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Mixed Likelihood Variational Gaussian Processes
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Abstract
Gaussian processes (GPs) are powerful models
for human-in-the-loop experiments due to their
flexibility and well-calibrated uncertainty. How-
ever, GPs modeling human responses typically
ignore auxiliary information, including a priori
domain expertise and non-task performance in-
formation like user confidence ratings. We pro-
pose mixed likelihood variational GPs to leverage
auxiliary information, which combine multiple
likelihoods in a single evidence lower bound to
model multiple types of data. We demonstrate
the benefits of mixing likelihoods in three real-
world experiments with human participants. First,
we use mixed likelihood training to impose prior
knowledge constraints in GP classifiers, which
accelerates active learning in a visual perception
task where users are asked to identify geomet-
ric errors resulting from camera position errors
in virtual reality. Second, we show that lever-
aging Likert scale confidence ratings by mixed
likelihood training improves model fitting for hap-
tic perception of surface roughness. Lastly, we
show that Likert scale confidence ratings improve
human preference learning in robot gait optimiza-
tion. The modeling performance improvements
found using our framework across this diverse set
of applications illustrates the benefits of incorpo-
rating auxiliary information into active learning
and preference learning by using mixed likeli-
hoods to jointly model multiple inputs.

1. Introduction
Gaussian process (GPs) are indispensable models for many
machine learning and AI applications (Williams & Ras-
mussen, 2006). As a Bayesian nonparametric model, it
is favored for its well-calibrated uncertainty estimates and
flexibility. When using a GP for regression with Gaussian
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errors, i.e., a Gaussian likelihood, the posterior distribution
is a multivariate normal whose mean and covariance can be
computed analytically via the Kriging equations (Gramacy,
2020). This analytic tractability does not hold for other types
of observations, such as classification or preference data, but
GP modeling in those settings can be done with variational
approximation (e.g., Hensman et al., 2013; 2015) or other
approximate inference schemes (Kuss & Rasmussen, 2005).

Human feedback, which is generally non-Gaussian, has
recently become an important setting for GP modeling
with applications including health screening (Gardner et al.,
2015a;b), AR/VR development (Guan et al., 2022; 2023;
Kwak et al., 2024), and robot locomotion learning (Tucker
et al., 2020). In particular, preference learning has attracted
a great deal of attention in recent years for its usefulness
in large language model (LLM) training and reinforcement
learning with human feedback (RLHF) (Stiennon et al.,
2020; Ouyang et al., 2022). GPs are a natural fit for many
preference learning problems (Chu & Ghahramani, 2005;
Houlsby et al., 2012), including for RLHF (Kupcsik et al.,
2018). Due to their well calibrated uncertainty, GPs are
especially useful in human-in-the-loop experiments where
the human’s time is valuable, as GPs can be used with active
learning to increase trial efficiency (Owen et al., 2021).

In many non-Gaussian observation settings, multiple data of
different types can be observed simultaneously. For exam-
ple, in preference learning, we can solicit both preferences
(binary comparison data) and strengths of preference (e.g.,
Likert scale survey data). Studies of human perception can
measure whether or not a stimulus was perceived (binary
classification data) while simultaneously recording response
time (continuous but non-Gaussian data). Presumably, com-
bining these different types of data into a single GP would
help improve modeling performance. In addition, we may
also have domain knowledge about the responses for some
special inputs. For instance, in studies of human perception,
a stimulus with no intensity cannot be perceived at all. This
domain knowledge constraint, as we will show, can be also
be considered as an additional observation type that we wish
to include in the GP.

Here, we present a framework for joint GP modeling of mul-
tiple types of data and expand GP modeling to a rich new set
of multi-data-type problems via the following contributions:

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

• We develop a novel evidence lower bound (ELBO)
formulation that includes multiple likelihoods in the
same variational approximation.

• We show that our mixed likelihood training can be used
to encode domain knowledge in non-Gaussian settings,
and thereby accelerate active learning.

• We develop both synthetic and real-world examples
of mixed likelihood variational GPs improving model
performance by incorporating auxiliary survey data
into preference learning and human perception studies,
also developing a new Likert likelihood.

2. Background
A Gaussian process (GP) f ∼ GP(0, k) defined by a kernel
function k : Rd × Rd → R is a stochastic process whose
function values f = f(X) on any training data X ∈ Rn×d

follow a joint Gaussian distribution f ∼ N (0,Kf ,f ), where
Kf ,f = k(f(X), f(X)) is the covariance matrix.

A likelihood is a distribution that models the relation be-
tween the observed training labels y and the latent function
values f . Thus, different types of data require different like-
lihoods. For regression, it is common to use a Gaussian
likelihood

p(y | f) = N (y; f , σ2I),

where σ is the standard deviation of the label noise. For
classification, it is common to use a Bernoulli likelihood

p(y | f) = Bernoulli(Φ(f)).

On the test data X∗, the GP prediction is the posterior con-
ditioned on the training labels p(f∗ | y). For a Gaussian
likelihood, the posterior distribution is also Gaussian with a
closed-form expressions for its mean and covariance:

E[f∗ | y] = K∗,f (Kf ,f + σ2I)−1y,

D[f∗ | y] = K∗,∗ −K∗,f (Kf ,f + σ2I)−1Kf ,∗.

However, for non-Gaussian likelihoods, the exact posterior
is almost always intractable, and thus needs approximation.

Variational GPs (e.g., Titsias, 2009; Hensman et al., 2013;
2015) approximate the exact posterior by inducing point
approximation and variational inference (Blei et al., 2017).
A set of inducing variables u is introduced, and the joint
distribution factors as follows:

p(f , f∗,u) = p(f | u)p(f∗ | u)p(u),

where each component admits the form

p(u) = N (u; 0, Ku,u),

p(f | u) = N (f ; Kf ,uK
−1
u,uu, Kf ,f −Kf ,uK

−1
u,uKu,f ),

p(f∗ | u) = N (f∗; K∗,uK
−1
u,uu, K∗,∗ −K∗,uK

−1
u,uKu,∗).

