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ABSTRACT

Graph matching is a significant task for handling the matching problem of finding
correspondences between keypoints in different graphs. Prior research primarily
concentrates on performing one-to-one matching in topologic perspective for
keypoints across various graphs, assuming that the paired keypoints are accurately
linked. However, these approaches have two limitations: (1) because of different
observation perspectives, some keypoints in the reference figure may become
occluded or transformed, leading to situations where keypoint matches are a mess
in topologic; (2) in practice, the manual annotation process is susceptible to poor
recognizability and viewpoint differences between images, which probably results
in offset and even erroneous keypoint annotations. To address these limitations, we
revisit the graph matching problem from the distributional alignment perspective
and propose an Optimal Transport Graph Matching model (OTGM). Specifically,
(1) to effectively model the real-world keypoint matching scenarios, we have
redefined the graph matching process as a transportation plan, which involves
transferring node or edge sets from one distribution to another while minimizing the
Wasserstein distance between these distributions. (2) To achieve robust matching,
we introduce a well-designed graph denoising module to eliminate noisy edges
in the input graph with the assistance of self-supervised learning. On top of this,
we theoretically provide assurances regarding the generalization ability of OTGM.
Furthermore, comprehensive experiments on three real-world datasets demonstrate
that our model exhibits strong robustness and achieves state-of-the-art performance
compared to competitive baselines.

1 INTRODUCTION

Graph Matching (GM) Cho et al. (2010); Zanfir & Sminchisescu (2018) is instrumental in establishing
correspondences between keypoints across different graphs. This method is crucial in a wide range
of applications, including object tracking Yang et al. (2021); Ufer & Ommer (2017), scene graph
discovery Chen et al. (2020a), simultaneous localization and mapping (SLAM) Cadena et al. (2016),
and structure-from-motion Sarlin et al. (2020b). At the core of GM lies the challenge of unraveling
and harnessing bi-level affinities: node-to-node and edge-to-edge matching.

In past decades, recent approaches have concentrated on integrating these dual-levels of information
through the design of graph neural networks Wang et al. (2019; 2020b); Sarlin et al. (2020b); Yu
et al. (2019) and the implementation of differentiable quadratic losses Gao et al. (2021); Rolı́nek
et al. (2020). Leveraging encoded high-order geometrical data, these innovations in graph matching
have led to notable improvements in the precision of correspondence estimation. As shown in
Figure 1, although recent progress in GM has shown encouraging results, it is impeded by two
fundamental challenges stemming from the basic assumptions and methodologies prevalent in current
GM practices as follows:

C1 Feature-specific Keypoint Matching: The diversity in observation perspectives often leads
to occlusion or overlap of keypoints in reference maps, necessitating the need for semantical-
level matches. Conventional GM methods, predominately based on the topologic-level
one-to-one matching paradigm, prove to be inadequate for these real-world scenarios.

C2 Noisy Annotations in Keypoint Matching: The manual keypoint annotation process
encounters significant difficulties, such as poor recognizability Bourdev & Malik (2009)
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and varying viewpoints between images Min et al. (2019). As mentioned by Lin et al.
(2023), these issues commonly result in inaccurate keypoint annotations, varying from slight
misalignments to entirely incorrect identifications.

Figure 1: An illustrative example of
topologic-level matching with the noisy an-
notations. Due to occlusion as well as local
positional shifts, the topological positions
of the nodes can be misplaced and the prob-
lem of matching errors can easily occur.

Based on the considerations above, this paper focuses
on the following question: Can we find a new GM
model, that can conduct the semantic-level matching
while mitigating the impact of noise annotations, hence
realizing robust matching?

To address these challenges, we introduce a novel
Optimal Transport Graph Matching (OTGM) model,
which reformulates the graph matching problem from a
distributional alignment perspective. Confronting chal-
lenge (C1), we leverage the principles of optimal trans-
port Santambrogio (2015) to model the graph matching
process as a transportation plan. This approach enables
the movement of node or edge sets from one distribu-
tion to another and aims to minimize the Wasserstein
distance between the distributions, where the optimal
transport matrix can represent the semantic relevance
among different nodes. Such an approach can support
model-level and edge-level matching scenarios from
the semantic perspective, offering a more flexible and
accurate representation of real-world graph matching.
To tackle the (C2), OTGM incorporates a robust de-
noising module designed to filter out noisy edges in the
input graph. This module employs self-supervised graph learning techniques to enhance the accuracy
and reliability of the matching process, particularly in scenarios involving noisy or inaccurate input
data. We further bolster the OTGM method with theoretical guarantees for its generalization ability.
This theoretical foundation provides a solid basis for the practical deployment of OTGM in various
contexts. Furthermore, experimental results highlight the superiority of OTGM on three real-world
datasets.

