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Abstract
We learn matrix representations for the most001
frequent sound-relevant adjectives of English002
and compose them with vector representations003
of their nouns. The matrices are learnt jointly004
from audio and textual data, via linear regres-005
sion (LR) and tensor skipgram (TSG). Their006
quality is as assessed on a novel adjective-007
noun phrase similarity dataset, applied to two008
tasks: semantic similarity and audio similarity.009
Joint learning via TSG outperforms audio-only010
models, matrix composition outperforms addi-011
tion and non compositional phrase vectors.012

1 Introduction013

Natural language data consists of words arranged014

into phrases and sentences. Words have statisti-015

cal representations and phrases/sentences symbolic016

forms. The formers, mined from co-occurrence017

counts, fall within the remit of lexical semantics.018

The latters, often formalised within logic frame-019

works, are obtained from rules of grammar. A020

model of natural language should ideally take both021

into account. Consider a simple adjective-noun022

phrase. On the lexical side, statistical vector em-023

beddings are learnt for adjectives and nouns. On024

the symbolic side, e.g. in Combinatory Categorial025

Grammar (CCG) (Steedman, 2002), an adjective is026

a function applied to a noun. The lexical and the027

symbolic sides are brought together by providing a028

statistical representation for the CCG rules. For the029

adjective-noun phrase rule, this is achieved by rep-030

resenting adjectives as matrices, nouns as vectors,031

and function application by matrix-vector multipli-032

cation (Baroni and Zamparelli, 2010). This unified033

model has been applied to multimodal image-text034

data (Lewis et al., 2022), but never to other com-035

binations such as audio-text. Our aim in this pa-036

per is to fill this gap. We represent the sounds037

of adjectives by matrices, the sounds of nouns by038

vectors, and test whether their matrix-vector multi-039

plication is a good representative of the sound of040

adjective-noun phrase. To this end, we work with 041

two tasks: a semantic similarity task and an audio 042

similarity one. We develop a new dataset of audio 043

relevant adjective-noun phrases and collect human 044

annotations for them. The matrix representations 045

are from the audio data gathered from FreeSound, 046

a collaborative repository of sounds1. The corre- 047

lation between the predictions of the model and 048

the annotations provided by humans are tabulated. 049

These show that matrix-vector adjective-noun com- 050

position works better than simple vector addition 051

and non-compositional vectors of adjective-noun 052

phrases. The quality of the audio adjectives sig- 053

nificantly improved after auditory and textual data 054

were combined and textual data used as a signal in 055

audio adjective learning. These results show that 056

matrix composition leads to better representations 057

for audio phrases, with potential applications to 058

audio classification (Xie and Virtanen, 2021) and 059

captioning tasks (Mahfuz et al., 2023). 060

2 Related Work 061

Using vector addition for composing adjectives 062

with nouns was proposed in (Mitchell and Lap- 063

ata, 2008). Later, in a series of papers (Grefen- 064

stette and Sadrzadeh, 2011; Baroni and Zamparelli, 065

2010; Maillard and Clark, 2015), it was argued that 066

vector addition is not appropriate for composition 067

as it is commutative. Furthermore, an adjective 068

needs to modify the meaning of a noun, thus its 069

representation should be a map, rather than a vec- 070

tor. In finite dimensions, maps are approximated 071

by matrices and adjective-noun phrase composi- 072

tion becomes matrix-vector multiplication, a non- 073

commutative operation. Different methodologies 074

were put forwards for learning the adjective matri- 075

ces; (Baroni and Zamparelli, 2010) used linear re- 076

gression and (Maillard and Clark, 2015; Wijnholds 077

and Sadrzadeh, 2019) developed a tensorial exten- 078

1https://freesound.org
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sion of the word2vec skipgram model (Mikolov079