Given the inducing values u, the latent function values on
the training data and the test data are conditionally indepen-
dent. As a result, the prediction on the test data is completely
controlled by the inducing variables.

Inference in variational GPs is performed by maximizing
the evidence lower bound (ELBO):

maximize
q(u)

Eq(f) log p(y | f)− DKL(q(u), p(u)),

where the variational distribution q(u) is usually restricted
to a Gaussian family and q(f) =

∫
p(f | u)q(u) du is the

marginalized variational distribution over the latent function
values. The optimal variational distribution q(u) is then
used to construct the approximate posterior

p(f∗ | y) ≈
∫

p(f∗ | u)q(u) du.

3. Mixed Likelihood Variational Inference
Suppose we have T different types of data available(

X(t),y(t)
)
, t = 1, 2, · · · , T,

where X(t)’s are training data locations and y(t)’s are labels
of different types. For example, y(1) could be regression
labels while y(2) are classification labels.

We assume that all labels are generated from the same latent
function and that the labels y(t) are conditionally indepen-
dent given the latent function values f (t) = f

(
X(t)

)
, across

data types t. We then jointly model the different data types
by training a single variational GP on all data using a com-
bined ELBO. As before, we use a variational distribution
q(u) to approximate the GP posterior. Let y = {y(t)}Tt=1

now represent the complete collection of training labels
across data types, and f = {f (t)}Tt=1 their corresponding
latent function values. Because of the conditional indepen-
dence of the various observations, we have that

log p(y | f) =
T∑

t=1

log pt
(
y(t) | f (t)

)
.

Each type of data uses a different likelihood. For instance,
p1(· | ·) is a Gaussian likelihood if y(1) are regression
labels, and p2(· | ·) is a Bernoulli likelihood if y(2) are
classification labels. The evidence term in the ELBO thus
decomposes, and we can write a valid evidence lower-bound
for mixed likelihoods as:

T∑
t=1

Eq(f (t)) log pt
(
y(t) | f (t)

)
− DKL(q(u), p(u)). (1)

For the special case of T = 1, the ELBO in (1) reduces to
the usual variational GP ELBO. The interesting behavior
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Figure 1: Illustrative depictions of perceived stereoscopic 3D distortions when render cameras are offset from the viewer’s
eyes. Left: Stereoscopic images rendered with cameras at the viewer’s eyes have no 3D distortion. Center: Small
camera offsets result in minimal perceived distortions, and participants cannot reliably identify any errors. Right: Large
camera offsets result in obvious distortions and are easily recognized. Bernoulli Level Set Estimation: If participants
are presented the left and middle options in randomized order and asked to select the distorted option, the probability of
selecting the correct option will be close to 50%, i.e., at chance. On the other hand, when the left and right options are
presented, the distorted option will be selected close to 100% of the time. We aim to identify the space of camera placement
configurations such that the distortion detection probability of a participant is below 75%, a threshold that is often considered
a just-detectable difference from zero error.

happens when T > 1, where multiple types of data are
incorporated to learn the same latent function f . By virtue of
being a valid evidence lower bound, maximizing (1) yields
a variational distribution approximating the GP posterior
jointly conditioned on multiple types of data.

In the following sections §4 and §5, we demonstrate that
this simple idea can solve many problems arising from ex-
perimental design and preference learning.

4. Encoding Domain Knowledge Constraints
in Active Learning

The mixed likelihood training scheme can be used to encode
domain knowledge constraints into active learning problems
with non-Gaussian data. We demonstrate this in level set
estimation with Bernoulli observations, a problem setting
with important applications in perception science.

4.1. Visual Psychophysics

Understanding human vision and characterizing visual per-
ception is challenging because human self-report is unre-
liable and individual decision-making criteria are highly
variable. Vision scientists use forced-choice experimen-
tal paradigms to address these challeneges (Palmer, 1999;
Wolfe et al., 2006). Figure 1 describes a psychophysical
study design to determine how much render-camera offset
is detectable to a person in a stereoscopic (i.e. 3D) display.
Rather than asking participants if a particular camera offset
looks acceptable, they are given a zero-offset option (the
reference) and an option with some offset (the compari-
son), and asked identify which option has offset. Camera
offset is varied over hundreds or thousands of trials with
the aim of identifying the set of render-camera offsets that

cannot reliably be differentiated from the zero-offset ref-
erence. This is often taken as the offsets for which the
probability of correctly selecting the comparison stimulus
is below 75% (McKee et al., 1985; Ulrich & Miller, 2004),
and this problem can be formulated as Bernoulli level set
estimation (Letham et al., 2022).

4.2. Bernoulli Level Set Estimation

Given a black-box function f : Rd → R, we are concerned
with learning the sublevel set {x ∈ Rd : f(x) ≤ γ} for
some constant γ ∈ R. The black-box function f cannot
be evaluated directly, but can be “probed” by Bernoulli
observations. For any x ∈ Rd, we may observe a random
variable y(x) ∈ {0, 1} where

y(x) ∼ Bernoulli(Φ(f(x))).

We iteratively query the latent function via the Bernoulli ob-
servations with the goal of learning the sublevel set. Active
learning can be done using a variational GP classification
model for f , and one of several acquisition functions for
proposing new queries (Letham et al., 2022).

