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ABSTRACT

Pretraining models with a curriculum of simpler tasks is a common approach to
speed up training. However, it is unclear what aspects of task structure drive
learning speed, and how to practically choose the curriculum based on theoret-
ical principles. Using recent advances in the analysis of learning trajectories in
linear RNNs (Proca et al. [2025), we study a simple but informative example of
performing two integration tasks in sequence, and ask what aspects of their task
structure lead to faster overall learning of the second “target” task. We show both
analytically and through simulations that even for tasks that are similar in their
geometry, sequencing them based on the strength and scale of the input-to-target
correlations can provably enhance learning speed. A surprising result from our
theory that goes against conventional wisdom is that training intermediate tasks to
suboptimal accuracies can be more beneficial to learning speed, rather than train-
ing them to convergence. These results provide foundational insight into how task
similarity forms both a theoretical and practical basis for curriculum learning.

1 INTRODUCTION

Efficiently training neural network models on complex tasks can be difficult. One approach that
often proves useful in practice is pretraining on simpler related tasks. Curriculum learning (CL),
or pretraining more generally, are now ubiquitously used across many domains in machine learning
(Soviany et al.l 2022; [Hacohen & Weinshall, 2019; [Narvekar & Stonel 2018). Yet, documented
counterexamples show that CL does not always help Wu et al.| (2020). What makes for good pre-
training tasks and how to construct effective curricula remain an open area of study, not only in
machine learning but also in cognitive and neural science (Ferguson, |1956; Dekker et al., 2022}
Behrens et al., 2018} |[Kepple et al.| 2022).

One main reason for this limited understanding is that the effects of curriculum training are almost
entirely assessed through simulations, which makes the extraction of general principles difficult.
Some progress has been made recently in understanding how feedforward networks can see training
speedups due to curricula (Lee et al.,[2024; Saglietti et al.l 2022])), or though structured initial condi-
tions(L1u et al.} 2024); however a similar mathematical apparatus that can describe recurrent neural
network (RNNs) learning has long been missing. Very recent advances in the analysis of learning
dynamics for linear RNNs by [Proca et al.[(2025)) open the door for starting to think about effects of
RNN pretraining in precise mathematical terms.

Existing accounts of CL pretraining largely frame its success in terms of regularizing the loss land-
scape (Bengio et al.,[2009): simpler pretaining tasks are assumed to have smoother loss surfaces in
which solutions are easy to locate. This in turn provides favorable initial conditions for parameter
optimization in the target task. While this description seems intuitive, it does assume that the loss
landscapes (or at least the regions of good solutions) are well aligned across tasks. It is not clear
how to assess this notion of task similarity outside of actually training the model on the two tasks.
This brings up more general (and largely unanswered) questions about what makes a pretraining
task similar to the target and is the alignment of the losses the only way to measure it?

In this work we build on analytical solutions for the learning dynamics of input and output param-
eters in linear RNNs to ask in precise mathematical terms how long does it take for a given task
to train to convergence either directly or via an intermediate pretraining task (Figure [T]A). In this
framing, task similarity is naturally defined in terms of input and output covariances, which allows
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for a general treatment of CL in this class of problems in terms of the geometry and alignment of
these covariances across tasks.

Our approach is organized in the following way: First, we briefly summarize the problem of opti-
mizing the input and output weights of RNNs. Next, we derive our core result that demonstrates how
long it takes to optimize RNNs after they have already learned a separate task with related structure.
We then detail the dimensions of task similarity that most drive fast learning. Finally, we explore
the generalization of these training insights beyond the scope of our theory by studying training
with nonlinear RNNSs. In this work we contribute to the fundamental theoretical understanding of
curriculum learning, highlight the significance of task similarity upon its success, and demonstrate
practical principles for choosing the sequence of tasks for effective curricula.

2 CURRICULUM LEARNING DYNAMICS IN LINEAR RNNS

2.1 PROBLEM FORMULATION

Consider the dynamics of a linear RNN (Fig.[IB):
hi = Wihi—1 + Wz (1)
Y = Wyht> 2
which maps time-varying inputs x; € R¥=>1 into a network state h; € RV»*1, read out into outputs

y; € RNv>*1 The parameters of the network include the recurrent weight matrix Wj, € RN#XNn,
input matrix W, € RV»*Neand output matrix W,, € RNs>*Ne,

We will focus on a family of tasks in which input streams x .7 are integrated over time with different
linear filters to yield outputs, g7, at the end of the trial, T'|'| The loss over a batch of P trials for this
single output scenario of generating a target y is given as:
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Network parameters are optimized by backpropagation through time to minimize this objective.

Covariances as fundamentals of task structure. Starting from initial state hy = 0, the network
dynamics evolve as h; = 22:1 Wﬁ_Zmei, which allows the loss to be rewritten as

T
1 T— Ty T—t Ty T T—
L=3 i’I‘r{WyWh W, S, WS W TW, - W,W W, 2, | +const. (4)

tt'=1

This expression directly highlights what changes in the loss function from task to task: the covari-
ances among inputs 3, ,, and the input-output covariance Ezt’y Specifically, the input covari-
ance function ¥, ., = E[x; :ctT, Jisan N, x N, x T x T tensor that captures how inputs co-vary with
each other across both input channels, as well as time. The cross-correlation between time-varying
input and the target output, X,,, = E[xty; ]isan N, x N, x T tensor that captures how inputs,
from each input channel and at every time point, relate to targets across different output channels.

