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ABSTRACT

Pretraining models with a curriculum of simpler tasks is a common approach to
speed up training. However, it is unclear what aspects of task structure drive
learning speed, and how to practically choose the curriculum based on theoret-
ical principles. Using recent advances in the analysis of learning trajectories in
linear RNNs (Proca et al. [2025), we study a simple but informative example of
performing two integration tasks in sequence, and ask what aspects of their task
structure lead to faster overall learning of the second “target” task. We show both
analytically and through simulations that even for tasks that are similar in their
geometry, sequencing them based on the strength and scale of the input-to-target
correlations can provably enhance learning speed. A surprising result from our
theory that goes against conventional wisdom is that training intermediate tasks to
suboptimal accuracies can be more beneficial to learning speed, rather than train-
ing them to convergence. These results provide foundational insight into how task
similarity forms both a theoretical and practical basis for curriculum learning.

1 INTRODUCTION

Efficiently training neural network models on complex tasks can be difficult. One approach that
often proves useful in practice is pretraining on simpler related tasks. Curriculum learning (CL),
or pretraining more generally, are now ubiquitously used across many domains in machine learning
(Soviany et al.l 2022; [Hacohen & Weinshall, 2019; [Narvekar & Stonel 2018). Yet, documented
counterexamples show that CL does not always help |Wu et al.| (2020). What makes for good pre-
training tasks and how to construct effective curricula remain an open area of study, not only in
machine learning but also in cognitive and neural science (Ferguson, |1956; Dekker et al., 2022;
Behrens et al.||2018)).

One main reason for this limited understanding is that the effects of curriculum training are almost
entirely assessed through simulations, which makes the extraction of general principles difficult.
While some progress has been made recently in understanding how structured initial conditions may
affect learning speed in feedforward networks (Liu et al., [2024), a similar mathematical apparatus
that can describe recurrent neural network (RNNs) learning has long been missing. Very recent
advances in the analysis of learning dynamics for linear RNNs by [Proca et al.|(2025) open the door
for starting to think about effects of RNN pretraining in precise mathematical terms.

Existing accounts of CL pretraining largely frame its success in terms of regularizing the loss land-
scape (Bengio et al.,[2009): simpler pretaining tasks are assumed to have smoother loss surfaces in
which solutions are easy to locate. This in turn provides favorable initial conditions for parameter
optimization in the target task. While this description seems intuitive, it does assume that the loss
landscapes (or at least the regions of good solutions) are well aligned across tasks. It is not clear
how to assess this notion of task similarity outside of actually training the model on the two tasks.
This brings up more general (and largely unanswered) questions about what makes a pretraining
task similar to the target and is the alignment of the losses the only way to measure it?

In this work we build on analytical solutions for the learning dynamics of input and output param-
eters in linear RNNs to ask in precise mathematical terms how long does it take for a given task
to train to convergence either directly or via an intermediate pretraining task (Figure [T]A). In this
framing, task similarity is naturally defined in terms of input and output covariances, which allows
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for a general treatment of CL in this class of problems in terms of the geometry and alignment of
these covariances across tasks.

Our approach is organized in the following way: First, we briefly summarize the problem of opti-
mizing the input and output weights of RNNs. Next, we derive our core result that demonstrates how
long it takes to optimize RNNs after they have already learned a separate task with related structure.
We then detail the dimensions of task similarity that most drive fast learning. Finally, we explore
the generalization of these training insights beyond the scope of our theory by studying training
with nonlinear RNNSs. In this work we contribute to the fundamental theoretical understanding of
curriculum learning, highlight the significance of task similarity upon its success, and demonstrate
practical principles for choosing the sequence of tasks for effective curricula.

2 CURRICULUM LEARNING DYNAMICS IN LINEAR RNNS

2.1 PROBLEM FORMULATION

Consider the dynamics of a linear RNN (Fig.[IB):
hi = Wihi—1 + Wz (1)
Y = Wyht> 2
which maps time-varying inputs x; € R¥=>1 into a network state h; € RV»*1, read out into outputs

y; € RNv>*1 The parameters of the network include the recurrent weight matrix Wj, € RN#XNn,
input matrix W, € RV»*Neand output matrix W,, € RNs>*Ne,

We will focus on a family of tasks in which input streams x .7 are integrated over time with different
linear filters to yield outputs, g7, at the end of the trial, T'|'| The loss over a batch of P trials for this
single output scenario of generating a target y is given as:
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Network parameters are optimized by backpropagation through time to minimize this objective.

Covariances as fundamentals of task structure. Starting from initial state hy = 0, the network
dynamics evolve as h; = 22:1 Wﬁ_Zmei, which allows the loss to be rewritten as

T
1 T— Ty T—t Ty T T—
L=3 i’I‘r{WyWh W, S, WS W TW, - W,W W, 2, | +const. (4)

tt'=1

This expression directly highlights what changes in the loss function from task to task: the covari-
ances among inputs 3, ,, and the input-output covariance Ezt’y Specifically, the input covari-
ance function ¥, ., = E[x; :ctT, Jisan N, x N, x T x T tensor that captures how inputs co-vary with
each other across both input channels, as well as time. The cross-correlation between time-varying
input and the target output, X,,, = E[xty; ]isan N, x N, x T tensor that captures how inputs,
from each input channel and at every time point, relate to targets across different output channels.

