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Abstract

Uncertainty quantification (UQ) is important for reliability assessment and enhance-
ment of machine learning models. In deep learning, uncertainties arise not only
from data, but also from the training procedure that often injects substantial noises
and biases. These hinder the attainment of statistical guarantees and, moreover,
impose computational challenges on UQ due to the need for repeated network
retraining. Building upon the recent neural tangent kernel theory, we create statisti-
cally guaranteed schemes to principally characterize, and remove, the uncertainty
of over-parameterized neural networks with very low computation effort. In par-
ticular, our approach, based on what we call a procedural-noise-correcting (PNC)
predictor, removes the procedural uncertainty by using only one auxiliary network
that is trained on a suitably labeled dataset, instead of many retrained networks
employed in deep ensembles. Moreover, by combining our PNC predictor with
suitable light-computation resampling methods, we build several approaches to
construct asymptotically exact-coverage confidence intervals using as low as four
trained networks without additional overheads.

1 Introduction

Uncertainty quantification (UQ) concerns the dissection and estimation of various sources of errors
in a prediction model. It has growing importance in machine learning, as it helps assess and enhance
the trustworthiness and deployment safety across many real-world tasks ranging from computer
vision [67, 21] and natural language processing [113, 103] to autonomous driving [90, 91], as well as
guiding exploration in sequential learning [9, 1, 119]. In the deep learning context, UQ encounters
unique challenges on both the statistical and computational fronts. On a high level, these challenges
arise from the over-parametrized and large-scale nature of neural networks so that, unlike classical
statistical models, the prediction outcomes incur not only noises from the data, but also importantly
the training procedure itself [73, 94]. This elicits a deviation from the classical statistical theory that
hinders the attainment of established guarantees. Moreover, because of the sizes of these models,
conventional procedures such as resampling [37, 30, 102] demand an amount of computation that
could quickly become infeasible.

Our main goal of this paper is to propose a UQ framework for over-parametrized neural networks in
regression that has simultaneous statistical coverage guarantee, in the sense of classical frequentist
asymptotic exactness, and low computation cost, in the sense of requiring only few (as low as four)
neural network trainings, without other extra overheads. A main driver of these strengths in our
framework is a new implementable concept, which we call the Procedural-Noise-Correcting (PNC)
predictor. It consists of an auxiliary network that is trained on a suitably artificially labeled dataset,
with behavior mimicking the variability coming from the training procedure. To reach our goal, we
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synthesize and build on two recent lines of tools that appear largely segregated thus far. First is
neural tangent kernel (NTK) theory [64, 80, 7], which provides explicit approximate formulas for
well-trained infinitely wide neural networks. Importantly, NTK reveals how procedural variability
enters into the network prediction outcomes through, in a sense, a functional shift in its corresponding
kernel-based regression, which guides our PNC construction. Second is light-computation resampling
methodology, including batching [47, 99, 100] and the so-called cheap bootstrap method [75], which
allows valid confidence interval construction using as few as two model repetitions. We suitably
enhance these methods to account for both data and procedural variabilities via the PNC incorporation.

We compare our framework with several major related lines of work. First, our work focuses on the
quantification of epistemic uncertainty, which refers to the errors coming from the inadequacy of
the model or data noises. This is different from aleatoric uncertainty, which refers to the intrinsic
stochasticity of the problem [92, 96, 121, 62, 36], or predictive uncertainty which captures the sum
of epistemic and aleatoric uncertainties (but not their dissection) [94, 97, 12, 3, 22]. Regarding
epistemic uncertainty, a related line of study is deep ensemble that aggregates predictions from
multiple independent training replications [81, 73, 41, 8, 94]. This approach, as we will make
clear later, can reduce and potentially quantify procedural variability, but a naive use would require
demanding retraining effort and does not address data variability. Another line is the Bayesian
UQ approach on neural networks [44, 2]. This regards network weights as parameters subject to
common priors such as Gaussian. Because of the computation difficulties in exact inference, an
array of studies investigate efficient approximate inference approaches to estimate the posteriors
[43, 49, 16, 33, 32, 95, 79, 56]. While powerful, these approaches nonetheless possess inference
error that could be hard to quantify, and ultimately finding rigorous guarantees on the performance of
these approximate posteriors remains open to our best knowledge.

2 Statistical Framework of Uncertainty

We first describe our learning setting and define uncertainties in our framework. Suppose the input-
output pair (X,Y ) is a random vector following an unknown probability distribution π on X × Y ,
where X ∈ X ⊂ Rd is an input and Y ∈ Y ⊂ R is the response. Let the marginal distribution of
X be πX(x) and the conditional distribution of Y given X be πY |X(y|x). Given a set of training
data D = {(x1, y1), (x2, y2), ..., (xn, yn)} drawn independent and identically distributed (i.i.d.)
from π (we write x = (x1, ..., xn)

T and y = (y1, ..., yn)
T for short), we build a prediction model

h : X → Y that best approximates Y given X . Let πD or πn denote the empirical distribution
associated with the training data D, where πn is used to emphasize the sample size dependence in
asymptotic results.

To this end, provided a loss function L : Y × R → R, we denote the population risk Rπ(h) :=
E(X,Y )∼π[L(h(X), Y )]. If h is allowed to be any possible functions, the best prediction model is
the Bayes predictor [61, 93]: h∗B(X) ∈ argminy∈YEY∼πY |X [L(y, Y )|X]. With finite training data
of size n, classical statistical learning suggests finding ĥn ∈ H, where H denotes a hypothesis class
that minimizes the empirical risk, i.e., ĥn ∈ argminh∈HRπD (h). This framework fits methods such
as linear or kernel ridge regression (Appendix B). However, it is not feasible for deep learning due to
non-convexity and non-identifiability. Instead, in practice, gradient-based optimization methods are
used, giving rise to ĥn,γ as a variant of ĥn, where the additional variable γ represents the randomness
in the training procedure. It is worth mentioning that this randomness generally depends on the
empirical data D, and thus we use Pγ|D to represent the distribution of γ conditional on D.

Furthermore, we consider ĥ∗n = aggregate({ĥn,γ : γ ∼ Pγ|D}) where "aggregate" means an
idealized aggregation approach to remove the training randomness in ĥn,γ (known as ensemble
learning [73, 18, 17, 87, 45]). A prime example in deep learning is deep ensemble [73] that will be
detailed in the sequel. Finally, we denote h∗ = limn→∞ ĥ∗n as the grand "limiting" predictor with
infinite samples. The exact meaning of "lim" will be clear momentarily.

Under this framework, epistemic uncertainty, that is, errors coming from the inadequacy of the model
or data noises, can be dissected into the following three sources, as illustrated in Figure 1. Additional
discussions on other types of uncertainty are in the Appendix A for completeness.

Model approximation error. UQAE = h∗ − h∗B . This discrepancy between h∗B and h∗ arises from
the inadequacy of the hypothesis class H. For an over-parameterized sufficiently wide neural network
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H, this error is usually negligible thanks to the universal approximation power of neural networks for
any continuous functions [28, 58, 53] or Lebesgue-integrable functions [88].

Data variability. UQDV = ĥ∗n − h∗. This measures the representativeness of the training dataset,
which is the most standard epistemic uncertainty in classical statistics [110].

Figure 1: Three sources of epis-
temic uncertainty.

Procedural variability. UQPV = ĥn,γ − ĥ∗n. This arises from
the randomness in the training process for a single network
ĥn,γ , which is present even with deterministic or infinite data.
The randomness comes from the initialization of the network
parameters, and also data ordering and possibly training time
when running stochastic gradient descent with finite training
epochs.

3 Quantifying Epistemic Uncertainty

We use a frequentist framework and, for a given x, we aim to
construct a confidence interval for the "best" predictor h∗(x).
As discussed in Section 1, the over-parametrized and non-
convex nature of neural networks defies conventional statistical
techniques and moreover introduces procedural variability that
makes inference difficult.

We focus on over-parameterized neural networks, that is, neural
networks whose width is sufficiently large, while the depth can
be arbitrary such as two [120, 107]. Over-parameterized neural networks give the following two
theoretical advantages. First, this makes model approximation error negligible and a confidence
interval for h∗(x) also approximately applies to h∗B(x). Second, the NTK theory [64] implies a
phenomenon that the network evolves essentially as a "linear model" under gradient descent, and
thus the resulting predictor behaves like a shifted kernel ridge regression whose kernel is the NTK
[7, 80, 54, 59, 118] (detailed in Appendix C). However, to our knowledge, there is no off-the-shelf
result that exactly matches our need for the epistemic uncertainty task, so we describe it below.
Consider the following regression problem:

R̂n(fθ, θ
b) =

1

n

n∑
i=1

(fθ(xi)− yi)
2 + λn∥θ − θb∥22. (1)

where θ is the network parameters to be trained, θb is the initial network parameters, and λn > 0 is the
regularization hyper-parameter which may depend on the data size. We add regularization λn to this
problem, which is slightly different from previous work [80] without the regularization λn. This can
guarantee stable computation of the inversion of the NTK Gram matrix and can be naturally linked to
kernel ridge regression, which will be introduced shortly in Proposition 3.1. We assume the network
adopts the NTK parametrization with parameters randomly initialized using He initialization [55],
and it is sufficiently wide to ensure the linearized neural network assumption holds; See Appendix
C for details. Moreover, we assume that the network is trained using the loss function in (1) via
continuous-time gradient flow by feeding the entire training data and using sufficient training time
(t → ∞). In this sense, the uncertainty of data ordering and training time vanishes, making the
random initialization the only uncertainty in procedural variability. The above specifications are
formally summarized in Assumption C.2. With the above specifications, we have:
Proposition 3.1 (Proposition C.3). Suppose that Assumption C.2 holds. Then the final trained
network, conditional on the initial network sθb(x), is given by

ĥn,θb(x) = sθb(x) +K(x,x)T (K(x,x) + λnnI)
−1(y − sθb(x)), (2)

where in the subscript of ĥn,θb , n represents n training data, θb represents an instance of the
initial network parameters drawn from the standard Gaussian distribution Pθb = N (0, Ip) where
the dimension of θb is p (He initialization); K(x,x) := (K(xi, xj))i,j=1,...,n and K(x,x) :=

(K(x, x1),K(x, x2), ...,K(x, xn))
T where K is the (population) NTK. This implies that ĥn,θb is the

solution to the following kernel ridge regression:

sθb + arg min
g∈H̄

1

n

n∑
i=1

(yi − sθb(xi)− g(xi))
2 + λn∥g∥2H̄
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where H̄ is the reproducing kernel Hilbert space (RKHS) constructed from the NTK K(x, x′).

Proposition 3.1 shows that the shifted kernel ridge regressor using NTK with a shift from an initial
function sθb is exactly the linearized neural network regressor that starts from the initial network
sθb . It also reveals how procedural variability enters into the neural network prediction outcomes,
highlighting the need to regard random initialization as an inevitable uncertainty component in neural
networks. We provide details and deviation of Proposition 3.1 in Appendix C.

3.1 Challenges from the Interplay of Procedural and Data Variabilities

First, we will discuss existing challenges in quantifying and reducing uncertainty to motivate our
main approach based on the PNC predictor under the NTK framework. To this end, deep ensemble
[81, 73, 41, 8, 94] is arguably the most common ensemble approach in deep learning to reduce
procedural variability. [8] shows that deep ensemble achieves the best performance compared with
a wide range of other ensemble methods, and employing more networks in deep ensemble can
lead to better performance. Specifically, the deep ensemble predictor [73] ĥmn (x) is defined as:
ĥmn (x) := 1

m

∑m
i=1 ĥn,θb

i
(x) where m is the number of networks in the ensemble, ĥn,θb

i
(x) is the

independently trained network with initialization θbi (with the same training data D), and θb1, ..., θ
b
m

are i.i.d. samples drawn from Pθb . We also introduce ĥ∗n(x) := EP
θb
[ĥn,θb(x)] as the expectation

of ĥn,θb(x) with respect to θb ∼ Pθb . Taking m→ ∞ and using the law of large numbers, we have
limm→∞ ĥmn (x) = ĥ∗n(x) a.s.. So ĥ∗n(x) behaves as an idealized deep ensemble predictor with
infinitely many independent training procedures. Using Proposition 3.1 and the linearity of kernel
ridge regressor with respect to data (Appendix B), we have

ĥmn (x) =
1

m

m∑
i=1

sθb
i
(x) +K(x,x)T (K(x,x) + λnnI)

−1

(
y − 1

m

m∑
i=1

sθb
i
(x)

)

ĥ∗n(x) = EP
θb
[ĥn,θb(x)] = s̄(x) +K(x,x)T (K(x,x) + λnnI)

−1(y − s̄(x)) (3)

where s̄(x) = EP
θb
[sθb(x)] is the expectation of the initial network output sθb(x) with respect to the

the distribution of the initialization parameters Pθb = N (0, Ip). It is easy to see that EP
θb
[ĥmn (x)] =

ĥ∗n(x) and VarP
θb
(ĥmn (x)) = 1

mVarP
θb
(ĥn,θb(x)) where VarP

θb
is the variance with respect to the

random initialization. As for the total variance:
Proposition 3.2. We have

Var(ĥm
n (x)) = Var(ĥ∗

n(x)) +
1

m
E[Var(ĥn,θb(x)|D)] ≤ Var(ĥ∗

n(x)) + E[Var(ĥn,θb(x)|D)] = Var(ĥn,θb(x)).

where the variance is taken with respect to both the data D and the random initialization Pθb .

Proposition 3.2 shows that deep ensemble improves the statistical profile of a single model by reducing
its procedural variability by a factor 1

m (but not the data variability), and achieving this reduction
requires m training times. To quantify the epistemic uncertainty that contains two variabilities from
data and procedure, we may employ resampling approaches such as "bootstrap on a deep ensemble".
This would involve two layers of sampling, the outer being the resampling of data, and the inner being
the retraining of base networks with different initializations. In other words, this nested sampling
amounts to a multiplicative amount of training effort in a large number of outer bootstrap resamples
and the m inner retaining per resample, leading to a huge computational burden. Moreover, the data
variability and procedural variability in neural networks are dependent, making the above approach
delicate. More discussion about this issue is presented in Section D.

In the following, we introduce our PNC framework that can bypass the above issues in that:

Uncertainty reduction. We train one single network and one additional auxiliary network to
completely remove the procedural variability. This is in contrast to the deep ensemble approach that
trains m networks and only reduces the procedural variability by an m-factor.

Uncertainty quantification. We resolve the computational challenges in "bootstrap on a deep
ensemble", by combining PNC predictors with low-budget inference tools that require only as low as
four network trainings.
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3.2 PNC Predictor and Procedural Variability Removal

We first develop a computationally efficient approach to obtain ĥ∗n(x), the idealized deep ensemble
predictor that is free of procedural variability. We term our approach the procedural-noise-correcting
(PNC) predictor, whose pseudo-code is given in Algorithm 1. This predictor consists of a difference
between essentially two neural network outcomes, ĥn,θb(x) which is the original network trained
using one initialization, and ϕ̂′n,θb(x) that is trained on a suitably artificially labeled dataset. More
precisely, this dataset applies label s̄(xi) to xi, where s̄ is the expected output of an untrained network
with random initialization. Also note that labeling this artificial dataset does not involve any training
process and, compared with standard network training, the only additional running time in the PNC
predictor is to train this single artificial-label-trained network.

Algorithm 1 Procedural-Noise-Correcting (PNC) Predictor
Input: Training data D = {(x1, y1), (x2, y2), ..., (xn, yn)}.
Procedure: 1. Draw θb ∼ Pθb = N (0, Ip) under NTK parameterization. Train a standard base
network with data D and the initialization parameters θb, which outputs ĥn,θb(·) in (3).
2. Let s̄(x) = EP

θb
[sθb(x)]. For each xi in D, generate its "artificial" label s̄(xi) = EP

θb
[sθb(xi)].

