How Does an Adjective Sound Like? Improving Audio Phrase
Composition with Text Embeddings

Anonymous ACL submission

Abstract

We learn matrix representations for the most
frequent sound-relevant adjectives of English
and compose them with vector representations
of their nouns. The matrices are learnt jointly
from audio and textual data, via linear regres-
sion (LR) and tensor skipgram (TSG). Their
quality is as assessed on a novel adjective-
noun phrase similarity dataset, applied to two
tasks: semantic similarity and audio similarity.
Joint learning via TSG outperforms audio-only
models, matrix composition outperforms addi-
tion and non compositional phrase vectors.

1 Introduction

Natural language data consists of words arranged
into phrases and sentences. Words have statisti-
cal representations and phrases/sentences symbolic
forms. The formers, mined from co-occurrence
counts, fall within the remit of lexical semantics.
The latters, often formalised within logic frame-
works, are obtained from rules of grammar. A
model of natural language should ideally take both
into account. Consider a simple adjective-noun
phrase. On the lexical side, statistical vector em-
beddings are learnt for adjectives and nouns. On
the symbolic side, e.g. in Combinatory Categorial
Grammar (CCG) (Steedman, 2002), an adjective is
a function applied to a noun. The lexical and the
symbolic sides are brought together by providing a
statistical representation for the CCG rules. For the
adjective-noun phrase rule, this is achieved by rep-
resenting adjectives as matrices, nouns as vectors,
and function application by matrix-vector multipli-
cation (Baroni and Zamparelli, 2010). This unified
model has been applied to multimodal image-text
data (Lewis et al., 2022), but never to other com-
binations such as audio-text. Our aim in this pa-
per is to fill this gap. We represent the sounds
of adjectives by matrices, the sounds of nouns by
vectors, and test whether their matrix-vector multi-
plication is a good representative of the sound of

adjective-noun phrase. To this end, we work with
two tasks: a semantic similarity task and an audio
similarity one. We develop a new dataset of audio
relevant adjective-noun phrases and collect human
annotations for them. The matrix representations
are from the audio data gathered from FreeSound,
a collaborative repository of sounds'. The corre-
lation between the predictions of the model and
the annotations provided by humans are tabulated.
These show that matrix-vector adjective-noun com-
position works better than simple vector addition
and non-compositional vectors of adjective-noun
phrases. The quality of the audio adjectives sig-
nificantly improved after auditory and textual data
were combined and textual data used as a signal in
audio adjective learning. These results show that
matrix composition leads to better representations
for audio phrases, with potential applications to
audio classification (Xie and Virtanen, 2021) and
captioning tasks (Mahfuz et al., 2023).

2 Related Work

Using vector addition for composing adjectives
with nouns was proposed in (Mitchell and Lap-
ata, 2008). Later, in a series of papers (Grefen-
stette and Sadrzadeh, 2011; Baroni and Zamparelli,
2010; Maillard and Clark, 2015), it was argued that
vector addition is not appropriate for composition
as it is commutative. Furthermore, an adjective
needs to modify the meaning of a noun, thus its
representation should be a map, rather than a vec-
tor. In finite dimensions, maps are approximated
by matrices and adjective-noun phrase composi-
tion becomes matrix-vector multiplication, a non-
commutative operation. Different methodologies
were put forwards for learning the adjective matri-
ces; (Baroni and Zamparelli, 2010) used linear re-
gression and (Maillard and Clark, 2015; Wijnholds
and Sadrzadeh, 2019) developed a tensorial exten-
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sion of the word2vec skipgram model (Mikolov
et al., 2013). Learning multimodal image-text em-
beddings for words was proposed in (Bruni et al.,
2014; Lazaridou et al., 2015); it was extended to
sound-text in (Kiela and Clark, 2015). Matrix com-
position of images and text was explored in (Lewis
et al., 2022).

3 Single and Multi Modal Learning

For audio vectors, we used the pre-trained OpenL.3
(Cramer et al., 2019) library, trained on environ-
mental and musical data from AudioSet (Gemmeke
et al.,, 2017). OpenL3 uses a convolutional ar-
chitecture initialised on a Mel-spectrogram time-
frequency representation with 256 bands; its vec-
tors are 512 dimensional. For textual vectors, we
used 768 dimensional pre-trained BERT embed-
dings (Devlin et al., 2018) for words and SBERT
(Reimers and Gurevych, 2019) for phrases.

To learn the matrices, we used linear regression
and the tensorial extension of skipgram. For linear
regression, we trained adjective matrices A given
observed adjective-noun vectors p and noun vec-
tors v, using the formula p = Aw.