The main contributions are summarized as three-fold:

• We present a novel problem formulation in graph matching, focusing on semantic-level
keypoint correspondences within the context of noisy graph annotations. In this way, we
can tackle the lack of topologic mess caused by occluded or transformed.

• Our proposed method, OTGM, innovatively employs distributional alignment principles
derived from optimal transport theory. This is further enhanced with a self-supervised
denoising module, equipping OTGM to adeptly handle complex graph matching scenarios
in the presence of noisy data. Additionally, we provide a comprehensive theoretical analysis
of OTGM, including a detailed generalization bound, strengthening its robustness and
applicability.

• Empirical experiments demonstrate the effectiveness of OTGM on three well-established
benchmarks. Notably, it achieves significant improvements over current state-of-the-art
methods, with absolute gains of 1.1% on Pascal VOC and 1.2% on Spair-71k.

2 RELATED WORK

2.1 DEEP GRAPH MATCHING

Deep Graph Matching (Deep GM) Zanfir & Sminchisescu (2018); Fey et al. (2020) is dedicated to
aligning keypoints across different graphs by analyzing node and edge correlations. Existing methods
predominantly harness high-order information within graph structures to augment matching accuracy
and are broadly classified into two brunches based on their approach to high-order information
utilization. The first brunch encompasses network-designed methods Wang et al. (2020c); Yu et al.
(2019); Liu et al. (2021a); Jiang et al. (2021), which implicitly integrate high-order information

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

via GM-customized networks. For instance, PCA Wang et al. (2019) utilizes graph convolutional
networks to amalgamate intra-graph and inter-graph structural information. Similarly, NGM Wang
et al. (2021) introduces a matching-aware graph convolution approach, incorporating Sinkhorn
iteration Cuturi (2013), to enhance the matching process. The second brunch includes loss-designed
methods Liu et al. (2021b); Gao et al. (2021); Rolı́nek et al. (2020), which explicitly learn high-order
information through the application of different quadratic loss functions or optimization strategies.
QCDGM Gao et al. (2021), for example, adapts the Frank-Wolfe algorithm into a differentiable
format for managing quadratic constraints. In addition, BBGM Rolı́nek et al. (2020) innovates a
differentiable combinatorial solver tailored for quadratic assignment problems.

While deep graph matching (GM) methods have shown promising performance, they typically assume
faultless and correctly associated node-to-node and edge-to-edge correspondences. However, poor
annotations often result in background noise and clutter, making it nearly impossible to achieve
perfect correspondences. Existing efforts Wang et al. (2020a); Sarlin et al. (2020b); Qu et al. (2021);
Rolı́nek et al. (2020); Ren et al. (2022); Lin et al. (2023) to achieve robust GM have primarily focused
on addressing outliers and adversarial attacks, or acquire knowledge from a pre-trained model, aiming
to enhance robustness against outliers and malicious attacks, rather than explicitly addressing the
issue of noisy matching in a unified framework. To the best of our knowledge, this study represents
the first attempt to specifically tackle the challenge of topologic mess for keypoints matching under
the assumption of noisy graphs, paving the way for more accurate and reliable GM in complex,
real-world scenarios.

2.2 SELF-SUPERVISED GRAPH LEARNING

Although supervised learning has achieved remarkable success in various applications, acquiring
a large labeled dataset can be challenging and costly. To address this limitation, self-supervised
learning (SSL) has emerged as a promising alternative. Recent advancement in SSL is the utilization
of contrastive learning, which incorporates auxiliary training signals generated from different types
of graph data, such as heterogeneous graphs Hwang et al. (2020), spatio-temporal graphs Zhang et al.
(2023), and molecular graphs Zhang et al. (2021). By employing contrastive learning in SSL, the
quality of graph embeddings can be significantly improved, resulting in enhanced performance on
various tasks, including node classification and link prediction.

