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Abstract001

Supervised fine-tuning (SFT) is a milestone in002
aligning large language models with human in-003
structions and adapting them to downstream004
tasks. In particular, Low-Rank Adaptation005
(LoRA) has gained widespread attention due to006
its parameter efficiency. However, its impact007
on improving the performance of large mod-008
els remains limited. Recent studies suggest009
that combining LoRA with Mixture-of-Experts010
(MoE) can significantly enhance fine-tuning011
performance. MoE adapts to the diversity and012
complexity of datasets by dynamically select-013
ing the most suitable experts, thereby improv-014
ing task accuracy and efficiency. Despite im-015
pressive results, recent studies reveal issues in016
the MoE routing mechanism, such as incor-017
rect assignments and imbalanced expert allo-018
cation. Inspired by the principles of Redun-019
dancy and Fault Tolerance Theory. We innova-020
tively integrate the concept of Mixture of Ex-021
perts into the routing mechanism and propose022
an efficient fine-tuning method called Mixture023
of Routers (MoR). It employs multiple sub-024
routers for joint selection and uses a learnable025
main router to determine the weights of the026
sub-routers. The results show that MoR outper-027
forms baseline models on most tasks, achieving028
an average performance improvement of 1%.029
MoR can serve as a plug-and-play, parameter-030
efficient fine-tuning method suitable for a wide031
range of applications. Our code is available032
here: https://anonymous.4open.science/033
r/MoR-DFC6.034

1 Introduction035

Large Language Models (LLMs) have gradually036

become the cornerstone of natural language pro-037

cessing (NLP) (Devlin et al., 2019; Liu et al., 2021;038

He et al., 2021; Radford et al., 2019). As model039

parameters increase, LLMs demonstrate impres-040

sive emergent abilities and transfer learning capa-041

bilities (Wei et al., 2022; Chowdhery et al., 2023;042

+MoR

MoE

Main Router

Main Router

Sub-Router

Sub-Router

Sub-Router

Expert

Expert

Expert

Expert

Figure 1: A schematic diagram of the MoR plugin,
where the green expert represents the correct expert.
MoR effectively corrects misallocations through joint
multi-routing assignments.

Zhang et al., 2024; Jiang et al., 2024). However, 043

the computational resources required for full fine- 044

tuning are enormous (Lv et al., 2024), and more and 045

more research is focusing on parameter-efficient 046

fine-tuning (PEFT) (Mangrulkar et al., 2022). The 047

main goal is to significantly reduce the resources 048

required for fine-tuning. For example, P-tuning 049

converts prompts into learnable embedding layers 050

(Liu et al., 2022), while LoRA uses a set of low- 051

rank matrices to learn incremental updates (Hu 052

et al., 2022). DCFT (Zhang et al., 2025) further 053

reduces the number of parameters by deconvolu- 054

tion. Despite the high efficiency of PEFT meth- 055

ods, their fine-tuning performance often falls short 056

of meeting the increasingly complex demands of 057

downstream tasks. 058

Mixture-of-Experts (MoE) is designed to im- 059

prove overall model performance by integrating 060

the advantages of multiple expert networks (Jiang 061

et al., 2024). The core idea of this approach is 062

that different expert networks can specialize in han- 063

dling different subsets or features of the data, while 064

a gating mechanism is responsible for determining 065
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which expert should process each input (Jacobs066

