamma} b_\gamma^{(T-t)} \mathbf{c}_\gamma s_{yx_i}^\gamma - b_\alpha^{(T-t)} b_\alpha^{(T-t')} (\mathbf{c}_\alpha \cdot \mathbf{a}_\alpha) s_{x_t x_{t'}}^\alpha \\ &= \sum_{t,t'} b_\alpha^{(T-t)} \mathbf{c}_\alpha \left[s_{yx_t}^\alpha - b_\alpha^{(T-t')} (\mathbf{c}_\alpha \cdot \mathbf{a}_\alpha) s_{x_t x_{t'}}^\alpha \right] - \sum_{\gamma \neq \alpha} b_\gamma^{(T-t)} \mathbf{c}_\gamma s_{yx_t}^\gamma \end{aligned} \quad (33)$$

$$\frac{\partial \mathbf{c}_\alpha}{\partial t} = \sum_{t,t'} b_\alpha^{(T-t)} \mathbf{a}_\alpha \left[s_{yx_t}^\alpha - b_\alpha^{(T-t')} (\mathbf{c}_\alpha \cdot \mathbf{a}_\alpha) s_{x_t x_{t'}}^\alpha \right] - \sum_{\gamma \neq \alpha} b_\gamma^{(T-t)} \mathbf{a}_\gamma s_{yx_i}^\gamma \quad (34)$$

653 Eqs. 33-34 contain contributions from their own mode α , as well as cross term from other modes
 654 γ . Analytical solutions for this form are not generally tractable because of the contribution from all
 655 modes to learning, and so to address this we restrict our analysis to a special set of initial conditions
 656 to remove the cross-mode contribution. This is performed by initializing modes in a distinct set
 657 of non overlapping basis set vectors $\{\mathbf{r}_\alpha\} \in \mathbb{R}^{N_h \times 1}$, $\mathbf{r}_\alpha \cdot \mathbf{r}_\beta = \delta_{\alpha\beta}$: As has been shown previously
 658 Saxe et al. (2014), if \mathbf{a} and \mathbf{c} are initialized onto the same set of orthogonal modes $\{\mathbf{r}_\alpha\}$, then we
 659 can track the evolution of the coefficients on these modes, and importantly, any interaction terms
 660 among these modes are strictly zero with these initial conditions.
 661

662 The update equations for the weighting coefficients are then given as

$$\frac{\partial a_\alpha}{\partial \tau} = \sum_{t,t'} b_\alpha^{(T-t)} c_\alpha \left[s_{yx_t}^\alpha - b_\alpha^{(T-t')} c_\alpha a_\alpha s_{x_t x_{t'}}^\alpha \right] \quad (35)$$

$$\frac{\partial c_\alpha}{\partial t} = \sum_{t,t'} b_\alpha^{(T-t)} a_\alpha \left[s_{yx_t}^\alpha - b_\alpha^{(T-t')} c_\alpha a_\alpha s_{x_t x_{t'}}^\alpha \right] \quad (36)$$

663 Because we ignored the mode cross terms, the updates in Eqs. 35-36 minimize an effective loss
 664 function, which can be seen by integrating them with respect to the mode coefficients:
 665

$$E = \sum_{\alpha} \sum_{t,t'} \left[a_\alpha c_\alpha b_\alpha^{T-t} s_{x_t x_{t'}}^{\alpha 1/2} - s_{yx_t}^\alpha s_{x_t x_{t'}}^{\alpha -1/2} \right] \left[a_\alpha c_\alpha b_\alpha^{T-t'} s_{x_t x_{t'}}^{\alpha 1/2} - s_{yx_t}^\alpha s_{x_t x_{t'}}^{\alpha -1/2} \right]. \quad (37)$$

666 The product $a_\alpha c_\alpha$ has symmetry condition of this energy ($a_\alpha c_\alpha = [a_\alpha/k][c_\alpha k]$), which guarantees
 667 an invariance condition $a^2 = c^2$ Saxe et al. (2014). Moving forward, we omit the α index unless
 668 it is strictly necessary. Introducing a collective network parameter $u = ac$, the collective update
 669 equation follows a similar functional form

$$\frac{\partial u}{\partial t} = \frac{\partial a}{\partial \tau} c + a \frac{\partial c}{\partial \tau} = 2 \sum_{i,j} b^{(T-t)} u \left[s_{yx_t}^\alpha - b^{(T-t')} u s_{x_t x_{t'}}^\alpha \right] \quad (38)$$