Previous approaches assume white noise in the inputs by shifting any temporal dependence into
3.,y (Proca et al., |2025; [Saxe et al.,[2014), but here we need to consider full spatial and temporal
correlations in 3, ,,. This is an unavoidable consequence of our multi-task setup: while it is
possible to rotate the coordinates to whiten input for a single task, it is not generally possible to find
a single rotation will whiten them for both tasks. Since we are studying the learning dynamics of
tasks in sequence, we must embrace the temporal dependence in the inputs.

The general goal of our derivation is to determine the time 7 that it takes a network to learn a target
task “2”, and to contrast that learning time with a scenario where the network starts by training

'A generalization to continuous outputs is in principle possible, see Proca et al.|(2025) Appendix M.

“Note that we will refer to the transpose of the matrix X, ,, for a fixed time point via its indices as S) =

Ty
Sya-
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Figure 1: A. Curriculum learning from the lens of task similarity. The time 7 needed to learn a
task 72 can be potentially accelerated by first learning a different task 77. The potential speedup
To—2 — (To—1 + T1—2) will depend upon the similarity between the tasks, which in this work are
minimally described by how their inputs co-vary, as well as how inputs vary with targets. B. Linear
RNN architecture. Only W, and W, are trained, and W}, are fixed, to facilitate closed-form solutions
for their training dynamics. C. We study the problem of RNN parameter learning in a rotated
reference frame that demixes and aligns the input and output singular “modes” with eigenmodes of
the recurrent network. This allows for factorized learning where each mode of the input and output
utilizes individual modes of the network.

on another task “1”, then switches to the target. In particular, we want to understand under what
circumstances and for what kind of pairs of tasks (each with a similar geometric alignment of their
input-input and input-output covariance functions) that training the sequence offers speed benefits
relative to training the target alone 79— > 79—1 + T1—2 (Fig.[T]A).

2.2 LEARNING DYNAMICS

We start by re-deriving a core result from|Proca et al.|(2025)), which is the closed form expressions for
the learning time course of the W, and W, for a fixed W,. Learning the recurrent dynamics —either
independently or jointly with the other parameters— does not afford simple closed form expressions,
requiring more complex approximations. While focusing on input and output weights seems like a
big simplification, the resulting parameter dynamics can nonetheless provide nontrivial insights into
the multi-task learning process.

We sketch the key steps of the derivation in the main text, leaving the details to the Appendix. A key
assumption in the optimization of W, and W) is that the primary axes of (co)variation of the inputs
and outputs provided by 3;,, and X, ., can be aligned to the eigenmodes of the RNN, such that
parameter learning can happen in a factorized manner (see Proca et al.| (2025)) for a discussion on
the conditions when such alignment is possible). The geometry (i.e., SVD axes) of ¥;,, and 3,/
are fixed over time, but their singular values can have time dependence. These “modes” of inputs
and outputs (i.e., formally the columns and rows of W, and W, in a rotated reference frame, respec-
tively) require rotating the loss function based upon the Schur decomposition of Wj, = U H,U, hT ,
as well as the singular value decomposition (SVD) of the two task covariances

P

Zﬂltwt/ = E[wtth’] ~ Z wp,tw;t’ = Uxxswtwt/ U;; (5)
p
P

Sew =Elwyr] = > @pty s = UsySey Vi, (©)
p

The transformation of the problem in this rotated space is explained graphically in Fig. [T[C. The
input and output sequences are transformed in a way that recasts the problem into a factorized RNN
consisting of a collection of parallel input-integrate-output channels indexed by «, parametrized by
a new set of parameters, a,,, b, and ¢,. These modes are the columns of W, (a,,) eigenvectors of
Wi (ba), and rows of Wy, (c,) in this factorized reference frame, and we refer them as the input,
recurrent, and output connectivity modes, respectively. For a small enough learning rate, one can
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write learning dynamics for the input and output modes as:

daq :

S = b en |5, =W ea - an)st,, | )
t,t’

dea ,

% = Z bgT‘”aa {sgxt _ b((lT_t )(ca .aa)sgtwt/} . ®)
t,t’

where s ., and sy, reflect the time-varying singular values of the two covariance functions which

define the task.