SSL has proven to be effective in learning high-quality representations of graph data. demonstrating
significant potential in graph learning. Contrastive SSL Wu et al. (2021) and generative SSL Li et al.
(2023) techniques have been utilized in this domain. One example is GFormer Li et al. (2023), which
employs a graph autoencoder to reconstruct masked node interactions for data augmentation. This
approach generates augmented training data to facilitate the learning of more effective representations
of nodes. The integration of self-supervised graph learning techniques has proven beneficial. For
instance, S3-Rec Zhou et al. (2020) utilizes a self-attentive neural architecture and employs four
auxiliary self-supervised objectives to capture correlations among different types of data. Moreover,
C2DSR Cao et al. (2022) introduces a contrastive cross-domain infomax objective, which enhances
the correlation between single-domain and cross-domain node representations.

2.3 OPTIMAL TRANSPORT

Optimal transport provides a robust method to infer the correspondence between two distributions.
For more details, refer to Appendix 3. Recently, optimal transport has garnered significant attention
in various computer vision tasks. For instance, Courty et al. (2016) addresses domain adaptation
by learning a transportation plan from the source domain to the target domain. Su et al. (2015)
employs optimal transport for 3D shape matching and surface registration. Other applications
include generative models Arjovsky et al. (2017); Bunne et al. (2019), and graph matching Xu et al.
(2019a;c), among others. Moreover, some studies have utilized optimal transport for correspondence
problems Liu et al. (2020); Eisenberger et al. (2020); Song et al. (2021); Saleh et al. (2022). However,
these studies primarily focus on the matching of nodes, often neglecting edges, which can capture
fine-grained semantic matching. To the best of our knowledge, we are the first to address the graph-
matching problem by modeling joint coarse- and fine-grained graph matching in the presence of noise
within an optimal transport framework.
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3 PRELIMINARY FOR OPTIMAL TRANSPORT

In our graph matching framework, we utilize two types of distances for optimal transport (OT)
Santambrogio (2015) to facilitate the matching process. Specifically, we employ the Wasserstein
distance for node matching and the Gromov-Wasserstein distance for edge matching.

Wasserstein Distance. The Wasserstein distance (WD) Dw(·, ·) defines an optimal transport distance
that measures the discrepancy between each pair of samples across the two domains. Specifically, WD
serves as a common measure for comparing two distributions, such as two sets of node embeddings
as follows.

Definition 1 Consider two discrete distributions, denoted as µ ∈ P(X) and ν ∈ P(Z), where µ can
be expressed as µ =

∑n
i=1 uiδxi

, and ν can be expressed as ν =
∑m

j=1 vjδzj
. Here, δx represents

the Dirac function centered on x. Let Π(µ, ν) denote the set of all joint distributions γ(x, z) with
marginals µ(x) and ν(z). The weight vectors u = {ui}ni=1 ∈ ∆n and v = {vj}mj=1 ∈ ∆m belong
to the n-dimensional and m-dimensional simplex, respectively. In other words, both µ and ν are
probability distributions, satisfying

∑n
i=1 ui =

∑m
j=1 vj = 1. The Wasserstein distance between the

two discrete distributions µ, ν is defined as:

Dw(µ, ν) = inf
γ∈Π(µ,ν)

E(x,z)∼γ [c(x, z)]

= min
T∈Π(u,v)

n∑
i=1

m∑
j=1

Tij · c(xi, zj),
(1)

where Π(u,v) = {T ∈ Rn×m
+ |T1m = u,T⊤1n = v}, 1n is an n-dimensional all-one vector, and

c(xi, zj) is the cost function measuring the distance between xi and zj .

In the field of graph matching, this distance metric serves as a natural choice for node matching. By
minimizing the Wasserstein distance, we can effectively align nodes based on their similarity, thereby
achieving an accurate and reliable graph matching result.

Gromov-Wasserstein Distance. Different from directly calculating distances between two sets of
nodes as in the Wasserstein distance, the Gromov-Wasserstein distance (GWD) can be utilized to
assess distances between pairs of nodes within each domain and compare these distances to those in
the corresponding domain. The GWD, introduced in the works by Peyré et al. (2016) and Chowdhury
& Mémoli (2018), is particularly suited for discrete matching scenarios as follows.

Definition 2 Keeping the same notation as in Defination 1, the Gromov-Wasserstein distance between
u and v is defined as:

Dgw(µ, ν) = inf
γ∈Π(µ,ν)

E(x,z)∼γ,(x′,z′)∼γ [C(x, z,x′, z′)]

= min
T∈Π(µ,ν)

∑
i,j,i′,j′

T̂ijT̂i′j′C(xi,yj ,xi′ ,yj′)
(2)

Here, C(·) denotes the cost function that evaluates the intra-graph structural similarity between two
pairs of nodes (xi,x

′
i) and (zj , z

′
j). Specifically, C(xi, zj ,x

′
i, z

′
j) = ||c1(xi,x

′
i) − c2(zj , z

′
j)||,

where ci, with i ∈ [1, 2], represents functions that evaluate the node similarity within the same graph,
such as the cosine similarity.