670 where we used the equivalence $a^2 = c^2$. Eq. 38 is a separable differential equation with a closed
 671 form solution. To simplify notation, we collect the effect of recurrence and task covariances into
 672 terms β_{yx} and β_{xx}

$$\beta_{yx}^\alpha = \sum_t b_\alpha^{(T-t)} s_{yx_t}^\alpha, \quad \beta_{xx}^\alpha = \sum_{t,t'} b_\alpha^{(2T-t-t')} s_{x_t x_{t'}}^\alpha \quad (39)$$

673 The separable equation is then $\frac{\partial u}{\partial t} = 2u [\beta_{yx} - u\beta_{xx}]$, which in its partial fraction decomposed
 674 form is

$$t = \frac{1}{2\beta_{yx}} \int_{u_0}^{u_f} \frac{du}{u} - \frac{1}{2\beta_{yx}} \int_{u_0}^{u_f} \frac{du}{u - \beta_{yx}/\beta_{xx}} \quad (40)$$

702 Integration of Eq. 40 yields
 703

$$704 t = \frac{1}{2\beta_{yx}} \log |u|_{u_0}^{u_f} - \frac{1}{2\beta_{yx}} \log |u - \beta_{yx}/\beta_{xx}|_{u_0}^{u_f} \quad (41)$$

706 which upon reorganization gives the solution for training dynamics $u(\tau) = a(\tau)c(\tau)$
 707

$$708 a(\tau)c(\tau) = \frac{1}{\left[\frac{1}{(a(0)c(0))} - \frac{\beta_{xx}}{\beta_{yx}} \right] e^{-2\tau\beta_{yx}/\gamma} + \frac{\beta_{xx}}{\beta_{yx}}}, \quad (42)$$

711 where γ is the inverse of the learning rate. Eq. 42 is for a single mode α , and there will be equivalent
 712 expressions for each of the $\alpha = \{1, 2, \dots, \min[N_x, N_y]\}$ modes.

713 In summary, we provided an expression for the learning dynamics of input and output modes in
 714 linear RNNs that encompass tasks with temporally correlated inputs. The primary assumptions that
 715 limit our current approach are 1) requiring input variability to be aligned with input-to-target map-
 716 pings, 2) assuming normal recurrent dynamics, and most importantly 3) requiring that initial con-
 717 ditions of task parameters are in an orthogonal space with respect to the task geometry to facilitate
 718 factorized training with individual network modes.

719 A.2 EXPANSION OF CL TRAINING TIME IMPROVEMENT

720 Here we add in a few intermediate steps to show the our core results of the conditions for training
 721 time improvement. Starting from the general condition:

$$724 t_{i \rightarrow 2} > t_{i \rightarrow 1} + t_{1 \rightarrow 2}. \quad (43)$$

725 we first expand the the optimal solutions and initial conditions in terms of the recurrence-weighted
 726 singular values for all except solo task 1 and task 2 training,:
 727

$$728 \frac{\gamma}{2\beta_{yx}^{(2)}} \left(\log \left| \frac{u^{*(2)}}{u_0} - 1 \right| - \log \left| \frac{\epsilon^{(2)}}{1 - \epsilon^{(2)}} \right| \right) > \\ 729 \frac{\gamma}{2\beta_{yx}^{(1)}} \left(\log \left[\frac{u^{*(1)}}{u_0} - 1 \right] - \log \left| \frac{\epsilon^{(1)}}{1 - \epsilon^{(1)}} \right| \right) + \\ 730 \frac{\gamma}{2\beta_{yx}^{(2)}} \left(\log \left| \frac{\beta_{yx}^{(2)}/\beta_{xx}^{(2)}}{(1 - \epsilon^{(1)})\beta_{yx}^{(1)}/\beta_{xx}^{(1)}} - 1 \right| - \log \left| \frac{\epsilon^{(2)}}{1 - \epsilon^{(2)}} \right| \right) \quad (44)$$

736 Removing the common term (learning rate, accuracy term for task 2), and bringing all terms to both
 737 sides gives

$$738 \frac{1}{\beta_{yx}^{(2)}} \left(\log \left| \frac{u^{*(2)}}{u_0} - 1 \right| \right) - \frac{1}{\beta_{yx}^{(1)}} \left(\log \left[\frac{u^{*(1)}}{u_0} - 1 \right] - \log \left| \frac{\epsilon^{(1)}}{1 - \epsilon^{(1)}} \right| \right) \\ 739 - \frac{1}{\beta_{yx}^{(2)}} \left(\log \left| \frac{\beta_{yx}^{(2)}/\beta_{xx}^{(2)}}{(1 - \epsilon^{(1)})\beta_{yx}^{(1)}/\beta_{xx}^{(1)}} - 1 \right| \right) > 0 \quad (45)$$