In general, this problem is not well-posed for any initial conditions of a,, and c,; however, under
the special assumption that the a,, and c,, are initialized onto the same mode of an orthogonal basis
with coefficients a,, and c,, a closed form solution for their product captures the learning dynamics:
1
aoz(T)Ca(T) |: 1 B i:| 6_27_[331/7 . &7 (9)
(aa(0)ca(0)) By, By

where 7 is the parameter update timestep, - is the inverse of the learning rate, and the effect of the
recurrent network strength and singular values of the task covariances is captured by 5, and (7

T T
e =2 08, = BT (10)
t t,t

We refer to the /3 terms as recurrence-weighted singular values (RWSV), as they account for the
effect of X, and X, weighted by the effect of recurrent dynamics. Eq. E] describes training for
a single mode «, so there will be equivalent expressions for each of the o = {1, 2, .. min[N,, N,|}
modes. This important result dictates the time course of parameter learning, and the optimal task
solution. In the following section, we will utilize this expression to derive our core results that relate
training time to task structure in CL.

2.3 THE IMPORTANCE OF TASK SIMILARITY FOR CURRICULUM LEARNING

Our primary goal is to understand the conditions in which learning an intermediate task accelerates
learning of a target task. As a minimal example, we consider two tasks in sequence, which are

defined by their covariance matrices: T = {2&;@, 2&’?}, k = 1,2. Moving forward we denote
the product of input and outputs mode coefficients as ac = wu. Starting from initial conditions uy,
consider the optimization time needed until « is within a small € tolerance of the optimal solution
for task 77, denoted by u*(1). To begin, the optimal solution is found for ¢ — oo in Eq. @

T 17—t (K
w k) — B(k)/ (k) _ oot tséx)t
vermmm T par—i—t g (K)

b Szyxy

We note that in the special case of constant singular values and perfectly stable dynamics (b = 1),
this recapitulates the results in|Saxe et al.|(2014).

(1)

Rearranging Eq. [0] we can solve for the amount of training required to reach a convergence criterion
u(t) = (1 — e€)u*™), where the precision of the final solution relative to the optimum u*(!) is
determined by parameter e:

) . (12)

v €
tis1 = o0 log
2By 1—e€
Thus, the training time can be separated into the relationship between optimal solutions and initial

conditions, as well as the desired error tolerance. Given this, it is straightforward to calculate the
time to optimize along a sequence of two tasks 77 and 7s:

tiso =tis1 +t12 (13)

W@

— — 1| —log

N O Y
ol CIenRE R )
#(2) (2)
~ U €
—(log|— — 1| — log | ——— 14
o (e | = 1| ot =] 9
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where we have denoted the error tolerance for each task as €(*). Importantly, this training time
only holds if the geometry of 77 is equivalent to 73, meaning that the the SVD eigenvectors for the
task covariances are the same in both tasks. Otherwise, after training on 77, the initial conditions
would not lie in an orthogonal basis set by the eigenvectors of 72, and there would be cross-mode
contributions during training.

Our primary result determines the conditions under which training on 7; offers a speedup when
learning a task 72 with equivalent task geometry,

tiso > tis1 + 110 (15)

Expanding Eq.[T5]highlights the relationships between task singular values, task accuracy, and train-
ing speed:

#(2) (2) (1) 1 (2) (1)
u yx € uo yr Pz
8| _1‘+ <1>1°g’<1—e<1>) (u*(l)—u())’_log 1—c)gm g |70
yxr yr Mxx
(16)

Eq. [16] details the conditions under which there will be a speedup in first training on 7;. The
different aspects of task structure that drive faster learning are nonlinearly related, so to gain insight
we examine each term individually to hypothesize what it implies about relative task structure in CL.
The first term simply implies that —provided the initial conditions are suitably small— there will be
a speedup, which does not relate task structure to training time. The second term does relate input-

target singular values across tasks, and suggests that when B?E,;) > 575?, CL sees faster training. The
), as well as the inverse relationship that CL is

third term also shows this (provided that BJ(E;) = g(ci)

faster when B%) < Ba(ci) (also provided Bé? = g(ci)). Finally, we re-write the 3rd term with respect
to the optimal solutions to show a surprising result that training intermediate tasks to potentially low
accuracies can be beneficial

e

B ——
1—u®

There is a singularity in this expression whenever 77 has been optimized to exactly be the solution
to task 73, which can produce a CL speedup when it is in the neighborhood of this singularity.
Interestingly, depending on the magnitude of the two optimal solutions, this speedup can occur for
small accuracy on the first task.

—log

’ > 0. a7y

These regimes from eq. are general conditions where CL is worthwhile, and for a given task
type they have intuitive and practical explanations. In short, these conditions spell out what makes
an intermediate task “easier” than the second one. For example, in our integration tasks studied
here, our theory predicts that when inputs strongly correlate with the target output, it is easier than
a weakly correlated task and will help training. This is a consequence of our first observation that

75? > Bq(,i) Additionally, if inputs are highly similar to one another then the integration problem
reduces instead to simply scaling a single input to a target value, a much “easier” problem than full
integration of a time-varying signal. This is a consequence of ﬂé? < Bg), which occurs for weaker
overall input covariance strength, as well as for very temporally correlated inputs.