et al., 2013). Learning multimodal image-text em-080

beddings for words was proposed in (Bruni et al.,081

2014; Lazaridou et al., 2015); it was extended to082

sound-text in (Kiela and Clark, 2015). Matrix com-083

position of images and text was explored in (Lewis084

et al., 2022).085

3 Single and Multi Modal Learning086

For audio vectors, we used the pre-trained OpenL3087

(Cramer et al., 2019) library, trained on environ-088

mental and musical data from AudioSet (Gemmeke089

et al., 2017). OpenL3 uses a convolutional ar-090

chitecture initialised on a Mel-spectrogram time-091

frequency representation with 256 bands; its vec-092

tors are 512 dimensional. For textual vectors, we093

used 768 dimensional pre-trained BERT embed-094

dings (Devlin et al., 2018) for words and SBERT095

(Reimers and Gurevych, 2019) for phrases.096

To learn the matrices, we used linear regression097

and the tensorial extension of skipgram. For linear098

regression, we trained adjective matrices A given099

observed adjective-noun vectors p and noun vec-100

tors v, using the formula p = Av.101

The original word2vec skipgram model had the102

following objective function, where n is a vector,103

and C and C sets of positive and negative contexts.104 ∑
c′∈C

log σ
(
w · c′

)
+
∑
c′∈C

log σ
(
−w · c′

)
105

This model learns a vector for a word w regard-106

less of its grammatical type. Its tensorial extension,107

dubbed as tensor skipgram has an objective func-108

tion that depends on the grammatical role of the109

words. For adjective-noun phrases, this is as fol-110

lows, where A is the adjective matrix, n the vector111

of the noun it modifies, and the rest is as before.112 ∑
c′∈C

log σ
(
An · c′

)
+
∑
c′∈C

log σ
(
−An · c′

)
113

The above function is only for adjective-noun114

phrases. It generalises to any phrase in (Wijnholds115

and Sadrzadeh, 2019). Tensor skipgram signif-116

icantly outperforms regression on text (Maillard117

and Clark, 2015; Wijnholds and Sadrzadeh, 2019).118

The audio and textual representations were119

combined with two different methods. In the120

first method, we concatenated their vectors (AT-121

Concat) and used the result as an input to training.122

In the second method, we trained a joint audio-text123

matrix (AT-Joint), where one representation was124

used as a signal to improve the other.125

AT-Concat Regression uses the following adap- 126

tation of the above single modality regression: 127

〈pa,pt〉 = A〈va,vt〉 128

where va is the audio representation of a noun, vt 129

its textual counterpart, and 〈va,vt〉 their concate- 130

nation. Similarly, pa is the audio representation of 131

an adjective-noun phrase, pt its textual counterpart, 132

and 〈pa,pt〉 their concatenation. 133

AT-Joint Regression uses the following variant 134

of the original regression formula pa = Avt for 135

training, where the audio adjective-noun phrase 136

vector pa uses the textual representation of its noun 137

vt as a signal to learn an adjective matrix A, which 138

has a combined audio-text meaning. 139

AT-Concat Tensor Skipgram is based on the 140

modified training objective of the single modality 141

Tensor skipgram and has the following objective 142

function (to save space we only provide the positive 143

sampling part): 144∑
(c′a,c′t) ∈ Ca×Ct

log σ
(
A〈na, nt〉 · 〈c′a, c′t〉

)
145

Here, 〈na,nt〉 is the concatenation of the fixed pre- 146

trained audio and textual embeddings of a noun, 147

and Ca, Ct are sets of positive and negative con- 148

texts of the adjective-noun phrase. For positive 149

contexts, we use the fixed pretrained embeddings 150

of the actual audio and text representations of the 151

adjective-noun phrases. For negative contexts, we 152

fix the adjective and randomly chose a subset of 153

nouns different from n. For example, to learn a 154

matrix A for the adjective happy, nt is the tex- 155

tual embedding of cat and na the average of all 156

its audio vectors; c′a indexes over all the audio 157

embeddings we have for happy cat and c′t is its 158

textual embedding. For negative contexts, c′a in- 159

dexes over all the audio embeddings we have for 160

happy noun, where noun is a random noun different 161

from cat, e.g. baby and car. 162

AT-Joint Tensor Skipgram changes the objec- 163

tive function to the following, for the same nt and 164

Ca as above. 165∑
c′a∈Ca

log σ
(
Ant · c′a

)
+
∑
c′

a∈C

log σ
(
−Ant · c′a

)
166

Here, the audio adjective is learnt from an audio- 167

only context, but in such a way that when multi- 168

plied with the textual vector of a noun, it is forced 169

to be closer to the audio context. 170
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4 Implementation171