The visual psychophysics experiment paradigm described in
§4.1 can be cast as Bernoulli level set estimation by taking
x as a visual stimulus and f(x) as the perceptual intensity.
We measure, via Bernoulli observations y(x), how well
the human participant can differentiate between x and the
reference stimulus xref , the perceptual intensity of which
is zero. The sublevel set of f is the set of imperceptible
stimuli which we wish to identify.

4.3. Encoding Prior Knowledge with Soft Constraints

Learning level sets with Bernoulli queries is challenging as
Bernoulli observations are inherently noisy, especially for
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detection probabilities close to 50%. We generally require
many repeated trials in order to accurately estimate the latent
response probabilities. Moreover, in the initial stage of
active learning, the model is unable to distinguish between
stimulus pairs that are obviously different (100% correct)
and pairs that are almost identical (50% correct), but guessed
correctly. Therefore, we wish to encode a priori knowledge
about the experimental paradigm.

In the particular case of the visual perception task of §4.1,
we know that the detection probability should be exactly
50% when camera offset is 0, and should be close to 100%
for maximum offset values. We expect this extra information
will improve efficiency of human-in-the-loop experiments
with active learning. Moreover, the domain knowledge con-
straints may add resiliency to prevent active learning from
exploring easily-detectable areas away from the target level
set in cases when outlier responses occur during the early
stage of data collection, e.g., accidental misclicks when
the camera offset is large, or several consecutive correct
detections by chance even though the camera offset is small.

We encode this type of domain knowledge as constraints
on the latent function by directly regressing against the
target constraint values. In addition to the Bernoulli obser-
vations (X(1),y(1)), we produce a set of regression labels
(X(2),y(2)) provided by domain experts that encode the
known latent function values at special locations—for in-
stance, the latent function value should be zero where the
detection probability is known to be 50%. We enforce the
soft constraints

f(x
(2)
i ) ≈ y

(2)
i

by mixing Bernoulli with Gaussian likelihoods:

p
(
y
(2)
i | f

(
x
(2)
i

))
= N

(
y
(2)
i ; f

(
x
(2)
i

)
, σ2

i

)
,

where σi’s are fixed noise standard deviations that control
the softness or hardness of the constraints. Intuitively, we
use the Bernoulli likelihood to fit binary responses and the
Gaussian likelihood to enforce the constraints.

Figure 2 shows an example of enforcing constraints on an
one dimensional objective by mixing Bernoulli and Gaus-
sian likelihoods (σ2 = 0.001). Mixed likelihood modeling
leads to a significant reduction in posterior uncertainty, as
regression labels at the points with known value provide
stronger learning signals than the Bernoulli observations.

4.4. Synthetic Experiments

We show that enforcing constraints effectively encodes do-
main knowledge and improves active learning for Bernoulli
level set estimation.

We benchmark on three synthetic latent functions. The first
is a synthetic two-dimensional psychometric discrimination

0.0 0.5 1.0 1.5 2.0

−1

0

1

2

Bernoulli

0.0 0.5 1.0 1.5 2.0

Bernoulli + Gaussian

true latent f

prediction f̂

positive data

negative data

95% interval

constraints

Figure 2: Left: A standard variational GP fit to Bernoulli
observations. Right: A mixed likelihood GP trained on the
same data with two constraints f(0) = 0 and f(2) = 2. The
mixed likelihood-trained GP has near-zero uncertainty at
the constraint locations. The true latent function is 1/2 · x2.

objective from Letham et al. (2022). The others are scaled
norm functions 2∥x∥ in 2D and 4D respectively. All of
these synthetic functions have locations where response
probabilities equal exactly 50%, and locations where the
response probability is close to 100% probabilities. We use
mixed likelihood training to set constraints at a subset of
these locations—see §A.1 for more details on the functions
and the constraint locations.

We set the Gaussian likelihood noise, which determines
strength of the constraint, according to the target value yi
as: σi = 0.2 · yi + 0.1. Intuitively, this allows a 20% rela-
tive violation plus 0.1 absolute violation. For a constraint
with yi = 0 (i.e. 50% response probability), this implies
an a priori 95% credible interval on the response proba-
bility of [0.422, 0.578]. For yi = 2 (i.e. a 98% response
probability), the credible interval for the response proba-
bility is [0.846, 0.999]. This policy was not extensively
tuned, but produces a desirable behavior of maintaining soft
constraints across the range of response probabilities. Our
preliminary experiments indicate that enforcing constraints
with strict tolerances, e.g., σ2

i = 10−4, does not necessarily
improve active learning performance as the variational GP
tends to be rigid and adapts to new Bernoulli observations
slowly. The GP spends most of its prediction capacity fit-
ting the constraints, while spending less weight on Bernoulli
observations. This is especially detrimental to look-ahead
acquisition functions that depend on the change in posterior
conditioning on virtual data.

A natural alternative approach that we use as a baseline is to
add Bernoulli pseudo data to the standard single-likelihood
GP, to push predictions at those locations towards the target
constraint values. Pseudo data are added before active learn-
ing, and are added at the same locations used for constraints
in the mixed likelihood model. Locations with a response

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

0 200 400

num. of queries

0.5

0.6

0.7

0.8

0.9

f1
sc

or
e

psych. discrimination

pseudo+GlobalMI

pseudo+EAVC

mixed +GlobalMI

mixed +EAVC

0 200 400

num. of queries

0.6

0.7

0.8

norm ball (2d)

pseudo+GlobalMI

pseudo+EAVC

mixed +GlobalMI

mixed +EAVC

0 250 500 750 1000

num. of queries

0.3

0.4

0.5

0.6

0.7

norm ball (4d)

pseudo+GlobalMI

pseudo+EAVC

mixed +GlobalMI

mixed +EAVC

0 250 500 750 1000

num. of queries

0.4

0.5

0.6

0.7

0.8

0.9
visual sensitivity

pseudo+GlobalMI

pseudo+EAVC

mixed +GlobalMI

mixed +EAVC

Figure 3: F1 scores (higher is better) of active learning for sublevel set estimation using two different acquisition functions
(GlobalMI and EAVC). Domain knowledge for each problem is added either by mixing Bernoulli and Gaussian likelihoods
(solid lines) or by adding Bernoulli pseudo data (dotted lines). For both acquisition functions, incorporating domain
knowledge with mixed likelihoods led to better F1 scores than the pseudo data approach. Shaded areas show one standard
errors over 100 different random seeds.

probability of 50% were given 5 positive and 5 negative
Bernoulli data, while those with response probability close
to 100% were given a single positive data.