et al., 1991; Shazeer et al., 2017a). The model067

typically includes multiple experts and a gating net-068

work. The task of the gating network is to evaluate069

the relevance of each expert based on the input070

data and dynamically allocate the input to the ex-071

pert most suited to handle that data. This dynamic072

allocation mechanism enables MoE models to be073

more flexible and efficient, especially when deal-074

ing with large-scale and diverse datasets (Lepikhin075

et al., 2021; Du et al., 2022; Xue et al., 2021; Zuo076

et al., 2022). Moreover, the MoE architecture of-077

fers higher computational efficiency and scalability.078

By parallelizing the computation across multiple079

experts, MoE can optimize resource usage, accel-080

erating both training and inference speed. This081

is particularly important in scenarios that require082

processing massive datasets.083

Recent research has shown that combining PEFT084

and MoE allows for the advantages of both meth-085

ods (Zadouri et al., 2024; Liu et al., 2024; Dou086

et al., 2023). LoRAMoE (Dou et al., 2023) is a087

plugin version of MoE, learns multiple sets of low-088

rank matrices as experts and uses a softmax layer089

as a router to compute the input data for each ex-090

pert. During training, the pre-trained weights are091

kept frozen, and only the experts and the router092

are trained. MoLA (Gao et al., 2024) further in-093

vestigates the number of experts at different lay-094

ers, assigning fewer experts to lower layers and095

increasing the number of experts as the layer depth096

increases. While it demonstrates impressive results,097

recent studies have found issues with the MoE rout-098

ing mechanism, including incorrect assignments099

and imbalances in expert allocation (Shazeer et al.,100

2017b; Fedus et al., 2022).101

In system design, the principles of Redundancy102

and Fault Tolerance Theory emphasize the impor-103

tance of using multiple components to enhance104

reliability and robustness. By introducing redun-105

dancy, systems can mitigate the impact of individ-106

ual component failures and improve overall per-107

formance. Inspired by this theory, we propose a108

new parameter-efficient MoE method to address the109

aforementioned issues. Specifically, our approach110

employs multiple sub-routers for joint decision-111

making, where each sub-router contributes to the112

final decision, thereby reducing the risk of errors113

from any single sub-router. A main router is then114

used to select the top-r sub-routers based on their115

scores, ensuring that only the most reliable deci-116

sions are prioritized. By adjusting the number of117

sub-routers, MoR can flexibly adapt to tasks of 118

varying complexity. Ultimately, the weighted coop- 119

eration of the sub-routers determines the scores for 120

each expert, and the top-k experts with the highest 121

combined scores are selected for the final inference. 122

We conducted experiments on six benchmarks, in- 123

cluding NLP and Commonsense Reasoning (CR) 124

tasks, to demonstrate the effectiveness of MoR. Our 125

main contributions are as follows: 126

• We propose a new fine-tuning method called 127

MoR, which selects expert models through 128

multiple sub-routers and uses a main router to 129

determine the selection of sub-routers. MoR 130

can replace the router layer in MoE-style mod- 131

els, thereby making it a plug-and-play and 132

parameter-efficient solution. 133

• We propose a variant of MoR called Consis- 134

tent Routing Weighting (CRW) to address the 135

impact of sharp, erratic changes in transfer 136

learning, effectively enhancing the model’s 137

stability and generalization ability. 138

• We conduct numerous experiments on 139

Llama2-7B to validate the effectiveness of 140

MoR. We compare it against benchmarks 141

across six different tasks, and MoR outper- 142

forms in most of them. 143

2 Related Work 144

When performing SFT tasks, full fine-tuning not 145

only requires substantial computational and storage 146

resources but can also lead to catastrophic forget- 147

ting. In contrast, PEFT (Mangrulkar et al., 2022) 148

achieves similar results to full fine-tuning by freez- 149

ing most of the model parameters and training only 150

a small subset of them. Low-Rank Approximation 151

(Hu et al., 2022) is a popular and efficient fine- 152

tuning method for LLMs, dubbed as LoRA. It uti- 153

lizes low-rank approximation theory to effectively 154

adjust the model’s behavior with smaller parameter 155

increments. The forward formula is as follows: 156

W = W (0) +∆ = W (0) +BA, (1) 157

where ∆ ∈ Rdin×dout, A ∈ Rr×dout, and B ∈ 158

Rdin×r, with r∈(din,dout). The dimensions of din 159

and dout are the same as those of the pre-trained 160

matrix W . 161

Although LoRA significantly reduces the num- 162

ber of parameters, its impact on SFT performance 163
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Figure 2: Here is a schematic illustration of MoR. On the left is a schematic diagram of the integration of LoRA and
MoE, incorporating LoRA as an expert into the MoE model. On the right is the MoR plugin we propose, which can
flexibly replace the router layer in MoE-style models.