Train an auxiliary neural network with data {(x1, s̄(x1)), (x2, s̄(x2)), ..., (xn, s̄(xn))} and the ini-
tialization parameters θb (the same one as in Step 1.), which outputs ϕ̂′n,θb(·). Subtracting s̄(·), we

obtain ϕ̂n,θb(·) = ϕ̂′n,θb(·)− s̄(·).
Output: At point x, output ĥn,θb(x)− ϕ̂n,θb(x).

The development of our PNC predictor is motivated by the challenge of computing ĥ∗n(x) (detailed
below). To address this challenge, we characterize the procedural noise instead, which is given by

ϕ̂n,θb(·) := ĥn,θb(x)− ĥ∗n(x) = sθb(x)− s̄(x)+K(x,x)T (K(x,x)+ λnnI)
−1(s̄(x)− sθb(x)).

(4)
By Proposition 3.1, the closed-form expression of ϕ̂n,θb in (4) corresponds exactly to the artificial-
label-trained network in Step 2 of Algorithm 1. Our artificial-label-trained network is thereby used to
quantify the procedural variability directly. This observation subsequently leads to:
Theorem 3.3 (PNC). Suppose that Assumption C.2 holds. Then the output of the PNC predictor
(Algorithm 1) is exactly ĥ∗n(x) given in (3).

We discuss two approaches to compute s̄(x) in Step 2 of Algorithm 1 and their implications: 1)
Under He initialization, sθb(x) is a zero-mean Gaussian process in the infinite width limit [80], and
thus we may set s̄ ≡ 0 for simplicity. Note that even if we set s̄ ≡ 0, it does not imply that the
artificial-label-trained neural network in Step 2 of Algorithm 1 will output a zero-constant network
whose parameters are all zeros. In fact, neural networks are excessively non-convex and have many
nearly global minima. Starting from an initialization parameter θb, gradient descent on this artificial-
label-trained neural network will find a global minimum that is close to the θb but not "zero" even
if "zero" is indeed one of its nearly global minima (“nearly" in the sense of ignoring the negligible
regularization term) [35, 118, 23]. This phenomenon can also be observed in Proposition 3.1 by
plugging in y = 0. Hence, the output depends on random initialization in addition to training data,
and our artificial-label-trained network is designed to capture this procedural variability. 2) An
alternative approach that does not require specific initialization is to use Monte Carlo integration:
s̄(x) = limN→∞

1
N

∑N
i=1 sθb

i
(x) where θbi are i.i.d. from Pθb . When N is finite, it introduces

procedural variance that vanishes at the order N−1. Since this computation does not involve any
training process and is conducted in a rapid manner practically, N ≫ n can be applied to guarantee
that the procedural variance in computing s̄(x) is negligible compared with the data variance at the
order n−1. We practically observe that both approaches work similarly well.

Finally, we provide additional remarks on why ĥ∗n(x) cannot be computed easily except using our
Algorithm 1. First, the following two candidate approaches encounter computational issues: 1) One
may use deep ensemble with sufficiently many networks in the ensemble. However, this approach
is time-consuming as m networks in the ensemble mean m-fold training times. m is typically as
small as five in practice [73] so it cannot approximate ĥ∗n(x) well. 2) One may use the closed-
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form expression of ĥ∗n in (3), which requires computing the NTK K(x, x′) and the inversion of
the NTK Gram matrix K(x,x). K(x, x′) is recursively defined and does not have a simple form
for computation, which might be addressed by approximating it with the empirical NTK Kθ(x, x

′)
numerically (See Appendix C). However, the inversion of the NTK Gram matrix gives rise to a
more serious computational issue: the dimension of the NTK Gram matrix is large on large datasets,
making the matrix inversion very time-consuming. Another approach that seems plausible is that: 3)
One may initialize one network that is equivalent to s̄(x) and then train it. However, this approach
cannot obtain ĥ∗n(x) based on Proposition 3.1 because Proposition 3.1 requires random initialization.
If one starts from a deterministic network initialization such as a zero-constant network, then the
NTK theory underpinning the linearized training behavior of over-parameterized neural networks
breaks down and the resulting network cannot be described by Proposition 3.1.

3.3 Constructing Confidence Intervals from PNC Predictors

We construct confidence intervals for h∗(x) leveraging our PNC predictor in Algorithm 1. To handle
data variability, two lines of works borrowed from classical statistics may be considered. First is
an analytical approach using the delta method for asymptotic normality, which involves computing
the influence function [51, 38] that acts as the functional gradient of the predictor with respect to
the data distribution. It was introduced in modern machine learning for understanding a training
point’s effect on a model’s prediction [72, 71, 13]. The second is to use resampling [37, 30, 102],
such as the bootstrap or jackknife, to avoid explicit variance computation. The classical resampling
method requires sufficiently large resample replications and thus incurs demanding resampling effort.
For instance, the jackknife approach requires the number of training times to be the same as the
training data size, which is very time-consuming and barely feasible for neural networks. Standard
bootstrap requires a sufficient number of resampling and retraining to produce accurate resample
quantiles. Given these computational bottlenecks, we consider utilizing light-computation resampling
alternatives, including batching [47, 99, 100] and the so-called cheap bootstrap method [75, 76],
which allows valid confidence interval construction using as few as two model repetitions.

Large-sample asymptotics of the PNC predictor. To derive our intervals, we first gain understanding
on the large-sample properties of the PNC predictor. Proposition 3.1 shows that ĥ∗n(x) in (3) is the
solution to the following empirical risk minimization problem:

ĥ∗n(·) = s̄(·) + min
g∈H̄

1

n

n∑
i=1

[(yi − s̄(xi)− g(xi))
2] + λn∥g∥2H̄. (5)

Its corresponding population risk minimization problem (i.e., removing the data variability) is:

h∗(·) = s̄(·) + min
g∈H̄

Eπ[(Y − s̄(X)− g(X))2] + λ0∥g∥2H̄ (6)

where λ0 = limn→∞ λn. To study the difference between the empirical and population risk mini-
mization problems of kernel ridge regression, we introduce the following established result on the
asymptotic normality of kernel ridge regression (See Appendix B for details):
Proposition 3.4 (Asymptotic normality of kernel ridge regression [50]). Let H be a generic RKHS.
Suppose that Assumptions B.3 and B.4 hold. Let gP,λ be the solution to the following problem:
gP,λ := ming∈H EP [(Y − g(X))2] + λ∥g∥2H̄ where P = πn or π. Then

√
n(gπn,λn

− gπ,λ0
) ⇒ G in H̄

where G is a zero-mean Gaussian process and ⇒ represents "converges weakly". Moreover, at point
x,

√
n(gπn,λn(x) − gπ,λ0(x)) ⇒ N (0, ξ2(x)) where ξ2(x) =

∫
z∈X×Y IF

2(z; gP,λ0 , π)(x)dπ(z)
and IF is the influence function of statistical functional gP,λ0

.

Next, we apply the above proposition to our problems about ĥ∗n. Let T1(P )(x) be the solution of
the following problem ming∈H̄ EP [(Y − s̄(X)− g(X))2] + λ0∥g∥2H̄ that is evaluated at a point x.
Then we have the following large-sample asymptotic of the PNC predictor, providing the theoretical
foundation for our subsequent interval construction approaches.
Theorem 3.5 (Large-sample asymptotics of the PNC predictor). Suppose that Assumption C.2 holds.
Suppose that Assumptions B.3 and B.4 hold when Y is replaced by Y − s̄(X). Input the training
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data D into Algorithm 1 to obtain ĥn,θb(x)− ϕ̂n,θb(x). We have
√
n
(
ĥn,θb(x)− ϕ̂n,θb(x)− h∗(x)

)
⇒ N (0, σ2(x)), (7)

where
σ2(x) =

∫
z∈X×Y

IF 2(z;T1, π)(x)dπ(z). (8)

Thus, an asymptotically (in the sense of n→ ∞) exact (1− α)-level confidence interval of h∗(x) is
[ĥn,θb(x)− ϕ̂n,θb(x)− σ(x)√

n
q1−α

2
, ĥn,θb(x)− ϕ̂n,θb(x) + σ(x)√

n
q1−α

2
] where qα is the α-quantile of

the standard Gaussian distribution N (0, 1).

Theorem 3.5 does not indicate the value of σ2(x). In general, σ2(x) is unknown and needs to
be estimated. It is common to approximate IF 2(z;T1, π) with IF 2(z;T1, πn) and set σ̂2(x) =
1
n

∑
zi∈D IF

2(zi;T1, πn)(x). This method is known as the infinitesimal jackknife variance estimator
[102]. In Appendix B, we derive the exact closed-form expression of the infinitesimal jackknife
variance estimation σ̂2(x), and further prove its consistency as well as the statistical coverage
guarantee of confidence intervals built upon it. These results could be of theoretical interest. Yet
in practice, the computation of σ̂2(x) requires the evaluation of the NTK Gram matrix and its
inversion, which is computationally demanding for large n and thus not recommended for practical
implementation on large datasets.

In the following, we provide two efficient approaches that avoid explicit estimation of the asymptotic
variance as in the infinitesimal jackknife approach, and the computation of the NTK Gram matrix
inversion.

PNC-enhanced batching. We propose an approach for constructing a confidence interval that is
particularly useful for large datasets, termed PNC-enhanced batching. The pseudo-code is given
in Algorithm 2. Originating from simulation analysis [47, 99, 100], the key idea of batching is to
construct a self-normalizing t-statistic that "cancels out" the unknown variance, leading to a valid
confidence interval without explicitly needing to compute this variance. It can be used to conduct
inference on serially dependent simulation outputs where the standard error is difficult to compute
analytically. Previous studies have demonstrated the effectiveness of batching on the use of inference
for Markov chain Monte Carlo [46, 40, 66] and also the so-called input uncertainty problem [48]. Its
application in deep learning uncertainty quantification was not revealed in previous work, potentially
due to the additional procedural variability. Integrating it with the PNC predictor, PNC-enhanced
batching is very efficient and meanwhile possesses asymptotically exact coverage of its confidence
interval, as stated below.

Algorithm 2 PNC-Enhanced Batching
Input: Training dataset D of size n. The number of batches m′ ≥ 2.
Procedure: 1. Split the training data D into m′ batches and input each batch in Algorithm 1 to output
ĥj
n′,θb(x)− ϕ̂j

n′,θb(x) for j ∈ [m′], where n′ = n
m′ .

2. Compute ψB(x) =
1
m′

∑m′

j=1

(
ĥj
n′,θb(x)− ϕ̂j

n′,θb(x)
)

,

and SB(x)
2 = 1

m′−1

∑m′

j=1

(
ĥj
n′,θb(x)− ϕ̂j

n′,θb(x)− ψB(x)
)2

.

Output: At point x, output ψB(x) and SB(x)
2.

Theorem 3.6 (Exact coverage of PNC-enhanced batching confidence interval). Suppose that As-
sumption C.2 holds. Suppose that Assumptions B.3 and B.4 hold when Y is replaced by Y − s̄(X).
Choose any m′ ≥ 2 in Algorithm 2. Then an asymptotically exact (1−α)-level confidence interval of
h∗(x) is [ψB(x)− SB(x)√

m′ q1−α
2
, ψB(x)+

SB(x)√
m′ q1−α

2
], where qα is the α-quantile of the t distribution

tm′−1 with degree of freedom m′ − 1.

PNC-enhanced cheap bootstrap. We propose an alternative approach for constructing a confidence
interval that works for large datasets but is also suitable for smaller ones, termed PNC-enhanced
cheap bootstrap. The pseudo-code is given in Algorithm 3. Cheap bootstrap [75, 76, 74] is a
modified bootstrap procedure with substantially less retraining effort than conventional bootstrap
methods, via leveraging the asymptotic independence between the original and resample estimators
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and asymptotic normality. Note that our proposal is fundamentally different from the naive use of
bootstrap or bagging when additional randomness appears [73, 81, 45], which mixes the procedural
and data variabilities and does not directly provide confidence intervals. Like PNC-enhanced batching,
PNC-enhanced cheap bootstrap also avoids the explicit estimation of the asymptotic variance. The
difference between the above two approaches is that PNC-enhanced batching divides data into a small
number of batches, and thus is suggested for large datasets while PNC-enhanced cheap bootstrap
re-selects samples from the entire dataset, hence suited also for smaller datasets. On the other hand,
in terms of running time, when R = m′ − 1, PNC-enhanced cheap bootstrap and PNC-enhanced
batching share the same number of network training, but since batching is trained on subsets of the
data, the individual network training in PNC-enhanced batching is faster than PNC-enhanced cheap
bootstrap. PNC-enhanced cheap bootstrap also enjoys asymptotically exact coverage of its confidence
interval, as stated below.

Algorithm 3 PNC-Enhanced Cheap Bootstrap
Input: Training dataset D of size n. The number of replications R ≥ 1.
Procedure: 1. Input D in Algorithm 1 to output ĥn,θb(x)− ϕ̂n,θb(x).
2. For each replication j ∈ [R], resample D, i.e., independently and uniformly sample with
replacement from {(x1, y1), ..., (xn, yn)} n times to obtain D∗j = {(x∗j1 , y

∗j
1 ), ..., (x∗jn , y

∗j
n )}. Input

D∗j in Algorithm 1 to output ĥ∗j
n,θb(x)− ϕ̂∗j

n,θb(x).

3. Compute ψC(x) = ĥn,θb(x)− ϕ̂n,θb(x),

and SC(x)
2 = 1

R

∑R
j=1

(
ĥ∗j
n,θb(x)− ϕ̂∗j

n,θb(x)− ψC(x)
)2
.

Output: At point x, output ψC(x) and SC(x)
2.

Theorem 3.7 (Exact coverage of PNC-enhanced cheap bootstrap confidence interval). Suppose that
Assumption C.2 holds. Suppose that Assumptions B.3 and B.4 hold when Y is replaced by Y − s̄(X).
Choose any R ≥ 1 in Algorithm 3. Then an asymptotically exact (1− α)-level confidence interval of
h∗(x) is [ψC(x)−SC(x)q1−α

2
, ψC(x)+SC(x)q1−α

2
] where qα is the α-quantile of the t distribution

tR with degree of freedom R.

4 Experiments

We conduct numerical experiments to demonstrate the effectiveness of our approaches.2 Our proposed
approaches are evaluated on the following two tasks: 1) construct confidence intervals and 2)
reduce procedural variability to improve prediction. With a known ground-truth regression function,
training data are regenerated from the underlying synthetic data generative process. According
to the NTK parameterization in Section C, our base network is formed with two fully connected
layers with n × 32 neurons in each hidden layer to ensure the network is sufficiently wide and
over-parameterized. Detailed optimization specifications are described in Proposition C.3. Our
synthetic datasets #1 are generated with the following distributions: X ∼ Unif([0, 0.2]d) and
Y ∼

∑d
i=1 sin(X

(i)) + N (0, 0.0012). The training set D = {(xi, yi) : i = 1, ..., n} is formed
by drawing i.i.d. samples of (X,Y ) from the above distribution with sample size n. We consider
multiple dimension settings d = 2, 4, 8, 16 and data size settings n = 128, 256, 512, 1024 to study the
effects on different dimensionalities and data sizes. Additional experimental results on more datasets
are presented in Appendix F. The implementation details of our experiments are also provided in
Appendix F.

Constructing confidence intervals. We use x0 = (0.1, ..., 0.1) as the fixed test point for confidence
intervals construction. Let y0 =

∑d
i=1 sin(0.1) be the ground-truth label for x0 without aleatoric

noise. Our goal is to construct a confidence interval at x0 for y0. To evaluate the performance of
confidence intervals, we set the number of experiments J = 100. In each repetition j ∈ [J ], we
generate a new training dataset from the same synthetic distribution and construct a new confidence
interval [Lj(x0), Uj(x0)] with 95% or 90% confidence level, and then check the coverage rate (CR):
CR = 1

J

∑J
j=1 1Lj(x0)≤y0≤Uj(x0). The primary evaluation of the confidence interval is based on

whether its coverage rate is equal to or larger than the desired confidence level. In addition to CR,

2The source code for experiments is available at https://github.com/HZ0000/UQforNN.
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Table 1: Confidence interval construction on synthetic datasets #1 with different data sizes n =
128, 256, 512, 1024 and different data dimensions d = 2, 4, 8, 16. The CR results that attain the
desired confidence level 95%/90% are in bold.