We run active learning for Bernoulli level set estimation with
two competitive acquisition functions developed by Letham
et al. (2022): global mutual information (GlobalMI) and ex-
pected absolute volume change (EAVC). The models were
seeded with 10 Sobol-sampled trials before active learn-
ing. We evaluate performance by evaluating F1 score of
how well the model identifies the sublevel set (with 75%
detection probability) at each iteration. F1 score was chosen
rather than accuracy because the ground-truth sublevel set
only covers a small fraction of the domain, leading to label
imbalance typical of real visual psychophysics experiments.

Figure 3 shows active learning performance with four differ-
ent combinations of models (pseudo-data vs. mixed likeli-
hood) and acquisition functions (GlobalMI vs. EAVC). For
both acquisition functions, imposing domain knowledge via
the mixed likelihood framework is better for active learning
than the heuristic pseudo data approach.

4.5. Mixed-Reality Video Passthrough

We now evaluate the efficacy of the mixed likelihood train-
ing for imposing domain knowledge on non-Gaussian obser-
vations in a real-world experiment. The real experiment was
to measure visual sensitivity to video passthrough camera
displacements in a head-mounted display (HMD). Video
passthrough is a feature that uses cameras on the outside of
an HMD to enable interacting with the world while wear-
ing the device. The passthrough cameras are physically
displaced from the user’s actual eye position, resulting in
inaccurate 3D perception and erroneous motion of the world
when the user moves (Biocca & Rolland, 1998).

There are three parameters of interest in this experiment: (a)

differences between camera separation and user interpupil-
lary distance; (b) camera z-axis offsets from the user’s eyes
due to headset thickness; and (c) passthrough latency, which
results in delays between when an image is captured by the
cameras and when it is actually seen by a user.

A vision scientist helped us set up a psychophysical experi-
ment to identify the combinations of these three parameters
that cannot be reliably differentiated from rendering at the
user’s actual eye position. We used virtual content and
render cameras in order to adaptively explore camera place-
ment relative to viewer eye position, as opposed to real
passthrough cameras which would require making changes
to physical hardware. They consented to data collection,
and collected 900 Bernoulli observations which we analyze
in this section. We fit a zero-centered parametric ellipsoid1

with a sigmoid link function on the collected data:

y(x) ∼ Bernoulli
(
s(x⊤Wx)

)
, x ∈ R3,

where s(·) is a sigmoid function and W ∈ S3++ a symmetric
positive definite matrix. This fitted parametric ellipsoid was
treated as the ground truth for our model evaluation here.
We ran active learning to identify the sublevel set of the 75%
detection probability: {x ∈ R3 : x⊤Wx ≤ s−1(0.75)}.
Note that this is a slightly misspecified problem—the data
generation process is not exactly the same as the model
assumption, as the parametric ellipsiod used a sigmoid link
function, not the normal CDF link function used by the
Bernoulli likelihood.

A total of 21 constraints are imposed by mixed likelihood
training: one constraint at the origin x = 0 where the output
probability is 50%, and 20 constraints sampled from the
domain boundary where the output probability is close to
100%. We again add Bernoulli pseudo data for the standard

1A quarter ellipsoid to be precise, since headset thickness and
latency have to be nonnegative.
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Figure 4: Preference probabilities Pr(x1 ⪰ x2) predicted
by GPs trained on synthetic data. Left: The ground truth
probabilities Φ(x1 − x2). Mid: A standard variational GP
trained on preference observations only, which tends to be
under confident at top left and bottom right corners. Right:
A mixed likelihood GP trained on the same data but with
additional synthetic Likert scale ratings on a scale of 0 to 2.

variational GP to serve as a baseline. More details of this
problem are deferred to §A.1.

In Figure 3 the last panel “visual sensitivity,” we plot F1
scores across active learning queries. Mixed likelihood con-
straints led to higher F1 scores than pseudo data, especially
when using the GlobalMI acquisition function, and in early
iterations for EAVC.

5. Combining User Confidence and Preference
Many vision studies investigate detection thresholds and
can be modeled with Bernoulli level set estimation because
there is a clearly-defined correct/incorrect user response.
However, in many other domains of research related to hu-
man perception researchers often evaluate subjective user
preferences with psychopysics where there may not be an
objectively correct response (Maloney & Yang, 2003; Bar-
toshuk, 1978; Jones & Tan, 2012). These problems are ideal
candidates for preference learning techniques and we next
explore how Likert scale survey responses can be used to
improve studies in this domain.

5.1. Preference Learning and the Likert Likelihood

Given two stimuli x1,x2 ∈ Rd, the preference likelihood
models the probability that x1 is preferred to x2 as

Pr(x1 ⪰ x2) = Φ(f(x1)− f(x2)),

where Φ(·) is the normal CDF. The difference of GPs,
f(x1) − f(x2), is itself a GP, hence it is common to di-
rectly learn the difference as a GP with a special preference
kernel (Houlsby et al., 2011). Then, fitting GPs on prefer-
ence data is reduced to GP classification.