744 Finally, multiplying everything by $\beta_{yx}^{(2)}$ and combining the logs of the middle term gives our final
 745 expression
 746

$$748 \log \left| \frac{u^{*(2)}}{u_0} - 1 \right| + \frac{\beta_{yx}^{(2)}}{\beta_{yx}^{(1)}} \log \left| \left(\frac{\epsilon^{(1)}}{1 - \epsilon^{(1)}} \right) \left(\frac{u_0}{u^{*(1)} - u_0} \right) \right| - \log \left| \frac{1}{(1 - \epsilon^{(1)})} \frac{\beta_{yx}^{(2)}}{\beta_{yx}^{(1)}} \frac{\beta_{xx}^{(1)}}{\beta_{xx}^{(2)}} - 1 \right| > 0 \quad (46)$$

753 A.3 SIMULATION AND TRAINING METHODS

754 All simulations were performed in Python (3.11.6, torch 2.0.1). Numerical simulations were per-
 755 formed using gradient descent using a learning rate of 0.001 unless otherwise noted. Networks were

756 custom linear RNNs with 128 units and a single input and output channel. All initial conditions
 757 were initialized into a single input-output mode as specified by eq. 32 with the value $a = c = 0.01$.
 758 In practice, this meant setting a single entry $W_x[0, 1]$ and $W_y[0, 1]$ to 0.01, with the rest of the values
 759 initialized to zero. The recurrent weights were set to a diagonal matrix where all eigenvalues were
 760 $b = 0.96$.

761 For linear RNN simulations fitting that compared learning trajectories to theory, we first calculated
 762 the theoretical optimal solution using eq. 11, then trained the network until it converged to weights in
 763 an ϵ window of the optimal value. To calculate this optimal value, and to produce the theoretical wait
 764 time predictions and learning trajectory curves, we used analytically defined covariance matrices
 765 based on the defined task structure.

766 For nonlinear RNNs, we approximated the optimal solution by training the RNN until convergence,
 767 and then calculated the numerical training time in each task by retraining the network from scratch
 768 until it reached an ϵ window of the optimal solution.

769 When generating phase portraits and results for nonlinear RNNs across a range of task \mathcal{T}_1 accuracies,
 770 we only modulated one task parameter at a time, and kept all parameters across \mathcal{T}_1 and \mathcal{T}_2 equal.
 771 When modulating covariance strength $S_{x_t y}$, we held $S_{x_t x_t} = 1.0$. Similarly, when modulating
 772 $S_{x_t x_{t'}}$, we held $S_{x_t y} = 1.0$. In sec. 3.2, when modulating K we held $\kappa = 0.5$; when modulating κ , we
 773 held $K = 0.5$.

774 A.4 SUPPLEMENTAL ANALYSES

775 A.4.1 NUMERICAL COMPARISONS

776 Here we show numerical simulation fits to theory for each parameter regime studied in the main
 777 work, as well as the corresponding optimization trajectory for ReLU RNNs.

782 A.4.2 MISMATCHED ACROSS-TASK GEOMETRY

783 In order to study an extension beyond our theory for cases in which the factorized modes of task 1 no
 784 longer align with task covariances in task 2, we simulated a system with two inputs and two outputs,
 785 which gives two factorized modes in the network. We focused on examining if relative changes in
 786 input-target covariance strength would be recapitulated even in this scenario, by seeing if training
 787 times reflected the results Fig. 2A-C. The target task \mathcal{T}_2 here had $S_{x_t y} = \text{diag}[1.2, 1.0]$ for its input-
 788 target covariance singular values, and $S_{x_t x_{t'}} = \text{diag}[1.2, 1.0]$ for its input-input covariances singular
 789 values. To avoid any degeneracies in the network we set the two related recurrence eigenvalues to
 790 $\lambda = [0.96, 0.94]$, and set the remaining values to 0. The desired accuracy for both tasks was set to
 791 95%. $S_{x_t y}$ for task 1 always kept one mode fixed to the same value for \mathcal{T}_2 , but we set its second
 792 singular value to be either larger or smaller.