is noticeable. The integration of MoE and LoRA164

represents a notable trend in recent advancements165

aimed at improving the performance of LLMs de-166

grees. (Zadouri et al., 2024) introduce a novel167

parameter-efficient MoE framework, Mixture of168

Vectors (MoV) and Mixture of LoRA (MoLORA),169

which achieves comparable performance to full170

fine-tuning with significantly fewer parameters.171

(Huang et al., 2024) propose LoRAHub, which172

achieves the cross-task generalization capability173

of LoRA by integrating LoRA modules trained on174

different tasks through a simple framework. MoLA175

(Gao et al., 2024) experimentally demonstrates that176

more LoRA experts in higher layers can signifi-177

cantly improve the performance of Transformer-178

based models.179

These methods effectively improved the perfor-180

mance of SFT, but they also led to issues such as181

errors and imbalanced expert allocation (Shazeer182

et al., 2017b; Fedus et al., 2022). To mitigate the183

random routing phenomenon observed in MoE,184

MoELoRA (Luo et al., 2024) encourage experts185

to learn distinct features through contrastive learn-186

ing, thereby effectively improving model perfor-187

mance. LoRAMoE (Dou et al., 2023) integrates188

multiple LoRA experts through a router. It also mit-189

igates the issue of unbalanced expert utilization via190

a Localized Balancing Constraint. DeepseekV3191

(DeepSeek-AI et al., 2024) manages the load192

through Auxiliary-Loss-Free Load Balancing and193

Complementary Sequence-Wise Auxiliary Loss.194

These methods offer valuable insights into errors195

and imbalanced expert allocation, but our MoR pro-196

vides a more flexible and plug-and-play strategy197

for addressing these issues.198

3 Method 199

In this section, we elaborate on the methodological 200

details of MoR. It is a MoE-style plugin that em- 201

ploys multi-route collaborative expert allocation, 202

as illustrated in Figure 2. 203

3.1 Motivation 204

In this section, we explore the motivation for in- 205

troducing multiple routers to make joint decisions 206

and explain their necessity and potential advan- 207

tages based on the theory of redundancy and fault 208

tolerance. 209

In traditional MoE-style architectures, a single 210

router is responsible for assigning inputs to the 211

most suitable expert network. However, this design 212

has a significant limitation: the single router may 213

make incorrect allocation decisions due to noise, 214

overfitting, or insufficient training, which can lead 215

to a decline in model performance. This vulnerabil- 216

ity is particularly pronounced in high-dimensional 217

and complex tasks. The theory of redundancy and 218

fault tolerance provides important inspiration for 219

addressing this issue. The theory suggests that by 220

introducing redundant components and designing 221

appropriate fault-tolerant mechanisms, the reliabil- 222

ity and robustness of a system can be significantly 223

improved. Specifically, when one component in 224

the system fails, other components can collaborate 225

to take over its tasks, thereby preventing overall 226

system failure. Inspired by this, we introduce mul- 227

tiple routers in the MoE architecture to make joint 228

decisions. Aggregating multiple independent judg- 229

ments reduces the bias of a single decision. If one 230

router makes an incorrect judgment due to noise 231
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or error, the other routers can correct it through232