In summary our theory predicts three broad effects on CL speed that are related to task structure
that have practical benefits, and relate to intuitive ideas of task “easiness” commonly found in CL
sequences: 1) 63(,;) > /6’3(,22, 2) B&) < /6’_1(622, and 3) training to suboptimal accuracies on an interme-
diate task can be beneficial. We next turn to numerical simulations to validate our theory, as well as
to explore how the strength and temporal correlations of task covariances support these effects.

3 NUMERICAL VALIDATION

In the above section we showed analytically that recurrence weighted singular values can drive CL,
which we verify here. We examine the numerical optimization of two tasks in sequence, and com-
pare that training time to a second task. For ease of visualization and to demonstrate core features of
the theory, we study networks with a single input and output channel. Additionally, because Eq.
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Figure 2: A. Phase portrait of difference in training time between direct 7 training and a curriculum
of 71 (to accuracy 1 — ¢) followed by task 7. 71 accuracy and singular value strength or 3., were
modulated. Dotted red line shows singular value of 75. Cyan denotes singularity when 77 solution
corresponds to 75 optimum, requiring no training time. B-C. Predicted vs. numerical optimization
training trajectories for individual parameter settings, denoted by square and circle in panel A . D
Similar phase portraits as in A, but for modulating singular value of 3, ;..

nonlinearly relates multiple parameters, we will study different aspects of task structure individu-
ally, while also varying task accuracy. In the simulations below we assume the accuracy of task 7
is 1 —e(® = 0.99, and we set the recurrence mode b = 0.96 to ensure ideal RNN performance when
comparing to numerical optimization, while still capturing the effects of recurrence. In all cases,
networks contained 128 hidden units, trials were 50 timesteps long, and numerical comparisons to
theory trained with batches of 1000 samples.

3.1 TASK COVARIANCE STRENGTH

We first focus on scenarios in which there is no temporal correlation in the task covariances, and
only the strength of covariance can modulate training speed. When examining the input-to-target
covariance, our theory predicts that intermediate tasks with larger ¥, singular values will be bene-
ficial, so to isolate this effect we studied a set of tasks no temporal correlation (X, ,; = ad ). We
used Eq. [I2]to compute the training time for 75, as well as Eq. [I3]for the training time for learning
T1 to accuracy 1 — ¢, followed by learning 75. We then examined the difference in training time for
a range of 77 accuracy and singular value amplitudes for 77 as a phase portrait in Fig2JJA. Sample
numerical training trajectories compared to theory are provided in Fig. 2B-C.

We found that our hypothesis from Eq. [I6] holds, where first training on tasks with larger singular
values led to faster training. Practically, this implies that tasks with inputs that are more saliently
related to the targets are ideal candidates for curricula. Somewhat surprisingly, this means that tasks
that tune input and output weights to initially larger values aid in learning later tasks with smaller
weights. We additionally see in Fig. [2JA that training 7; to even modest accuracies still improve
performance. where a larger range of accuracies is beneficial when 7; has relatively larger singular
values. This is due to the singularity in training time when the final solution for 77 is near the the
optimal solution for 73, which creates a basin of parameter values that provide a CL speedup (ZJA,
cyan line). We next examined the variance of inputs in the same manner in Fig. 2]D. Here, we found
that the relationship in training speed was generally flipped as expected, with 77 tasks containing
weaker input variances being more beneficial to training speed. Sample learning trajectories and
numerical comparison to theory are provided in the appendix (Supp. Fig.[5).

3.2 TEMPORAL CORRELATIONS IN TASK COVARIANCES

We next turn to investigating how changes to the temporal structure of the task covariances can
facilitate CL. To see how the temporal properties of the task can support this, we study correlated
inputs generated by an AR1 process as

Ty = Kxy_1 +wy, (18)

where w; ~ N(0, Xg) is white noise with covariance 3, and K defines the strength of the temporal
correlation. For this process, input covariances depend only upon the lag between time-points (Fig.
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Figure 3: Temporal correlations affect CL. A. We studied inputs drawn from ARI1 process in which
strength of singular values is lag-dependent, given by strength K (see main text). B. Phase portrait
showing difference in training time for CL sequence vs. direct target task training. Accuracy and
correlation of 77 were varied relative to 73 being trained to 99% accuracy (K for 73, dotted red line).
C. Integration profile for leaky integration tasks. Time-dependent X, corresponds to targets that
perform leaky integration with exponentially decaying profiles with timescale . D. Phase portrait as
in B, but for varying time . Cyan denotes singularity when 7; solution corresponds to 72 optimum,
requiring no training time.

) ﬂ Here we consider integration tasks that do not simply perform perfect integration across all
time, but are instead leaky integration tasks that weight later time points in a trial

T
yr = ZAtl‘t, Ay = Agem (=T (19)
t

where Ay is the IV, x IV, matrix that mixes inputs to output channels, and « is the decay of the
integration profile (Fig. 3C).