793 The left eigenvectors for $\Sigma_{x_t y}$, $U_{x_t y}$ (eq. 25), were set to the identity. Importantly, we looked
 794 at training times in the “geometry-matched” regime where $U_{x_t y}$ was also the identity, as well as a
 795 “geometry-mismatched” regime in which $U_{x_t y}$ was rotated with a 2D rotation matrix by $\pi/4$. We
 796 found that the qualitative trend seen in Fig. 2A-C holds, which is that relatively stronger \mathcal{T}_1 $S_{x_t t}$
 797 strength led to faster training, and vice versa. Moreover, we found that there was some representa-
 798 tional rotational effects that occurred for \mathcal{T}_1 having weaker input-target covariance strength, which
 799 we measured by calculating the normalized inner product between the input matrix W_x over training
 800 to its final solution at the end of \mathcal{T}_2 .

802 A.4.3 CL EFFECTS WITHOUT RECURRENCE

803 To make a comparison to feed-forward networks, we also simulated the theoretical results of varying
 804 covariance strength for the input-target covariance when the recurrent weights were set equal to the
 805 identity matrix. As mentioned in the main text, in this special case of constant singular values and
 806 perfectly stable dynamics ($b = 1$), this recapitulates the theoretical results of feed-forward networks
 807 studied in Saxe et al. (2014). Here we demonstrate that the same trends in CL improvement exist in
 808 this setting, though the magnitude of the effect is reduced.