PNC-enhanced batching PNC-enhanced cheap bootstrap DropoutUQ
95%CI(CR/IW) 90%CI(CR/IW) MP 95%CI(CR/IW) 90%CI(CR/IW) MP 95%CI(CR/IW) 90%CI(CR/IW) MP

(d = 2)
n = 128 0.98/0.0437 0.95/0.0323 0.1998 0.98/0.0571 0.95/0.0438 0.1983 0.93/0.0564 0.87/0.0480 0.2119
n = 256 0.99/0.0301 0.96/0.0222 0.2004 1.00/0.0376 0.95/0.0289 0.1997 0.99/0.0390 0.96/0.0327 0.2045
n = 512 0.97/0.0211 0.95/0.0156 0.2004 0.98/0.0294 0.96/0.0226 0.1992 0.95/0.0313 0.93/0.0267 0.2049
n = 1024 0.96/0.0152 0.92/0.0112 0.2003 0.97/0.0205 0.94/0.0157 0.2011 0.96/0.0287 0.89/0.0244 0.2052
(d = 4)
n = 128 0.98/0.0622 0.94/0.0460 0.4012 1.00/0.0820 0.95/0.0629 0.4013 0.96/0.0868 0.90/0.0742 0.4157
n = 256 0.98/0.0411 0.95/0.0304 0.3991 0.99/0.0569 0.96/0.0437 0.3988 0.97/0.0566 0.92/0.0481 0.4071
n = 512 0.97/0.0295 0.94/0.0218 0.3988 0.98/0.0396 0.96/0.0304 0.3989 0.96/0.0375 0.90/0.0316 0.4045
n = 1024 0.97/0.0213 0.95/0.0158 0.3983 0.98/0.0296 0.98/0.0227 0.3988 0.93/0.0340 0.84/0.0290 0.4055
(d = 8)
n = 128 0.98/0.0865 0.95/0.0639 0.7999 0.98/0.1084 0.98/0.0832 0.7980 0.91/0.1348 0.87/0.1142 0.8245
n = 256 0.99/0.0594 0.96/0.0439 0.8014 1.00/0.0796 0.99/0.0611 0.7957 0.88/0.0791 0.81/0.0656 0.8152
n = 512 0.98/0.0393 0.94/0.0290 0.7983 0.99/0.0588 0.99/0.0452 0.8012 0.99/0.0632 0.97/0.0538 0.7998
n = 1024 0.95/0.0270 0.92/0.0200 0.7981 0.99/0.0393 0.96/0.0302 0.7997 0.88/0.0421 0.82/0.0356 0.8040
(d = 16)
n = 128 0.95/0.1068 0.94/0.0790 1.5946 0.99/0.1568 0.97/0.1204 1.6057 0.99/0.1565 0.96/0.1313 1.6093
n = 256 0.98/0.0730 0.94/0.0540 1.5966 1.00/0.1137 0.98/0.0873 1.5954 0.90/0.1072 0.86/0.0909 1.6177
n = 512 0.98/0.0543 0.93/0.0401 1.5966 0.99/0.0788 0.98/0.0605 1.5972 0.86/0.0920 0.80/0.0790 1.6132
n = 1024 0.95/0.0388 0.92/0.0287 1.5976 0.97/0.0550 0.95/0.0422 1.5980 0.87/0.0760 0.83/0.0647 1.6079

we also report the median point of the interval (MP): MP = 1
J

∑J
j=1

1
2 (Uj(x0) + Lj(x0)) and the

interval width (IW): IW = 1
J

∑J
j=1(Uj(x0)− Lj(x0)). MP reflects the most likely point prediction

for x0, while IW reflects the conservativeness of the confidence interval, as a wide interval can easily
achieve 95% coverage rate but is not practically preferable. In the confidence interval tasks, we use
the dropout-based Bayesian approximate inference (DropoutUQ) [43] as the baseline for comparison
since it is one of the most widely-used representatives in Bayesian uncertainty quantification.

Table 1 reports the CR, IW, and MP of 95% and 90% confidence intervals from our proposals and
baselines. We have the following observations:

1) The CR values: For our two proposed approaches, in the majority of experiments, CR ≥ 95% for
95% confidence intervals, and CR ≥ 90% for 90% confidence intervals, thus satisfying the coverage
requirements, while in very few experiments (in Appendix F), the performances are degraded.
Nonetheless, this occasional degeneration appears insignificant and can be potentially explained by
the fact that the statistical guarantee of confidence intervals generated by PNC-enhanced batching
and cheap bootstrap is in the asymptotic sense. In contrast, DropoutUQ does not have such statistical
guarantees. The intervals from DropoutUQ cannot normally maintain a satisfactory coverage rate
when they are narrow, although they have a similar or larger interval width as PNC-enhanced batching
or cheap bootstrap. Moreover, we notice that the dropout rate has a significant impact on the interval
width of DropoutUQ, and thus, additional tuning efforts are demanded for this baseline, while our
approaches do not need this level of tuning procedure. These observations demonstrate the robustness
and effectiveness of our proposals.

2) The IW values: Overall, the IW values are relatively small for both of our approaches, indicating
that our framework is able to successfully generate narrow confidence intervals with high coverage
rates. Moreover, as shown, the IW values from both of our approaches decrease roughly at the rate
n−

1
2 along with an increased training data size n, which corroborates with our theoretical results well

(Section 3.3). In comparison with PNC-enhanced cheap bootstrap, we observe that PNC-enhanced
batching tends to generate narrower intervals and has less training time per network, as only a
subset of training data is involved in one training trial. In general, PNC-enhanced batching requires
data splits, making its accuracy vulnerable to small sample sizes, and thus leading to less stable
performance compared with PNC-enhanced cheap bootstrap. Therefore, we recommend employing
PNC-enhanced cheap bootstrap on small datasets and applying PNC-enhanced batching on datasets
with sufficient training samples.

3) The MP values: MP appears consistent with the ground-truth label y0 in all experiments, showing
that our confidence intervals can accurately capture the ground-truth label on average under multiple
problem settings.
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Table 2: Reducing procedural variability to improve prediction on synthetic datasets #1 with different
data sizes n = 128, 256, 512, 1024 and different data dimensions d = 2, 4, 8, 16. The best MSE
results are in bold.

MSE One base network PNC predictor Deep ensemble (5 networks) Deep ensemble (2 networks)
(d = 2)
n = 128 (6.68 ± 2.74) × 10−4 (3.68 ± 1.84) × 10−4 (4.22 ± 1.74) × 10−4 (6.28 ± 2.74) × 10−4

n = 256 (2.38 ± 1.06) × 10−4 (6.22 ± 2.01) × 10−5 (8.86 ± 4.94) × 10−5 (1.25 ± 0.67) × 10−4

n = 512 (1.03 ± 0.98) × 10−4 (2.06 ± 0.72) × 10−5 (3.32 ± 1.10) × 10−5 (5.11 ± 3.33) × 10−5

n = 1024 (6.98 ± 4.77) × 10−5 (8.92 ± 5.69) × 10−6 (1.72 ± 0.77) × 10−5 (5.75 ± 2.28) × 10−5

(d = 4)
n = 128 (2.11 ± 1.49) × 10−3 (1.18 ± 0.25) × 10−3 (1.53 ± 0.60) × 10−3 (1.83 ± 0.80) × 10−3

n = 256 (8.82 ± 3.26) × 10−4 (4.09 ± 0.85) × 10−4 (4.22 ± 2.01) × 10−4 (5.47 ± 1.91) × 10−4

n = 512 (5.35 ± 1.91) × 10−4 (1.92 ± 0.53) × 10−4 (2.88 ± 1.80) × 10−4 (3.99 ± 1.87) × 10−4

n = 1024 (2.23 ± 0.83) × 10−4 (4.22 ± 0.43) × 10−5 (8.50 ± 2.39) × 10−5 (1.65 ± 0.57) × 10−4

(d = 8)
n = 128 (4.07 ± 1.04) × 10−3 (2.54 ± 0.29) × 10−3 (2.73 ± 0.86) × 10−3 (3.27 ± 0.96) × 10−3

n = 256 (2.13 ± 0.70) × 10−3 (1.05 ± 0.18) × 10−3 (1.34 ± 0.33) × 10−3 (1.48 ± 0.38) × 10−3

n = 512 (1.36 ± 0.34) × 10−3 (5.04 ± 0.70) × 10−4 (7.40 ± 1.35) × 10−4 (1.08 ± 0.40) × 10−3

n = 1024 (8.54 ± 2.23) × 10−4 (2.02 ± 0.24) × 10−4 (3.79 ± 1.01) × 10−4 (5.91 ± 1.87) × 10−4

(d = 16)
n = 128 (9.03 ± 1.64) × 10−3 (6.00 ± 0.83) × 10−3 (6.37 ± 0.67) × 10−3 (7.47 ± 1.29) × 10−3

n = 256 (6.76 ± 1.79) × 10−3 (4.19 ± 0.94) × 10−3 (4.83 ± 1.14) × 10−3 (5.46 ± 1.49) × 10−3

n = 512 (4.19 ± 0.51) × 10−3 (1.60 ± 0.35) × 10−3 (2.05 ± 0.30) × 10−3 (2.87 ± 0.34) × 10−3

n = 1024 (3.16 ± 0.35) × 10−3 (7.44 ± 0.99) × 10−4 (1.20 ± 0.13) × 10−3 (1.91 ± 0.20) × 10−3

Reduce procedural variability to improve prediction. In this part, we illustrate that our proposed
PNC preditor (Algorithm 1) can achieve better prediction by reducing procedural variability. We
use empirical mean square error (MSE) to evaluate the prediction performance. Specifically, the
empirical MSE is computed as MSE(h) := 1

Nte

∑Nte

i=1(h(x
′
i) − y′i)

2, where (x′i, y
′
i), i = 1, ..., Nte

are i.i.d. test data independent of the training. We set Nte = 2048 for test performance evaluation
in all experiments. We compare the prediction performance of our proposed PNC predictor with
the following approaches: a base network, i.e., a standard network training with a single random
initialization, and the deep ensemble approach with different numbers (m) of networks in the ensemble
[73]. In deep ensemble, we consider m = 2 as it has a similar running time as our PNC (with one
additional network training), and m = 5 as it is widely used in previous work [73, 94]. All networks
share the same hyperparameters and specifications.

Table 2 reports the sample mean and sample standard deviation of MSE from our proposed PNC
predictor and other baseline approaches with 10 experimental repetition times. As shown, the
proposed PNC achieves notably smaller MSE than baselines with similar computational costs (the
base network and deep ensemble with two networks) in all experiments. Moreover, it achieves better
or analogous results compared with the deep ensemble with 5 networks, but the running time of the
latter is 2.5 times as much as that of PNC. It also has relatively small sample standard deviations,
showing its capacity to reduce variability in networks effectively. These results verify that our
proposed PNC can successfully produce better prediction and simultaneously bears significantly
reduced computational costs compared to the classical deep ensemble.

5 Concluding Remarks

In this study, we propose a systematic epistemic uncertainty assessment framework with simultaneous
statistical coverage guarantees and low computation costs for over-parametrized neural networks in
regression. Benefiting from our proposed PNC approach, our study shows promise to characterize and
eliminate procedural uncertainty by introducing only one artificial-label-trained network. Integrated
with suitable light-computation resampling methods, we provide two effective approaches to construct
asymptotically exact-coverage confidence intervals using few model retrainings. Our evaluation
results in different settings corroborate our theory and show that our approach can generate confidence
intervals that are narrow and have satisfactory coverages simultaneously. In the future, we will extend
our current framework to general loss functions that can potentially handle classification tasks to
open up opportunities for broader applications.
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Appendices
We provide further results and discussions in this supplementary material. Section A discusses
aleatoric uncertainty and predictive uncertainty. Section B discusses statistical inference for kernel-
based regression and, in particular, the asymptotic normality of kernel-based regression. Section C
discusses the training of the linearized neural networks based on the NTK theory. In particular, we
show in Proposition 3.1 that the shifted kernel ridge regressor using NTK with a shift from an initial
function sθb is exactly the linearized neural network regressor that starts from the initial network
sθb . Section D provides additional remarks to explain some of the details in the main paper. Section
E presents the proofs for results in the paper. Section F presents experimental details and more
experimental results.

Appendix A Other Types of Uncertainty

Back in 1930, [39] first introduced a formal distinction between aleatory and epistemic uncertainty in
statistics [52], while in modern machine learning, their distinction and connection were investigated
in [101] and further extended to deep learning models [67, 33]. In [94], the differences between
procedural and data variabilities in epistemic uncertainty were intuitively described; however, no
rigorous definition or estimation method was provided. Our previous draft [60] discussed intuitive
approaches for quantifying procedural and data variabilities, which some of the ideas in this work
originate from. In the following, we present an additional discussion on other types of uncertainty
for the sake of completeness. Section A.1 presents aleatoric uncertainty and Section A.2 presents
predictive uncertainty.

A.1 Aleatoric Uncertainty

We note that if we could remove all the epistemic uncertainty, i.e., letting UQEU = 0, the best
predictor we could get is the Bayes predictor h∗B . However, h∗B , as a point estimator, is not able to
capture the randomness in πY |X if it is not a point mass distribution.

The easiest way to think of aleatoric uncertainty is that it is captured by πY |X . At the level of the
realized response or label value, this uncertainty is represented by

UQAU = y − h∗B(x)

If the connection between X and Y is non-deterministic, the description of a new prediction problem
involves a conditional probability distribution πY |X . Standard neural network predictors can only
provide a single output y. Thus, even given full information of the distribution π, the uncertainty in
the prediction of a single output y remains. This uncertainty cannot be removed by better modeling
or more data.

There are multiple work aiming to estimate the aleatoric uncertainty, i.e., to learn πY |X . For instance,
conditional quantile regression aims to learn each quantile of the distribution πY |X [70, 89, 108].
Conditional density estimation aims to approximately describe the density of πY |X [57, 36, 62, 29,
42, 63]. However, we remark that these approaches also face their own epistemic uncertainty in the
estimation. See [26, 108, 10] for recent studies on the epistemic bias in quantile regression.

A.2 Predictive Uncertainty

Existing work on uncertainty measurement in deep learning models mainly focuses on prediction
sets (predictive uncertainty), which captures the sum of epistemic and aleatoric uncertainties [94, 97,
12, 3, 22].

In certain scenarios, it is not necessary to estimate each uncertainty separately. A distinction between
aleatoric and epistemic uncertainties might appear less significant. The user may only concern about
the overall uncertainty related to the prediction, which is called predictive uncertainty and can be
thought as the summation of the epistemic and aleatoric uncertainties.

The most common way to quantify predictive uncertainty is the prediction set: We aim to find a
map Ĉ : X → 2Y which maps an input to a subset of the output space so that for each test point
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x0 ∈ X , the prediction set Ĉ(x0) is likely to cover the true outcome y0 [111, 11, 12, 84, 83, 82]. This
prediction set is also called a prediction interval in the case of regression [68, 69]. The prediction set
communicates predictive uncertainty via a statistical guarantee on the marginal coverage, i.e.,

P(y0 ∈ Ĉ(x0)) ≥ 1− δ

for a small threshold δ > 0 where the probability is taken with respect to both training data Dtr

(epistemic uncertainty) for learning Ĉ and the test data (x0, y0) (aleatoric uncertainty). It is more
tempting to obtain a statistical guarantee with only aleatoric uncertainty by considering the probablity
conditional on the prediction set, i.e.,

P(y0 ∈ Ĉ(x0)|Ĉ) ≥ 1− δ. (9)

However, this guarantee is in general very hard to achieve in the finite-sample case. Even asymp-
totically, (9) is not easy to achieve unless we have a very simple structure on the data distribution
[98, 116]. A recent study show that (9) could hold in the finite-sample sense if we could leverage a
set of validation data [22].