We again calculated the difference in time to train a target task 73 vs. training intermediate task
Ty first, followed by 72, but with varying accuracy and temporal properties K and x of the task
covariances. When modulating input correlations K (Fig. B]A), we find that stronger correlations
in the inputs of 77 improve training speed (Fig. [3B). From the perspective of our CL theory, there
is improvement when ﬁ;g(cl) < B;;(cl) and Eq. m suggests that this can occur if the sum of singular
values over time is smaller in task 1. This is the case for stronger temporal correlations, which have
weaker time-dependent singular values over time (see Fig. BA).

We next looked at the tradeoffs in task accuracy of task 1, and the timescale « of its temporal
integration profile for leaky integration tasks (Fig. [3|C). We find that intermediate tasks with longer
integration windows lead to faster training on task 7. This is a scenario where determining what
constitutes an “easy” task is less clear, but that is easily explained by our CL theory. Integrating over
longer timescales would conventionally be thought of as more difficult (e.g., requiring longer time

horizons), but larger integration profiles produce a larger Bé? (Eq. , which our theory predicts
will produce an increase in training speed for CL. We again see evidence of suboptimal task 1
accuracy providing a speedup because it places initial conditions for task 2 training near a singularity
(Fig. 3D, cyan line). Sample learning trajectories and numerical comparison to theory are provided
in the appendix (Supp. Fig.[3).

In summary, we find that the time-dependent aspects of task covariances are an equally important
dimension that can predict the success of CL. In the final section, we investigate if the insights
from our theory of CL in linear RNNs will generalize once we relax assumptions about the network
architecture.

3.3 NONLINEAR RNNs

Finally, we wished to see if the insights found in our linear RNN analysis would hold in a more
practical scenario. So we performed the same CL studies, using the same integration tasks, but with
RNNSs containing a ReLU nonlinearity. For individual RNNs, we compared the training time for
networks that had either a linear or ReLU activation function, and we investigated four different

3correlations that are purely lag-dependent hold only in the infinite-time limit, and we account for finite

time correlations when we calculate >, v
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Figure 4: CL effects in nonlinear RNNs compared linear RNN theoretical predictions. Total train-
ing times for individual RNNs across a range of 77 accuracies for two different task covariance
parameter settings: Red lines denote directly training on 73 to 99% accuracy and blue lines denote
a CL sequence training on 77 first, with either a larger (dark blue) or smaller (light blue) parameter.
Parameter values for each scenario are provided as legends. A-B Modulating input-target covariance
strength as in section[3.1} C-D Modulating temporal correlations in task covariance as in section [3.2]

parameter regimes that characterize the main aspects of task covariances (Fig. ). While there are
numerical differences in the optimization time, we nfound evidence that the same qualitative trends
seen for linear RNNs can hold even for nonlinear networks, meaning the the relative amplitude
of task covariance strength and temporal correlations between two tasks appears to hold. Sample
learning trajectories are provided in the appendix (Supp. Fig.[5)

4 DISCUSSION

Our work set out to provide a theoretical understanding of the benefits of curriculum learning for
speeding up learning in a target task. To make progress, we distilled this goal into a concrete math-
ematical question: what aspects of similarity between two tasks support faster learning in linear
RNNs? Building upon recent theoretical results [Proca et al.| (2025), we derived how the strength
and temporal structure of the covariances between inputs and between inputs and outputs shape pre-
training efficiency. Our theory predicted three primary drivers of CL success: 1) stronger singular
values in input-target covariances and larger target integration windows in the first task, 2) weaker
singular values in the input-input covariance and more temporally correlated inputs; In our example
system we showed how these relationships comported with conventional ideas about task ‘easiness.’
Finally we found that 3) training speed can benefit from suboptimal task accuracy in the first task.
This was not simply due to avoiding a sunk cost in over-training on the first task, but rather an effect
of strong overlap between task 1 solutions at low accuracy and the target task solution.

While our general approach follows recent results on the learning dynamics of input and output
weights in linear RNNs (Proca et al., 2025), it expands technically on them in several important
ways. First, unlike previous work we had to take into account the temporal dependencies in input and
outputs. This is something that can be avoided with appropriate re-parametrization when considering
single tasks, but needs to be considered explicitly once multiple tasks are analyzed together in the
same coordinate system. The second technical contribution is directly deriving time to convergence
for single tasks and sequences of tasks. This advance enabled us to build explicit phase plane
analyses for what kind of tasks lead to learning speedups across a range of scenarios, the results of
which we were able to confirm numerically.

The main limitations of our current approach is the restriction to similar pairs of tasks with common
structure, and the focus on the learning of input and output parameters. First, to be able to make
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mathematical progress, we had to assume that sequences of tasks maintain the same general “task
geometry.” The next natural step would be to relax this constraint by investigating the time required
to rotate a linear system into a factorized training regime (Fig. [IC), perhaps by taking advantage
of recent work demonstrating a natural alignment effect into such diagonalized regimes (Atanasov
et al.l 2021). As a counterpart for this focus on alignment, one could perhaps embrace the inherent
mixing of network modes to study tasks with compositional structure, which combine computations
from separate modes to perform new ones. This is an interesting arena to study CL, as there has been
evidence that CL is required for complex compositional tasks in RNNs (Hocker et al., 2025} |Krueger,
& Dayan, 2009), and would complement existing efforts to characterize compositional pretraining
in feed-forward networks (Lee et al.| [2024).