Previous approaches assume white noise in the inputs by shifting any temporal dependence into
3.,y (Proca et al., |2025; [Saxe et al.,[2014), but here we need to consider full spatial and temporal
correlations in 3, ,,. This is an unavoidable consequence of our multi-task setup: while it is
possible to rotate the coordinates to whiten input for a single task, it is not generally possible to find
a single rotation will whiten them for both tasks. Since we are studying the learning dynamics of
tasks in sequence, we must embrace the temporal dependence in the inputs.

The general goal of our derivation is to determine the time 7 that it takes a network to learn a target
task “2”, and to contrast that learning time with a scenario where the network starts by training

'A generalization to continuous outputs is in principle possible, see Proca et al.|(2025) Appendix M.

“Note that we will refer to the transpose of the matrix X, ,, for a fixed time point via its indices as S) =

Ty
Sya-
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Figure 1: A. Curriculum learning from the lens of task similarity. The time 7 needed to learn a
task 72 can be potentially accelerated by first learning a different task 77. The potential speedup
To—2 — (To—1 + T1—2) will depend upon the similarity between the tasks, which in this work are
minimally described by how their inputs co-vary, as well as how inputs vary with targets. B. Linear
RNN architecture. Only W, and W, are trained, and W}, are fixed, to facilitate closed-form solutions
for their training dynamics. C. We study the problem of RNN parameter learning in a rotated
reference frame that demixes and aligns the input and output singular “modes” with eigenmodes of
the recurrent network. This allows for factorized learning where each mode of the input and output
utilizes individual modes of the network.

on another task “1”, then switches to the target. In particular, we want to understand under what
circumstances and for what kind of pairs of tasks (each with a similar geometric alignment of their
input-input and input-output covariance functions) that training the sequence offers speed benefits
relative to training the target alone 79— > 79—1 + T1—2 (Fig.[T]A).

2.2 LEARNING DYNAMICS

We start by re-deriving a core result from|Proca et al.|(2025)), which is the closed form expressions for
the learning time course of the W, and W, for a fixed W,. Learning the recurrent dynamics —either
independently or jointly with the other parameters— does not afford simple closed form expressions,
requiring more complex approximations. While focusing on input and output weights seems like a
big simplification, the resulting parameter dynamics can nonetheless provide nontrivial insights into
the multi-task learning process.

We sketch the key steps of the derivation in the main text, leaving the details to the Appendix. A key
assumption in the optimization of W, and W) is that the primary axes of (co)variation of the inputs
and outputs provided by 3;,, and X, ., can be aligned to the eigenmodes of the RNN, such that
parameter learning can happen in a factorized manner (see Proca et al.| (2025)) for a discussion on
the conditions when such alignment is possible). The geometry (i.e., SVD axes) of ¥;,, and 3,/
are fixed over time, but their singular values can have time dependence. These “modes” of inputs
and outputs (i.e., formally the columns and rows of W, and W, in a rotated reference frame, respec-
tively) require rotating the loss function based upon the Schur decomposition of Wj, = U H,U, hT ,
as well as the singular value decomposition (SVD) of the two task covariances

P

Zﬂltwt/ = E[wtth’] ~ Z wp,tw;t’ = Uxxswtwt/ U;; (5)
p
P

Sew =Elwyr] = > @pty s = UsySey Vi, (©)
p

The transformation of the problem in this rotated space is explained graphically in Fig. [T[C. The
input and output sequences are transformed in a way that recasts the problem into a factorized RNN
consisting of a collection of parallel input-integrate-output channels indexed by «, parametrized by
a new set of parameters, a,,, b, and ¢,. These modes are the columns of W, (a,,) eigenvectors of
Wi (ba), and rows of Wy, (c,) in this factorized reference frame, and we refer them as the input,
recurrent, and output connectivity modes, respectively. For a small enough learning rate, one can
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write learning dynamics for the input and output modes as:

da, _ L
5o = S b Me, [sgzt 5T (e .aa)sgtwt,} (7)
t,t!
Ica (T—t) @ (T—t") a
b Z by Vaa {syit — b5 (Ca .aa)swtwt/} . (8)
£t/
where s ., and sy, reflect the time-varying singular values of the two covariance functions which

define the task.

In general, this problem is not well-posed for any initial conditions of a,, and c,; however, under
the special assumption that the a,, and c,, are initialized onto the same mode of an orthogonal basis
with coefficients a,, and c,, a closed form solution for their product captures the learning dynamics:

1
€))

B2 —278%, /v T’I‘,
[CROPRO 651] vt e

where 7 is the parameter update timestep, - is the inverse of the learning rate, and the effect of the
recurrent network strength and singular values of the task covariances is captured by 37, and 57 :

Qo (T)Ca (T) =
|

T
Z b s, = 0T s, (10)
t,t/
We refer to the /3 terms as recurrence-weighted singular values (RWSV), as they account for the
effect of X, and X, weighted by the effect of recurrent dynamics. Eq. E] describes training for
a single mode «, so there will be equivalent expressions for each of the o = {1, 2, .. min[N,, N,|}
modes. This important result dictates the time course of parameter learning, and the optimal task
solution. In the following section, we will utilize this expression to derive our core results that relate
training time to task structure in CL.

2.3 THE IMPORTANCE OF TASK SIMILARITY FOR CURRICULUM LEARNING

Our primary goal is to understand the conditions in which learning an intermediate task accelerates
learning of a target task. As a minimal example, we consider two tasks in sequence, which are
defined by their covariance matrices: T = {2&;@, E(k)} k = 1,2. Moving forward we denote
the product of input and outputs mode coefficients as ac = u. Startmg from initial conditions u,
consider the optimization time needed until « is within a small € tolerance of the optimal solution
for task 77, denoted by u*(1). To begin, the optimal solution is found for t — oo in Eq. @

*(k) — /ﬂ(k) Z bT s let (1
J‘ 2T —t—t/ (k)
Z b Szyxy

We note that in the special case of constant singular Values and perfectly stable dynamics (b = 1),
this recapitulates the results in[Saxe et al.| (2014) (Appendix [A.4.4).