Appendix B Statistical Inference for Kernel-Based Regression

B.1 Classical Statistical Learning Framework and Kernel Ridge Regression

Following Section 2, assuming that the input-output pair (X,Y ) is a random vector following an
unknown probability distribution π on X ×Y where X ∈ X ⊂ Rd is an input and Y ∈ Y ⊂ R is the
corresponding output. Let the marginal distribution of X be πX(x) and the conditional distribution
of Y given X be πY |X(y|x).

Suppose a learner has access to a set of training data D = {(x1, y1), (x2, y2), ..., (xn, yn)}, which is
assumed to be independent and identically distributed (i.i.d.) according to the data distribution π. Let
x = (x1, ..., xn)

T and y = (y1, ..., yn)
T for short. Let πD or πn denote the empirical distribution

associated with the training data D, where πn is used to emphasize the sample size dependence in
asymptotic results:

πD = πn =
1

n

n∑
i=1

δ(xi,yi).

The goal of the learner is to obtain a function h : X → Y such that h(x) is a "good" predictor for the
response y if X = x is observed for any x ∈ X . This is typically done by minimizing the following
(ground-truth) population risk

Rπ(h) := E(X,Y )∼π[L(h(X), Y )]

where L : Y × R → R is the loss function. For instance, L can be the square error in regression or
cross-entropy loss in classification. If h is allowed to be any possible functions, the best predictions
in the sense of minimizing the risk are described by the Bayes predictor h∗B [61, 93]:

h∗B(X) := arg min
ŷ∈Y

EY∼πY |X [L(ŷ, Y )|X].

Note that h∗B cannot be obtained in practice, since the conditional distribution πY |X(y|x) is unknown.
In particular, the least squares loss L(h(X), Y ) = (h(X)− Y )2 yields the (ground-truth) regression
function defined by

g∗π(x) := E(X,Y )∼π[Y |X = x].

As the ground-truth distribution π is unknown, we can neither compute nor minimize the population
risk Rπ(h) directly. We define the risk under a general distribution P ,

RP (h) := E(X,Y )∼P [L(h(X), Y )].

In particular, for P = πn (the empirical distribution associated with the training data D), an empirical
risk is derived:

Rπn
(h) := E(X,Y )∼πn

[L(h(X), Y )] =
1

n

n∑
i=1

L(h(xi), yi)
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In practice, minimizing the risk over h is restricted to a certain function class. Let H be a hypothesis
class, which is a set of functions {h : X → Y|h ∈ H}. For instance, 1) H could be a nonparametric
class such as a reproducing kernel Hilbert space (RKHS). The resulting method is known as kernel-
based regression; See below. 2) H could be a parametric class {hθ : X → Y|θ ∈ Θ} where θ is the
parameter, and Θ is the set of all possible parameters, e.g., the linear coefficients in a linear regression
model, or the set of all network parameters in a neural network model.

In classical statistical learning, one is interested in finding a hypothesis gπ ∈ H that minimizes the
population risk

gπ := arg min
h∈H

Rπ(h). (10)

which is called the true risk minimizer. We remark that hπ is the best choice in the sense of minimizing
the risk within the hypothesis set H and different choices of H may lead to different hπ. As π is
unknown, the learner may consider minimizing the empirical risk:

gπn
:= arg min

h∈H
Rπn

(h) (11)

which is called the empirical risk minimizer. More generally, to avoid overfitting in the finite sample
regime, the learner may consider a regularized empirical risk minimization problem:

gπn,λn := arg min
h∈H

Rπn(h) + λn∥h∥2H (12)

and its corresponding population problem

gπ,λ0 := arg min
h∈H

Rπ(h) + λ0∥h∥2H (13)

which are called the true regularized risk minimizer and the empirical regularized risk minimizer,
respectively. Here, λn ≥ 0 is the regularization parameter, which may depend on the data size n, and
we assume it has a limit λ0 = limn→∞ λn. In general, the target gπ is not equal to gπn,λn

or gπn
.

We omit 0 in the subscript if λ = 0 and write gπn
:= gπn,0 and gπ = gπ,0 for simplicity.

The above framework fits classical machine learning approaches such as linear regression or kernel-
based convex regression (such as kernel ridge regression), since (12) as well as (13) has a unique
solution in this setting. However, this framework is not suitable for deep learning: the empirical
(regularized) risk minimizer gπn,λn

is not unique and cannot be precisely obtained due to the non-
convex nature of neural networks. Therefore, the gradient-based methods in deep learning can only
find an approximate solution gπn,λn

, subjected to procedural variability.

Kernel ridge regression. Next, we apply the above framework to kernel ridge regression and review
some basic existing results about kernel ridge regression, which can be found, e.g., in [14, 78, 104–
106, 27, 109].

The kernel-based regression means that the hypothesis class H in statistical learning is chosen to be
an RKHS. Formally, a Hilbert space H consisting of functions h : X → R with an inner product
⟨·, ·⟩ : H×H → R is a RKHS if there exists a symmetric positive definite function k : X ×X → R,
called a (reproducing) kernel, such that for all x ∈ X , we have k(·, x) ∈ H and for all x ∈ X and
h ∈ H, we have h(x) = ⟨h(·), k(·, x)⟩. We use the above k to denote the kernel associated with
H. Note that for any symmetric positive definite function k, we can naturally construct, from k, an
RKHS H whose kernel is exactly k [14].

When H is a RKHS, gπn,λn
in (12) can be computed for a number of convex loss functions L. In

particular, for the least squares loss L(h(X), Y ) = (h(X)− Y )2, the resulting problem (12) is well
known as the kernel ridge regression, and there exists a closed-form expression for both gπn,λn

and
gπ,λ0

, as we discuss below.

Formally, the kernel ridge regression problem is given by

gπn,λn
(x) := argmin

g∈H

 1

n

n∑
j=1

(yj − g(xj))
2 + λn∥g∥2H


where λn > 0 is a regularization hyperparameter that may depend on the cardinality of the training
data set. There is a closed-form formula for its solution, as stated below.
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Proposition B.1. Let
k(x,x) = (k(xi, xj))n×n ∈ Rn×n

be the kernel Gram matrix and

k(x,x) = (k(x, x1), · · · , k(x, xn))T .
Then the (unique) kernel ridge regression solution is given as

gπn,λn(x) = k(x,x)T (k(x,x) + λnnI)
−1y

It is worth mentioning the linearity of kernel ridge regression: When we have two outputs y =
(y1, ..., yn)

T and y′ = (y′1, ..., y
′
n)

T , we have

k(x,x)T (k(x,x) + λnnI)
−1(y + y′)

=k(x,x)T (k(x,x) + λnnI)
−1y + k(x,x)T (k(x,x) + λnnI)

−1y

which means the solution to

argmin
g∈H

 1

n

n∑
j=1

(yj + y′j − g(xj))
2 + λn∥g∥2H


is the summation of the solution to

argmin
g∈H

 1

n

n∑
j=1

(yj − g(xj))
2 + λn∥g∥2H


and the solution to

argmin
g∈H

 1

n

n∑
j=1

(y′j − g(xj))
2 + λn∥g∥2H

 .

Define Ok : L2(πX) → L2(πX) as the kernel integral operator

(Okg)(x) :=

∫
X
k(x, x′)g(x′)πX(x′)dx′, x ∈ X , g ∈ L2(πX).

where L2(πX) := {f :
∫
X f(x)

2πX(x)dx <∞}.

[109] shows that Ok is a compact and positive self-adjoint linear operator on L2(πX). Note that since
Lk is positive: Ok ≥ 0, we have that Ok + λ0I is strictly positive for any λ0 > 0: Ok + λ0I > 0,
and thus its inverse operator (Ok + λ0I)

−1 exists and is unique. Note that (Ok + λ0I)
−1 is also a

linear operator on L2(πX).

Next, consider the population risk minimization problem corresponding to gπn,λn
as follows:

gπ,λ0
:= argmin

g∈H

{
Eπ[(Y − g(X))2] + λ0∥g∥2H

}
.

It is easy to see that this problem is equivalent to

gπ,λ0 := argmin
g∈H

{
Eπ[(g

∗
π(X)− g(X))2] + λ0∥g∥2H

}
.

where g∗π(x) = E(X,Y )∼π[Y |X = x] is the (ground-truth) regression function. This problem has the
following explicit closed-form expression of the solution (a proof can be found in [27]):
Proposition B.2. The solution of gπ,λ0

is given as gπ,λ0
= (Ok + λ0I)

−1Okg
∗
π .

The linearity of kernel ridge regression also holds for the population-level solution:

(g + g′)π,λ0
=(Ok + λ0I)

−1Ok(g + g′)∗π

=(Ok + λ0I)
−1Ok(g

∗
π + g′∗π )

=(Ok + λ0I)
−1Okg

∗
π + (Ok + λ0I)

−1Okg
′∗
π

=gπ,λ0
+ g′π,λ0

for any two functions g, g′ ∈ L2(πX) since both (Ok + λ0I)
−1 and Ok are linear operators on

L2(πX).
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B.2 Asymptotic Normality of Kernel-Based Regression

In this section, we review existing results on the asymptotic normality of kernel-based regression,
which is established using the influence function concept [25, 24, 50].

Let H be a generic RKHS with the associated kernel k(x, x′). Let ∥ · ∥H denote the norm on H. Note
that the feature map kx = k(x, ·) is a function in H. We consider the connection between the true
regularized risk minimizer gπ,λ0

and the empirical regularized risk minimizer gπn,λn
introduced in

(11) and (12) when H is a RKHS.

The asymptotic normality of kernel-based regression roughly states that under some mild conditions,√
n(gπn,λn

− gπ,λ0
) is asymptotically normal as n → ∞. This result provides the theoretical

foundations to conduct asymptotic statistical inference for kernel-based regression, in particular,
building asymptotic confidence interval for the ground-truth gπ,λ0

.

To be rigorous, we first list the following assumptions introduced by [50]:

Assumption B.3. Let (Ω,A,Q) be a probability space. Suppose that X ⊂ Rd is closed and bounded
with Borel-σ-algebra B(X ), and Y ⊂ R is closed with Borel-σ-algebra B(Y). The Borel-σ-algebra
of X × Y is denoted by B(X × Y). Let H be an RKHS with kernel k and let π be a probability
measure on (X × Y,B(X × Y)). Assume that the kernel of H, k : X × X → R is the restriction of
an m-times continuously differentiable kernel k̃ : Rd × Rd → R such that m > d/2 and k ̸= 0. Let
λ0 ∈ (0,+∞) be any positive number. Suppose that the sequence λn satisfy that λn − λ0 = o( 1√

n
).

Assumption B.4. Let L : Y × R → [0,+∞) be a loss function satisfying the following conditions:

• L is a convex loss, i.e., z 7→ L(y, z) is convex in z for every y ∈ Y .

• The partial derivatives

L′(y, z) =
∂

∂z
L(y, z), L′′(y, z) =

∂2

∂2z
L(y, z)

exist for every (y, z) ∈ Y × R.

• The maps
(y, z) 7→ L′(y, z), (y, z) 7→ L′′(y, z)

are continuous.

• There is a b ∈ L2(πY ), and for every a ∈ (0,+∞), there is a b′a ∈ L2(πY ) and a constant
b′′a ∈ (0,+∞) such that, for every y ∈ Y ,

|L(y, z)| ≤ b(y) + |z|p ∀z, sup
z∈[−a,a]

|L′(y, z)| ≤ b′a(y), sup
z∈[−a,a]

|L′′(y, z)| ≤ b′′a

where p ≥ 1 is a constant.

Note that the conditions on the loss function L in Assumption B.4 are satisfied, e.g., for the logistic
loss for classification or least-square loss for regression with π such that EπY

[Y 4] <∞. Therefore,
Assumption B.4 is reasonable for the kernel ridge regression problem we consider in this work.

Theorem B.5 (Theorem 3.1 in [50]). Suppose that Assumptions B.3 and B.4 hold. Then there is a
tight, Borel-measurable Gaussian process G : Ω → H, ω 7→ G(ω) such that

√
n(gπn,λn

− gπ,λ0
) ⇒ G in H

where ⇒ represents "converges weakly". The Gaussian process G is zero-mean; i.e., E[⟨g,G⟩H] = 0
for every g ∈ H.

Note that Theorem B.5 implies that for any g ∈ H, the random variable

Ω → R, ω 7→ ⟨g,G(ω)⟩H
has a zero-mean normal distribution. In particular, letting g = kx, the reproducing property of k
implies that, √

n(gπn,λn
(x)− gπ,λ0

(x)) ⇒ G(x)
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To obtain the variance of this limiting distribution, denoted as ξ2(x), we review the tool of influence
functions as follows.

Let P be a general distribution on the domain X × Y . Let z = (zx, zy) ∈ X × Y be a general
point. Let T be a general statistical functional that maps a distribution P to a real value, that is,
T : P → T (P ) ∈ R. The Gâteaux derivative of T (P ), T ′

P (·), is defined as

T ′
P (Q) := lim

ε→0

T (P + εQ)− T (P )

ε

Let
Pε,z := (1− ε)P + εδz = P + ε(δz − P )

where δz denotes the point mass distribution in z. Then the influence function of T (P ) at the point z
is a special Gâteaux derivative defined as

IF (z;T, P ) := lim
ε→0

T (Pε,z)− T (P )

ε
= T ′

P (δz − P ).

Under some mild conditions (e.g., T is Hadamard differentiable [38, 110]), the central limit theorem
for the statistical functional T holds:

√
n(T (πn)− T (π)) ⇒ N

(
0,

∫
z

IF 2(z;T, π)dπ(z)

)
as n→ ∞ where πn is the empirical distribution associated with n samples i.i.d. drawn from π.

Applying the above concepts to the kernel-based regression, we let T (P ) be the solution to the
following problem:

min
g∈H

EP [(Y − g(X))2] + λ0∥g∥2H.

Note that [50] has shown that
√
n(gπn,λn

(x) − gπ,λ0
(x)) has the same limiting behavior as√

n(gπn,λ0
(x)− gπ,λ0

(x)) so only the limiting regularization hyper-parameter λ0 is used in T (P ).
The proof of Theorem 3.1 in [50] provides the closed-formed expression of the Gâteaux derivative
T ′
P (Q) as follows:

T ′
P (Q) = −S−1

P (EQ[L′(Y, gP,λ0(X))Φ(X)])

for Q ∈ lin(BS) where lin(BS) corresponds to a subset of finite measures on (X × Y,B(X × Y))
(See Proposition A.8. in [50]) and SP : H → H is defined by

SP (f) = 2λ0f + EP [L′′(Y, gP,λ0
(X))f(X)Φ(X)]

where Φ is the feature map of H (e.g., we can simply take Φ(x)(·) = k(x, ·)). Note that SP is a
continuous linear operator that is invertible (See Proposition A.5. in [50]). In particular, letting
Q = δz − P , we obtain that

T ′
P (δz − P ) = S−1

P (EP [L′(Y, gP,λ0
(X))Φ(X)])− L′(zy, gP,λ0

(zx))S
−1
P Φ(zx). (14)

Note that the above special Gâteaux derivative (influence function) of T (P ), T ′
P (δz − P ), had been

derived initially in [25].

The proof of Theorem 3.1 in [50] shows that T (P ) is Hadamard differentiable, and the asymptotic
normality holds. Using the above expression of the influence function, we conclude that:

√
n(gπn,λn

(x)− gπ,λ0
(x)) ⇒ N (0, ξ2(x))

where

ξ2(x) =

∫
z∈X×Y

IF 2(z;T, π)(x)dπ(z)

and IF (z;T, π) is given by (14):

IF (z;T, π) = T ′
π(δz − π) = S−1

π (Eπ[L′(Y, gπ,λ0
(X))Φ(X)])− L′(zy, gπ,λ0

(zx))S
−1
π Φ(zx).