With respect to the second main limitation, here we restricted our analysis to training input and
output weights in RNNs with predefined recurrence. While this is certainly restrictive, it is nonethe-
less directly applicable to transfer-learning scenarios when the network’s internal representations
are reused, while input/output weights are adapted to novel inputs and targets (Pan & Yang, |2009).
There is also a rich body of numerical results in computational neuroscience that examine how banks
of dynamical motifs can be reused and composed to perform complex tasks [Driscoll et al.| (2024).
Going forward, it would be important to jointly study the effect of recurrence in shaping task similar-
ity and influencing the outcomes of curriculum learning. Incorporating recurrence into our analysis
is potentially possible, as there is already a theoretical basis for learning recurrence in the domain of
computations at long timescales (Schuessler et al., 2020).

Finally, here we have mainly focused on learning speed as a metric of success for CL, at the detri-
ment of other benefits such as robustness of the solution, generalization quality, or sensitivity to
noise. These other factors have important practical relevance and will need to be considered in sub-
sequent analyses. The ultimate goal with a theoretical description like ours is to inform practical
machine learning problems. Given the recent demonstrations that even highly simplified mathemat-
ical analyses can still carry insight into mathematically intractable but practically relevant scenarios
(Liu et al., [2024), we hope that our approach can make an impact throughout the the breadth of the
CL ecosystem (Soviany et al., [2022)).

REPRODUCIBILITY STATEMENT

In order to facilitate reproducibility of our results we have included a full derivation of the theory
in the Appendix. We have also provided details for the simulation and training of RNNs that lead
to the results. All code for generating the results in the manuscript will be provided at the time of
publication.
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A APPENDIX

A.1 EXTENDED DERIVATION OF LEARNING DYNAMICS

In this section we derive Eq.[9] Our approach is based on [Proca et al.|(2025)) and [Saxe et al.| (2014),
and considers a slightly broader range of tasks with fewer constraints on the task geometry. While
we ultimately consider a regime that is similar toProca et al.|(2025)), we aim to keep the derivation
as general as possible and highlight when assumptions are required to yield tractable analytical
solutions. We hope that this exposes future directions for the theory of learning in RNNS.

We begin with a linear RNN of the form

h; =Wyhi_1 + W,x, (20)
Yy = Wyhy, 2n

which maps time-varying inputs &; € R™+*! into a network state h; € R™*!, read out into
outputs y; € RVv*1 The learnable parameters of the network include the recurrent weight matrix
W, € RNnXNn input matrix W, € RNoxNz and output matrix W, € RNv*Nn  The RNN will
be optimized to perform on task pulled from a family of leaky integration tasks, where inputs x .7
are integrated over time with different linear filters to yield target outputs, yr, at the end of the trial,
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T'. The loss over a batch of P trials for this single output scenario of generating a target y is given
as

1L
=52 llwp — 9, (22)
P
Starting from initial state hy = 0, the network dynamics evolve as
t
he = W, W, (23)

=1

which allows the loss to be rewritten as

[\D\H

[ wW,W W, s, W W W - w,w —thEm,,y] + const. (24)

24

The autocorrelation function of the inputs, 3, ., = E[z,z/ ], together with the cross-correlation

between time-varying input and targets, 3., = E[z,y;] fully specify an instance of the task.
Different tasks will have different 3,/ and 3, with varying degrees of overlap.

The loss in Eq. [24] depends on the learnable parameters, as well as data-averaged task covariances
Y.z, that describe how inputs co-vary over time and input dimensions, as well as input-target co-
variances X, ,, that describe how inputs co-vary with target values. These covariances have singular
value decompositions (SVD) given by

Yor, = Elziz)] ~ Z xp@) = UsaSu,o, Uy, (25)
p
Yo,y = Elzi37] Za:p 10y = UsySa,y Vi, (26)

Consistent with the previous work (Proca et al.}[2025), we make additional assumption regarding the
form of the task covariances: 1) we assume a static “’task geometry,” meaning that that the SVD axes
(Uszg, Ugy, Vyy) are constant over time, which implies a constant input-to-output mapping during
the task. Unlike previous work, we do not assume fully whitened inputs here. When considering
learning a sequence of tasks this assumption would be too restrictive: while it is possible to fully
whiten a target task, the corresponding coordinate system will not necessarily whiten inputs for the
pretraining tasks.

Next, we recast the loss function in a rotated space that couples singular values of X, with recur-

rent modes provided by a Schur decomposition as W}, = U, H, U, hT, where H}, is upper-triangular
for non-normal dynamics, and diagonal for normal dynamics. Rotating the input and output weights

as W, = U, W, U, W, = V,, W, U, , the loss function becomes

T
£=>

t,t’

Ty{ W,H ~'W,S,,., W, H - tTWT} [WyH,?*th(U;UIy)SW .