The original word2vec skipgram model had the
following objective function, where n is a vector,
and C and C sets of positive and negative contexts.

Z log o (w . c’) + Z log o (—w -E’)
c'eC ¢cC

This model learns a vector for a word w regard-
less of its grammatical type. Its tensorial extension,
dubbed as tensor skipgram has an objective func-
tion that depends on the grammatical role of the
words. For adjective-noun phrases, this is as fol-
lows, where A is the adjective matrix, n the vector
of the noun it modifies, and the rest is as before.

Z log o (An . c') + Z log o (—An . E/)

ceC ¢ec
The above function is only for adjective-noun
phrases. It generalises to any phrase in (Wijnholds
and Sadrzadeh, 2019). Tensor skipgram signif-
icantly outperforms regression on text (Maillard
and Clark, 2015; Wijnholds and Sadrzadeh, 2019).

The audio and textual representations were
combined with two different methods. In the
first method, we concatenated their vectors (AT-
Concat) and used the result as an input to training.
In the second method, we trained a joint audio-text
matrix (AT-Joint), where one representation was
used as a signal to improve the other.

AT-Concat Regression uses the following adap-
tation of the above single modality regression:
(p",p') = A{v", ")

where v® is the audio representation of a noun, v
its textual counterpart, and (v®, v') their concate-
nation. Similarly, p® is the audio representation of
an adjective-noun phrase, p' its textual counterpart,
and (p®, p') their concatenation.

t

AT-Joint Regression uses the following variant
of the original regression formula p® = Awv! for
training, where the audio adjective-noun phrase
vector p® uses the textual representation of its noun
v' as a signal to learn an adjective matrix A, which

has a combined audio-text meaning.

AT-Concat Tensor Skipgram is based on the
modified training objective of the single modality
Tensor skipgram and has the following objective
function (to save space we only provide the positive
sampling part):

Z log o (A(na, nt) - (c'?, c't))

(c'?,c't) € CcaxCt

Here, (n%, n') is the concatenation of the fixed pre-
trained audio and textual embeddings of a noun,
and C%,C! are sets of positive and negative con-
texts of the adjective-noun phrase. For positive
contexts, we use the fixed pretrained embeddings
of the actual audio and text representations of the
adjective-noun phrases. For negative contexts, we
fix the adjective and randomly chose a subset of
nouns different from n. For example, to learn a
matrix A for the adjective happy, n! is the tex-
tual embedding of cat and n® the average of all
its audio vectors; ¢’® indexes over all the audio
embeddings we have for happy cat and c't is its
textual embedding. For negative contexts, ¢’ in-
dexes over all the audio embeddings we have for
happy noun, where noun is a random noun different
from cat, e.g. baby and car.

AT-Joint Tensor Skipgram changes the objec-
tive function to the following, for the same n! and
C“ as above.

Z log o (Anlt : c’a)—l— Z log o (—Ant ~E’a)
c/eeCe ¢eC
Here, the audio adjective is learnt from an audio-
only context, but in such a way that when multi-
plied with the textual vector of a noun, it is forced
to be closer to the audio context.



4 Implementation

We implemented an audio-text tensor skipgram, by
extending the image-text tensor skipgram model
of (Lewis et al., 2022) to audio data. The positive
context is fixed and is defined as the number of au-
dio files representing a target phrase. For instance,
for loud melody we had 100 and for loud cat 82.
Conversely, the negative context is determined by
random selection of nouns during the training pro-
cess within each adjective. We treat these nouns as
a hyper parameter and choose them by tuning on
the validation segment of the dataset.

For skipgram models, the learning rate was 106
with a batch size of 512, and a training duration of
200 epochs. The models were trained on NVIDIA
T4 and V100 depending on their availability on
Google Collab. The training was done in batches
over a period of 3 months, totalling 100 hrs. We
used Binary Cross-Entropy loss and the Adam op-
timiser in the training process to refine the perfor-
mance. Principal Component Analysis (PCA) was
used to equalize the dimensions of auditory and
textual representations to 50.

5 Dataset

Traditional adjective-noun phrase similarity bench-
marks, such as (Mitchell and Lapata, 2010; Vecchi
et al., 2017) were unsuitable for our study due to
their limited sound relevance: most of the adjec-
tives and nouns of these datasets did not have any
sound files in FreeSound. Further, their entries had
different adjectives. Therefore, we had to form a
new own dataset by first choosing a set of audio-
relevant adjectives, then forming adjective-noun
phrases from them.