We implemented an audio-text tensor skipgram, by172

extending the image-text tensor skipgram model173

of (Lewis et al., 2022) to audio data. The positive174

context is fixed and is defined as the number of au-175

dio files representing a target phrase. For instance,176

for loud melody we had 100 and for loud cat 82.177

Conversely, the negative context is determined by178

random selection of nouns during the training pro-179

cess within each adjective. We treat these nouns as180

a hyper parameter and choose them by tuning on181

the validation segment of the dataset.182

For skipgram models, the learning rate was 10−6183

with a batch size of 512, and a training duration of184

200 epochs. The models were trained on NVIDIA185

T4 and V100 depending on their availability on186

Google Collab. The training was done in batches187

over a period of 3 months, totalling 100 hrs. We188

used Binary Cross-Entropy loss and the Adam op-189

timiser in the training process to refine the perfor-190

mance. Principal Component Analysis (PCA) was191

used to equalize the dimensions of auditory and192

textual representations to 50.193

5 Dataset194

Traditional adjective-noun phrase similarity bench-195

marks, such as (Mitchell and Lapata, 2010; Vecchi196

et al., 2017) were unsuitable for our study due to197

their limited sound relevance: most of the adjec-198

tives and nouns of these datasets did not have any199

sound files in FreeSound. Further, their entries had200

different adjectives. Therefore, we had to form a201

new own dataset by first choosing a set of audio-202

relevant adjectives, then forming adjective-noun203

phrases from them.204

The chosen adjectives had both a high frequency205

of usage in English and a strong relevance to audi-206

tory experiences. For English usage, we used the207

UKWaC (Ferraresi et al., 2008) corpus, and for au-208

ditory experience, the Freesound library. We refer209

to the resulting adjectives as audio adjectives. They210

were collected as follows: first we found UKWaC’s211

1000 most frequent adjectives that had occurred212

no fewer than 200 times. Next, we searched the213

Freesound file names and tags for these adjectives214

and kept those that had 800 or more instances. We215

only chose adjectives that were accompanied by a216

noun. This resulted in 30 adjectives.217

The nouns that these adjectives had modified218

were retrieved after a post processing step. This219

had two substeps: (a) a textual step, which in-220

volved singularizing plurals, correcting nouns via 221

a spellchecker, and manually removing ambiguous 222

and nonsensical nouns such as file, (b) an auditory 223

step, where the Freesounds library was searched 224

with the nouns and only those that had at least 100 225

occurrences in file names or tags were kept. 226

This procedure resulted in a dataset of 30 ad- 227

jectives, 721 unique nouns, and 1,944 adjective- 228

noun phrases. The number of nouns each adjec- 229

tive modified varied; for instance, for the adjec- 230

tive low we found 46 sound-relevant nouns, but 231

for adjective quick 114. On average, each adjec- 232

tive modified approximately 65 nouns. Each noun 233

and adjective-noun had many corresponding audio 234

files. The number of files per noun varied from 235

100’s to 1000’s; from these we randomly chose 236

the 100 that had a length between 10 to 20 sec- 237

onds. For each adjective-noun, the number of files 238

varied from 10 to 100, from which we again ran- 239

domly chose 50 files of length 10-20 secs. For 240

instance, the phrase human cough had 97 sound 241

files, whereas for angry girl we only found 45. In 242

total, our dataset had 271,766 audio files, equiv- 243

alent to approximately 760 hours of audio. We 244

allocated 80% of the dataset to training, 10% to 245

test, and 10% to validation. 246

6 Evaluation Tasks and Results 247

Our main hypothesis is that concatenation and joint 248

learning of text and audio should improve on audio- 249

only learning. In order to test this hypothesis, we 250

also trained audio-only variants for both regression 251

and tensor skipgram models. In these, the adjective 252

matrices were learnt by using only the audio vec- 253

tors of their nouns and contexts. A second hypoth- 254

esis is that non-commutative matrix multiplication 255

models, i.e. regression and tensor skipgram, should 256

improve on simple commutative models. In order 257

to test this hypothesis, we implement an additive 258

model, where the representation of an adjective 259

was added to that of its noun. Our final hypothesis 260

is that compositional models should outperform 261

non-compositional ones. For this, we compared 262

the results to the holistic OpenL3 audio vector of 263

adjective-noun phrases. 264

6.1 Semantic and Audio Similarity Tasks 265

We collected two different types of human judge- 266

ments: one for a semantic similarity task and an- 267

other for an audio similarity task. Each judgement 268

was a score between 1 and 5, where 1 stood for least 269
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Model Semantic Similarity
LR TSG

AT-Concat 0.762 0.856
AT-Joint 0.668 0.882
Audio-Only 0.716 0.783
ADD-Audio 0.689
ADD-AT 0.647
Non-Comp Audio 0.511

Model Audio Similarity
LR TSG

AT-Concat 0.779 0.876
AT-Joint 0.581 0.894
Audio-Only 0.753 0.825
ADD-Audio 0.743
ADD-AT 0.669
Non-Comp Audio 0.578

Table 1: Tables of Results. Non-Comp, ADD, LR and TSG represent Non-Compositional, Addition, Linear Re-
gression and tensor skipgram; AT is for Aduio-Text, Con for concatenation, Joint for joint learning.