N =

27)

We make a further assumption here that that U +Uzy = I, which holds only for U,, = U,,.
This implies a connection between the axes of the input covariability and the SVD modes of the
input-to-output mapping, which is that the directions of variability in the inputs must be aligned
with the primary SVD modes of 3,,,. E] At this stage, we do not assume that input and output

matrices are naturally aligned to the network and singular values modes, meaning W, and Wy are

*This was also noted in |Saxe et al.| (2014) Appendix

11
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not assumed to be diagonal. We will implement this in practice when by choosing a privileged set
of initial conditions for training, but our derivation does not require this.

We restrict the learning dynamics to how input and output parameters to the network update over
learning, as the learning dynamics for recurrent weights do not have analytical solutions without
introducing approximations. By denoting the learning trajectory by a variable 7, these updates are
given by

oW, oL e Ty Ttk —_—
t= oo = ZHhT tTWyTSyxz: - Hl? ' T‘/VyTWyH}? thSxtiCt/ (28)
or oW, vy
oW, oL < _ < —tyi 5 —t/
Lo NS, W HT T W HT WS, WIHT T 29)
or oW, —

We note that Egs. [2829]hold for both non-normal dynamics and normal dynamics. Moving forward,
though, we restrict our attention to the case of normal dynamics (diagonal H},).We also now make
the same diagonalized matrix assumptions in Proca et al.[ (2025), which is that W, and W have
only diagonal entries. This yields update equations where H can combine

aWa: oL T—tyxy T 2T—t' —tyiy TYAZ YA
R ;Hh W, Sy, — Hj W, W,W,S.,q, (30)
aWy oL T gT—t 1 2T —t—t'yx T
=———=)» S, W/H '-W,H W, Se2, W, . 31
o = oW, ; yo W, H, JHi, -, 31

Rather than track how updates for the entire weight matrices unfold under time, it is useful to con-
sider how their columns and vectors, or “modes”, of these matrices update over time Saxe et al.

(2014); Proca et al.| (2025). Specifically, we define the columns of WI as a,,, and the rows of Wy
as cg. The diagonal entries of Hj, are given by b,, (the eigenvalues of W), and similarly sg,, and
s% . are the diagonal entries of the task covariance matrices. The modes are then given as

a(r) = Wxa = Zaa(r)ra, b(r) = Wya,; = Z bo (T)7 0w, (32)

where {r,} € R™N»*1 is a basis set of vectors for the modes.

By tracking the a-th columns of W, and a-th rows of Wy in eqgs. , we can express the update
equations for the input and output modes:

(9 o
a Z Z p(T— t)cv b(T f)b(T t’ )( . aa)sgtwt,
t,t!
— Zb(T e, [SZ»M — 0T (e - an)s “W} Db Verst, Gy
v yFa
8604 Zb(T t)aa |:S:(;$t - ngT_t/)(c ’ Itw*'} Z b’Y(T ) PYS’Y oY
~ yFo

Eqgs. contain contributions from their own mode «, as well as cross term from other modes
~. Analytical solutions for this form are not generally tractable because of the contribution from all
modes to learning, and so to address this we restrict our analysis to a special set of initial conditions
to remove the cross-mode contribution. This is performed by initializing modes in a distinct set

12
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of non overlapping basis set vectors {r,} € RN»*1 r, .15 = §,5: As has been shown previously
Saxe et al|(2014), if a and c are initialized onto the same set of orthogonal modes {r,}, then we
can track the evolution of the coefficients on these modes, and importantly, any interaction terms
among these modes are strictly zero with these initial conditions.

The update equations for the weighting coefficients are then given as

da _ N L N

73; = Zb((XT ey, [Symt — b((lT t )Caaaswt:ct/] (35)
bt

8Ca (T—t) « (T—-t") «

= Zb“ G, [Syaff, — by Caaasx,,xt/] (36)
t,t!

Because we ignored the mode cross terms, the updates in Eqs. 3536 minimize an effective loss
function, which can be seen by integrating them with respect to the mode coefficients:

T
_ T—t o'/? «@ a1/ T—t' ol/? «@ o 1/2
E= ZZ [aacaba Sevay — SyeSzia, | |GaCaba ST, — Syz, St |- 37)
a t,t!