The chosen adjectives had both a high frequency
of usage in English and a strong relevance to audi-
tory experiences. For English usage, we used the
UKWaC (Ferraresi et al., 2008) corpus, and for au-
ditory experience, the Freesound library. We refer
to the resulting adjectives as audio adjectives. They
were collected as follows: first we found UKWaC'’s
1000 most frequent adjectives that had occurred
no fewer than 200 times. Next, we searched the
Freesound file names and tags for these adjectives
and kept those that had 800 or more instances. We
only chose adjectives that were accompanied by a
noun. This resulted in 30 adjectives.

The nouns that these adjectives had modified
were retrieved after a post processing step. This
had two substeps: (a) a textual step, which in-

volved singularizing plurals, correcting nouns via
a spellchecker, and manually removing ambiguous
and nonsensical nouns such as file, (b) an auditory
step, where the Freesounds library was searched
with the nouns and only those that had at least 100
occurrences in file names or tags were kept.

This procedure resulted in a dataset of 30 ad-
jectives, 721 unique nouns, and 1,944 adjective-
noun phrases. The number of nouns each adjec-
tive modified varied; for instance, for the adjec-
tive low we found 46 sound-relevant nouns, but
for adjective quick 114. On average, each adjec-
tive modified approximately 65 nouns. Each noun
and adjective-noun had many corresponding audio
files. The number of files per noun varied from
100’s to 1000’s; from these we randomly chose
the 100 that had a length between 10 to 20 sec-
onds. For each adjective-noun, the number of files
varied from 10 to 100, from which we again ran-
domly chose 50 files of length 10-20 secs. For
instance, the phrase human cough had 97 sound
files, whereas for angry girl we only found 45. In
total, our dataset had 271,766 audio files, equiv-
alent to approximately 760 hours of audio. We
allocated 80% of the dataset to training, 10% to
test, and 10% to validation.

6 Evaluation Tasks and Results

Our main hypothesis is that concatenation and joint
learning of text and audio should improve on audio-
only learning. In order to test this hypothesis, we
also trained audio-only variants for both regression
and tensor skipgram models. In these, the adjective
matrices were learnt by using only the audio vec-
tors of their nouns and contexts. A second hypoth-
esis is that non-commutative matrix multiplication
models, i.e. regression and tensor skipgram, should
improve on simple commutative models. In order
to test this hypothesis, we implement an additive
model, where the representation of an adjective
was added to that of its noun. Our final hypothesis
is that compositional models should outperform
non-compositional ones. For this, we compared
the results to the holistic Openl.3 audio vector of
adjective-noun phrases.

6.1 Semantic and Audio Similarity Tasks

We collected two different types of human judge-
ments: one for a semantic similarity task and an-
other for an audio similarity task. Each judgement
was a score between 1 and 5, where 1 stood for least



Semantic Similarity Audio Similarity
Model IR TSG Model IR TSG
AT-Concat 0.762 0.856 AT-Concat 0.779 0.876
AT-Joint 0.668 0.882 AT-Joint 0.581 0.894
Audio-Only 0.716 0.783 Audio-Only 0.753 0.825
ADD-Audio 0.689 ADD-Audio 0.743
ADD-AT 0.647 ADD-AT 0.669
Non-Comp Audio | 0.511 Non-Comp Audio | 0.578

Table 1: Tables of Results. Non-Comp, ADD, LR and TSG represent Non-Compositional, Addition, Linear Re-
gression and tensor skipgram; AT is for Aduio-Text, Con for concatenation, Joint for joint learning.

similar and 5 for most similar. In the semantic sim-
ilarity task, we asked the annotators to score each
pair based on the semantic relatedness of its entries.
In the audio similarity, we asked for a score on
how similar the sounds of the entries were. A pilot
study with 100 pairs of randomly chosen phrases
and 10 annotators resulted in an inter-annotator
agreement of 0.45. In order to improve on this, the
pairs were restricted to those with identical adjec-
tives and categorised into environmental or musical.
An example of a musical phrase was loud piano,
examples of environmental phrases were happy cat
and loud wind. The data was arranged into forms
of 10 pairs; each with only either musical or envi-
ronmental phrases. 4 forms were grouped together
to create 1 questionnaire.

6.2 Human Judgements

We launched the tasks on Amazon’s Mechani-
cal Turk platform and collected annotations from
English-speaking countries with a HIT approval
rate greater than 95% and the number of approved
HITs greater than 1000. The annotators were paid
£10.42 per hour (the minimum UK wage). The
data of each task was divided into batches and each
batch had a few gold standards to help identify
automated responses. Additionally, the time used
per task by each annotator was recorded, and if an
annotator completed a task significantly faster than
expected, their annotation was excluded. In order
to keep the expenses at a reasonable level, the num-
ber of nouns per adjective was restricted to 15-20,
which were the ones that had exactly 100 sound
files. This resulted in 3,144 pairs of adjective-noun
phrases, grouped into 77 questionnaires. Each ques-
tionnaire was annotated by 15 different annotators
totalling 113. Inter-annotator agreement was 0.69
for semantic similarity and 0.67 for audio similar-
ity. The annotations would shortly be available on
GitHub?.