collective decision-making, thereby enhancing the233

system’s fault tolerance. Moreover, the design of234

multiple routers introduces the advantage of diver-235

sity. Different routers can form complementary236

decision-making capabilities through varied initial-237

izations, training data, or structural designs. This238

diversity not only strengthens the system’s robust-239

ness but also improves the model’s adaptability240

when facing complex tasks.241

3.2 Architecture242

The left of Figure 2 illustrates the forward pro-243

cess of the standard LoRAMoE architecture. MoE244

assigns different inputs to different experts via a245

router module. This means that although adding246

more experts increases the total number of model247

parameters, only a small number of experts are248

involved in the computation during both training249

and inference. This allows the model parameters to250

scale with the same computational cost. The router251

is a trainable gating function that normalizes the252

distribution of expert weights using the Softmax253

function. The final output of the MoE layer is the254

weighted sum of the outputs from the experts:255

Fi(x) =
Topk(Softmax(Wr · x), k)i∑k
j=1 Topk(Softmax(Wr · x), k)j

, (2)256

257

W = W 0 +

k∑
i=1

Fi(x) · Ei(x), (3)258

where Topk retains the k highest weight distribu-259

tions P from the Softmax output, and the remain-260

ing weights are set to 0. The retained k weights261

are then re-normalized to ensure the sum of the262

weights equals 1. In addition, load balancing loss263

is commonly used in MoE to promote balanced264

expert selection. To ensure that the original knowl-265

edge space of LLMs is not compromised, LoRA is266

adopted to reduce the occurrence of catastrophic267

forgetting. By training multiple pairs of low-rank268

matrices {A}Ni=1 and {B}Ni=1 as experts. The in-269

put is then assigned to different experts through a270

learnable routing module. Our forward equation is271

shown as follows:272

W = W 0 +
k∑

i=1

Fi(x) ·BiAi(x). (4)273

The right of Figure 2 illustrates the MoR plugin.274

In previous MoE models, experts were selected275

based on the results of main router WR, typically 276

choosing the top one or two experts determined by 277

the top-k criterion: 278

Ri = Softmax(WR · x)i, (5) 279

while it improves the coordination ability of expert 280

models in handling complex tasks, it still faces the 281

issues of incorrect and uneven expert allocation. 282

To address the issues, we propose a fine-grained 283

expert control method with a multi-router mecha- 284

nism, termed MoR, which can be inserted into all 285

MoE-based models by replacing the router compo- 286

nent of the original model. It consists of a main 287

router WR and multiple sub-routers Wr: 288

Fi(x)
′ =

N∑
i=1

Ri∑k
j=1R

j
· ri, (6) 289

where the main router assigns weights to each of 290

the sub-routers. The final expert routing weight R′ 291

is a weighted sum of the sub-routers rather than 292

relying on the result of a single router. Specifically, 293

load balancing loss is used in MoR to promote bal- 294

anced router selection. We summarize the complete 295

training process of MoR in Algorithm 1. 296

Algorithm 1 MoR Training

1: Input: Dataset D; total iterations T .
//Create LoRA experts and routers

2: Create matrix N(A,B) and main router WR

and sub-routers (Wr)i;
3: for t = 1, . . . , T do
4: Sample a mini-batch from D;

//Calculate the score of experts
5: Compute main router score R as (5);
6: Compute the expert score Fi(x)

′ as (6);
7: Select the top-k scoring experts;

//Iteratively calculate output y
8: for i = 1, . . . , k do
9: y + = B(k)A(k)(x);

10: return y.
11: end for
12: end for
13: Output: Expert mixture result y.

3.3 Consistent Routing Weighting 297

In transfer learning, models face the challenge of 298

distributional differences between the source and 299

target domains. During the process of using MoR 300

for transfer learning, the model heavily relies on the 301
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Models SciQA ComQA OpenQA MRPC CoLA RTE Avg.

Full-Fine Tuning 93.12 77.48 80.4 87.13 86.29 87.73 85.36

Prompt Tuning 36.78 37.76 46.2 49.91 59.25 54.17 47.35
LLaMA-Adapter 73.33 73.55 71.8 71.94 47.56 72.93 68.52
LoRA 91.01 75.51 77.0 83.13 86.29 85.92 83.14
LoRAMoE 92.04 78.13 80.0 84.23 86.28 85.20 84.31
MoLA 92.36 78.95 79.6 83.48 86.87 86.28 84.59
LoRAMoE + MoR 92.90 78.54 81.0 84.75 86.39 88.45 85.34
MoLA + MoR 93.08 79.20 82.0 83.94 86.77 88.45 85.57

Table 1: Direct Fine-Tuning Performance comparison of different models on various tasks. We report the accuracy
of all the tasks. Higher is better for all metrics. We use the same hyperparameters, which are specified in section C.
The best results are denoted in bold.

Models SciQA ComQA OpenQA MRPC CoLA RTE Avg.

LoRA 91.01 74.61 76.6 84.41 86.95 84.48 83.01
MoLA 92.94 77.97 78.7 84.52 86.64 86.48 84.54
MoLA + MoR 92.09 77.56 80.0 83.94 85.43 88.09 84.52
MoLA + CRW 93.21 78.79 81.6 85.39 86.77 88.45 85.70

Table 2: Instructional Fine-Tuning Performance comparison of different models on various tasks. CRW is a variant
of MoR.