The product a,c, has symmetry condition of this energy (anco = [aa/k][cak]), which guarantees
an invariance condition a2 = ¢? |Saxe et al.| (2014). Moving forward, we omit the o index unless
it is strictly necessary. Introducing a collective network parameter v = ac, the collective update
equation follows a similar functional form

Oou Oa Oc /

20 _ = ot (T—t) _ p(T=t)

T 87_c + aaT =2 %: b U [symt b usmtmt,} (38)
where we used the equivalence a®> = ¢2. Eq. is a separable differential equation with a closed
form solution. To simplify notation, we collect the effect of recurrence and task covariances into
terms By, and Bea

T T

@ _§ : (T—t) .« o _§ : 2T —-t—t) .«

yr ba sya:u Txr T ba S:ctzt/ (39)
t t,t

The separable equation is then % = 2u [Bym — 2uf,,|, which in its partial fraction decomposed
form is

1 “rd 1 u d
= | T/ v (40)
2Byz ug U 25@496 ug U 6@/1 /Bra
Integration of Eq.[40] yields
1
_ ug uy
t= 25, log [ul,,} — 25, log [u — Byz/Buzl,,) 41)

which upon reorganization gives the solution for training dynamics u(7) = a(7)c(7)
1

1 Baa| 4278y Bua
(@(©)c(0)) ﬂ} e /g

where 7 is the inverse of the learning rate. Eq. A2]is for a single mode c, and there will be equivalent
expressions for each of the o = {1, 2, .. min[N,, N, ]} modes.

(42)

a(r)e(r) =
|

In summary, we provided an expression for the learning dynamics of input and output modes in
linear RNNs that encompass tasks with temporally correlated inputs. The primary assumptions that
limit our current approach are 1) requiring input variability to be aligned with input-to-target map-
pings, 2) assuming normal recurrent dynamics, and most importantly 3) requiring that initial con-
ditions of task parameters are in an orthogonal space with respect to the task geometry to facilitate
factorized training with individual network modes.

13
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A.2  EXPANSION OF CL TRAINING TIME IMPROVEMENT
Here we add in a few intermediate steps to show the our core results of the conditions for training
time improvement. Starting from the general condition:

tio >tiy1 +t12. (43)

we first expand the the optimal solutions and initial conditions in terms of the recurrence-weighted
singular values for all except solo task 1 and task 2 training,:

*(2) (2)
Y U €
1 -1 - — ] >
25@ <°g ‘ BT @ )
*(1) (1)
7(1) <log {u — 1} — log £ o )-I—
2By UQ 1—e¢

2 log /8‘7(’296)/ ,ng) — 1| —log i (44)
) (2) 1 — e (1) /(1) 1 —€®)
Bya (1 —€eW)Bya / Baa

Removing the common term (learning rate, accuracy term for task 2), and bringing all terms to both
sides gives

1 *(2) 1 *(1) (1)
5(2) <1og 4 - ID (1) <1og {u 1] —log % >
U U —€
(2) (2)
1
5 <log o /Bzz — 1‘) >0 (45)
v (1- (”)By /8%

Finally, multiplying everything by ﬁﬁ) and combining the logs of the middle term gives our final
expression

() () 1) ) @) a(1)
u _ yz € Uo _ L Pyx Pax
8| 1‘+5<1>1 ’(1-@) (u*“)—w))’ 8| T em) D@ 70
(46)

A.3 SIMULATION AND TRAINING METHODS

All simulations were performed in Python (3.11.6, torch 2.0.1). Numerical simulations were per-
formed using gradient descent using a learning rate of 0.001 unless otherwise noted. Networks were
custom linear RNNs with 128 units and a single input and output channel. All initial conditions
were initialized into a single input-output mode as specified by eq. [32] with the value a = ¢ = 0.01.
In practice, this meant setting a single entry W [0, 1] and W, [0, 1] to 0.01, with the rest of the values
initialized to zero. The recurrent weights were set to a diagonal matrix where all eigenvalues were
b = 0.96.

For linear RNN simulations fitting that compared learning trajectories to theory, we first calculated
the theoretical optimal solution using eq. then trained the network until it converged to weights in
an e window of the optimal value. To calculate this optimal value, and to produce the theoretical wait
time predictions and learning trajectory curves, we used analytically defined covariance matrices
based on the defined task structure.

For nonlinear RNNs, we approximated the optimal solution by training the RNN until convergence,
and then calculated the numerical training time in each task by retraining the network from scratch
until it reached an e window of the optimal solution.

When generating phase portraits and results for nonlinear RNNs across a range of task 77 accuracies,

we only modulated one task parameter at a time, and kept all parameters across 7; and 73 equal.

When modulating covariance strength Sy, we held S;,,,, = 1.0. Similarly, when modulating

fﬁﬁ’j{ weohgld S,,y=1.0 In sec. 3.2} when modulating K we held x=0.5; when modulating , we
c =

14
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A.4 SUPPLEMENTAL FIGURES

Here we show numerical simulation fits to theory for each parameter regime studied in the main
work, as well as the corresponding optimization trajectory for ReLU Rnns.

~ simulation
—theoy T1 2. strength
= = theory T1-
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Figure 5: Numerical fits of optimizations using Curriculum learning (blue) vs. direct training of the
target task (red). ReLU learning trajectories are also shown. Each row corresponds to manipulating
one aspect of task covariance structure, and here we provide examples for both a parameter setting
in task 1 that is smaller than task 2 (left 2 plots) as well as larger (right two plots). Theoreetical
optima are shown for each task with horizontal dotted lines
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