4 METHODOLOGY

In this section, we introduce a novel Optimal Transport Graph Matching model termed OTGM
as illustrated in Figure 2. Our approach begins with a clear definition of the problem and subse-
quently introduces two modules, including optimal transport matching and graph denoising, together
facilitating robust matching in complex scenarios.

Problem Definition. Given two images with n and m keypoints (n ≤ m), graph matching aims to
establish the node-to-node correspondence between their graphs GA and GB based on these keypoints.
Suppose VA ∈ Rn×d and VB ∈ Rm×d be the feature matrixs of keypoints in GA and GB , respectively,
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Figure 2: The overall framework of OTGM. In our approach to graph matching, we address the chal-
lenge with a dual strategy. Firstly, we implement both node-level and edge-level matching through an
optimal transport (OT) module from the semantic perspective, which can facilitate accurate correspon-
dence alignment across graphs. Secondly, we integrate a graph denoising (GD) module, employing
self-supervised learning techniques, which significantly enhances the robustness of our method by
efficiently filtering out noise and refining the quality of the input graphs. Overall, the synergistic
combination of the OT matching module and the GD module culminates in a comprehensive and
robust framework, adept at tackling the complexities inherent in graph matching tasks.

and each row of VA and VB is a feature vector of a keypoint. Afterward, let FA = VAV
T
A ∈ Rn×n,

FB = VBV
T
B ∈ Rm×m denote the adjacency matrices, embracing the edge associations in graphs

GA and GB . Formally, graph matching can be formulated as minY LY (Ygt,Y ), where LY serves to
measure the discrepancy between the ground-truth assignment Ygt and the matching result Y , e.g.,
cross-entropy loss Wang et al. (2021) or hamming distance loss Rolı́nek et al. (2020). Specifically, it
can be formulated as follows:

L = maxY ∈Π tr(SY T )− tr(SY T
gt ) (3)

where Π represents the set of all n × m permutation matrices, and S = VAV
T
B ∈ Rn×m. By

minimizing the objective defined in Eq.(3), the encoder is trained to accurately assign keypoints from
one image to another, thereby facilitating effective graph matching.

4.1 OPTIMAL TRANSPORT (OT) FOR GRAPH MATCHING

As mentioned earlier, topologic-level graph matching suffers from scenarios where nodes are occluded
or transformed. Notice that, there are both feature-invariant semantic and feature-specific semantics
among paired nodes in different graphs due to the graph is not completely the same. To this end, we
propose semantic-level graph matching, which can learn the similarities information from semantic-
relevant nodes and edges.

Feature-invariant Graph Matching. Drawing from prior research Liu et al. (2022); Lin et al. (2023),
contrastive learning emerges as an efficient and differentiable approach to the linear assignment
problem. In our method, we align the keypoints VA and VB in accordance with Ygt, retaining only
those keypoints with corresponding counterparts for training. This process yields aligned keypoints
PA,PB ∈ Rn×d for graphs GA and GB , respectively. We then apply contrastive learning to both the
rows and columns of the node similarity matrix S, as Radford et al. (2021):

LInfoNCE = H(In, ρ(PAP
T
B )) +H(In, ρ(PBP

T
A )), (4)

where In is the identity matrix,H is the row-wise cross-entropy function with mean reduction and ρ
is the Softmax function applied row-wise such that each row sums to one,

Feature-specific Graph Matching. On the basis of the above, we concentrate on capturing the
feature-specific matching scenarios. Let x and z represent keypoints within the feature matrices
VA ∈ Rm×d and VB ∈ Rn×d of GA and GB , respectively. We approach the graph matching problem
as an Optimal Transport (OT) problem. In this formulation, the transportation cost for moving a
unit from keypoint i to keypoint j is denoted as cij . The objective of the OT problem is to derive

5
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an optimal transportation plan π∗ = {πij | i = 1, 2, . . . ,m, j = 1, 2, . . . , n}, which allows for the
movement of all keypoints x to keypoints z while minimizing the total transport cost:

minπ

m∑
i=1

n∑
j=1

cijπij s.t.
m∑
i=1

πij = zj , j = 1, . . . , n,

n∑
j=1

πij = xi, i = 1, . . . ,m,

m∑
i=1

xi =

n∑
j=1

zj , πij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(5)