Rearranging Eq. [0] we can solve for the amount of training required to reach a convergence criterion
u(t) = (1 — e€)u*™), where the precision of the final solution relative to the optimum u*(!) is
determined by parameter e:

) . (12)

v U €
tis1 = o0 log
2By 1—c¢
Thus, the training time can be separated into the relationship between optimal solutions and initial

conditions, as well as the desired error tolerance. Given this, it is straightforward to calculate the
time to optimize along a sequence of two tasks 77 and 7s:

tiso =tis1 +t12 (13)

*#(1)

— log

AN LN I
= o — 1| —log |—=
265,? * 1w BlT—em
) @)
U €
5(2) <1°g 0= ey ® 1‘ —logli T > ! (14
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where we have denoted the error tolerance for each task as €(*). Importantly, this training time
only holds if the geometry of 77 is equivalent to 73, meaning that the the SVD eigenvectors for the
task covariances are the same in both tasks. Otherwise, after training on 77, the initial conditions
would not lie in an orthogonal basis set by the eigenvectors of 72, and there would be cross-mode
contributions during training (numerical results of this scenario provided in Appendix[A.4.2]).

Our primary result determines the conditions under which training on 7; offers a speedup when
learning a task 72 with equivalent task geometry,

tiso > tis1 + 110 (15)

Expanding Eq.[T5]highlights the relationships between task singular values, task accuracy, and train-
ing speed:

#(2) (2) (1) 1 (2) (1)
u yx € uo yr Pz
8| _1‘+ <1>1°g’<1—e<1>) (u*(l)—u())’_log 1—c)gm g |70
yxr yr Mxx
(16)

Eq. [16] details the conditions under which there will be a speedup in first training on 7;. The
different aspects of task structure that drive faster learning are nonlinearly related, so to gain insight
we examine each term individually to hypothesize what it implies about relative task structure in CL.
The first term simply implies that —provided the initial conditions are suitably small— there will be
a speedup, which does not relate task structure to training time. The second term does relate input-

target singular values across tasks, and suggests that when B?E,;) > 575?, CL sees faster training. The
), as well as the inverse relationship that CL is

third term also shows this (provided that BJ(E;) = g(ci)

faster when B%) < Ba(ci) (also provided Bé? = g(ci)). Finally, we re-write the 3rd term with respect
to the optimal solutions to show a surprising result that training intermediate tasks to potentially low
accuracies can be beneficial

e

B ——
1—u®

There is a singularity in this expression whenever 77 has been optimized to exactly be the solution
to task 73, which can produce a CL speedup when it is in the neighborhood of this singularity.
Interestingly, depending on the magnitude of the two optimal solutions, this speedup can occur for
small accuracy on the first task.

—log

’ > 0. a7y

These regimes from eq. are general conditions where CL is worthwhile, and for a given task
type they have intuitive and practical explanations. In short, these conditions spell out what makes
an intermediate task “easier” than the second one. For example, in our integration tasks studied
here, our theory predicts that when inputs strongly correlate with the target output, it is easier than
a weakly correlated task and will help training. This is a consequence of our first observation that

75? > Bq(,i) Additionally, if inputs are highly similar to one another then the integration problem
reduces instead to simply scaling a single input to a target value, a much “easier” problem than full
integration of a time-varying signal. This is a consequence of ﬂé? < Bg), which occurs for weaker
overall input covariance strength, as well as for very temporally correlated inputs.

In summary our theory predicts three broad effects on CL speed that are related to task structure
that have practical benefits, and relate to intuitive ideas of task “easiness” commonly found in CL
sequences: 1) 63(,;) > /6’3(,22, 2) B&) < /6’_1(622, and 3) training to suboptimal accuracies on an interme-
diate task can be beneficial. We next turn to numerical simulations to validate our theory, as well as
to explore how the strength and temporal correlations of task covariances support these effects.

3 NUMERICAL VALIDATION

In the above section we showed analytically that recurrence weighted singular values can drive CL,
which we verify here. We examine the numerical optimization of two tasks in sequence, and com-
pare that training time to a second task. For ease of visualization and to demonstrate core features of
the theory, we study networks with a single input and output channel. Additionally, because Eq.
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Figure 2: A. Phase portrait of difference in training time between direct 7 training and a curriculum
of 71 (to accuracy 1 — ¢) followed by task 7. 71 accuracy and singular value strength or 3., were
modulated. Dotted red line shows singular value of 75. Cyan denotes singularity when 77 solution
corresponds to 75 optimum, requiring no training time. B-C. Predicted vs. numerical optimization
training trajectories for individual parameter settings, denoted by square and circle in panel A . D
Similar phase portraits as in A, but for modulating singular value of 3, ;..

nonlinearly relates multiple parameters, we will study different aspects of task structure individu-
ally, while also varying task accuracy. In the simulations below we assume the accuracy of task 7
is 1 —e(® = 0.99, and we set the recurrence mode b = 0.96 to ensure ideal RNN performance when
comparing to numerical optimization, while still capturing the effects of recurrence. In all cases,
networks contained 128 hidden units, trials were 50 timesteps long, and numerical comparisons to
theory trained with batches of 1000 samples.