Zhttps://github.com/audio-comp

6.3 Results

We measured the Spearman correlation ps between
the human annotations and cosine similarities, see
Table 1 for the results. For semantic similarity,
the best performing model was the audio-text joint
learning (AT-Joint) via tensor skipgram (TSG).
The second best performing model was audio-text
concatenation (AT-Concat) via TSG. They both
improved on their linear regression (LR) counter-
parts, and outperformed the audio-only, additive,
and non compositional models. In LR, only AT-
Concat outperformed all the baselines; but itself
fell short of TSG. A very similar trend held for the
audio similarity task, where TSG applied to AT-
Joint was the best performing model again, outper-
forming all baselines. The second best performing
model was TSG applied to AT-Concat. For LR,
again only AT-Concat outperformed the baselines.

We performed a qualitative analysis for our best
performing model AT-Joint TSG. Here, we looked
the nearest neighbours of a sample of randomly
chosen phrases. Here are some examples. In se-
mantic similarity, angry boss was closest to angry
person, deep punch, and big hammer, forming a
group related to anger and terror. In audio similar-
ity, it was closest to distant screech, big groan, and
big noise, capturing the sound-related aspects of
the concept of anger.

7 Conclusion

We learnt matrices for the audio data of adjectives
and composed them with the audio embeddings of
their nouns. The quality of the audio adjectives
improved in a multimodal setting and when tex-
tual data was injected into the learning procedure.
This shows the grammatical structure reflected in
the adjective-noun phrase composition in text also
holds for audio data. Extending the setting to verb
phrases and whole sentences is work in progress.



8 Limitations

Adjective Similarity Tasks We evaluated our
methods on phrase similarity tasks. It, however,
does make sense to also evaluate them on adjec-
tive similarity tasks. The original single modality
variants of these methods have been applied to ad-
jective similarity tasks, see (Maillard and Clark,
2015). The limitation we faced was that there was
a very small overlap between the audio-relevant
adjective-only subsets of the existing word similar-
ity datasets. The largest overlap was with SimLex
(Hill et al., 2015), which had 10 audio-relevant
adjective-only pairs. We evaluated our methods
on these few pairs. For both audio and semantic
similarity, the audio-text model outperformed the
audio-only model, with the difference that here (as
opposed to the adjective-noun similarity tasks) AT-
Concat (and not TSG) was the best. In order to
overcome this limitation, one needs to develop a
new dataset of audio-relevant adjective pairs and
collect human judgements for it. The challenge is
to find the adjectives for which semantic or audio
similarity would make sense.

Using audio as signal to text Our focus on this
paper was to make sense of adjective-noun com-
position in audio data, and how a text signal can
improve on this. It would also make sense to ex-
plore a different variant of this question: whether
text representations of adjectives can be improved
by using audio data. In order to address this ques-
tion, we need to learn the adjective matrices with
a different set of objectives, i.e. the one below for
regression

pl=A x®

and the one below from tensor skipgram:

Z logo (An® - c't)—i— Z logo (—An® - c’t)

c’aeCe c’aeeCe

The immediate challenge faced when attempting
to implement the above was lack of enough data.
A text context ¢t is only one vector, where as
an audio context, e..g the one previously used ¢/*
consists of many (in this paper up to 100) sound
files. This challenge can be overcome by consid-
ering many text contexts, for instance by working
with semantically similar nouns to ¢’ or using
temporal recurrent neural networks (Tagliasacchi
et al., 2020). These directions constitute work in
progress.

Text-Only Concatenation and Text-Only Joint
Learning It is possible to compare our results
with a text-only model where the LR and TSG
methods are implemented on text-only corpora
such as the UKWaC. We are at the moment training
and fine-tuning these models and hope to be able
to present the results in another paper.

Middle and late Concatenation We did not im-
plement separate textual models and primarily en-
gaged in joint learning of audio-textual models.
As a result, our methodologies align with early
fusion of modalities, Multimodal text-image and
text-audio learning have also been developed for
middle and late fusion approaches. These can be
investigated when we implement the methods on
textual only.

Other Applications We only dealt with
adjective-noun similarity. The model can be
extended to full sentences where it can be applied
to a range of other applications such audio
captioning.
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