To model matching at both the node and edge levels, we introduce a shared transport plan T , which
is utilized in both the Wasserstein Distance (WD) and the Gromov-Wasserstein Distance (GWD).
Intuitively, a shared transport plan allows WD and GWD to synergistically enhance each other’s
effectiveness, as T leverages information from both nodes and edges concurrently. Formally, we
define the proposed Optimal Transport (OT) distance as:

DOT(µ, ν) = min
T∈Π(u,v)

∑
i′,j′,i,j

Tij

(
λc(xi; zj) + (1− λ)T

′

i′j′C(xi, zj ,xi′ , zj′)
)

(6)

where C(xi,yj , z
′
i, z

′
j) = ||c1(xi,x

′
i) − c2(zj , z

′
j)||, and ci, i ∈ [1, 2] are functions that evaluate

node similarity (e.g., the cosine similarity).

To obtain a unified solver for the OT distance, we define the unified cost function as:

CUnified = λc(x, z) + (1− λ)C(x, z,x′, z′) (7)

where λ is the hyper-parameter for controlling the importance of different cost functions. Instead of
using projected gradient descent or conjugated gradient descent as in Xu et al. (2019b); Vayer et al.
(2019), we can approximate the transport plan T as shown in Algorithm 1 in Appendix A.

In this way, we can conduct the feature-invariant/specific graph matching in a unified framework.
Then, the overall OT loss for graph matching is given as follows:

LOT = LInfoNCE +DOT(µ, ν) (8)

Remark 1 The utilization of these two types of distances, namely the Wasserstein distance for node
matching and the Gromov-Wasserstein distance for edge matching, enables us to perform accurate
and comprehensive graph matching, taking into consideration both the node and edge characteristics
of the graphs.

4.2 GRAPH DENOISING (GD) FOR ROBUST MATCHING

To improve the quality of graph matching, we propose a graph denoising module to filter out noisy
information in the input graph. This parameterized network is shown in Figure 2. The main concept
behind our approach is to actively filter out noisy edges in the input graph using a parameterized
network. For the graph GA and GB , we use the binary matrix MG , e.g., MA ∈ {0, 1}n×n, MB ∈
{0, 1}m×m, and MAB ∈ {0, 1}n×m where mij denotes whether the edge between node ui and uj

is present (0 indicates a noisy edge).

Formally, recalling Sec.4.1, the adjacency matrix of the resulting subgraph is F ′
A = FA ⊙MA,

F ′
B = FB ⊙MB , and F ′

S = S ⊙MAB where ⊙ is the element-wise product. The straightforward
idea to reduce noisy edges with the least assumptions about F ′

A, F ′
B and F ′

S is to penalize the number
of non-zero entries in MG of different layers, where G represents A, B or AB.∑

G=A,B,AB

∥MG∥0 =
∑

G=A,B,AB

∑
(u,v)∈E

1{mG
ij ̸=0} (9)

where 1[·] is an indicator function, with 1[True] = 1 and 1[False] = 0, ∥ · ∥0 represents the l0 norm.
However, because of its combinatorial and non-differentiability nature, optimizing this penalty is
computationally intractable. Therefore, we consider each binary number mG

ij to be drawn from
a Bernoulli distribution parameterized by πG

ij , i.e., mG
ij ∼ Bern

(
πG
ij

)
. Here, πG

ij describes the
quality of the edge (u, v). To efficiently optimize subgraphs with gradient methods, we adopt

6
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the reparameterization trick and relax the binary entries mG
ij from being drawn from a Bernoulli

distribution to a deterministic function g of parameters αG
ij ∈ R and an independent random variable

ϵG . That is mG
ij = g

(
αG

ij , ϵ
G).

Based on the above operations, we design a denoising module to learn the parameter αG
ij that controls

whether to remove the edge (u, v). For the graph G, we calculate αG
ij for user node u and its interacted

item node v with αG
i,j = hG(ϵGi , ϵ

G
j ), where hG is an MLP parameterized by θG . In order to get

mG
i,j , we also utilize the concrete distribution along with a hard Sigmoid function. Within the above

formulation, the constraint on the number of non-zero entries in MG in Eq.(9) can be reformulated
as follows:

LGD =

L∑
G=A,B,AB

∑
(ui,vj)∈E

(1− Pσ(sG
i,j)

(0|θG)), (10)

where Pσ(sG
i,j)

denotes the cumulative distribution function (CDF) of σ(sGi,j), σ(·) is a function that

extends the range of sGi,j , and sGi,j follows a binary concrete distribution, with αG
i,j parameterizing its

location.