similar and 5 for most similar. In the semantic sim-270

ilarity task, we asked the annotators to score each271

pair based on the semantic relatedness of its entries.272

In the audio similarity, we asked for a score on273

how similar the sounds of the entries were. A pilot274

study with 100 pairs of randomly chosen phrases275

and 10 annotators resulted in an inter-annotator276

agreement of 0.45. In order to improve on this, the277

pairs were restricted to those with identical adjec-278

tives and categorised into environmental or musical.279

An example of a musical phrase was loud piano,280

examples of environmental phrases were happy cat281

and loud wind. The data was arranged into forms282

of 10 pairs; each with only either musical or envi-283

ronmental phrases. 4 forms were grouped together284

to create 1 questionnaire.285

6.2 Human Judgements286

We launched the tasks on Amazon’s Mechani-287

cal Turk platform and collected annotations from288

English-speaking countries with a HIT approval289

rate greater than 95% and the number of approved290

HITs greater than 1000. The annotators were paid291

£10.42 per hour (the minimum UK wage). The292

data of each task was divided into batches and each293

batch had a few gold standards to help identify294

automated responses. Additionally, the time used295

per task by each annotator was recorded, and if an296

annotator completed a task significantly faster than297

expected, their annotation was excluded. In order298

to keep the expenses at a reasonable level, the num-299

ber of nouns per adjective was restricted to 15-20,300

which were the ones that had exactly 100 sound301

files. This resulted in 3,144 pairs of adjective-noun302

phrases, grouped into 77 questionnaires. Each ques-303

tionnaire was annotated by 15 different annotators304

totalling 113. Inter-annotator agreement was 0.69305

for semantic similarity and 0.67 for audio similar-306

ity. The annotations would shortly be available on307

GitHub2.308

2https://github.com/audio-comp

6.3 Results 309

We measured the Spearman correlation ρs between 310

the human annotations and cosine similarities, see 311

Table 1 for the results. For semantic similarity, 312

the best performing model was the audio-text joint 313

learning (AT-Joint) via tensor skipgram (TSG). 314

The second best performing model was audio-text 315

concatenation (AT-Concat) via TSG. They both 316

improved on their linear regression (LR) counter- 317

parts, and outperformed the audio-only, additive, 318

and non compositional models. In LR, only AT- 319

Concat outperformed all the baselines; but itself 320

fell short of TSG. A very similar trend held for the 321

audio similarity task, where TSG applied to AT- 322

Joint was the best performing model again, outper- 323

forming all baselines. The second best performing 324

model was TSG applied to AT-Concat. For LR, 325

again only AT-Concat outperformed the baselines. 326

We performed a qualitative analysis for our best 327

performing model AT-Joint TSG. Here, we looked 328

the nearest neighbours of a sample of randomly 329

chosen phrases. Here are some examples. In se- 330

mantic similarity, angry boss was closest to angry 331

person, deep punch, and big hammer, forming a 332

group related to anger and terror. In audio similar- 333

ity, it was closest to distant screech, big groan, and 334

big noise, capturing the sound-related aspects of 335

the concept of anger. 336

7 Conclusion 337

We learnt matrices for the audio data of adjectives 338

and composed them with the audio embeddings of 339

their nouns. The quality of the audio adjectives 340

improved in a multimodal setting and when tex- 341