3.1 TASK COVARIANCE STRENGTH

We first focus on scenarios in which there is no temporal correlation in the task covariances, and
only the strength of covariance can modulate training speed. When examining the input-to-target
covariance, our theory predicts that intermediate tasks with larger ¥, singular values will be bene-
ficial, so to isolate this effect we studied a set of tasks no temporal correlation (X, ,; = ad ). We
used Eq. [I2]to compute the training time for 75, as well as Eq. [I3]for the training time for learning
T1 to accuracy 1 — ¢, followed by learning 75. We then examined the difference in training time for
a range of 77 accuracy and singular value amplitudes for 77 as a phase portrait in Fig2JJA. Sample
numerical training trajectories compared to theory are provided in Fig. 2B-C.

We found that our hypothesis from Eq. [I6] holds, where first training on tasks with larger singular
values led to faster training. Practically, this implies that tasks with inputs that are more saliently
related to the targets are ideal candidates for curricula. Somewhat surprisingly, this means that tasks
that tune input and output weights to initially larger values aid in learning later tasks with smaller
weights. We additionally see in Fig. [2JA that training 7; to even modest accuracies still improve
performance. where a larger range of accuracies is beneficial when 7; has relatively larger singular
values. This is due to the singularity in training time when the final solution for 77 is near the the
optimal solution for 73, which creates a basin of parameter values that provide a CL speedup (ZJA,
cyan line). We next examined the variance of inputs in the same manner in Fig. 2]D. Here, we found
that the relationship in training speed was generally flipped as expected, with 77 tasks containing
weaker input variances being more beneficial to training speed. Sample learning trajectories and
numerical comparison to theory are provided in the appendix (Supp. Fig.[5).

3.2 TEMPORAL CORRELATIONS IN TASK COVARIANCES

We next turn to investigating how changes to the temporal structure of the task covariances can
facilitate CL. To see how the temporal properties of the task can support this, we study correlated
inputs generated by an AR1 process as

Ty = Kxy_1 +wy, (18)

where w; ~ N(0, Xg) is white noise with covariance 3, and K defines the strength of the temporal
correlation. For this process, input covariances depend only upon the lag between time-points (Fig.
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Figure 3: Temporal correlations affect CL. A. We studied inputs drawn from ARI1 process in which
strength of singular values is lag-dependent, given by strength K (see main text). B. Phase portrait
showing difference in training time for CL sequence vs. direct target task training. Accuracy and
correlation of 77 were varied relative to 73 being trained to 99% accuracy (K for 73, dotted red line).
C. Integration profile for leaky integration tasks. Time-dependent X, corresponds to targets that
perform leaky integration with exponentially decaying profiles with timescale . D. Phase portrait as
in B, but for varying time . Cyan denotes singularity when 7; solution corresponds to 72 optimum,
requiring no training time.

) ﬂ Here we consider integration tasks that do not simply perform perfect integration across all
time, but are instead leaky integration tasks that weight later time points in a trial

T
ye =Y Ay, A= Age "D (19)
t

where Ay is the IV, x IV, matrix that mixes inputs to output channels, and « is the decay of the
integration profile (Fig. B[C).

We again calculated the difference in time to train a target task 75 vs. training intermediate task
Ty first, followed by 75, but with varying accuracy and temporal properties K and s of the task
covariances. When modulating input correlations K (Fig.[3]A), we find that stronger correlations in
the inputs of 77 improve training speed (Fig. [3B). We next looked at the tradeoffs in task accuracy
of task 1, and the timescale  of its temporal integration profile for leaky integration tasks (Fig. B[C).
We find that intermediate tasks with longer integration windows lead to faster training on task 7s.
This is a scenario where determining what constitutes an “easy” task is less clear, but that is easily
explained by our CL theory. Integrating over longer timescales would conventionally be thought
of as more difficult (e.g., requiring longer time horizons), but larger integration profiles produce a

larger Bé? (Eq. , which our theory predicts will produce an increase in training speed for CL.
We again see evidence of suboptimal task 1 accuracy providing a speedup because it places initial
conditions for task 2 training near a singularity (Fig. 3D, cyan line). Sample learning trajectories
and numerical comparison to theory are provided in the appendix (Supp. Fig.[5).

In summary, we find that the time-dependent aspects of task covariances are an equally important
dimension that can predict the success of CL. In the final section, we investigate if the insights
from our theory of CL in linear RNNs will generalize once we relax assumptions about the network
architecture.

3.3 NONLINEAR RNNSs

Finally, we wished to see if the insights found in our linear RNN analysis would hold in a more
practical scenario. So we performed the same CL studies, using the same integration tasks, but
with RNNs containing a ReLU nonlinearity. For individual RNNs, we compared the training time
for networks that had either a linear or ReLU activation function, and we investigated four different
parameter regimes that characterize the main aspects of task covariances (Fig. ). Without the ability
to generate theoretical predictions for nonlinear networks, we instead focused on whether or not the
same qualitative principles identified in our linear theory would hold in nonlinear networks. While
there are numerical differences in the optimization time, we found evidence that the same qualitative

3correlations that are purely lag-dependent hold only in the infinite-time limit, and we account for finite

time correlations when we calculate >, v
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Figure 4: CL effects in nonlinear RNNs compared linear RNN theoretical predictions. Total train-
ing times for individual RNNs across a range of 77 accuracies for two different task covariance
parameter settings: Red lines denote directly training on 73 to 99% accuracy and blue lines denote
a CL sequence training on 77 first, with either a larger (dark blue) or smaller (light blue) parameter.
Parameter values for each scenario are provided as legends. A-B Modulating input-target covariance
strength as in section[3.1} C-D Modulating temporal correlations in task covariance as in section [3.2]

trends seen for linear RNNs can hold even for nonlinear networks, meaning the the relative amplitude
of task covariance strength and temporal correlations between two tasks appears to hold. Sample
learning trajectories are provided in the appendix (Supp. Fig.[5). Finally, we also studied additional
extensions beyond our theory where its qualitative trends still hold, including tasks with mismatched
task geometry (Supp. Fig. [6), as well as jointly training recurrent and input/output weights (Supp.
Fig. [B)