Overall Loss. Finally, combining Eq.(8) and Eq.(10), the overall graph matching loss is formulated
as follows,

LOTGM = βLOT + (1− β)LGD (11)
where β is the hyper-parameters.

Remark 2 Distinct from the majority of existing distillation approaches that derive knowledge from
pre-trained models Hinton et al. (2015); Touvron et al. (2021), our method introduces innovative
capabilities:

1. It generates contrastive views for matching graphs through random node and edge dropout
operations. This process facilitates more effective graph matching by optimizing the agree-
ment between the embeddings of these contrastive views.

2. It enhances the matching performance by bootstrapping, without the necessity for external
knowledge or additional models.

4.3 THEORETICAL ANALYSIS

In the above parts, we have established the OTGM model, here we take a step further and study the
generalization ability of our model.

Notation Definitions. Without loss of generality, we designate GB and GA as benchmarks for
matching, using P̂A and P̂B to represent the distributions of GA and GB , respectively. Let L represent
any symmetric loss function that is k-Lipschitz and satisfies the triangle inequality. Let ϕ : R →
[0, 1] and a labeling function f . A joint distribution Π(µA, µB) over µA and µB are ϕ-Lipschitz
transferable if for all λ > 0, we have P(x1,x2)∼Π(µA,µB)[|f(x1) − f(x2)| > λd(x1,x2)] ≤ ϕ(λ).
Consider errB(f) =: E(x,y)∼P̂B

[L(y, f(x))]. Define Π∗ = argminΠ∈Π(P̂A,P̂B)

∫
d(xA,xB) +

L(yA,yB)dΠ(xA,yA;xB ,yB) and denote W1(P̂A, P̂B) as the associated 1-Wasserstein distance.
Let f∗ ∈ H be a Lipschitz labeling function satisfying the ϕ-probabilistic transfer Lipschitzness (PTL)
assumption w.r.t. Π∗, and minimizing the joint error errA(f∗) + errB(f

∗) w.r.t all PTL functions
compatible with Π∗. We assume that the input instances are bounded s.t. |f∗(x1)− f∗(x2)| < L1

for all x1, x2.

Theorem 1 Consider a sample of NA labeled instances drawn from PA and NB instances to be
matched drawn from µB , and then for all λ > 0, with a = kλ, we have with probability at least
1− δ:

errB(f) < W1(P̂A, P̂B) +

√
2

c
log(

1

δ
)(

1√
NA

+
1√
NB

) + errA(f
∗) + errB(f

∗) + kL1ϕ(λ).

(12)
where NA, NB are the number of nodes in graphs GA and GB , respectively. c is a constant.
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Table 1: Keypoint matching accuracy (%) on Pascal VOC with standard intersection filtering. The
best and second-best results are highlighted and underlined, respectively.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv Mean

GMN 41.6 59.6 60.3 48.0 79.2 70.2 67.4 64.9 39.2 61.3 66.9 59.8 61.1 59.8 37.2 78.2 68.0 49.9 84.2 91.4 62.4
PCA 49.8 61.9 65.3 57.2 78.8 75.6 64.7 69.7 41.6 63.4 50.7 67.1 66.7 61.6 44.5 81.2 67.8 59.2 78.5 90.4 64.8
NGM 50.1 63.5 57.9 53.4 79.8 77.1 73.6 68.2 41.1 66.4 40.8 60.3 61.9 63.5 45.6 77.1 69.3 65.5 79.2 88.2 64.1
IPCA 53.8 66.2 67.1 61.2 80.4 75.3 72.6 72.5 44.6 65.2 54.3 67.2 67.9 64.2 47.9 84.4 70.8 64.0 83.8 90.8 67.7
LCS 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5
CIE 52.5 68.6 70.2 57.1 82.1 77.0 70.7 73.1 43.8 69.9 62.4 70.2 70.3 66.4 47.6 85.3 71.7 64.0 83.9 91.7 68.9

QC-DGM 49.6 64.6 67.1 62.4 82.1 79.9 74.8 73.5 43.0 68.4 66.5 67.2 71.4 70.1 48.6 92.4 69.2 70.9 90.9 92.0 70.3
DGMC 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2
BBGM 61.9 71.1 79.7 79.0 87.4 94.0 89.5 80.2 56.8 79.1 64.6 78.9 76.2 75.1 65.2 98.2 77.3 77.0 94.9 93.9 79.0