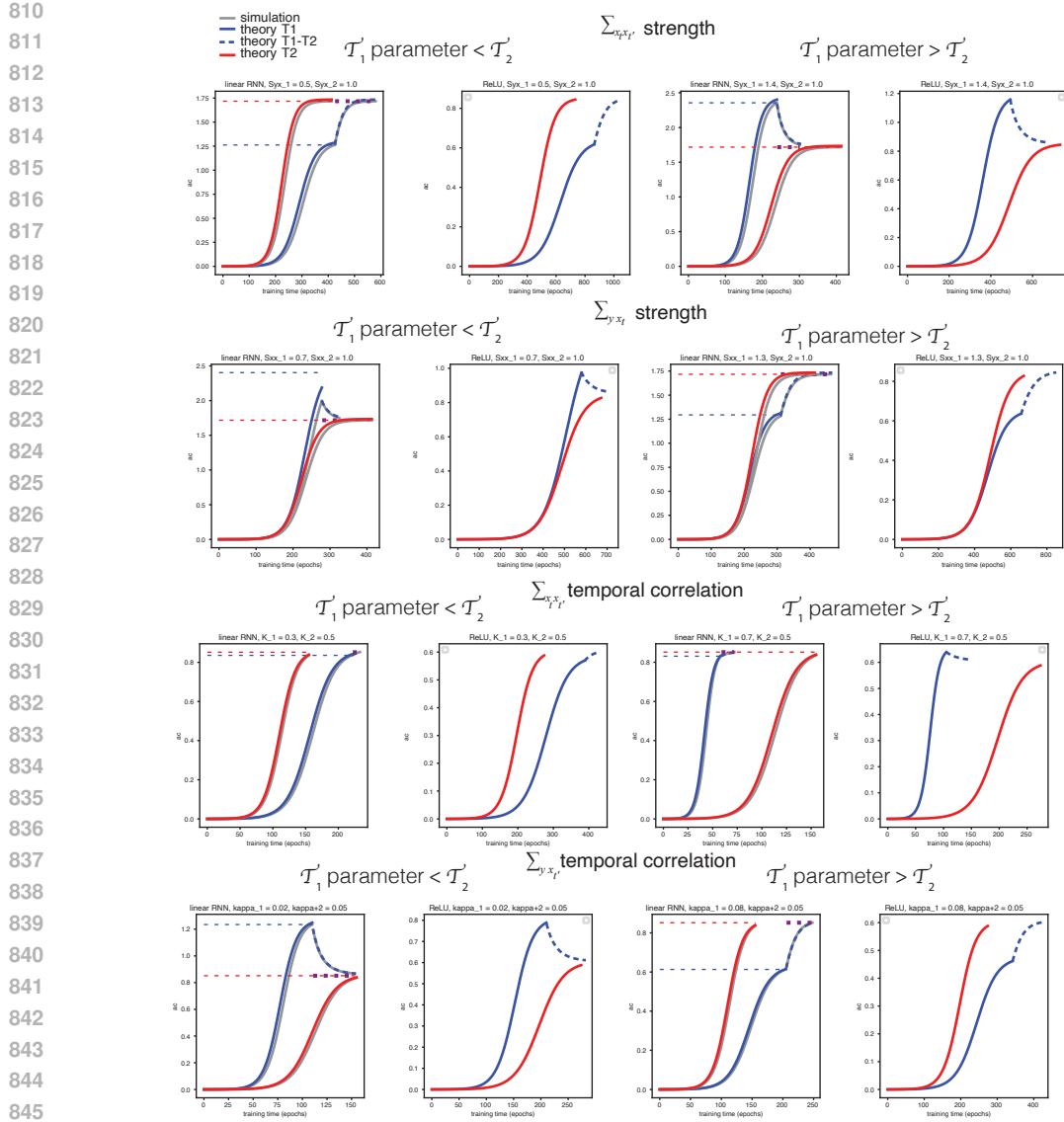


Figure 5: Numerical fits of optimizations using Curriculum learning (blue) vs. direct training of the target task (red). ReLU learning trajectories are also shown. Each row corresponds to manipulating one aspect of task covariance structure, and here we provide examples for both a parameter setting in task 1 that is smaller than task 2 (left 2 plots) as well as larger (right two plots). Theoretical optima are shown for each task with horizontal dotted lines

A.4.4 JOINT TRAINING WITH RECURRENTNESS

We also sought to understand if our qualitative results about CL effectiveness could hold when jointly training recurrent weights alongside input and output weights. Introducing training of recurrent weights is more numerically unstable than just input and output weight training because of exploding/vanishing gradient issues; in order to make a tractable comparison we focused on initial conditions near an optimum that we had originally found when training the inputs and outputs, then saw how the parameters changed from there. Specifically, we looked at scenarios analogous to Figure 2A-C, where we modulated the strength of input-target covariance strength. We trained systems with 100 timesteps with a much smaller learning rate ($\gamma = 10^{-7}$), and we chose initial conditions where the single nonzero eigenvalue of the recurrent weight matrix was set to $b = 0.96$, which was