main router, making it difficult to adjust the distri-302

bution of expert routes to adapt to new tasks in the303

early stages of transfer learning. To address these304

issues, we propose a variant of MoR, called Con-305

sistent Routing Weighting (CRW) , to enhance the306

model’s stability and generalization ability. This307

method ensures parameter stability by applying308

equal weights across different routes, thereby mini-309

mizing the risk of overfitting to specific tasks. By310

preventing the model from overly relying on fea-311

tures from a particular route, we maintain balanced312

feature representation, which is crucial when han-313

dling tasks from different domains. CRW helps314

smooth the optimization landscape, making the315

training process more stable and reducing the like-316

lihood of sharp fluctuations in the loss function. Ad-317

ditionally, CRW enhances cross-domain robustness318

by ensuring a more uniform contribution from each319

route, making the model less sensitive to domain-320

specific variations and better equipped to transfer321

knowledge effectively. This process can be repre-322

sented as:323

Fi(x)
CRW =

N∑
i=1

1

N
· ri. (7)324

4 Experiments 325

4.1 Experimental Settings 326

In this section, we design two experimental setups 327

to evaluate the performance of the MoR method, 328

including direct fine-tuning and instruction fine- 329

tuning. Direct fine-tuning refers to fine-tuning 330

the model directly on downstream tasks, while in- 331

struction fine-tuning involves first fine-tuning on an 332

instruction-tuning dataset, followed by fine-tuning 333

on the downstream task. LLaMA-2-7B (Touvron 334

et al., 2023) is used as the base model. To ensure 335

a fair comparison, LoRAMoE allocates 5 experts 336

per layer, while MoLA adopts a similar progressive 337

expert configuration of 2-4-6-8 as mentioned in its 338

paper. We keep the total number of experts the 339

same across all variants. In both settings, we con- 340

duct a grid search on the number of training epochs, 341

considering 10, 15, and 20 epochs for fine-tuning 342

on the downstream task. The highest value from 343

the three experiments is taken as the experimental 344

result. We implement all algorithms using PyTorch 345

(Paszke et al., 2019). We use AdamW (Loshchilov 346

and Hutter, 2017) as the optimizer. We applied 347
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Method&# Param Metric SciQA ComQA OpenQA MRPC CoLA RTE Avg.

MoLA Acc(%) 92.36 78.95 79.6 83.48 86.87 86.28 84.59
Time(h) 13.20 19.32 9.67 7.52 15.80 5.25 11.79

MoLA + MoR Acc(%) 93.08 79.20 82.0 83.94 86.77 88.45 85.57
(r = 2) Time(h) 13.70 19.98 10.03 7.92 17.00 5.55 12.36

MoLA + MoR Acc(%) 93.30 78.05 81.2 84.81 86.10 87.73 85.20
(r = 3) Time(h) 13.99 20.33 10.27 7.98 17.15 5.55 12.55

MoLA + MoR Acc(%) 92.99 76.82 80.0 84.00 86.10 88.09 84.67
(r = 4) Time(h) 14.15 20.53 10.57 8.02 17.31 5.58 12.69

Table 3: The results of MoR with different router numbers were tested on 6 different tasks, and we report the
accuracy and time efficiency. r represents the number of routers. We use the same hyperparameters, with only the
router number varying.