NGM-v2 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2 80.1
SCGM 62.9 72.9 79.6 79.5 89.3 94.1 89.1 79.2 58.4 79.3 80.5 79.9 79.5 76.8 64.8 98.1 78.0 75.9 98.0 93.2 80.5
ASAR 62.9 74.3 79.5 80.1 89.2 94.0 88.9 78.9 58.8 79.8 88.2 78.9 79.5 77.9 64.9 98.2 77.5 77.1 98.6 93.7 81.1

COMMON 65.6 75.2 80.8 79.5 89.3 92.3 90.1 81.8 61.6 80.7 95.0 82.0 81.6 79.5 66.6 98.9 78.9 80.9 99.3 93.8 82.7
CREAM 67.0 75.6 82.2 78.1 89.4 91.6 89.3 81.6 62.1 82.3 74.3 81.7 80.9 79.0 67.7 99.3 78.9 73.7 98.3 94.7 81.4
GMTR 69.0 74.2 84.1 75.9 87.7 94.2 90.9 87.8 62.7 83.5 93.9 84.0 78.7 79.6 69.2 99.3 82.5 83.0 99.1 93.3 83.6

OTGM 68.8 76.4 84.5 81.6 90.9 94.8 92.4 85.7 63.8 84.1 96.6 84.1 83.5 82.0 68.9 99.4 81.2 82.4 99.4 94.7 84.7

The detailed proof of Theorem 1 can refer to Appendix B. The term W1(P̂A, P̂B) corresponds to the
objective function Eq.(7), and in our paper, we minimize the Wasserstein distance between nodes
and edges to achieve this goal. The term

√
2
c log(

1
δ )(

1√
NA

+ 1√
NB

) is related with the scale of the

datasets. The terms errA(f∗) and errB(f
∗) respond to the joint error minimizer, illustrating that the

property for original graphs, and we utilize the graph denoising to minimize these terms, measuring
the noisy degree of the annotation data, and in this paper, we introduce the graph denoising module to
realize this point. The term ϕ(λ) assesses the probability under which the probabilistic Lipschitzness
does not hold.

Remark 3 Overall, we provide the generalization bound for graph matching under the assumption
of noisy annotations, and one can observe that our method can realize good generalization ability
based on the OT matching and graph denoising module.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Our experimental evaluation encompasses three widely-used datasets: Pascal VOC with
Berkeley annotation Bourdev & Malik (2009), SPair-71K Min et al. (2019), and Willow Object Class
Cho et al. (2013). These datasets have been extensively utilized in the field of Graph Matching
and provide diverse graph structures and characteristics for evaluation. To ensure comprehensive
evaluation, we report both average performance across all categories and per-category performance.
By analyzing the per-category results, we can gain insights into the strengths and weaknesses of our
proposed method in handling different object categories.

Implementation Details. Our method is implemented using PyTorch 1.10.0 and all evaluations are
conducted on an Ubuntu 22.04 OS with an NVIDIA RTX 3090 GPU. The encoder network in our
implementation consists of an ImageNet-pretrained VGG16 Simonyan & Zisserman (2014) image
encoder, a graph neural network called SplineCNN Fey et al. (2018), and a two-layer projection head
Chen et al. (2020b). It is noteworthy that OTGM facilitates feature-specific matching. To ensure a
fair comparison with other methods, given a graph A, we generate the final prediction by selecting
the node in graph B with the highest matching probability for each node in graph A. This approach
aligns with conventional feature-invariant matching evaluations while leveraging the strengths of OT
for feature-specific correspondences during the matching process. For more details of experiments,
please refer to Appendix C.

Baselines. In order to assess the performance of our proposed OTGM method, we compare it with 12
popular deep graph matching methods. These methods include GMN Zanfir & Sminchisescu (2018),
PCA Wang et al. (2019), NGM Wang et al. (2021), IPCA Wang et al. (2020b), CIE Yu et al. (2019),
DGMC Fey et al. (2020), LCS Wang et al. (2020c), BBGM Rolı́nek et al. (2020), QC-DGM Gao
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Table 2: Keypoint matching accuracy (%) on SPair-71k for all classes. The best and second-best
results are highlighted and underlined, respectively.
Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Mbike Person Plant Sheep Train Tv Mean