4 DISCUSSION

Our work set out to provide a theoretical understanding of the benefits of curriculum learning for
speeding up learning in a target task. To make progress, we distilled this goal into a concrete math-
ematical question: what aspects of similarity between two tasks support faster learning in linear
RNNs? Building upon recent theoretical results |Proca et al.| (2025), we derived how the strength
and temporal structure of the covariances between inputs and between inputs and outputs shape pre-
training efficiency. Our theory predicted three primary drivers of CL success: 1) stronger singular
values in input-target covariances and larger target integration windows in the first task, 2) weaker
singular values in the input-input covariance and more temporally correlated inputs; In our example
system we showed how these relationships comported with conventional ideas about task ‘easiness.’
Finally we found that 3) training speed can benefit from suboptimal task accuracy in the first task.
This was not simply due to avoiding a sunk cost in over-training on the first task, but rather an effect
of strong overlap between task 1 solutions at low accuracy and the target task solution.

While our general approach follows recent results on the learning dynamics of input and output
weights in linear RNNs (Proca et al} 2025)), it expands technically on them in several important
ways. First, unlike previous work we had to take into account the temporal dependencies in input and
outputs. This is something that can be avoided with appropriate re-parametrization when considering
single tasks, but needs to be considered explicitly once multiple tasks are analyzed together in the
same coordinate system. The second technical contribution is directly deriving time to convergence
for single tasks and sequences of tasks. This advance enabled us to build explicit phase plane
analyses for what kind of tasks lead to learning speedups across a range of scenarios, the results of
which we were able to confirm numerically.
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Our results spell out the key properties about task relationships that allow for faster training, and an
ultimate goal of this work is to provide simple heuristics for how to harness these relationships to
build straightforward stopping criteria on pre-training tasks. Our theoretical work demonstrated the
existence of a singularity condition for training time improvement (eq. [I7), and through numerical
simulations we found that this singularity provided a broad range of support for nearby solutions to
have tangible training speedups (Fig. 2JAZD, [3D). The nonlinear relationship between relative task
covariances and training speedup suggests a general guiding strategy for when to stop training on
an initial task: the larger that differences in task covariances, the earlier one should stop training
on the first task. In particular, the mean-squared error tasks studied here have sigmoidal training
trajectories (eq. [9) and unique optima (eq. [IT)), which provides a simple diagnostic for when to
stop training on task 1: Monitoring the second task for a steep decrease in its loss, following by a
saturation hints that training on task 1 has placed you in the neighborhood of the optimal solution
for task 2. This is highly specific to the nature of the loss function for this task, and different tasks
will have different signatures. Future work aims to determine such practical stopping heuristics in
other task classes.

The main limitations of our current approach is the restriction to similar pairs of tasks with common
structure, and the focus on the learning of input and output parameters. First, to be able to make
mathematical progress, we had to assume that sequences of tasks maintain the same general “task
geometry.” The next natural step would be to relax this constraint by investigating the time required
to rotate a linear system into a factorized training regime (Fig. [TIC), perhaps by taking advantage
of recent work demonstrating a natural alignment effect into such diagonalized regimes (Atanasov
et al.l 2021). As a counterpart for this focus on alignment, one could perhaps embrace the inherent
mixing of network modes to study tasks with compositional structure, which combine computations
from separate modes to perform new ones. This is an interesting arena to study CL, as there has been
evidence that CL is required for complex compositional tasks in RNNs (Hocker et al., 2025} |[Krueger,
& Dayan, 2009), and would complement existing efforts to characterize compositional pretraining
in feed-forward networks (Lee et al.| [2024).

With respect to the second main limitation, here we restricted our analysis to training input and
output weights in RNNs with predefined recurrence. While this is certainly restrictive, it is nonethe-
less directly applicable to transfer-learning scenarios when the network’s internal representations
are reused, while input/output weights are adapted to novel inputs and targets (Pan & Yang, |2009).
There is also a rich body of numerical results in computational neuroscience that examine how banks
of dynamical motifs can be reused and composed to perform complex tasks [Driscoll et al.| (2024).
Going forward, it would be important to jointly study the effect of recurrence in shaping task similar-
ity and influencing the outcomes of curriculum learning. Incorporating recurrence into our analysis
is potentially possible, as there is already a theoretical basis for learning recurrence in the domain of
computations at long timescales (Schuessler et al., 2020).

Finally, here we have mainly focused on learning speed as a metric of success for CL, at the detri-
ment of other benefits such as robustness of the solution, generalization quality, or sensitivity to
noise. These other factors have important practical relevance and will need to be considered in sub-
sequent analyses. The ultimate goal with a theoretical description like ours is to inform practical
machine learning problems. Given the recent demonstrations that even highly simplified mathemat-
ical analyses can still carry insight into mathematically intractable but practically relevant scenarios
(Liu et al., [2024), we hope that our approach can make an impact throughout the the breadth of the
CL ecosystem (Soviany et al., [2022).

REPRODUCIBILITY STATEMENT

In order to facilitate reproducibility of our results we have included a full derivation of the theory
in the Appendix. We have also provided details for the simulation and training of RNNs that lead
to the results. All code for generating the results in the manuscript will be provided at the time of
publication.
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A APPENDIX

A.1 EXTENDED DERIVATION OF LEARNING DYNAMICS

In this section we derive Eq.[9] Our approach is based on |[Proca et al.|(2025)) and [Saxe et al.| (2014),
and considers a slightly broader range of tasks with fewer constraints on the task geometry. While
we ultimately consider a regime that is similar toProca et al.|(2025)), we aim to keep the derivation
as general as possible and highlight when assumptions are required to yield tractable analytical
solutions. We hope that this exposes future directions for the theory of learning in RNNS.