LoRA to four weight matrices in the self-attention348

module (Wq,Wk,Wv,Wo) and to three weight ma-349

trices in the MLP module (Wgate,Wdown,Wup).350

All experiments are conducted on a single NVIDIA351

A100-80G GPU.352

4.1.1 Datasets353

For evaluation, we adopt three natural language354

processing (NLP) tasks and three commonsense355

reasoning (CR) tasks. For the NLP tasks, we eval-356

uate three popular datasets, including Microsoft’s357

Research Paraphrase Corpus (MRPC) (Dolan and358

Brockett, 2005), Corpus of Linguistic Acceptabil-359

ity (COLA) (Wang et al., 2018), and Recognizing360

Textual Entailment (RTE) (Wang et al., 2018). For361

the CR tasks, we evaluate ScienceQA (Lu et al.,362

2024), CommonsenseQA (Talmor et al., 2019), and363

OpenbookQA (Mihaylov et al., 2018).364

4.1.2 Baselines365

We compare MoR with four popular parameter-366

efficient tuning methods, including prompt tun-367

ing (Lester et al., 2021), LLaMAAdapter (Zhang368

et al., 2024), LoRA (Hu et al., 2022), LoRAMoE369

(Dou et al., 2023) and MoLA (Gao et al., 2024).370

Additionally, we also evaluate full-parameter fine-371

tuning.372

4.2 Main Results373

Direct Fine-Tuning. We first compare the results374

of direct fine-tuning between MoR and baseline375

models on LLAMA-7B, where the accuracy (%)376

results of MoR and other baselines are shown in377

Table 1. We use the same hyperparameters for all378

methods. The results indicate that methods based 379

on LoRA (LoRA, MoLA, and MoR) significantly 380

outperform the baseline methods based on prompt 381

tuning (Prompt Tuning and LLaMA-Adapter). Af- 382

ter inserting the MoR module, there is a signifi- 383

cant improvement across all tasks. Specifically, 384

MoELoRA and MoLA show increased accuracy 385

rates in the OpenbookQA task by 1.4% and 2.4%, 386

respectively, and in the RTE task by 2.17% and 387

1.58%, respectively, after the integration of the 388

MoR module. On average, the insertion of the 389

MoR module has led to improvements of 1.03% 390

and 0.98%, respectively. These results demonstrate 391

that MoR can effectively enhance the performance 392

of MoE-style models. 393

Instructional Fine-Tuning. We first tune 394

LLAMA-7B on the instructional tuning dataset us- 395

ing each PEFT method. Then, we fine-tune for 396

all downstream tasks. Instructional tuning effec- 397

tively evaluates the transfer learning capabilities 398

of each PEFT method. We only compare methods 399

based on LoRA, as they exhibit stronger transfer 400

learning capabilities compared to methods based 401

on prompt tuning. The results, as shown in Table 2, 402

indicate that MoLA+MoR achieved similar results 403

to MoLA on the Instructional Fine-Tuning task, es- 404

pecially on the ScienceQA task where it decreased 405

by 0.85%. However, after employing the MoR vari- 406

ant CRW, there was a noticeable performance im- 407

provement, particularly on the CommonsenseQA 408

and OpenbookQA tasks, where MoLA+CRW im- 409

proved by 2.9% and 0.82% respectively compared 410

to MoLA. On average, there was a 1.16% improve- 411

ment. Experimental results show that as a plug-in 412

6



MoLA +MoR(ours)

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Ti
m

es

1e7 Expert Number = 4

MoLA +MoR(ours)
7.0

7.5

8.0

8.5

9.0

9.5

Ti
m

es

1e6 Expert Number = 6

MoLA +MoR(ours)

5.5

6.0

6.5

7.0

7.5

Ti
m

es

1e6 Expert Number = 8

Experts Allocation

Figure 3: A visualization of expert allocation by MoR and MoLA, showing layers with a total of 4, 6, and 8 experts
from left to right. Layers with only 2 experts are not displayed due to the use of the top-2 mechanism. The x-axis
represents the expert IDs, and the y-axis represents the number of times each expert is activated.

16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0
Epoch

0.085

0.090

0.095

0.100

0.105

0.110

Tr
ai

ni
ng

 L
os

s

Loss Comparison
MoLA
+MoR(ours)

Figure 4: Comparison of training loss between MoR
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for MoE-style models, MoR significantly boosts413