tual data was injected into the learning procedure. 342

This shows the grammatical structure reflected in 343

the adjective-noun phrase composition in text also 344

holds for audio data. Extending the setting to verb 345

phrases and whole sentences is work in progress. 346
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8 Limitations347

Adjective Similarity Tasks We evaluated our348

methods on phrase similarity tasks. It, however,349

does make sense to also evaluate them on adjec-350

tive similarity tasks. The original single modality351

variants of these methods have been applied to ad-352

jective similarity tasks, see (Maillard and Clark,353

2015). The limitation we faced was that there was354

a very small overlap between the audio-relevant355

adjective-only subsets of the existing word similar-356

ity datasets. The largest overlap was with SimLex357

(Hill et al., 2015), which had 10 audio-relevant358

adjective-only pairs. We evaluated our methods359

on these few pairs. For both audio and semantic360

similarity, the audio-text model outperformed the361

audio-only model, with the difference that here (as362

opposed to the adjective-noun similarity tasks) AT-363

Concat (and not TSG) was the best. In order to364

overcome this limitation, one needs to develop a365

new dataset of audio-relevant adjective pairs and366

collect human judgements for it. The challenge is367

to find the adjectives for which semantic or audio368

similarity would make sense.369

Using audio as signal to text Our focus on this370

paper was to make sense of adjective-noun com-371

position in audio data, and how a text signal can372

improve on this. It would also make sense to ex-373

plore a different variant of this question: whether374

text representations of adjectives can be improved375

by using audio data. In order to address this ques-376

tion, we need to learn the adjective matrices with377

a different set of objectives, i.e. the one below for378

regression379

pt = A× va380

and the one below from tensor skipgram:381 ∑
c′a∈Ca

log σ
(
Ana · c′t

)
+
∑

c′a∈Ca
log σ

(
−Ana · c′t

)
382

The immediate challenge faced when attempting383

to implement the above was lack of enough data.384

A text context c′t is only one vector, where as385

an audio context, e..g the one previously used c′a386

consists of many (in this paper up to 100) sound387

files. This challenge can be overcome by consid-388

ering many text contexts, for instance by working389

with semantically similar nouns to c′t or using390

temporal recurrent neural networks (Tagliasacchi391

et al., 2020). These directions constitute work in392

progress.393

Text-Only Concatenation and Text-Only Joint 394

Learning It is possible to compare our results 395

with a text-only model where the LR and TSG 396

methods are implemented on text-only corpora 397

such as the UKWaC. We are at the moment training 398

and fine-tuning these models and hope to be able 399

to present the results in another paper. 400

Middle and late Concatenation We did not im- 401

plement separate textual models and primarily en- 402

gaged in joint learning of audio-textual models. 403

As a result, our methodologies align with early 404

fusion of modalities, Multimodal text-image and 405

text-audio learning have also been developed for 406

middle and late fusion approaches. These can be 407

investigated when we implement the methods on 408

textual only. 409

Other Applications We only dealt with 410

adjective-noun similarity. The model can be 411

extended to full sentences where it can be applied 412

to a range of other applications such audio 413

captioning. 414
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