Suppose that in addition to asking whether x1 is preferred to
x2 we also ask for a rating of the strength of preference. For
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Figure 5: The Brier scores (↓) and F1 scores (↑) of GPs
trained on haptic data collected from five participants. The
error bars show one standard error. Mixed likelihood
GPs that include Likert scale confidence ratings generally
achieve lower Brier scores and higher F1 scores.

example, participants can be asked to rate their confidence
on a scale of 1 to 10 after indicating which of the two stimuli
is the preferred choice. This differentiates between situa-
tions where x1 is strongly preferred to x2 or only marginally
better. With mixed likelihood training, we can model Likert
scale survey responses alongside preference observations to
more effectively learn a user’s underlying latent function.

We propose a novel likelihood for Likert scale survey re-
sponses. Let y ∈ {1, 2, · · · , l} be the the Likert scale re-
sponse, with l ∈ N the number of options. We call the abso-
lute value of the difference |f(x1)− f(x2)| the preference
strength. Intuitively, high strength preference is correlated
with larger Likert scale response. We define cut points,

0 = c1 ≤ c2 ≤, · · · ,≤ cl < cl+1 = ∞,

that divide all nonnegative numbers into l intervals,

Ii = [ci, ci+1), i = 1, 2, · · · , l.

Each interval Ii corresponds to a response option. We con-
struct the likelihood so that the probability of observing y =
i is highest when the preference strength |f(x1)− f(x2)|
falls into the corresponding interval. We also wish for the
likelihood of y = i to be negatively correlated with the
distance from the preference strength to the correspond-
ing interval. Hence, we propose the following Likert scale
likelihood:

Pr(y = i | f(x1), f(x2)) =
exp(− disti)∑l
j=1 exp(−distj)

. (2)

Here the distance is taken as the minimum possible distance
to any point in the interval:

disti = min
a∈Ii

∣∣∣|f(x1)− f(x2)| − a
∣∣∣, i = 1, 2, · · · , l.

The cut points ci in the likelihood are learned automatically
by maximizing the ELBO in (1) along with the variational
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Figure 6: The robot gait data collection GUI. After watching
two videos side by side, the human subject reports which
robot walks more naturally, and their confidence.

parameters on the training data. We add constraints on the
cut points to avoid overfitting and a lapse rate parameter
to damp the probability (2) with a uniform distribution for
enhanced robustness (see §B). Below we apply this Likert
scale likelihood on a synthetic and real-world experiments.

One of the challenges of mixing different likelihoods is to
ensure they are compatible with each other, in the sense that
they can operate on the same latent function. For example,
ordinal likelihoods are common for ordinal data, including
the Likert scale confidence ratings. However, they cannot
be mixed directly with preference observations because they
treat the latent function as an “ordinal” strength ranging over
entire real numbers. On the other hand, it is the absolute
value of the latent difference f(x1)− f(x2) that represents
the preference strength. This necessitates our development
of a Likert scale likelihood here.

5.2. Synthetic Experiments

In this section, we present experiments on a synthetic latent
function. The ground truth function is a univariate identity
function f(x) = x, and the preference observations are
Bernoulli observations with

Pr(x1 ⪰ x2) = Φ(x1 − x2).

The Likert scale responses on a scale of 0 to 2 are generated
deterministically based on which interval the preference
strength |f(x1)− f(x2)| falls into: [0, 0.5], [0.5, 1], [1,∞).

Figure 4 shows GP fits on synthetic data generated from the
ground truth latent function. We observe that the GP trained
by mixing Bernoulli and Likert scale likelihoods learns the
ground truth latent function more accurately, particularly at
the corners where the standard GP confidence is too low.

5.3. Learning Haptic Preferences

Haptics is the study of how humans perceive the world
through the sensation of touch (Kappers & Bergmann Tiest,
2013). We obtained haptic experimental data from Driller
(2024, Chapter 5) by contacting the authors. In this study
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Figure 7: The Brier scores (↓) and F1 scores (↑) of GPs
trained on robot gait human evaluations. Error bars show
one standard errors. GPs trained with likert scale responses
consistently achieve lower Brier scores and higher F1 scores.

five participants were presented 50 pairs of 3D printed sur-
faces with different degrees of microscale surface roughness
and material elasticity. For each pair, the user touched both
surfaces, reported which felt rougher, and rated the confi-
dence of their judgement on a scale from one to nine.

We split each participant’s dataset into 20 training trials and
30 test trials (see §C for additional ablation studies). We
train preference GPs with and without confidence ratings on
the training set and evaluate them on the test set. Because
class imbalance is not a concern with preference data, in
addition to the F1 score we also measure the Brier score,
which is the mean squared error between the predicted and
actual probabilities (Brier, 1950). We repeat the process 100
times with different training/test splits. The average Brier
scores and F1 scores with one standard errors are shown
in Figure 5. Mixed likelihood GPs trained with the Likert
scale likelihood achieved lower Brier scores and higher F1
scores for all subjects except for subject #2.

We observe that subject #2’s Likert responses were predom-
inately confident ratings: 48% of their confidence ratings
were 9 (the highest rating), 84% of their confidence ratings
them were equal to or above 7, and no confidence ratings be-
low 3 were reported. As a result, the Likert scale likelihood
struggled to learn the cut points for subject #2. In contrast,
other subjects’ confidence ratings were spread more evenly
(see Figure 9). This suggests that a calibration stage could
be important for using survey data in preference learning.