Summarizing the above discussion, Proposition 3.4 follows.
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B.3 Infinitesimal Jackknife for Kernel-Based Regression

In this section, we follow up on our discussion in Section 3.3 on the infinitesimal jackknife variance
estimation. We derive the closed-formed expression of the infinitesimal jackknife variance estimation
for ξ2(x) in Section B.2 in the kernel ridge regression. We also show the consistency of infinitesimal
jackknife variance estimation in general kernel-based regression. Our consistency result appears new
in the literature.

First, we estimate ξ2(x0) as follows:

ξ̂2(x0) =
1

n

∑
zi∈D

IF 2(zi;T, πn)(x0)

where D = {(x1, y1), (x2, y2), ..., (xn, yn)} and πn is the empirical distribution associated with the
data D. This estimator is known as the infinitesimal jackknife variance estimator [65]. In this section,
we use x0 instead of x in the variance or influence function at a test point x0 to avoid confusion
between x0 and zx. The latter zx is referred to the x-componenet of z.

Based on [25, 31, 50], we derive the closed-form expression of the variance estimation ξ̂2(x0) as
follows.

Theorem B.6 (Expression of infinitesimal jackknife for kernel ridge regression). Suppose that
Assumptions B.3 and B.4 hold. For the least squares loss L(h(X), Y ) = (h(X) − Y )2 in kernel
ridge regression, IF (z;T, πn) is given by

IF (z;T, πn)(x0) = k(x0,x)
T (k(x,x) + λ0nI)

−1Mz(x)−Mz(x0) (15)

where Mz(x) := (Mz(x1), ...,Mz(xn))
T and

Mz(xi) := gπn,λ0(xi)−
1

λ0
(zy − gπn,λ0(zx))k(zx, xi)

for xi = x0, x1, · · · , xn.

Note that although Hadamard differentiability is able to guarantee the central limit theorem of T ,
the consistency of variance estimation generally requires more than Hadamard differentiability. In
general, we need some additional continuity condition (such as continuously Gâteaux differentiability)
to guarantee that IF 2(z;T, πn) is indeed "close" to IF 2(z;T, π) and 1

n

∑
zi∈D IF

2(zi;T, πn)(x0)

is indeed "close" to
∫
z∈X×Y IF

2(z;T, π)(x0)dπ(z). We show that this is achievable for the infinites-
imal jackknife variance estimator for kernel ridge regression by only imposing a weak assumption.

Theorem B.7 (Consistency of infinitesimal jackknife for kernel-based regression). Suppose that
Assumptions B.3 and B.4 hold. Moreover, assume that Y ⊂ R is bounded, and b and b′a in Assumption
B.4 are bounded on Y . Then we have

ξ̂2(x0) =
1

n

∑
zi∈D

IF 2(zi;T, πn)(x0) →
∫
z∈X×Y

IF 2(z;T, π)(x)dπ(z) = ξ2(x0), a.s.

as n→ ∞. Hence, an asymptotically exact (1− α)-level confidence interval of gπ,λ0
(x0) is[

gπn,λn
(x0)−

ξ̂(x0)

n
q1−α

2
, gπn,λn

(x0) +
ξ̂(x0)

n
q1−α

2

]
where qα is the α-quantile of the standard Gaussian distribution N (0, 1).

The proof of Theorems B.6 and B.7 is given in Appendix E.

B.4 PNC-Enhanced Infinitesimal Jackknife

In this section, we return to our problem setting in Section 3.3. We apply the general results in Section
B.3 to our PNC predictor and develop the PNC-enhanced infinitesimal jackknife confidence interval
for over-parameterized neural networks.
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Recall that the statistical functional T1 is associated with the following problem:

ĥn,θb(·)− ϕ̂n,θb(·)− s̄(·) = min
g∈H̄

1

n

n∑
i=1

[(yi − s̄(xi)− g(xi))
2] + λn∥g∥2H̄

Consider the PNC-enhanced infinitesimal jackknife variance estimator:

σ̂2(x0) =
1

n

∑
zi∈D

IF 2(zi;T1, πn)(x0).

We obtain that
Theorem B.8 (Expression of PNC-enhanced infinitesimal jackknife). Suppose that Assumption
C.2 holds. Suppose that Assumptions B.3 and B.4 hold when Y is replaced by Y − s̄(X). Then
IF (z;T1, πn) is given by

IF (z;T1, πn)(x0) = K(x0,x)
T (K(x,x) + λ0nI)

−1Mz(x)−Mz(x0) (16)

where Mz(x) := (Mz(x1), ...,Mz(xn))
T and

Mz(xi) := ĥn,θb(xi)− ϕ̂n,θb(xi)− s̄(xi)−
1

λ0
(zy − (ĥn,θb(zx)− ϕ̂n,θb(zx)))K(zx, xi)

for xi = x0, x1, · · · , xn. Hence

σ̂2(x0) =
1

n

∑
zi∈D

IF 2(zi;T1, πn)(x0)

=
1

n

∑
zi∈D

(K(x0,x)
T (K(x,x) + λ0nI)

−1Mzi(x)−Mzi(x0))
2

Theorem B.8 immediately follows from Theorem B.6.
Theorem B.9 (Exact coverage of PNC-enhanced infinitesimal jackknife confidence interval). Suppose
that Assumption C.2 holds. Suppose that Assumptions B.3 and B.4 hold when Y is replaced by
Y − s̄(X). Moreover, assume that Y ⊂ R is bounded. Then we have

σ̂2(x0) =
1

n

∑
zi∈D

IF 2(zi;T1, πn)(x0) →
∫
z∈X×Y

IF 2(z;T1, π)(x)dπ(z) = σ(x0), a.s.

as n→ ∞. Hence, an asymptotically exact (1− α)-level confidence interval of h∗(x0) is[
ĥn,θb(x0)− ϕ̂n,θb(x0)−

σ̂(x0)

n
q1−α

2
, ĥn,θb(x0)− ϕ̂n,θb(x0) +

σ̂(x0)

n
q1−α

2

]
where qα is the α-quantile of the standard Gaussian distribution N (0, 1) and the computation of
σ̂(x0) is given by Theorem B.8.

Note that in our problem setting, we can set b(y) = y2 and b′a = a+ |y| for kernel ridge regression.
Since Y is bounded, b and b′a are naturally bounded on Y . Therefore, Theorem B.9 follows from
Theorem B.7.

Appendix C Theory of Neural Tangent Kernel

In this section, we provide a brief review of the theory of neural tangent kernel (NTK). Then we
discuss particularly one result employed by this paper, i.e.,

The shifted kernel ridge regressor using NTK with a shift from an initial function sθb is exactly the
linearized neural network regressor that starts from the initial network sθb .

NTK [64] has attracted a lot of attention since it provides a new perspective on training dynamics,
generalization, and expressibility of over-parameterized neural networks. Recent papers show that
when training an over-parametrized neural network, the weight matrix at each layer is close to its
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initialization [85, 35]. An over-parameterized neural network can rapidly reduce training error to zero
via gradient descent, and thus finds a global minimum despite the objective function being non-convex
[34, 4–6, 122]. Moreover, the trained network also exhibits good generalization property [19, 20].
These observations are implicitly described by a notion, NTK, suggested by [64]. This kernel is able
to characterize the training behavior of sufficiently wide fully-connected neural networks and build
a new connection between neural networks and kernel methods. Another line of work is to extend
NTK for fully-connected neural networks to CNTK for convolutional neural networks [7, 114, 86].
NTK is a fruitful and rapidly growing area.

We focus on the result that is used as the foundation of our epistemic uncertainty quantification: Since
the gradient of over-parameterized neural networks is nearly constant and close to its initialization,
training networks is very similar to a shifted kernel ridge regression where the feature map of the
kernel is given by the gradient of networks [80]. Multiple previous works [7, 80, 54, 59, 118, 15]
have established some kind of equivalences between the neural network regressor and the kernel
ridge regressor based on a wide variety of assumptions or settings, such as the full-rank assumption of
NTK, or zero-valued initialization, or introducing a small multiplier κ, or normalized training inputs
∥xi∥2 = 1. These results are also of different forms. Since a uniform statement is not available, we
do not intend to dig into those detailed assumptions or theorems as they are not the focus of this paper
(Interested readers may refer to the above papers).

In the following, we provide some discussions on how to obtain the equivalence in Proposition 3.1
adopted in the main paper, based on a less (technically) rigorous assumption. This assumption is
borrowed from the linearized neural network property introduced in [80], where they replace the
outputs of the neural network with their first-order Taylor expansion, called the linearized neural
network. They show that in the infinite width limit, the outputs of the neural network are the same as
the linearized neural network. [80] does not add regularization in the loss. Instead, we introduce a
regularization λn > 0 in the loss since regularization is common and useful in practice. Moreover, it
can guarantee the stable computation of the inversion of the NTK Gram matrix and can be naturally
linked to kernel ridge regression. In the following, we will review the linearized neural network
assumption (Assumption C.1) as well as other network specifications. Based on them, we show that
Proposition C.3 holds, which provides the starting point for our uncertainty quantification framework.
We also provide some additional remarks in Section D.

NTK parameterization. We consider a fully-connected neural network with any depth defined
formally as follows. Suppose the network consists of L hidden layers. Denote g(0)(x) = x and
d0 = d. Let

f (l)(x) =W (l)g(l−1)(x), g(l)(x) =

√
cσ
dl
σ(f (l)(x))

where W (l) ∈ Rdl×dl−1 is the weight matrix in the l-th layer, σ is a coordinate-wise activation
function, cσ = Ez∼N (0,1)[σ

2(z)]−1, and l ∈ [L]. The output of the neural network is

fθ(x) := f (L+1)(x) =W (L+1)g(L)(x)

where W (L+1) ∈ R1×dL , and θ = (W (1), ...,W (L+1)) represents all the parameters in the network.
Note that here we use NTK parametrization with a width-dependent scaling factor, which is thus
slightly different from the standard parametrization. Unlike the standard parameterization which
only normalizes the forward dynamics of the network, the NTK parameterization also normalizes its
backward dynamics.

He Initialization. The NTK theory depends on the random initialization of the network. Suppose the
dimension of network parameters θ is p. We randomly initialize all the weights to be i.i.d. N (0, 1)
random variables. In other words, we set Pθb = N (0, Ip) and let θb be an instantiation drawn from
Pθb . This initialization method is essentially known as the He initialization [55].

NTK and Linearized neural network. With the above NTK parameterization and He initialization,
the population NTK expression is defined recursively as follows: [64, 7]: For l ∈ [L],

Σ(0)(x, x′) = xTx′ ∈ R,

Λ(l)(x, x′) =

(
Σ(l−1)(x, x) Σ(l−1)(x, x′)
Σ(l−1)(x, x′) Σ(l−1)(x′, x′)

)
∈ R2×2,

Σ(l)(x, x′) = cσE(u,v)∼N (0,Λ(l))[σ(u)σ(v)] ∈ R.
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We also define a derivative covariance:

Σ(l)′(x, x′) = cσE(u,v)∼N (0,Λ(l))[σ
′(u)σ′(v)] ∈ R,

The final population NTK is defined as

K(x, x′) =

L+1∑
l=1

(
Σ(l−1)(x, x′)

L+1∏
s=l

Σ(s)′(x, x′)

)
where Σ(L+1)′(x, x′) = 1 for convenience. Let ⟨·, ·⟩ be the standard inner product in Rp.

Let J(θ;x) := ∇θfθ(x) ∈ R1×p denote the gradient of the network. The empirical (since the
initialization is random) NTK matrix is defined as

Kθ(x, x
′) = ⟨J(θ;x); J(θ;x′)⟩.

In practice, we may use the empirical NTK matrix to numerically compute the population NTK
matrix.

One of the most important results in the NTK theory is that the empirical NTK matrix converges to
the population NTK matrix as the width of the network increases [64, 114, 115, 7]:

Kθ(x, x
′) = ⟨J(θ;x), J(θ;x)⟩ → K(x, x′)

where → represents "converge in probability" [7] or "almost surely" [114].

The NTK theory shows that J(θ;x) = ∇θfθ(x) is approximately a constant independent of the
network parameter θ (but still depends on x) when the network is sufficiently wide. Therefore,
when we treat J(θ;x) as a constant independent of the network parameter θ, we can obtain a model
obtained from the first-order Taylor expansion of the network around its initial parameters, which is
called a linearized neural network [80]. Our study on epistemic uncertainty is based on the linearized
neural network.

To be rigorous, we adopt the following linearized neural network assumption based on the NTK
theory:
Assumption C.1. [Linearized neural network assumption] Suppose that J(θ;x) = ∇θfθ(x) ∈ R1×p

is independent of θ during network training, which is thus denoted as J(x). The population NTK is
then given by K(x, x′) = ⟨J(x), J(x)⟩ = J(x)J(x)⊤.

We introduce the NTK vector/matrix as follows. For x = (x1, ..., xj)
⊤, we let

K(x,x) := (K(xi, xj))i,j=1,...,n = J(x)J(x)⊤ ∈ Rn×n

be the NTK Gram matrix evaluated on data x. For an arbitrary point x ∈ Rd, we let K(x,x) ∈ Rn

be the kernel value evaluated between the point x and data x, i.e.,

K(x,x) := (K(x, x1),K(x, x2), ...,K(x, xn))
T = J(x)J(x)⊤ ∈ R1×n.

Training dynamics of the linearized network. Based on Assumption C.1, the training dynamics of
the linearized network can be derived as follows.

We consider the regression problem with the following regularized empirical loss

R̂(fθ) =
1

n

n∑
i=1

L(fθ(xi), yi) + λn∥θ − θb∥22. (17)

where θb = θ(0) is the initialization of the network. In the following, we use fθ(t) to represent the
network with parameter θ(t) that evolves with the time t. Let η be the learning rate. Suppose the
network parameter is trained via continuous-time gradient flow. Then the evolution of the parameters
θ(t) and fθ(t) can be written as

dθ(t)

dt
= −η

(
1

n
∇θfθ(t)(x)

⊤∇fθ(t)(x)L+ 2λn(θ(t)− θ(0))

)
(18)

dfθ(t)(x)

dt
= ∇θfθ(t)(x)

dθ(t)

dt
(19)
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where θ(t) and fθ(t)(x) are the network parameters and network output at time t.

Under Assumption C.1, we have that

fθ(t)(x) = fθ(0)(x) + J(x)(θ(t)− θ(0)),

which gives
∇θfθ(t)(x) = J(x).

Suppose the loss function is an MSE loss, i.e., L(ỹ, y) = (ỹ − y)2. Then

∇fθ(t)(x)L(fθ(t)(x),y) = 2(fθ(t)(x)− y)

Therefore, under Assumption C.1, (18) becomes

dθ(t)

dt
= −η

(
1

n
J(x)⊤∇fθ(t)(x)L+ 2λn(θ(t)− θ(0))

)
= −η

(
2

n
J(x)⊤

(
fθ(0)(x) + J(x)(θ(t)− θ(0))− y

)
+ 2λn(θ(t)− θ(0))

)
= −2η

(
1

n
J(x)⊤

(
fθ(0)(x)− J(x)θ(0)− y

)
− λnθ(0) +

(
1

n
J(x)⊤J(x) + λnI

)
θ(t)

)
Note that 1

nJ(x)
⊤ (fθ(0)(x)− J(x)θ(0)− y

)
− λnθ(0) and

(
1
nJ(x)

⊤J(x) + λnI
)

are both inde-
pendent of t. Solving this ordinary differential equation, we obtain

θ(t) =θ(0)− 1

n
J(x)⊤

(
1

n
J(x)⊤J(x) + λnI

)−1

(
I − exp

(
−2ηt

(
1

n
J(x)⊤J(x) + λnI

)))(
fθ(0)(x)− y

)
Hence the network output at time t becomes

fθ(t)(x)− fθ(0)(x)

=J(x)(θ(t)− θ(0))

=− 1

n
J(x)J(x)⊤

(
1

n
J(x)⊤J(x) + λnI

)−1

(
I − exp

(
−2ηt

(
1

n
J(x)⊤J(x) + λnI

)))(
fθ(0)(x)− y

)
=− 1

n
K(x,x)

(
1

n
K(x,x) + λnI

)−1(
I − exp

(
−2ηt

(
1

n
K(x,x) + λnI

)))(
fθ(0)(x)− y

)
where the last inequality used the notation K(x,x) = J(x)J(x)⊤ and K(x0,x) = J(x)J(x)⊤.