We begin with a linear RNN of the form

hi = Whhi_1 + Wy, (20)

Yy = Wyhy, 2D
which maps time-varying inputs ; € R™:*! into a network state h; € R¥»*1  read out into
outputs y; € RVv*1 The learnable parameters of the network include the recurrent weight matrix
W, € RNnXNn input matrix W, € RN»xNz and output matrix W, € RNv*Nn  The RNN will
be optimized to perform on task pulled from a family of leaky integration tasks, where inputs x.7
are integrated over time with different linear filters to yield target outputs, y, at the end of the trial,

T. The loss over a batch of P trials for this single output scenario of generating a target y is given
as

P
1 N
L= 5Z\Iyp—yT,pH2' (22)
P

Starting from initial state hy = 0, the network dynamics evolve as

t
he =Y Wi ' W,a;, (23)
=1

which allows the loss to be rewritten as

T
1 _ —¢'T _
L= ST [WyWhT WS, W, W TW, - W, W thzxty}Jrconst. (24)

The autocorrelation function of the inputs, Exﬂ; = E[wtw; ], together with the cross-correlation

between time-varying input and targets, 3., = E[z,y;] fully specify an instance of the task.
Different tasks will have different 3,/ and X, with varying degrees of overlap.

The loss in Eq. [24] depends on the learnable parameters, as well as data-averaged task covariances
Y¢.z, that describe how inputs co-vary over time and input dimensions, as well as input-target co-
variances X, ,, that describe how inputs co-vary with target values. These covariances have singular
value decompositions (SVD) given by

P

Yoz, =Elma)]~ Y @pa) ) =UsraSa,, UL, (25)
P
P

Yoy = E[z,g7] ~ antf/;—,T = Uzyszvtyvz—; (26)
P
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Consistent with the previous work (Proca et al.}[2025), we make additional assumption regarding the
form of the task covariances: 1) we assume a static ’task geometry,” meaning that that the SVD axes
(Uszg, Ugy, Vyy) are constant over time, which implies a constant input-to-output mapping during
the task. Unlike previous work, we do not assume fully whitened inputs here. When considering
learning a sequence of tasks this assumption would be too restrictive: while it is possible to fully
whiten a target task, the corresponding coordinate system will not necessarily whiten inputs for the
pretraining tasks.

Next, we recast the loss function in a rotated space that couples singular values of X, with recur-
rent modes provided by a Schur decomposition as W;, = U, H,U, hT , where Hj, is upper-triangular
for non-normal dynamics, and diagonal for normal dynamics. Rotating the input and output weights
as W, = U, W, U, W, = V,, W, U, , the loss function becomes

xrx°

T
U S . .
L= ST (W, B WS, W, B TW | = Tt [W, B~ W (U], U, S0 ) -
Lt

27)

We make a further assumption here that that U:;'; U., = I, which holds only for U,, = Uy,.
This implies a connection between the axes of the input covariability and the SVD modes of the
input-to-output mapping, which is that the directions of variability in the inputs must be aligned
with the primary SVD modes of X,,,. E] At this stage, we do not assume that input and output

matrices are naturally aligned to the network and singular values modes, meaning W, and Wy are
not assumed to be diagonal. We will implement this in practice when by choosing a privileged set
of initial conditions for training, but our derivation does not require this.

We restrict the learning dynamics to how input and output parameters to the network update over
learning, as the learning dynamics for recurrent weights do not have analytical solutions without
introducing approximations. By denoting the learning trajectory by a variable 7, these updates are
given by

oW, oL T—tTxi, T T Ty, Tvir rT—t1k
or _Tm - ;’:Hh W, Sye, — H), W, W,H;, " W,5;., (28)
oW, oL : - i Tt i —t'
Y= =8, W, H ' - W,H"'W,S,,., W, H "T. (29
or oW, 7

We note that Eqgs. [28}{29]hold for both non-normal dynamics and normal dynamics. Moving forward,
though, we restrict our attention to the case of normal dynamics (diagonal Hy).We also now make
the same diagonalized matrix assumptions in [Proca et al.[ (2025), which is that W and W have
only diagonal entries. This yields update equations where H can combine

OW,, oL Z T—ti,T 2Tt —t i T W W
871 B _3‘7% - £t H;, ~"W, Syz; — H), y WyWaSez, (30)
oW, oL 5T Tt vir p2T—t—t'\i 5T
— -9 NS, W HI - W,H W,S,,. W 31
or aWy 4 Sy t7w TTh y*th Se, t G

Rather than track how updates for the entire weight matrices unfold under time, it is useful to con-
sider how their columns and vectors, or “modes”, of these matrices update over time |Saxe et al.
(2014); |Proca et al.| (2025). Specifically, we define the columns of W, as a, and the rows of W,
as cg. The diagonal entries of Hj, are given by b,, (the eigenvalues of W), and similarly sg,, and
s& . are the diagonal entries of the task covariance matrices. The modes are then given as

a(r) = Zaa T)Tq, b(r) = Wya = Z bo(T)Ta,s (32)

*This was also noted in |Saxe et al.| (2014) Appendix
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where {r,} € RNn*1 s a basis set of vectors for the modes.