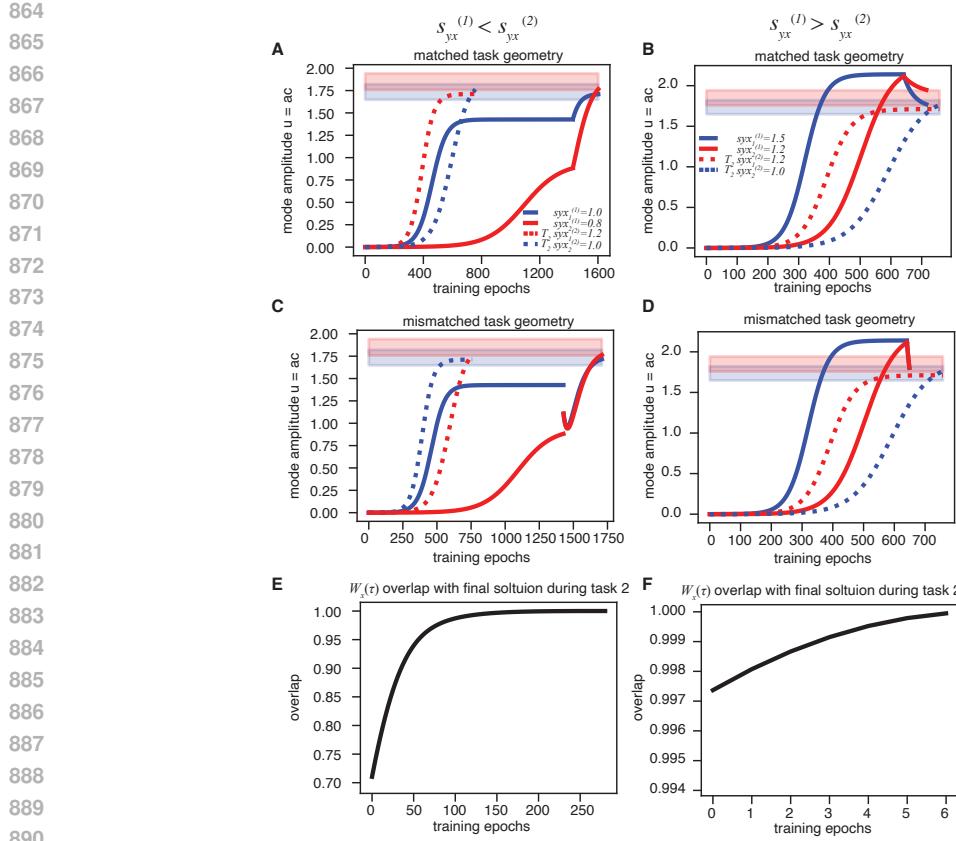


Figure 6: Effects of across-task, mismatched geometry. Training time in a 2D system with varying input-target covariances was studied when covariance eigenvalues for \mathcal{T}_1 and \mathcal{T}_2 were aligned, or mismatched. Left column is for the case where one input-target singular value is smaller in \mathcal{T}_1 than in \mathcal{T}_2 , and vice versa in the right column. **A-B** Training for the CL sequence vs. direct training when task geometry is matched. Blue lines correspond to the mode that has singular value strength that is matched across the tasks, and red lines denote the one that is different. Dotted lines denote direct training of \mathcal{T}_2 , solid lines denote the CL sequence training. **C-D** Training for the CL sequence vs. direct training when task geometry is mis-matched. **D-E** Overlap of the input weights throughout training $W_x(\tau)$ with the final solution for input weights $W_x(\tau_f)$. Shaded regions in panels **A-D** denote the one-sided 95% accuracy level around the theoretical solution for each factorized mode.

the value used in the rest of our work. We then scaled down the optimal input and output values by 50%, then trained all parameters to a loss $\mathcal{L} < 10^{-5}$.

We found that the inputs and outputs barely changed in magnitude, and that the recurrent weight changes dominated the optimization in scenarios where task 1 had a weaker input-target covariance (Fig. 8A), or a stronger one (Fig. 8B). We did find that the qualitative trend where stronger task 1 covariance strength coincided with faster training due to curriculum learning, and longer training coincided with a weaker covariance in task 1.

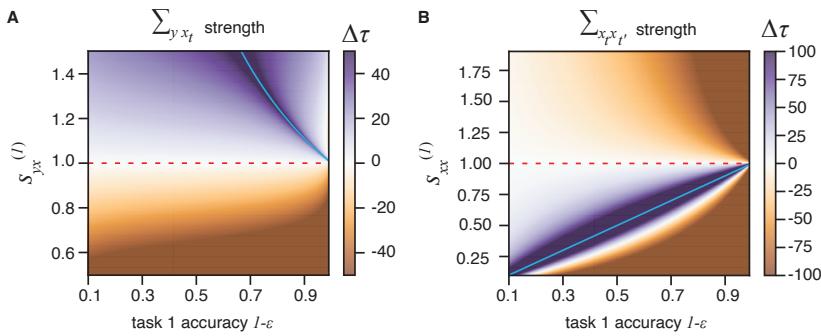


Figure 7: Theoretical predictions for varying input-target covariance strength with perfect recurrence ($b=1$). Results are as in Fig. 2A,2D.

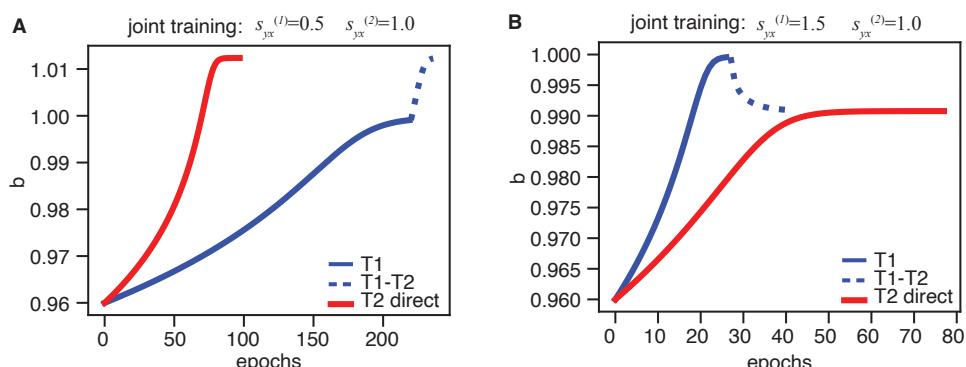


Figure 8: Recurrent weight change over joint training of all network parameters. Input and output weights were nearly constant for the entire optimization, and are not shown. **A** Training where \mathcal{T}_1 had a weaker input-target covariance strength than \mathcal{T}_2 . **B** Training where \mathcal{T}_1 had a stronger input-target covariance strength than \mathcal{T}_2 . Red lines denote direct task 2 training, and blue lines denote CL sequence training. Blue dotted line shows where \mathcal{T}_2 training begins.