Therefore, with sufficient time of training (t→ ∞), the final trained network is

fθ(∞)(x) = lim
t→∞

fθ(t)(x)

= fθ(0)(x)−
1

n
K(x,x)

(
1

n
K(x,x) + λnI

)−1 (
fθ(0)(x)− y

)
= fθ(0)(x) +K(x,x) (K(x,x) + nλnI)

−1 (
y − fθ(0)(x)

)
= sθb(x) +K(x,x) (K(x,x) + nλnI)

−1
(y − sθb(x))

where in the last inequality, we use sθb to represent the network initialized with the parameter θb as
in the main paper. Summarizing the above discussion, we conclude that
Assumption C.2. Suppose that the network training is specified as follows:

1. The network adopts the NTK parametrization and its parameters are randomly initialized
using He initialization.
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2. The network is sufficiently (infinitely) wide so that the linearized neural network assumption
(Assumption C.1) holds.

3. The network is trained using the loss function in (1) via continuous-time gradient flow by
feeding the entire training data and using sufficient training time (t→ ∞).

Proposition C.3. Suppose that Assumption C.2 holds. Then the final trained network is given by

ĥn,θb(x) = sθb(x) +K(x,x) (K(x,x) + λnnI)
−1

(y − sθb(x)) . (20)

For the rest part of Proposition 3.1, please refer to Lemma C.4 below.

Shifted kernel ridge regression. On the other hand, we build a shifted kernel ridge regression based
on the NTK as follows.

Let H̄ be the reproducing kernel Hilbert space constructed from the kernel function K(x, x′) (the
population NTK); See Appendix B. Consider the following kernel ridge regression problem on the
RKHS H̄:

sθb + arg min
g∈H̄

1

n

n∑
i=1

(yi − sθb(xi)− g(xi))
2 + λn∥g∥2H̄ (21)

where λn is a regularization hyper-parameter and sθb is a known given function.
Lemma C.4. (20) is the solution to the following kernel ridge regression problem

sθb + arg min
g∈H̄

1

n

n∑
i=1

(yi − sθb(xi)− g(xi))
2 + λn∥g∥2H̄. (22)

Proof of Lemma C.4. We first let ỹi = yi − sθb(xi) be the shifted label. Now consider the kernel
ridge regression problem

arg min
g∈H̄

1

n

n∑
i=1

(ỹi − g(xi))
2 + λn∥g∥2H̄.

Standard theory in kernel ridge regression (Proposition B.1) shows that the closed-form solution to
the above problem is given by:

K(x,x)T (K(x,x) + λnnI)
−1ỹ = K(x,x)T (K(x,x) + λnnI)

−1(y − sθb(x))

as K is the kernel function of H̄. This equation corresponds to the definition of ĥn,θb(x)− sθb(x) in
(20).

From Proposition C.3 and Lemma C.4, we immediately conclude that

The shifted kernel ridge regressor using NTK with a shift from an initial function sθb is exactly the
linearized neural network regressor that starts from the initial network sθb .

Appendix D Additional Remarks

We make the following additional remarks to explain some of the details in the main paper:

1. Regarding Proposition 3.1 (Proposition C.3) in Section 3. Proposition 3.1 is the theoretical
foundation of this paper to develop our framework for efficient uncertainty quantification
and reduction for neural networks. We recognize the limitation of this proposition: The
linearized neural network assumption (Assumption C.1) must hold to guarantee that the
exact equality (2) holds in Proposition 3.1. In reality, the network can never be infinitely
wide, and thus an additional error will appear in (2). Unfortunately, with finite network
width, this error might be roughly estimated up to a certain order but still involves some
unknown constants that hide beneath the data and network [34, 7, 80], which is extremely
difficult to quantify precisely in practice. This work does not deal with such an error from
finite network width. Instead, we assume that the linearized neural network assumption
readily holds as the starting point for developing our uncertainty quantification framework.
Equivalently, one may view our work as uncertainty quantification for linearized neural
networks.
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2. Regarding the regularization parameters in Section 3. We introduce the regularization
parameters λn > 0 with the regularization term centering at the randomly initialized network
parameter in (1) throughout this paper. This form of regularized loss is also adopted in
[119, 117]. It has some advantages: 1) A common assumption in NTK theory is to assume
that the smallest eigenvalue of the NTK Gram matrix is bounded away from zero [34, 7, 80].
With λn > 0 is introduced, there is an additional term λnnI in the NTK Gram matrix so that
this assumption is always valid naturally. 2) It helps to stabilize the inversion of the NTK
Gram matrix if any computation is needed. 3) It can be naturally linked to the well-known
kernel ridge regression, which we leverage in this work to develop uncertainty quantification
approaches.
On the other hand, we note that with λ0 = limn→∞ λn > 0, the "best" predictor h∗ in (6)
given in our framework is not exactly the same as the ground-truth regression function g∗π :=
E(X,Y )∼π[Y |X = x]. In fact, Proposition B.2 shows that h∗ = s̄+(OK+λ0I)

−1OK(g∗π−
s̄) = (OK + λ0I)

−1OK(g∗π) ̸= g∗π. However, previous work [109, 106, 112] shows that
with some conditions, h∗ − g∗π → 0 in some metrics when λ0 → 0. Therefore, we may use
a very small limit value λ0 in practice to make the error h∗ − g∗π negligible, as we did in our
experiments.

3. Regarding naive resampling approaches such as "bootstrap on a deep ensemble"
mentioned in Section 3.1. We show that bootstrap on the deep ensemble estimator ĥmn (x)

face computational challenges in constructing confidence intervals. Since ĥmn (x) involves
two randomnesses, data variability and procedural variability, we need to bring up two
asymptotic normalities to handle them. One approach is first to consider procedural vari-
ability given data and then to consider data variability, as described as follows. Another
approach is first to consider data variability given procedure and then to consider procedural
variability. This will encounter similar challenges as the first approach, so we only discuss
the first approach here.
We intuitively present the technical discussions to explain the computational challenges.
First, conditional on the training data of size n, by the central limit theorem, we have
√
m(ĥmn (x) − ĥ∗n(x))

d
≈ N (0, ξ2n) as m → ∞ where

d
≈ represents "approximately equal

in distribution" and ξ2n = VarP
θb
(ĥn,θb(x)) which depends on the training data. Second,

we assume that the central limit theorem holds for ĥ∗n(x) (which is rigorously justified
in Section 3.3):

√
n(ĥ∗n(x) − h∗(x)) ⇒ N (0, ζ2) as n → ∞. Moreover, we assume for

simplicity that we can add up the above two convergences in distribution to obtain

√
n(ĥmn (x)− h∗(x))

d
≈ N (0, ζ2 +

n

m
ξ2n).

Note that ĥmn (x) − ĥ∗n(x) and ĥ∗n(x) − h∗(x) are clearly dependent, both depending on
the training data of size n. Therefore, the statistical correctness of the above summation of
two convergences in distribution needs to be justified, e.g., using techniques in [48, 75, 77].
However, even if we assume that all the technical parts can be addressed and the asymptotic
normality of ĥmn (x) is established, computation issues still arise in the "bootstrap on a deep
ensemble" approach: 1) " n

mξ
2
n" is meaningful in the limit if we have the limit n

mξ
2
n → α.

This typically requires the ensemble size m to be large, at least in the order ω(1), which
increases the computational cost of the deep ensemble predictor. However, this is not
the only computationally demanding part. 2) The estimation of the asymptotic variance
"ζ2 + n

mξ
2
n" requires additional computational effort. When using resampling techniques

such as the bootstrap, we need to resample R times to obtain (ĥmn (x))∗j where j ∈ [R].
This implies that we need Rm network training times in total, and according to Point 1), it is
equivalent to at least R× ω(1) network training times, which is extremely computationally
demanding. Therefore, naive use of the "bootstrap on a deep ensemble" approach is barely
feasible in neural networks.

Appendix E Proofs

In this section, we provide technical proofs of the results in the paper.
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Proof of Theorem 3.2. In terms of estimation bias, we note that

E[ĥmn (x)|D] =
1

m

m∑
i=1

E[ĥn,θb
i
(x)|D] = E[ĥn,θb(x)|D] = ĥ∗n(x).

as shown in (3). This implies that the deep ensemble predictor and the single network predic-
tor have the same conditional procedural mean given the data. In terms of variance, note that
ĥn,θb

1
(x), ..., ĥn,θb

m
(x), derived in (2), are conditionally independent given D. Therefore the deep

ensemble predictor gives

Var(ĥmn (x)|D) =
1

m2

m∑
i=1

Var(ĥn,θb
i
(x)|D) =

1

m
Var(ĥn,θb(x)|D)

while the single model prediction gives Var(ĥn,θb(x)|D). Now using conditioning, we have

Var(ĥmn (x))

=Var(E[ĥmn (x)|D]) + E[Var(ĥmn (x)|D)]

=Var(ĥ∗n(x)) +
1

m
E[Var(ĥn,θb(x)|D)]

≤Var(ĥ∗n(x)) + E[Var(ĥn,θb(x)|D)]

=Var(ĥn,θb(x))

as desired.

Proof of Theorem 3.3. Recall that ϕ̂′n,θb(·) is obtained by training an auxiliary neural network with
data {(x1, s̄(x1)), (x2, s̄(x2)), ..., (xn, s̄(xn))} and the initialization parameters θb. Then Proposition
3.1 immediately implies that

ϕ̂′n,θb(x) = sθb(x) +K(x,x)T (K(x,x) + λnnI)
−1(s̄(x)− sθb(x)).

Note that this auxiliary network starts from the same initialization θb as in ĥn,θb(x). Then we have

ϕ̂n,θb(x) = ϕ̂′n,θb(x)− s̄(x)

= sθb(x)− s̄(x) +K(x,x)T (K(x,x) + λnnI)
−1(s̄(x)− sθb(x))

= ĥn,θb(x)− ĥ∗n(x)

by (2) and (3). Hence,

ĥ∗n(x) = ĥn,θb(x)− (ϕ̂′n,θb(x)− s̄(x)) = ĥn,θb(x)− ϕ̂n,θb(x)

as desired.

Proof of Theorem 3.5. Theorem 3.3 implies that

ĥn,θb(x)− ϕ̂n,θb(x) = ĥ∗n(x)

which is the solution to the following problem

ĥ∗n(·) = s̄(·) + min
g∈H̄

1

n

n∑
i=1

[(yi − s̄(xi)− g(xi))
2] + λn∥g∥2H̄

Therefore, its corresponding population risk minimization problem is:

h∗(·) = s̄(·) + min
g∈H̄

Eπ[(Y − s̄(X)− g(X))2] + λ0∥g∥2H̄

Applying Proposition 3.4 to ĥ∗n and h∗, we have that
√
n
(
(ĥ∗n(x)− s̄(x))− (h∗(x)− s̄(x))

)
⇒ N (0, σ2(x))
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In other words, √
n
(
ĥn,θb(x)− ϕ̂n,θb(x)− h∗(x)

)
⇒ N (0, σ2(x))

This shows that asymptotically as n→ ∞ we have

P

(
−q1−α

2
≤
ĥn,θb(x)− ϕ̂n,θb(x)− h∗(x)

σ(x)/
√
n

≤ q1−α
2

)
→ 1− α

where qα is the α-quantile of standard Gaussian distribution N (0, 1). Hence[
ĥn,θb(x)− ϕ̂n,θb(x)− σ(x)√

n
q1−α

2
, ĥn,θb(x)− ϕ̂n,θb(x) +

σ(x)√
n
q1−α

2

]
is an asymptotically exact (1− α)-level confidence interval of h∗(x).

Proof of Theorem 3.6. Note that the statistics

ĥj
n′,θb(x)− ϕ̂j

n′,θb(x)

from the j-th batch is i.i.d. for j ∈ [m′]. Moreover, by Theorem 3.5, we have the asymptotic
normality: √

n′
(
ĥn′,θb(x)− ϕ̂n′,θb(x)− h∗(x)

)
⇒ N (0, σ2(x)),

as n → ∞ meaning n′ = n/m′ → ∞. Therefore by the property of Gaussian distribution and the
principle of batching, we have

√
n′

σ(x)
(ψB(x)− h∗(x)) ⇒ 1

m′

m′∑
i=1

Zi

and
ψB(x)− h∗(x)

SB(x)/
√
m′

⇒
1
m′

∑m′

i=1 Zi√
1

m′(m′−1)

∑m′

j=1(Zj − 1
m′

∑m′

i=1 Zi)2

for i.i.d. N (0, 1) random variables Z1, ..., Zm′ , where we use the continuous mapping theorem to
deduce the weak convergence. Note that

1
m′

∑m′

i=1 Zi√
1

m′(m′−1)

∑m′

j=1(Zj − 1
m′

∑m′

i=1 Zi)2

d
= tm′−1

Hence, asymptotically as n→ ∞ we have

P
(
−q1−α

2
≤ ψB(x)− h∗(x)

SB(x)/
√
m′

≤ q1−α
2

)
→ 1− α

where qα is the α-quantile of the t distribution tm′−1 with degree of freedom m′ − 1. Hence[
ψB(x)−

SB(x)√
m′

q1−α
2
, ψB(x) +

SB(x)√
m′

q1−α
2

]
is an asymptotically exact (1− α)-level confidence interval of h∗(x).

Proof of Theorem 3.7. Note that for j ∈ [R], the statistics

ĥ∗j
n,θb(x)− ϕ̂∗j

n,θb(x)

from the j-th bootstrap replication are i.i.d. conditional on the dataset D. By Theorem 3.5, we have
the asymptotic normality:

√
n
(
ĥn,θb(x)− ϕ̂n,θb(x)− h∗(x)

)
⇒ N (0, σ2(x)),
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as n→ ∞. By Theorem 2 in [24], we have the following asymptotic normality: For j ∈ [R],
√
n
(
ĥ∗j
n,θb(x)− ϕ̂∗j

n,θb(x)−
(
ĥn,θb(x)− ϕ̂n,θb(x)

))
⇒ N (0, σ2(x)),

as n→ ∞ conditional on the training data D. Therefore Assumption 1 in [75] is satisfies and thus
Theorem 1 in [75] holds, showing that asymptotically as n→ ∞, we have

P
(
−q1−α

2
≤ ψC(x)− h∗(x)

SC(x)
≤ q1−α

2

)
→ 1− α

where qα is the α-quantile of the t distribution tR with degree of freedom R. Hence[
ψC(x)− SC(x)q1−α

2
, ψC(x) + SC(x)q1−α

2

]
is an asymptotically exact (1− α)-level confidence interval of h∗(x).

Proof of Theorem B.6. Recall that Φ is the feature map associated with the kernel k of the RKHS
H. We apply the influence function formula in [25] (see also [31, 50]) to obtain the infinitesimal
jackknife:

IF (z;T, πn) = −S−1
πn

(2λ0gπn,λ0
) + L′(zy − gπn,λ0

(zx))S
−1
πn

Φ(zx)

where SP : H → H is defined by

SP (f) = 2λ0f + EP [L′′(Y, gP,λ0
(X))f(X)Φ(X)].