By tracking the a-th columns of W, and a-th rows of Wy in eqs. , we can express the update
equations for the input and output modes:

= S e WU i,

t,t’
_ Zb&T—t Co {sgzt _ bgT_t/)(Ca . xtx“} Z p(T— t)c7 . (33)
6t y#a
aaita = Zbngt)aa [ngt _ b((XTft')(ca . Ltlt/:| Z b’y )a,yszwi (34)
£t Qe

Eqs. [33}34] contain contributions from their own mode «, as well as cross term from other modes
~. Analytical solutions for this form are not generally tractable because of the contribution from all
modes to learning, and so to address this we restrict our analysis to a special set of initial conditions
to remove the cross-mode contribution. This is performed by initializing modes in a distinct set
of non overlapping basis set vectors {r,} € RN»*1 ¢ . T3 = 0o3: As has been shown previously
Saxe et al.|(2014), if @ and c are initialized onto the same set of orthogonal modes {7, }, then we
can track the evolution of the coefficients on these modes, and importantly, any interaction terms
among these modes are strictly zero with these initial conditions.

The update equations for the weighting coefficients are then given as

0
= DI [sh, T et | o
T
tt!
Ocq (T—t) a (T—t") o
W = Zba Ay I:Symt - ba Coeaasx,«,xt/] (36)
t,t

Because we ignored the mode cross terms, the updates in Egs. [35}{36] minimize an effective loss
function, which can be seen by integrating them with respect to the mode coefficients:

T
_ T—t a 1/2 «@ o~ 1/2 T— t ol/? «@ o~ 1/2
b= Z Z [aacab Swiwy T Syz, sxtw; aacab wt$t/ — Syx,Szix, | - 37

a  t,t!

The product a,c, has symmetry condition of this energy (anco = [aa/k][cak]), Which guarantees
an invariance condition a® = ¢? |Saxe et al.| (2014). Moving forward, we omit the o index unless
it is strictly necessary. Introducing a collective network parameter u = ac, the collective update
equation follows a similar functional form

% = %c + a% =2 Z b(T =)y, {syxt - b(T_t/)usmmt,} (38)

where we used the equivalence a? = ¢%. Eq. is a separable differential equation with a closed
form solution. To simplify notation, we collect the effect of recurrence and task covariances into
terms By, and By,

T
_ Z b((xT_t)SZﬂeu Z b @T—t—t') gtwt/ (39)
t t,t!
The sgparable equation is then %"; = 2u [Bys — ufy), which in its partial fraction decomposed
form is
1 “rd 1 v d
S / du / v (40)
2ﬂyz uy U Qﬁya: ug U ﬂyz /ﬁzz
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Integration of Eq.[40] yields

t log |ul:f —

1
which upon reorganization gives the solution for training dynamics u(7) = a(7)c(7)

1
a(r)e(r) = ———— —,
_ Pza | ,—27Bys BPaax
[ty — ez ] e+
where 7 is the inverse of the learning rate. Eq. A2]is for a single mode c, and there will be equivalent
expressions for each of the o = {1, 2, .. min[N,, N,]} modes.

(42)

In summary, we provided an expression for the learning dynamics of input and output modes in
linear RNNs that encompass tasks with temporally correlated inputs. The primary assumptions that
limit our current approach are 1) requiring input variability to be aligned with input-to-target map-
pings, 2) assuming normal recurrent dynamics, and most importantly 3) requiring that initial con-
ditions of task parameters are in an orthogonal space with respect to the task geometry to facilitate
factorized training with individual network modes.

A.2 EXPANSION OF CL TRAINING TIME IMPROVEMENT

Here we add in a few intermediate steps to show the our core results of the conditions for training
time improvement. Starting from the general condition:

tiyo >ty +t12. (43)

we first expand the the optimal solutions and initial conditions in terms of the recurrence-weighted
singular values for all except solo task 1 and task 2 training,:

#(2) (2)
28y —€
(1) (1)
7(1) <log {u — 1} — log 67(1) ) +
2By i 1—e€

g2/ || €
D50 | T BT @

v
1 44
26(7) ( % ) “

Removing the common term (learning rate, accuracy term for task 2), and bringing all terms to both

sides gives
1 *#(2) 1 *(1)
(2)(10g u—lD—(l)(log {u—l]—log )
By Uo a Uo
(2) 1 5(2)
1 xr T
) (log B?U/ﬂ(l) @ - 1|> >0
v (1 —€W)Bya / Pax

Finally, multiplying everything by 6,%) and combining the logs of the middle term gives our final
expression

#(2) (2) (1)
u yx € Ug
Ug _1“‘1‘5(1)10%’(16(1)) (u*(l)u())’_log

YT

e

1—e®

(45)

1 g Y
=) g g 17"

log

(40)

A.3 SIMULATION AND TRAINING METHODS

All simulations were performed in Python (3.11.6, torch 2.0.1). Numerical simulations were per-
formed using gradient descent using a learning rate of 0.001 unless otherwise noted. Networks were
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custom linear RNNs with 128 units and a single input and output channel. All initial conditions
were initialized into a single input-output mode as specified by eq. [32| with the value a = ¢ = 0.01.
In practice, this meant setting a single entry [0, 1] and W,[0, 1] to 0.01, with the rest of the values
initialized to zero. The recurrent weights were set to a diagonal matrix where all eigenvalues were
b =0.96.

For linear RNN simulations fitting that compared learning trajectories to theory, we first calculated
the theoretical optimal solution using eq. [T} then trained the network until it converged to weights in
an e window of the optimal value. To calculate this optimal value, and to produce the theoretical wait
time predictions and learning trajectory curves, we used analytically defined covariance matrices
based on the defined task structure.

For nonlinear RNNs, we approximated the optimal solution by training the RNN until convergence,
and then calculated the numerical training time in each task by retraining the network from scratch
until it reached an ¢ window of the optimal solution.