the performance of direct fine-tuning, while in the414

Instructional Fine-Tuning task, the MoR variant415

CRW performs better in terms of transfer learning.416

4.3 Analysis417

4.3.1 Router Number Analysis418

Similar to MoE, MoR can also better adapt to dif-419

ferent downstream tasks by adjusting the number of420

routers. In this section, we present the results and421

training times of MoR models with different num-422

bers of routers across six distinct tasks, as shown423

in Table 3. The analysis shows that when using424

two routers (r = 2) for joint allocation, the model425

achieves the fastest training speed and attains the426

best overall results, with an average improvement427

of 0.98% and only a 4.6% increase in training time.428

When using three routers (r = 3) for joint allo-429

cation, the model achieves average suboptimal re-430

sults; however, it is noteworthy that the model pro-431

duces the best outcomes on the ScienceQA and432

MRPC tasks. Upon further increasing the number433

of routers to four (r = 4), there is a decline in434

model performance, along with a 7.1% increase in 435

training time. Further analysis indicates that Sci- 436

enceQA and MRPC are the most complex tasks 437

among similar types of three tasks, thus requiring 438

more joint allocation experts through routing. In 439

contrast, simpler tasks are prone to overfitting due 440

to excessively high model complexity when using 441

multiple routers. 442

4.3.2 Expert Allocation Analysis 443

In this section, we explain the reasons for the perfor- 444

mance improvement after inserting the MoR plugin 445

through expert allocation analysis. The changes in 446

expert allocation after inserting MoR are shown 447

in Figure 3. From the figure, we can observe that 448

before inserting MoR, in the left plot, expert(1) is 449

activated excessively frequently, while expert(3) is 450

activated far less often, leading to an imbalanced 451

model workload. Similar activation patterns can 452

also be observed with other numbers of experts. 453

However, after inserting MoR, the distribution of 454

expert activations becomes much more balanced. 455

The difference between the most frequently acti- 456

vated expert and the least frequently activated ex- 457

pert significantly decreases. 458

Regarding incorrect expert allocations, we can 459

see from the loss curve in Figure 4 that the model 460

with the MoR plugin shows a noticeable reduction 461

in training loss. This indicates that multi-expert 462

routing can better capture underlying patterns in the 463

data, thereby improving the overall performance 464

and generalization ability of the model. Specifi- 465

cally, the MoR plugin introduces a multi-routing 466

mechanism, allowing the model to consider more 467

information when selecting experts. This avoids 468

over-reliance on a single expert or neglecting cer- 469

tain experts. This improvement in load balancing 470
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Figure 5: Comparison of training loss between MoR and
CRW (a variant of MoR) on the OpenBookQA transfer
learning task.

not only enhances training efficiency but also re-471

duces potential biases caused by uneven expert472

allocation.473

4.3.3 Why MoR Performs Poorly on474

Instruction Fine-tuning Tasks?475

MoR dynamically allocates weights via a main476

router, aiming to flexibly adjust the contribution477

of each sub-router based on varying task require-478

ments. However, in transfer learning, experimental479

results show that MoR performs worse than simply480

using CRW, which contrasts sharply with its supe-481

rior performance in direct supervised fine-tuning.482

We recorded the changes in training loss during the483

early stages of transfer learning, as shown in Fig-484

ure 5. The results indicate that in the initial phase485

of transfer learning, CRW exhibits a faster and486

lower loss reduction. This suggests that equally dis-487

tributed weights can more efficiently leverage the488

initial feature representations of multiple routers,489

allowing for quicker adaptation to the target do-490

main task. In contrast, due to the involvement of491

the main router, MoR may suffer from suboptimal492

weight allocation at the beginning, leading to re-493

duced optimization efficiency and slower model494

convergence. Further analysis reveals that the core495

reason for this discrepancy lies in the unique char-496

acteristics of transfer learning. First, transfer learn-497

ing faces the challenge of distributional differences498

between the source and target domains. The main499

router needs to learn how to allocate weights from500

limited target domain data. Due to the scarcity501

of target domain data, the main router is prone to502

overfitting or developing biases, resulting in subop-503

timal weight allocation strategies. In comparison,504

equal weight distribution does not rely on target505

domain data, avoiding this issue and thus demon-506

strating stronger robustness. Second, the inherent 507

uncertainty in transfer learning makes it difficult 508

for the main router to accurately capture the impor- 509

tance of each sub-router. If the main router fails 510

to fully understand the characteristics of the target 511

domain, it might mistakenly suppress the contribu- 512

tions of certain critical sub-routers. On the other 513

hand, equal weight distribution ensures equal par- 514

ticipation from all sub-routers, fully leveraging the 515

diversity advantage of multi-router architectures. 516

5 Conclusion 517

We propose a MoE-style plug-in named MoR, 518

which effectively alleviates the issues of incorrect 519

assignments and imbalances in expert allocation in 520

MoE-style models through multi-routing joint al- 521

location. This innovative, plug-and-play approach 522

provides a flexible solution to the expert allocation 523

problem in MoE models. Extensive experiments 524

conducted on NLP and CR tasks show that MoR 525

outperforms baseline models both in direct fine- 526

tuning and instruction-based fine-tuning scenarios. 527

As a plug-and-play PEFT, MoR can be applied to 528

a wide range of tasks. Moreover, this work offers 529

a promising research direction for enhancing MoE 530

technology and PEFT methods. 531

Limitations 532

There are two limitations in this work. First, the 533

current research primarily focuses on experiments 534

with single-modality data and models. Our method 535

has not yet been validated on models handling other 536

modalities. Secondly, due to the lack of computa- 537

tional resources, the experiments in this study were 538

limited to fine-tuning tasks and did not involve the 539

process of training large-scale models from scratch. 540

This means that the performance of our approach 541

in training large models from the ground up has not 542

been fully validated. We look forward to address- 543

ing these limitations in the future. 544
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A Datasets714