This can be seen from (14) by setting P = πn and using the closed-form solution of the kernel ridge
regression.

To compute the exact formula, we need to obtain Sπn
and S−1

πn
. Since the loss function is L(ŷ, y) =

(ŷ − y)2, we have

Sπn
(f) = 2λ0f + Eπn

[L′′(Y, gπn,λ0
(X))f(X)Φ(X)] = 2λ0f +

2

n

n∑
j=1

f(xj)Φ(xj).

Suppose S−1
πn

(2λ0gπn,λ0
) = g̃1. Then at x0, we have

2λ0gπn,λ0(x0) = Sπn(g̃1(x0)) = 2λ0g̃1(x0) +
2

n

n∑
j=1

g̃1(xj)k(x0, xj).

Hence,

g̃1(x0) = gπn,λ0
(x0)−

1

λ0n

n∑
j=1

g̃1(xj)k(x0, xj).

This implies that we need to evaluate g̃1(xj) on training data first, which is straightforward by letting
x0 = x1, ..., xn:

g̃1(x) = gπn,λ0(x)−
1

λ0n
k(x,x)g̃1(x)

so
g̃1(x) = (k(x,x) + λ0nI)

−1(λ0nI)gπn,λ0
(x)

and

g̃1(x0) = gπn,λ0
(x0)−

1

λ0n
k(x0,x)

T g̃1(x)

= gπn,λ0
(x0)− k(x0,x)

T (k(x,x) + λ0nI)
−1gπn,λ0

(x)

Next we compute S−1
πn

Φ(zx) = g̃2. At x0, we have

k(zx, x0) = Φ(zx)(x0) = Sπn
(g̃2(x0)) = 2λ0g̃2(x0) +

2

n

n∑
j=1

g̃2(xj)k(x0, xj)
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Hence

g̃2(x0) =
1

2λ0
k(zx, x0)−

1

λ0n

n∑
j=1

g̃2(xj)k(x0, xj)

This implies that we need to evaluate g̃2(xj) on training data first, which is straightforward by letting
x0 = x1, ..., xn:

g̃2(x) =
1

2λ0
k(zx,x)−

1

λ0n
k(x,x)g̃2(x)

so
g̃2(x) = (k(x,x) + λ0nI)

−1
(n
2
I
)
k(zx,x)

and

g̃2(x0) =
1

2λ0
k(zx, x0)−

1

λ0n
k(x0,x)

T g̃2(x)

=
1

2λ0
k(zx, x0)−

1

2λ0
k(x0,x)

T (k(x,x) + λ0nI)
−1k(zx,x)

Combing previous results, we obtain

IF (z;T, πn)(x0)

=− gπn,λ0
(x0) + k(x0,x)

T (k(x,x) + λ0nI)
−1gπn,λ0

(x)

+ 2(zy − gπn,λ0(zx))

(
1

2λ0
k(zx, x0)−

1

2λ0
k(x0,x)

T (k(x,x) + λ0nI)
−1k(zx,x)

)
=k(x0,x)

T (k(x,x) + λ0nI)
−1

(
gπn,λ0

(x)− 1

λ0
(zy − gπn,λ0

(zx))k(zx,x)

)
− gπn,λ0

(x0) +
1

λ0
(zy − gπn,λ0

(zx))k(zx, x0)

=k(x0,x)
T (k(x,x) + λ0nI)

−1Mz(x)−Mz(x0)

as desired.

Proof of Theorem B.7. Recall from Section B.2, we use the equivalence notations:

IF (z;T, P ) = T ′
P (δz − P ).

First, we prove the following Claim:

sup
z∈X×Y

∥T ′
π(δz − π)− T ′

πn
(δz − πn)∥H → 0, a.s. (23)

From Lemma A.6. and Lemma A.7. in [50], we have

T ′
P (Q) = −S−1

P (WP (Q)).

In this equation,
WP : lin(BS) → H, Q 7→ EQ[L′(Y, gP,λ0

(X))Φ(X)]

is a continuous linear operator on lin(BS) where the space lin(BS) is defined in [50]. Moreover, the
operator norm of WP satisfies ∥WP ∥ ≤ 1. In addition,

SP : H → H, f 7→ 2λ0f + EP [L′′(Y, gP,λ0
(X))f(X)Φ(X)]

is an invertible continuous linear operator on H where Φ is the feature map of H. This implies that
S−1
P : H → H is also a continuous linear operator on H.

Next, we apply Lemma A.7 in [50] by considering the following two sequences: The first sequence is
δz − πn ∈ lin(BS) which obviously satisfies

∥(δz − πn)− (δz − π)∥∞ = ∥π − πn∥∞ → 0, a.s.

The second sequence is πn ∈ BS which obviously satisfies

∥π − πn∥∞ → 0, a.s.
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Following the proof of Lemma A.7 in [50], we have that

∥T ′
π(δz − π)− T ′

πn
(δz − πn)∥H

=∥S−1
π (Wπ(δz − π))− S−1

πn
(Wπn(δz − πn))∥H

≤∥S−1
π (Wπ(δz − π))− S−1

π (Wπn(δz − π))∥H + ∥S−1
π (Wπn(δz − π))− S−1

π (Wπn(δz − πn))∥H
+ ∥S−1

π (Wπn
(δz − πn))− S−1

πn
(Wπn

(δz − πn))∥H
≤∥S−1

π ∥∥Wπ(δz − π)−Wπn
(δz − π)∥H + ∥S−1

π ∥∥Wπn
∥∥(δz − π)− (δz − πn)∥∞

+ ∥S−1
π − S−1

πn
∥∥Wπn

∥∥δz − πn∥∞
≤∥S−1

π ∥∥Wπ(π)−Wπn
(π)∥H + ∥S−1

π ∥∥Wπn
∥∥π − πn∥∞ (since Wπn

is a linear operator)

+ ∥S−1
π − S−1

πn
∥∥Wπn∥ (∥δz − π∥∞ + ∥π − πn∥∞)

Therefore, we only need to study the three terms in the last equation. Note that the first two terms are
independent of z, and thus it follows from Step 3 and Step 4 in the proof of Lemma A.7 in [50] that

sup
z∈X×Y

∥S−1
π ∥∥Wπ(π)−Wπn

(π)∥H + ∥S−1
π ∥∥Wπn

∥∥π − πn∥∞

=∥S−1
π ∥Wπ(π)−Wπn(π)∥H + ∥S−1

π ∥∥Wπn∥∥π − πn∥∞ → 0, a.s.

To show that the third term also satisfies that

sup
z∈X×Y

∥S−1
π − S−1

πn
∥∥Wπn∥ (∥δz − π∥∞ + ∥π − πn∥∞) → 0, a.s.,

we only need to note the following fact:
1) ∥S−1

π − S−1
πn

∥ → 0, a.s., by Step 2 in the proof of Lemma A.7 in [50]. Moreover, this equation is
independent of z.
2) ∥Wπn

∥ ≤ 1 by Step 1 in the proof of Lemma A.7 in [50]. Moreover, this equation is independent
of z.
3) ∥π− πn∥∞ < +∞, a.s., since ∥π− πn∥∞ → 0, a.s.. Moreover, this equation is independent of
z.
4) supz∈X×Y ∥δz − π∥∞ < +∞. To see this, we note that by definition

sup
z∈X×Y

∥δz − π∥∞ = sup
z∈X×Y

sup
g∈G

∣∣∣∣∫ gd(δz − π)

∣∣∣∣ = sup
z∈X×Y

sup
g∈G

∣∣∣∣g(z)− ∫ gdπ

∣∣∣∣ ≤ 2 sup
g∈G

∥g∥∞

where the last term is independent of z and the space G = G1 ∪ G2 ∪ {b} is defined in [50].
supg∈G1

∥g∥∞ ≤ 1 by the definition of G1. supg∈{b} ∥g∥∞ < +∞ by our additional assumption on
b. Since both X and Y are bounded and closed, supx∈X

√
k(x, x) is bounded above by, say κ <∞.

Thus, for every h ∈ H with ∥h∥H ≤ C1, we have ∥h∥∞ ≤ C1κ. By definition of G2, for any g ∈ G2,
we can write g(x, y) = L′(y, f0(x))f1(x) with ∥f0∥H ≤ c0 and ∥f1∥H ≤ 1. Note that ∥f1∥H ≤ 1
implies that ∥f1∥∞ ≤ κ and ∥f0∥H ≤ c0 implies that ∥f0∥∞ ≤ c0κ. Thus Assumption B.4 shows
that ∥L′(y, f0(x))∥∞ ≤ b′c0κ(y) which is bounded on Y by our additional assumption (uniformly for
f0). Hence we conclude that supg∈G2

∥g∥∞ ≤ κ supy∈Y b
′
c0κ(y) < +∞. Summarizing the above

discussion, we obtain that

sup
z∈X×Y

∥δz − π∥∞ ≤ 2 sup
g∈G

∥g∥∞ < +∞

Combining the above points 1)-4), we conclude that

sup
z∈X×Y

∥S−1
π − S−1

πn
∥∥Wπn

∥ (∥δz − π∥∞ + ∥π − πn∥∞) → 0, a.s.

Hence, we obtain our Claim (23).

Applying kx0 to (23), the reproducing property of k implies that

sup
z∈X×Y

∣∣T ′
π(δz − π)(x0)− T ′

πn
(δz − πn)(x0)

∣∣→ 0, a.s.
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Note that since X and Y are bounded and closed by our assumptions, we have that∣∣∣∣∫
z∈X×Y

(T ′
π(δz − π)(x0))

2
dπ(z)−

∫
z∈X×Y

(
T ′
πn

(δz − πn)(x0)
)2
dπ(z)]

∣∣∣∣
≤|π(X × Y)| × sup

z∈X×Y

∣∣T ′
π(δz − π)(x0)− T ′

πn
(δz − πn)(x0)

∣∣
×
∣∣∣∣∫

z∈X×Y

(
T ′
π(δz − π)(x0) + T ′

πn
(δz − πn)(x0)

)
dπ(z)]

∣∣∣∣
→0, a.s.

where we use the fact that
∫
z∈X×Y (T ′

π(δz − π)(x0))
2
dπ(z) = ξ2(x0) < +∞. On the other hand,

it follows from the strong law of large numbers that

1

n

∑
zi∈D

(
T ′
πn

(δzi − πn)(x0)
)2 − ∫

z∈X×Y

(
T ′
πn

(δz − πn)(x0)
)2
dπ(z) → 0, a.s.

Hence, we conclude that

1

n

∑
zi∈D

(
T ′
πn

(δzi − πn)(x0)
)2 − ∫

z∈X×Y
(T ′

π(δz − π)(x0))
2
dπ(z) → 0, a.s.

In other words,

ξ̂2(x0) =
1

n

∑
zi∈D

IF 2(zi;T, πn)(x0) →
∫
z∈X×Y

IF 2(z;T, π)(x)dπ(z) = ξ2(x0), a.s.

For confidence intervals, the proof is straightforward. Theorem B.5 shows that as n→ ∞ we have

gπn,λn
(x0)− gπ,λ0

(x0)

ξ(x0)/
√
n

⇒ N (0, 1)

By Slutsky’s theorem and ξ(x0)

ξ̂(x0)
→ 1, a.s., we have

gπn,λn(x0)− gπ,λ0(x0)

ξ̂(x0)/
√
n

⇒ N (0, 1)

This implies that asymptotically as n→ ∞, we have

P

(
−q1−α

2
≤ gπn,λn(x0)− gπ,λ0(x0)

ξ̂(x0)/
√
n

≤ q1−α
2

)
→ 1− α

where qα is the α-quantile of standard Gaussian distribution N (0, 1). Hence[
gπn,λn

(x0)−
ξ̂(x0)√
n
q1−α

2
, gπn,λn

(x0) +
ξ̂(x0)√
n
q1−α

2

]
is an asymptotically exact (1− α)-level confidence interval of gπ,λ0

(x).

Appendix F Experiments: Details and More Results

F.1 Experimental Details

We provide more details about our experimental implementation in Section 4.

Throughout our experiments, we use a two-layer fully-connected neural network as the base predictor
based on the NTK specifications in Section C (Proposition C.3). However, we need to resolve
the conflicts between the theoretical assumptions therein (e.g., continuous-time gradient flow) and
practical implementation (e.g., discrete-time gradient descent), and at the same time, guarantee that
the training procedure indeed operates in the NTK regime so that the first-order Taylor expansion
(linearized neural network assumption) works well [64, 34, 80, 118]. Therefore, we will use the
following specifications in all experiments.
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1. The network adopts the NTK parametrization, and its parameters are randomly initialized
using He initialization. The ReLU activation function is used in the network.

2. The network has 32× n hidden neurons in its hidden layer where n is the size of the entire
training data. The network should be sufficiently wide so that the NTK theory holds.

3. The network is trained using the regularized square loss (1) with regularization hyper-
parameter λn ≡ 0.110.

4. The network is trained using the (full) batch gradient descent (by feeding the whole dataset).

5. The learning rate and training epochs are properly tuned based on the specific dataset. The
epochs should not be too small since the training needs to converge to a good solution, but
the learning rate should also not be too large because we need to stipulate that the training
procedure indeed operates in the NTK regime (an area around the initialization). Note that
in practice, we cannot use the continuous-time gradient flow, and the network can never be
infinitely wide. Therefore, with the fixed learning rate in gradient descent, we do not greatly
increase the number of epochs so that the training procedure will likely find a solution that
is not too far from the initialization.

6. We set m′ = 4 in the PNC-enhanced batching approach and R = 4 in the PNC-enhanced
cheap bootstrap approach.

7. In DropoutUQ, the dropout rate is a crucial hyper-parameter. We find that the dropout
rate has a significant impact on the interval width of DropoutUQ: A large dropout rate
produces a wide interval since the dropout rate is linked to the variance of the prior Gaussian
distribution [43]. Therefore, to make fair comparisons between different approaches, we
adjust the dropout rate in DropoutUQ so that they have a similar or larger interval width as
PNC-enhanced batching or PNC-enhanced cheap bootstrap.

8. All experiments are conducted on a single GeForce RTX 2080 Ti GPU.

F.2 Additional Experiments

In this section, we present additional experimental results on more datasets. These experimental
results further support our observations and claims in Section 4, demonstrating the robustness and
effectiveness of our proposals.

First, we consider additional synthetic datasets.

Synthetic Datasets #2: X ∼ Unif([0, 0.2]d) and Y ∼
∑d

i=1X
(i) sin(X(i)) + N (0, 0.0012). The

training set D = {(xi, yi) : i = 1, ..., n} is formed by i.i.d. samples of (X,Y ) with sample size n
from the above data generating process. We use x0 = (0.1, 0.1, ..., 0.1) and y0 =

∑d
i=1 0.1 sin(0.1)

as the fixed test point in the confidence interval task. The rest of the setup is the same as Section
4. The implementation specifications are the same as in Section F.1. The results for constructing
confidence intervals are displayed in Table 3, and the results for reducing procedural variability are
displayed in Table 4.

Next, we consider real-world datasets.

It is worth mentioning the main reason for adopting synthetic datasets in our experiments. That is,
precise evaluation of a confidence interval requires the following two critical components, which
nevertheless are not available in real-world data: 1) One needs to know the ground-truth regression
function to check the coverage of confidence intervals, while the label in real-world data typically
contains some aleatoric noise. 2) To estimate the coverage rate of the confidence interval, we need to
repeat the experiments multiple times by regenerating new independent datasets from the same data
distribution. In practice, we cannot regenerate new real-world datasets.

However, to conduct simulative experiments on realistic real-world data, we provide a possible way
to mimic an evaluation of the confidence interval on real-world datasets as follows.

Step 1. For a given real-world dataset, select a fixed test data point (x0, y0) and a subset of the
real-world data (xi, yi) (i ∈ I) that does not include (x0, y0).