When generating phase portraits and results for nonlinear RNNs across a range of task 77 accuracies,
we only modulated one task parameter at a time, and kept all parameters across 77 and 73 equal.
When modulating covariance strength S,,,, we held S;,,,, = 1.0. Similarly, when modulating
Srtmw we held S;,,=1.0 In sec. @, when modulating K we held k=0.5; when modulating x, we
held K = 0.5.

A.4 SUPPLEMENTAL ANALYSES
A.4.1 NUMERICAL COMPARISONS

Here we show numerical simulation fits to theory for each parameter regime studied in the main
work, as well as the corresponding optimization trajectory for ReLU Rnns.

A.4.2 MISMATCHED ACROSS-TASK GEOMETRY

In order to study an extension beyond our theory for cases in which the factorized modes of task 1 no
longer align with task covariances in task 2, we simulated a system with two inputs and two outputs,
which gives two factorized modes in the network. We focused on examining if relative changes in
input-target covariance strength would be recapitulated even in this scenario, by seeing if training
times reflected the results Fig. 2A-C. The target task 73 here had S, = diag[1.2,1.0] for its input-
target covariance singular values, and S, ,,, = diag[1.2, 1.0] for its input-input covariances singular
values. To avoid any degeneracies in the network we set the two related recurrence eigenvalues to
A = [0.96,0.94], and set the remaining values to 0. The desired accuracy for both tasks was set to
95%. Sy, for task 1 always kept one mode fixed to the same value for 73, but we set its second
singular value to be either larger or smaller.

The left eigenvectors for X, ., Uy (eq. , were set to the identity. Importantly, we looked
at training times in the “geometry-matched” regime where U, was also the identity, as well as a
“geometry-mismatched” regime in which Uy, was rotated with a 2D rotation matrix by /4. We
found that the qualitative trend seen in Fig. 2A-C holds, which is that relatively stronger 77 Sy,
strength led to faster training, and vice versa. Moreover, we found that there was some representa-
tional rotational effects that occurred for 77 having weaker input-target covariance strength, which
we measured by calculating the normalized inner product between the input matrix W, over training
to its final solution at the end of 75.

A.4.3 CL EFFECTS WITHOUT RECURRENCE

To make a comparison to feed-forward networks, we also simulated the theoretical results of varying
covariance strength for the input-target covariance when the recurrent weights were set equal to the
identity matrix. As mentioned in the main text, in this special case of constant singular values and
perfectly stable dynamics (b = 1), this recapitulates the theoretical results of feed-forward networks
studied in|Saxe et al.|(2014). Here we demonstrate that the same trends in CL improvement exist in
this setting, though the magnitude of the effect is reduced.
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Figure 5: Numerical fits of optimizations using Curriculum learning (blue) vs. direct training of the
target task (red). ReLU learning trajectories are also shown. Each row corresponds to manipulating
one aspect of task covariance structure, and here we provide examples for both a parameter setting
in task 1 that is smaller than task 2 (left 2 plots) as well as larger (right two plots). Theoreetical
optima are shown for each task with horizontal dotted lines

A.4.4 JOINT TRAINING WITH RECURRENCE

We also sought to understand if our qualitative results about CL effectiveness could hold when
jointly training recurrent weights alongside input and output weights. Introducing training of re-
current weights is more numerically unstable then just input and output weight training because of
exploding/vanishing gradient issues; in order to make a tractable comparison we focused on initial
conditions near an optimum that we had originally found when training the inputs and outputs, then
saw how the parameters changed from there. Specifically, we looked at scenarios analogous to Fig-
ure 2A-C, where we modulated the strength of input-target covariance strength. We trained systems
with 100 timesteps with a much smaller learning rate (y = 10~7), and we chose initial conditions
where the single nonzero eigenvalue of the recurrent weight matrix was set to b = 0.96, which was
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Figure 6: Effects of across-task, mismatched geometry. Training time in a 2D system with varying
input-target covariances was studied when covariance eigenvalues for 77 and 72 were aligned, or
mismatched. Left column is for the case where one input-target singular value is smaller in 7; than
in 72, and vice versa in the right column. A-B Training for the CL sequence vs. direct training when
task geometry is matched. Blue lines correspond to the mode that has singular value strength that
is matched across the tasks, and red lines denote the one that is different. Dotted lines denote direct
training of 73, solid lines denote the CL sequence training. C-D Training for the CL sequence vs.
direct training when task geometry is mis-matched. D-E Overlap of the input weights throughout
training W,,(7) with the final solution for input weights W, (7). Shaded regions in panels A-D
denote the one-sided 95% accuracy level around the theoretical solution for each factorized mode.

the value used in the rest of our work. We then scaled down the optimal input and output values by
50%, then trained all parameters to a loss £ < 1075,

We found that the inputs and outputs barely changed in magnitude, and that the recurrent weight
changes dominated the optimization in scenarios where task 1 had a weaker input-target covariance
(Fig. [8A), or a stronger one (Fig. [8B). We did find that the qualitative trend where stronger task
1 covariance strength coincided with faster training due to curriculum learning, and longer training
coincided with a weaker covariance in task 1.
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Figure 7: Theoretical predictions for varying input-target covariance strength with perfect recur-
rence (b=1). Results are as in Fig. 2A,2D.
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Figure 8: Recurrent weight change over joint training of all network parameters. Input and output
weights were nearly constant for the entire optimization, and are not shown. A Training where 7;
had a weaker input-target covariance strength than 75.B Training where 77 had a stronger input-
target covariance strength than 75. Red lines denote direct task 2 training, and blue lines denote CL
sequence training. Blue dotted line shows where 75 training begins.
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