5.4. Robot Gait Optimization

Preference learning can also be applied to robotics to align
robot behavior with desired outcomes (e.g., Tucker et al.,
2020). We consider the robot gait optimization task from
Shvartsman et al. (2024), who use human preferences to de-
termine optimal motion control parameters that yield natural-
istic robot gait. In their experiment, two videos of quadruped
robots are played side by side, and study subjects choose
the video with their preferred gait (see Figure 6).
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We repeated their study protocol, but additionally collected
confidence ratings on a scale of 1 to 3 on each trial. One
of authors of this paper participated in this experiment and
collected 472 preference responses and confidence ratings.
In Figure 7, we report Brier and F1 scores on test sets
averaged over 100 different train/test splits. GPs that mixed
the Likert scale likelihood with the preference likelihood
consistently improved both the Brier score and the F1 score.

6. Related Work
From the view of probabilistic graphical models, mixed like-
lihood training conditions the latent variables (the latent GP
function values and inducing values) on different types of
observations using variational inference. In fact, variational
GPs have been implicitly trained with mixed likelihoods
in several applications throughout the years. For example,
the heteroscedastic Gaussian likelihood, which assigns dif-
ferent noise levels to different data points, is technically
a form of mixed likelihood training (Kersting et al., 2007;
Lázaro-Gredilla & Titsias, 2011; Binois et al., 2018). An-
other example is the OR-channel likelihood for modeling
multi-tone response in audiometry (Gardner et al., 2015b).
Different parameters (number of tones) of the OR-channel
likelihood correspond essentially to different likelihoods,
and thus it is also an example mixing likelihoods, though
using a Laplace approximation and not variational inference.

Importantly, these past examples are all mixtures of likeli-
hoods from the same family. We step further in this paper
and introduce a framework for mixing vastly different likeli-
hoods. Recently, Shvartsman et al. (2024) have developed
response time GPs that are jointly trained on human choices
and response time, but their approach is a single likelihood
modeling the joint distribution of both human choices and re-
sponse time. Their likelihood is based on an approximation
of the diffusion decision model designed by domain ex-
perts, which is not easily generalizable to other likelihoods
or data types. Murray & Kjellström (2018) mixed likeli-
hoods specifically for unsupervised representation learning
in GP latent value models. Our work provides a general
approach that, as we show, solves many problems arising
from experimental designs and preference learning.

Mixed likelihood variational training is closely related to
multitask GPs, where the goal is to learn multiple correlated
latent functions (e.g., Bonilla et al., 2007a;b). Inter-task
correlations can be encoded either via Kronecker kernel
matrices or, more commonly for variational GPs, using the
linear model of coregionalization (LMC) (Alvarez et al.,
2012), in which the prediction for each task is a linear com-
bination of multiple variational GPs. Prior work has con-
structed multi-task models with different likelihoods, each
of which is associated with several latent functions, based
on both Kronecker and LMC models (Pourmohamad & Lee,

2016; Moreno-Muñoz et al., 2018). Our mixed likelihood
approach learns a single, shared latent function from mul-
tiple data types. Merging all information into a single GP
is necessary for the real-world applications we demonstrate
here, such as enforcing domain knowledge constraints.

In §4 we developed domain knowledge constraints as a use
case of mixed likelihood modeling. There are other ways to
enforce constraints in variational GPs. Recently, Cosier et al.
(2024) proposed enforcing constraints with a set of fixed
inducing points with fixed inducing values. Compared to
this approach, mixed likelihood training has two advantages.
First, mixed likelihood training supports soft constraints
by tuning the Gaussian likelihood noise, whereas fixing
inducing values generally enforces hard constraints. Second,
mixed likelihood training is easier to implement, as it is
compatible with all off-the-shelf GP variational inference
implementations. The only change needed is the training
objective. In contrast, fixing inducing values requires a
custom implementation of GP variational inference, more
specifically a custom whitening strategy.

7. Discussion
We have shown that variational GPs can be trained with
mixed likelihoods to incorporate multiple types of data in
human-in-the-loop experiments. We demonstrated two main
applications of mixed likelihood training in this paper: (a)
imposing soft constraints on the latent function into GPs by
mixing Gaussian likelihoods with Bernoulli likelihoods, and
using the constrained variational GPs to accelerate active
learning for Bernoulli level set estimation; and (b) leverag-
ing Likert scale confidence ratings by mixing with a Likert
scale likelihood to improve preference learning.

A few extensions to our framework are possible. Response
time in human-in-the-loop experiments is typically corre-
lated with preference strength, i.e., longer the response time
often implies more uncertainty. With an appropriate likeli-
hood for response times, which naturally shares the same la-
tent function with preference observations, mixed likelihood
training could significantly simplify the expert-designed
likelihood of Shvartsman et al. (2024) based on the diffu-
sion decision model.

Confidence ratings could also be used in active learning
with mixed likelihood training, though this comes with chal-
lenges. As discussed in §5.3, some participants produce
low-quality ratings, which may require calibration (on the
fly) before feeding them into the model. Furthermore, ask-
ing for confidence ratings increases the cognitive load on
participants and may increase the experiment time per trial.
It may be best to collect confidence ratings only in the early
stage of active learning, when model uncertainty is highest.
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geneous multi-output Gaussian process prediction. In
Advances in Neural Information Processing Systems 31,
2018. 6

Murray, S. and Kjellström, H. Mixed likelihood Gaus-
sian process latent variable model. arXiv preprint
arXiv:1811.07627, 2018. 6

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M.,
Askell, A., Welinder, P., Christiano, P. F., Leike, J., and
Lowe, R. Training language models to follow instructions
with human feedback. In Advances in Neural Information

Processing Systems 35, volume 35, pp. 27730–27744,
2022. 1

Owen, L., Browder, J., Letham, B., Stocek, G., Tymms,
C., and Shvartsman, M. Adaptive nonparametric psy-
chophysics, 2021. URL https://arxiv.org/abs/
2104.09549. 1