A.1 NLP Datasets715

For evaluation, we adopt the GLUE (General716

Language Understanding Evaluation) benchmark,717

which is a widely used collection of datasets de-718

signed to assess natural language understanding719

(NLU) capabilities of models. Specifically, the720

GLUE benchmark includes several datasets such721

as COLA (Wang et al., 2018), where the task is722

to determine whether a given sentence is gram-723

matically acceptable; MRPC (Dolan and Brockett,724

2005), which focuses on identifying whether two725

sentences are semantically equivalent; and RTE726

(Wang et al., 2018), where the goal is to predict if727

a premise sentence entails a hypothesis sentence.728

We present the dataset statistics of GLUE in the729

following table 4.

Dataset Metric #Train #Valid #Test #Label

COLA Mcc 8.5k 1,043 1,063 2

MRPC Acc 3.7k 408 1.7k 2

RTE Acc 2.5k 277 3k 2

Table 4: Dataset Sizes and Evaluation Metrics in
the GLUE Benchmark. "Mcc" and "Acc" denote the
Matthews correlation coefficient and accuracy

730

A.2 CR Datasets731

Specifically, for the CR tasks, we evaluate Sci-732

enceQA (Lu et al., 2024), a dataset that tests multi-733

modal reasoning across text, images, and scientific734

concepts; CommonsenseQA (Talmor et al., 2019),735

which focuses on answering questions that require736

everyday commonsense knowledge and reason-737

ing about implicit relationships; and OpenbookQA738

(Mihaylov et al., 2018), designed to evaluate rea-739

soning over explicit scientific facts and principles740

provided in an open book format. For more details741

and specific statistics, please refer to Table 5.

Dataset Metric #Train #Valid #Test #Label

SciQA Acc 6,508 - 2,224 4

ComQA Acc 9,740 1,221 - 5

OpenQA Acc 4,957 500 500 4

Table 5: Dataset Sizes and Evaluation Metrics for Sci-
ence Question Answering Tasks. "Acc" denotes accu-
racy.

742

B Redundancy and Fault Tolerance 743

Theory 744

Redundancy and Fault Tolerance Theory is a fun- 745

damental concept in system design, particularly 746

in engineering, computer science, and reliability 747

analysis. It focuses on enhancing system robust- 748

ness by incorporating redundant components or 749

mechanisms to ensure continued operation despite 750

failures. The theory is based on the principle that 751

adding extra resources, such as backup systems 752

or duplicate components, can mitigate the impact 753

of faults, thereby improving overall reliability and 754

availability. A key metric in this theory is the sys- 755

tem reliability, often modeled using probability: 756

Rsys = 1− (1−R)n (8) 757

where R represents the reliability of an individ- 758

ual component, and n is the number of redundant 759

components. This formula illustrates how redun- 760

dancy increases system reliability exponentially 761

with additional components. Fault tolerance ex- 762

tends beyond hardware to software systems, em- 763

ploying techniques like error detection, correction 764

codes, and failover mechanisms. 765

C Hyperparameters 766

To facilitate the reproducibility of our experimental 767

results, we have made the hyperparameters used in 768

our experiments publicly available. This includes 769

detailed configurations such as learning rates, batch 770

sizes, optimization algorithms, weight decay, and 771

other relevant settings. By providing this informa- 772

tion, we aim to ensure that our experiments can be 773

replicated and validated by other researchers, fos- 774

tering transparency and enabling further advance- 775

ments in the field.

Hyperparameters Value

batch_size 64

micro_batch_size 4

learning_rate 3e-4

cutoff_len 256

lora_r 8

lora_dropout 0.05

lora_alpha 16

Table 6: Hyperparameters

776
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Figure 6: Visualization of MoR expert activations, with the total number of experts being 2, 4, 6, and 8 from top to
bottom.

D Visualization of expert allocation777

In this section, we present the visualization of778

expert allocation and activation within the MoR779

framework, as shown in Figure 6. The similarity780

in color across each row indicates that the MoR781

plugin effectively mitigates the issue of improper782

and uneven expert allocation commonly observed783

in MoE-style models.784
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