Step 2. For each experimental repetition j ∈ [J ], add certain artificial independent noise on the
label to obtain a "simulated" real-world dataset (xi, yi + ϵi,j) (i ∈ I) where ϵi,j are all independent
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Table 3: Confidence interval construction on synthetic datasets #2 with different data sizes n =
128, 256, 512, 1024 and different data dimensions d = 2, 4, 8, 16. The CR results that attain the
desired confidence level 95%/90% are in bold.

PNC-enhanced batching PNC-enhanced cheap bootstrap DropoutUQ
95%CI(CR/IW) 90%CI(CR/IW) MP 95%CI(CR/IW) 90%CI(CR/IW) MP 95%CI(CR/IW) 90%CI(CR/IW) MP

(d = 2)
n = 128 0.98/0.0075 0.91/0.0056 0.0201 1.00/0.0343 0.99/0.0264 0.0184 0.99/0.0392 0.97/0.0330 0.0216
n = 256 0.97/0.0058 0.93/0.0043 0.0197 0.97/0.0215 0.93/0.0165 0.0185 0.96/0.0213 0.94/0.0169 0.0214
n = 512 0.96/0.0050 0.95/0.0037 0.0199 0.94/0.0148 0.90/0.0114 0.0186 0.96/0.0164 0.90/0.0135 0.0216
n = 1024 0.96/0.0041 0.94/0.0030 0.0199 0.95/0.0115 0.93/0.0088 0.0203 0.91/0.0124 0.86/0.0102 0.0210
(d = 4)
n = 128 0.98/0.0111 0.97/0.0082 0.0395 1.00/0.0443 0.98/0.0340 0.0370 0.96/0.0462 0.93/0.0375 0.0441
n = 256 0.98/0.0088 0.92/0.0065 0.0401 0.98/0.0346 0.94/0.0266 0.0374 0.98/0.0344 0.94/0.0282 0.0426
n = 512 0.94/0.0073 0.91/0.0054 0.0403 0.99/0.0236 0.94/0.0181 0.0373 0.94/0.0310 0.88/0.0260 0.0427
n = 1024 1.00/0.0055 0.91/0.0040 0.0399 0.94/0.0167 0.87/0.0128 0.0373 0.95/0.0241 0.90/0.0203 0.0417
(d = 8)
n = 128 0.97/0.0145 0.93/0.0107 0.0798 1.00/0.0683 1.00/0.0524 0.0849 0.94/0.0661 0.86/0.0548 0.0876
n = 256 0.96/0.0110 0.94/0.0082 0.0801 0.99/0.0540 0.97/0.0414 0.0846 0.92/0.0538 0.91/0.0446 0.0853
n = 512 0.97/0.0092 0.92/0.0068 0.0793 0.99/0.0393 0.96/0.0302 0.0846 0.91/0.0427 0.85/0.0359 0.0862
n = 1024 0.95/0.0084 0.90/0.0062 0.0792 0.97/0.0284 0.95/0.0218 0.0820 0.85/0.0295 0.79/0.0248 0.0809
(d = 16)
n = 128 0.95/0.0214 0.94/0.0158 0.1608 1.00/0.1004 0.99/0.0771 0.1568 0.92/0.1124 0.87/0.0958 0.1814
n = 256 0.97/0.0174 0.91/0.0129 0.1595 1.00/0.0725 1.00/0.0556 0.1578 0.95/0.0800 0.88/0.0677 0.1720
n = 512 0.96/0.0140 0.92/0.0104 0.1604 0.99/0.0516 0.98/0.0396 0.1569 0.88/0.0565 0.80/0.0475 0.1689
n = 1024 0.95/0.0114 0.88/0.0084 0.1599 0.98/0.0350 0.95/0.0269 0.1568 0.86/0.0584 0.83/0.0498 0.1685

Table 4: Reducing procedural variability to improve prediction on synthetic datasets #2 with different
data sizes n = 128, 256, 512, 1024 and different data dimensions d = 2, 4, 8, 16. The best MSE
results are in bold.

MSE One base network PNC predictor Deep ensemble (5 networks) Deep ensemble (2 networks)
(d = 2)

n = 128 (1.02 ± 1.16) × 10−4 (1.38 ± 0.18) × 10−5 (2.90 ± 1.72) × 10−5 (5.39 ± 3.01) × 10−5

n = 256 (7.36 ± 4.84) × 10−5 (1.28 ± 0.10) × 10−5 (2.39 ± 1.17) × 10−5 (3.67 ± 1.61) × 10−5

n = 512 (4.41 ± 2.34) × 10−5 (1.11 ± 0.10) × 10−5 (1.79 ± 5.19) × 10−5 (2.52 ± 1.55) × 10−5

n = 1024 (3.46 ± 1.91) × 10−5 (9.78 ± 0.94) × 10−6 (1.03 ± 0.39) × 10−5 (1.82 ± 1.27) × 10−5

(d = 4)

n = 128 (1.89 ± 1.23) × 10−4 (1.98 ± 0.25) × 10−5 (4.64 ± 1.49) × 10−5 (1.02 ± 0.31) × 10−4

n = 256 (1.59 ± 0.47) × 10−4 (1.49 ± 0.08) × 10−5 (4.55 ± 1.58) × 10−5 (1.02 ± 0.37) × 10−4

n = 512 (1.72 ± 0.65) × 10−4 (1.29 ± 0.05) × 10−5 (3.73 ± 0.88) × 10−5 (7.78 ± 1.72) × 10−5

n = 1024 (9.75 ± 3.49) × 10−5 (1.05 ± 0.03) × 10−5 (3.70 ± 0.79) × 10−5 (8.92 ± 2.09) × 10−5

(d = 8)

n = 128 (8.00 ± 1.36) × 10−4 (5.07 ± 0.65) × 10−5 (2.18 ± 0.59) × 10−4 (4.77 ± 1.32) × 10−4

n = 256 (4.50 ± 0.30) × 10−4 (2.30 ± 0.24) × 10−5 (9.44 ± 1.44) × 10−5 (2.08 ± 0.19) × 10−4

n = 512 (3.80 ± 0.35) × 10−4 (1.47 ± 0.07) × 10−5 (8.44 ± 1.11) × 10−5 (2.02 ± 0.23) × 10−4

n = 1024 (3.46 ± 0.50) × 10−4 (1.12 ± 0.04) × 10−5 (8.11 ± 1.27) × 10−5 (1.71 ± 0.23) × 10−4

(d = 16)

n = 128 (2.32 ± 0.24) × 10−3 (1.39 ± 0.14) × 10−4 (5.71 ± 0.74) × 10−4 (1.36 ± 0.30) × 10−3

n = 256 (1.86 ± 0.21) × 10−3 (6.55 ± 0.75) × 10−5 (3.96 ± 0.34) × 10−4 (9.49 ± 0.67) × 10−4

n = 512 (1.42 ± 0.08) × 10−3 (3.32 ± 0.29) × 10−5 (3.00 ± 0.16) × 10−4 (7.14 ± 0.42) × 10−4

n = 1024 (1.18 ± 0.06) × 10−3 (2.58 ± 0.24) × 10−5 (2.56 ± 0.18) × 10−4 (6.30 ± 0.39) × 10−4

Gaussian random variables. Construct a confidence interval based on this “regenerating” training
data (xi, yi + ϵi,j) (i ∈ I) and evaluate it on (x0, y0).

In the above setting, y0 is treated as the true mean response of x0 without aleatoric noise, and ϵi,j
represents the only data variability. As discussed above, precise evaluation is impossible for real-
world data; the above procedure, although not precise, is the best we can do to provide a resembling
evaluation. Using this setting, we conduct experiments on real-world benchmark regression datasets
from UCI datasets: Boston, Concrete, and Energy. These results are shown in Table 5.

From the results, we observe that our approaches also work well for these "simulated" real-world
datasets. Under various problem settings, our proposed approach can robustly provide accurate
confidence intervals that satisfy the coverage requirement of the confidence level. In contrast,
DropoutUQ does not have such statistical guarantees. Overall, our approaches not only work for
synthetic datasets but also is scalable to be applied potentially in benchmark real-world datasets.
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Finally, we conduct experiments of reducing procedural variability to show the performance improve-
ment capability of proposed models and report MSE results on the "simulated" real-world datasets:
Boston, Concrete, and Energy. In each experiment, we use an 80%/20% random split for training data
and test data in the original dataset, and then report MSE on its corresponding "simulated" dataset
from our proposed PNC predictor and other baseline approaches with 10 experimental repetition
times. These results are shown in Table 6.

Table 5: Confidence interval construction on "simulated" real-world benchmark datasets: Boston,
Concrete, and Energy. J = 40. The CR results that attain the desired confidence level 95%/90% are
in bold.

PNC-enhanced batching PNC-enhanced cheap bootstrap DropoutUQ
95%CI(CR/IW) 90%CI(CR/IW) MP 95%CI(CR/IW) 90%CI(CR/IW) MP 95%CI(CR/IW) 90%CI(CR/IW) MP

Boston
Test 1 1.0/1.172 0.975/0.866 0.486 0.925/1.024 0.875/0.786 0.333 0.85/0.997 0.7/0.832 0.109
Test 2 1.0/0.873 0.95/0.645 0.100 0.975/0.869 0.925/0.667 0.042 0.75/0.981 0.625/0.842 0.089
Test 3 1.0/0.896 1.0/0.662 -0.047 0.975/1.473 0.85/1.131 0.0875 0.725/1.005 0.575/0.866 -0.119
Test 4 1.0/0.915 1.0/0.676 0.219 0.925/0.829 0.875/0.637 0.372 0.90/1.164 0.825/0.981 0.131
Test 5 1.0/0.587 1.0/0.434 0.145 1.0/0.531 0.975/0.407 0.272 0.75/1.093 0.725/0.920 0.454

Concrete
Test 1 1.0/1.378 1.0/1.019 0.416 0.975/1.013 0.975/0.778 0.379 0.725/1.176 0.675/1.016 0.088
Test 2 1.0/1.583 1.0/1.171 0.161 1.0/0.874 1.0/0.671 0.362 0.675/1.112 0.65/0.952 0.780
Test 3 1.0/1.673 1.0/1.237 0.0455 1.0/0.970 0.975/0.745 0.516 0.875/1.061 0.75/0.887 0.597
Test 4 1.0/1.156 1.0/0.855 0.484 1.0/0.960 0.95/0.737 0.466 0.875/1.101 0.825/0.949 0.552
Test 5 1.0/1.208 1.0/0.893 0.216 1.0/0.601 1.0/0.462 0.309 0.825/1.027 0.8/0.880 0.684
Energy
Test 1 0.975/0.566 0.975/0.418 0.331 1.0/0.596 1.0/0.458 0.152 0.75/0.854 0.725/0.733 0.037
Test 2 1.0/0.422 1.0/0.312 0.294 0.95/0.570 0.875/0.437 0.191 0.80/0.611 0.725/0.504 0.231
Test 3 1.0/0.435 1.0/0.321 -0.734 1.0/0.724 1.0/0.556 -0.766 0.75/0.749 0.675/0.630 -0.908
Test 4 1.0/0.572 1.0/0.423 -0.723 1.0/0.613 1.0/0.470 -0.792 0.825/0.651 0.775/0.549 -0.847
Test 5 0.975/0.512 0.975/0.379 -0.679 0.975/0.550 0.975/0.422 -0.702 0.825/0.644 0.80/0.550 -0.807

Table 6: Reducing procedural variability to improve prediction on "simulated" real-world benchmark
datasets: Boston, Concrete, and Energy. The best MSE results are in bold.

MSE One base network PNC predictor Deep ensemble (5 networks) Deep ensemble (2 networks)
Boston
Test 1 (3.52 ± 0.78) × 10−1 (1.04 ± 0.03) × 10−1 (1.56 ± 0.28) × 10−1 (2.24 ± 0.51) × 10−1

Test 2 (3.15 ± 0.59) × 10−1 (1.01 ± 0.04) × 10−1 (1.38 ± 0.26) × 10−1 (2.03 ± 0.47) × 10−1

Test 3 (4.18 ± 0.69) × 10−1 (1.93 ± 0.05) × 10−1 (2.28 ± 0.33) × 10−1 (2.68 ± 0.37) × 10−1

Test 4 (3.33 ± 0.81) × 10−1 (1.17 ± 0.06) × 10−1 (1.48 ± 0.17) × 10−1 (1.84 ± 0.24) × 10−1

Test 5 (3.46 ± 0.45) × 10−1 (1.52 ± 0.04) × 10−1 (1.99 ± 0.31) × 10−1 (2.45 ± 0.32) × 10−1

Concrete
Test 1 (2.47 ± 0.24) × 10−1 (1.90 ± 0.04) × 10−1 (2.02 ± 0.07) × 10−1 (2.21 ± 0.14) × 10−1

Test 2 (3.00 ± 0.29) × 10−1 (2.18 ± 0.04) × 10−1 (2.28 ± 0.15) × 10−1 (2.43 ± 0.16) × 10−1

Test 3 (2.39 ± 0.16) × 10−1 (1.85 ± 0.04) × 10−1 (2.01 ± 0.11) × 10−1 (2.18 ± 0.08) × 10−1

Test 4 (2.85 ± 0.55) × 10−1 (1.84 ± 0.02) × 10−1 (1.92 ± 0.14) × 10−1 (2.17 ± 0.38) × 10−1

Test 5 (2.51 ± 0.19) × 10−1 (1.75 ± 0.04) × 10−1 (1.86 ± 0.06) × 10−1 (2.16 ± 0.16) × 10−1

Energy
Test 1 (1.09 ± 0.14) × 10−1 (7.73 ± 0.08) × 10−2 (8.56 ± 0.64) × 10−2 (9.91 ± 0.86) × 10−2

Test 2 (1.08 ± 0.10) × 10−1 (7.46 ± 0.17) × 10−2 (8.29 ± 0.44) × 10−2 (9.57 ± 0.84) × 10−2

Test 3 (1.23 ± 0.10) × 10−1 (7.51 ± 0.12) × 10−2 (8.45 ± 0.43) × 10−2 (1.01 ± 0.12) × 10−1

Test 4 (1.25 ± 0.12) × 10−1 (7.24 ± 0.16) × 10−2 (8.31 ± 0.91) × 10−2 (1.07 ± 0.19) × 10−1

Test 5 (1.12 ± 0.09) × 10−1 (6.81 ± 0.23) × 10−2 (7.97 ± 0.44) × 10−2 (9.69 ± 0.57) × 10−2

F.3 Confidence Intervals for Coverage Results

When evaluating the performance of confidence intervals, the CR value is computed based on a
finite number of repetitions, which will incur a binomial error on the (population) coverage estimate.
Therefore, in addition to reporting CR as a point estimate, we also report a confidence interval for
the (population) coverage. Table 7 reports the Clopper–Pearson exact binomial confidence interval.
Note that this interval can be computed straightforwardly by the point estimate (CR) and the number
of repetitions (J). Therefore, we can refer to Table 7 to additionally obtain a confidence interval of
coverage for our results, e.g., in Tables 1 and 3.
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Table 7: Clopper–Pearson exact binomial confidence interval for coverage estimates at confidence
level 95%. J = 100.

CR value Confidence interval of coverage CR value Confidence interval of coverage CR value Confidence interval of coverage
1.00 [0.964, 1.000] 0.99 [0.946, 1.000] 0.98 [0.930, 0.998]
0.97 [0.915, 0.994] 0.96 [0.901, 0.989] 0.95 [0.887, 0.984]
0.94 [0.874, 0.978] 0.93 [0.861, 0.971] 0.92 [0.848, 0.965]
0.91 [0.836, 0.958] 0.90 [0.824, 0.951] 0.89 [0.812, 0.944]
0.88 [0.800, 0.936] 0.87 [0.788, 0.929] 0.86 [0.776, 0.921]
0.85 [0.765, 0.914] 0.84 [0.753, 0.906] 0.83 [0.742, 0.898]
0.82 [0.731, 0.890] 0.81 [0.719, 0.882] 0.80 [0.708, 0.873]
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