Palmer, S. E. Vision science: Photons to phenomenology.
MIT press, 1999. 4.1

Pourmohamad, T. and Lee, H. K. H. Multivariate stochastic
process models for correlated responses of mixed type.
Bayesian Analysis, 11(3):797–820, 2016. 6

Shvartsman, M., Letham, B., Bakshy, E., and Keeley, S.
Response time improves Gaussian process models for
perception and preferences. In Proceedings of the 40th
Conference on Uncertainty in Artificial Intelligence, UAI,
pp. 3211–3226, 2024. 5.4, 6, 7

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems 33, pp.
3008–3021, 2020. 1

Titsias, M. Variational learning of inducing variables in
sparse Gaussian processes. In van Dyk, D. and Welling,
M. (eds.), Proceedings of the Twelfth International Con-
ference on Artificial Intelligence and Statistics, volume 5
of Proceedings of Machine Learning Research, pp. 567–
574, Hilton Clearwater Beach Resort, Clearwater Beach,
Florida USA, 16–18 Apr 2009. PMLR. 2

Tucker, M., Novoseller, E., Kann, C., Sui, Y., Yue, Y., Bur-
dick, J. W., and Ames, A. D. Preference-based learning
for exoskeleton gait optimization. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, ICRA, pp. 2351–2357, 2020. 1, 5.4

Ulrich, R. and Miller, J. Threshold estimation in two-
alternative forced-choice (2afc) tasks: The spearman-
kärber method. Perception & Psychophysics, 66(3):517–
533, 2004. 4.1

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006. 1

Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M.,
Herz, R. S., Klatzky, R. L., Lederman, S. J., and Merfeld,
D. M. Sensation & perception. Sinauer Sunderland, MA,
2006. 4.1

10

https://arxiv.org/abs/2104.09549
https://arxiv.org/abs/2104.09549


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Experimental Details of Bernoulli Level Set Estimation
Inudcing Points. All inducing points are fixed, not learned in hyperparameter optimization, because otherwise the GP
models overfit easily on the problems we consider. Two types of inducing points are used in the GP models: (a) 100 Sobol
samples from the domain; and (b) an inducing point at every constraint location. Both the standard variational GP and the
mixed likelihood-trained GP use the same set of inducing points. Crucially, we found the additional inducing points at
constraint locations are especially important for mixed likelihood-trained GP. Without these inducing points, the mixed
likelihood-trained GP tends to be inflexible.

Evaluation Metric. Different from the prior work Letham et al. (2022), which primarily use the Brier score as the evaluation
metric, we use the F1 score to evaluate active learning performance for Bernoulli level set estimation.

The Brier score for level set estimation used by Letham et al. (2022) is defined as

1

n

n∑
i=1

(pi − oi)
2,

where pi ∈ [0, 1] is the model’s probability prediction on a set Sobol samples in the domain and oi ∈ {0, 1} is the ground
truth indicating whether each xi belongs to the sublevel set {x ∈ Rd : f(x) ≤ γ} for the threshold γ ∈ R. Here, the
model’s probability prediction for sublevel set is

pi = Pr(f(xi) ≤ γ) = Φ

(
γ − µD(xi)

σD(xi)

)
,

where µD is the posterior mean and σD is the posterior standard deviation.

It is often the case, especially in high dimensions, that only a small portion of the domain will have values below the target
level set, i.e., the ground truth sublevel set is a tiny fraction of the entire domain. As a result, the vast majority of the ground
truths oi are 0’s, which results in label imbalance. For some high dimensional problems, we observe that the Brier score is
not reliable due the label imbalance issue, i.e., predicting constant zero might even achieve lower Brier scores than active
learning in some cases.

Thus, we opt for the F1 scores evaluated on a set of Sobol samples in the domain for Bernoulli level set estimation. Let
V ⊆ Rd be the ground truth sublevel set and V̂ ⊆ Rd be the estimate. In the context of level set estimation, the precision
and recall have clear geometric interpretations:

precision =
|V ∩ V̂ |
|V̂ |

, recall =
|V ∩ V̂ |
|V | .

We use 106 Sobol samples in the domain to estimate the F1 scores.

Level Set Estimation Threshold. Every Bernoulli level set estimation problem in this paper aims for a target sublevel set
with a threshold of 75% in the probability space. Equivalently, this is the same as estimating the Φ−1(0.75) sublevel in the
latent function value space

{x ∈ Rd : f(x) ≤ Φ−1(0.75)}.

The only exception is the parametric ellipsoid in the visual sensitivity task (see §4), where the target sublevel set in the latent
function space is

{x ∈ Rd : f(x) ≤ s−1(0.75)}, s(z) =
1

1 + exp(−z)
.

This difference is because the parametric ellipsiod uses a sigmoid link function, not the normal CDF.

Additional Details. Global look-ahead acquisition functions like GlobalMI and EAVC proposed by Letham et al. (2022)
require a set of global reference points. Those reference points are Sobol samples in the domain for estimating global
changes in mutual information and sublevel set volumes. We use 104 Sobol samples as reference points. Active learning
starts with 10 initial Sobol samples.
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A.1. Objectives

Psychometric Discrimination. This function is defined as

f(x1, x2) =
1 + x2

0.05 + 0.4x2
1(0.2x1 − 1)2

on a domain (x1, x2) ∈ [−1, 1]2. It is clear that the Bernoulli probabilities Φ(f(x)) are exactly 50% on the line

{(x1, x2) : −1 ≤ x1 ≤ 1, x2 = −1},

and the Bernoulli probabilities are close to 100% on the line

{(x1, x2) : −1 ≤ x1 ≤ 1, x2 = +1}.

A total of 20 constraints are added: 10 points on the line x2 = −1 and another 10 points on the line x2 = +1. The constraint
target values are set to the ground truth latent function values.

Norm Ball. This function is defined as
f(x) = 2∥x∥

on a domain x ∈ [−1, 1]d. In the main paper, we have used d = 2 and d = 4. Note that there is a multiplication coefficient
2. The factor 2 makes sure that the function grows fast enough so that the Bernoulli probability Φ(f(x)) is close to 100%
on the domain boundary. We impose a constraint at the origin x = 0 and additionally sample 5 Sobol samples as constraint
locations from every hypercube face. The constraint target values are set to the ground truth latent function values.

Parametric Ellipsoid. This is a 3D function defined as

f(x) = x⊤Wx,

where

W =

+0.00345447 −0.00344695 −0.00144475
−0.00344695 +0.00556409 +0.00252343
−0.00144475 +0.00252343 +0.00466492


and the domain is [−30, 50] × [0, 60] × [0, 75] with each axis being IPD offsets, camera z-axis errors, and passthrough
latency. Note that W is symmetric and positive definite. The weight matrix W is estimated by maximum likelihood on
the collected human data with convex optimization. Note that the link function for this objective is a sigmoid function
s( · ) = 1/(1 + exp(− · )), not a normal CDF. We impose a constraint at the origin x = 0 and sample 5 Sobol samples as
constraint locations from each of the following faces

F0 = {(x1, x2, x3) : x1 = −30, 0 ≤ x2 ≤ 60, 0 ≤ x3 ≤ 75},
F1 = {(x1, x2, x3) : x1 = 50, 0 ≤ x2 ≤ 60, 0 ≤ x3 ≤ 75},
F2 = {(x1, x2, x3) : −30 ≤ x1 ≤ 50, x2 = 60, 0 ≤ x3 ≤ 75},
F3 = {(x1, x2, x3) : −30 ≤ x1 ≤ 50, 0 ≤ x2 ≤ 60, x3 = 75},

which are four faces that do not contain the origin. The constraint target value at a location x is set to Φ−1(min{s(x), 0.999}).
Namely, we first evaluate the ground truth probability s(x), then truncate it by 99.9%, and then covert it into the correspond-
ing latent function value as if the link function was the normal CDF Φ(·). The ground truth latent function values cannot be
directly used in mixed likelihood training because of the link functions mismatch with each other. Thus, the conversion is
necessary. The truncation is also necessary, because otherwise Φ−1(s(x)) might be infinity due to floating point overflow.
Note that this is an example that the “believed” latent function value, not the ground truth latent function value, is used in
constraints.

B. Additional Details of the Likert Scale Likelihood
A constraint ci+1 − ci ≤ 2 is enforced for each pair of adjacent cut points to avoid overfitting. Note that Φ(2) ≈ 0.98. This
constraint enforces that the preference probability within the same Likert scale response is no greater than 98%, a natural
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assumption on the Likert scale response. With limited number of data, the cut points and the latent function may not be
learned accurately. Thus, it is important to add constraints on the cut points to avoid overfitting.

In addition, we introduce a lapse rate parameter to damp the Likert scale likelihood. Let p1, p2, · · · , pl be the probabilities
produced by the Likert scale likelihood (2). Then, we damp the probabilities with a mixutre of uniform distribution

pdamp
i = (1− λ)pi + λ · 1

l
,

where λ ≥ 0 is the lapse rate parameter. The damped probability is used to train variational GPs in the experiments, and we
use a lapse rate of λ = 0.1 throughout. Intuitively, the damped Likert scale likelihood is more robust because it prevents
extremely small probabilities, particularly when the number of data is limited.

C. Learning Haptic Preferences
The raw Likert scale confidence ratings on a scale of 1 to 9 are mapped to a scale of 0 to 2:

1, 2, 3 7→ 0, 4, 5, 6 7→ 1, 7, 8, 9 7→ 2,

which is primarily due to the easy of programming.

The Brier score shown in Figure 5 is defined as
1

n

n∑
i=1

(pi − oi)
2, (3)

where oi ∈ {0, 1} indicating which stimulus (xi1 or xi2) is preferred and pi is the GP probability prediction

Φ

(
µD(xi1,xi2)√
1 + σ2

D(xi1,xi2)

)
,

where µD(xi1,xi2) is the posterior mean of the latent difference f(xi1)− f(xi2) conditioned on the training data D, and
σ2
D(xi1,xi2) is the posterior variance of the latent difference f(xi1)− f(xi2) conditioned on the training data.

We use 100 Sobol samples as inducing points for both the standard variational GPs and mixed likelihood-trained GPs. In
Figure 8, we present the Brier scores and F1 scores of GPs trained with varying number of data points. Since we only
have 50 data points per human subject, we only experiment with training sizes of 10, 20, and 30. Likert scale confidence
ratings again improve both Brier scores and F1 scores except for subject #2. As discussed in the main paper, it is most likely
because subject #2 Likert scale ratings are predominantly confident. In Figure 9, we plot all subjects’ confidence rating
histograms. There is a clear difference between the histogram of subject #2 and the remaining subjects: subject #2’s ratings
tend to be more confident then remain subjects.

D. Robot Gait Optimization
The Brier score presented in Figure 7 is computed similarly as discussed in §C. We use 100 Sobol samples as inducing
points for both the standard variational GPs and mixed likelihood-trained GPs. In Figure 10, we plot the distribution of
confidence ratings in the data collected from the robot gait optimization task: 218 of them are 1; 176 of them are 2; and 78
of them are 3. The confidence ratings are generally well-balanced.
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Figure 8: Brier scores and F1 scores of GPs with varying number of training data points on the haptic perception dataset.
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Figure 9: Human subjects’ confidence rating histograms in the haptic dataset.
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Figure 10: The confidence rating histogram of the data collected from the robot gait optimization task.
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