GMN 59.9 51.0 74.3 46.7 63.3 75.5 69.5 64.6 57.5 73.0 58.7 59.1 63.2 51.2 86.9 57.9 70.0 92.4 65.3
PCA 64.7 45.7 78.1 51.3 63.8 72.7 61.2 62.8 62.6 68.2 59.1 61.2 64.9 57.7 87.4 60.4 72.5 92.8 66.0
NGM 66.4 52.6 77.0 49.6 67.7 78.8 67.6 68.3 59.2 73.6 63.9 60.7 70.7 60.9 87.5 63.9 79.8 91.5 68.9
IPCA 69.0 52.9 80.4 54.3 66.5 80.0 68.5 71.4 61.4 74.8 66.3 65.1 69.6 63.9 91.1 65.4 82.9 97.5 71.2
CIE 71.5 57.1 81.7 56.7 67.9 82.5 73.4 74.5 62.6 78.0 68.7 66.3 73.7 66.0 92.5 67.2 82.3 97.5 73.3

NGM-v2 68.8 63.3 86.8 70.1 69.7 94.7 87.4 77.4 72.1 80.7 74.3 72.5 79.5 73.4 98.9 81.2 94.3 98.7 80.2
BBGM 75.3 65.0 87.6 78.0 69.8 94.0 87.8 78.3 72.8 82.7 76.6 76.3 80.1 75.0 98.7 85.2 96.3 98.0 82.1
ASAR 72.4 61.8 91.8 79.1 71.2 97.4 90.4 78.3 74.2 83.1 77.3 77.0 83.1 76.4 99.5 85.2 97.8 99.5 83.1
GMTR 75.6 67.2 92.4 76.9 69.4 94.8 89.4 77.5 72.1 86.3 77.5 72.2 86.4 79.5 99.6 84.4 96.6 99.7 83.2

COMMON 77.3 68.2 92.0 79.5 70.4 97.5 91.6 82.5 72.2 88.0 80.0 74.1 83.4 82.8 99.9 84.4 98.2 99.8 84.5
CREAM 78.4 70.3 90.5 78.6 72.1 98.5 91.7 82.0 71.4 87.1 82.4 75.4 83.5 84.4 99.4 86.0 99.5 99.9 85.1
GMTR 75.6 67.2 92.4 76.9 69.4 94.8 89.4 77.5 72.1 86.3 77.5 72.2 86.4 79.5 99.6 84.4 96.6 99.7 83.2

OTGM 78.8 69.5 93.7 81.2 72.0 98.8 92.8 83.7 74.0 89.5 81.7 77.5 84.9 83.6 99.9 86.2 98.6 99.9 85.9

et al. (2021), NGM-v2 Wang et al. (2021), SCGM Liu et al. (2022), COMMON Lin et al. (2023),
ASAR Ren et al. (2022), GMTR Guo et al. (2024), and CREAM Ma et al. (2024).

5.2 RESULTS ON GRAPH MATCHING

Results on Pascal VOC. Pascal VOC is a widely used dataset for object recognition tasks, consisting
of 7,020 training images and 1,682 testing images. The dataset contains 20 different object classes,
and the number of nodes per graph varies from 6 to 23. In line with the methodology followed in the
BBGM approach Rolı́nek et al. (2020), we preprocess the data by filtering out non-matched points
before performing the matching process. This preprocessing step helps to focus on relevant and
meaningful correspondences. Table 1 presents the keypoint matching accuracy results on the Pascal
VOC dataset. Our proposed method, OTGM, achieves superior performance compared to the other
methods, with an improvement of +1.1% in terms of accuracy. Notably, our method demonstrates
remarkable performance improvements in classes with challenging and noisy annotations, such as
”aero” with +1.3% improvement and ”car” with +1.4% improvement.

Table 3: Keypoint matching accuracy (%) across all
objects on Willow Object.

Method Car Duck Face Mbike Wbottle Mean

GMN 67.9 76.7 99.8 69.2 83.1 79.3
NGM 84.2 77.6 99.4 76.8 88.3 85.3
PCA 87.6 83.6 100 77.6 88.4 87.4
CIE 85.8 82.1 99.9 88.4 88.7 89.0

IPCA 90.4 88.6 100 83.0 88.3 90.1
SCGM 91.3 73.0 100 95.6 96.6 91.3
ASAR 92.5 84.0 100 95.4 99.0 94.2
LCS 91.2 86.2 100 99.4 97.9 94.9

DGMC 98.3 90.2 100 98.5 98.1 97.0
BBGM 96.8 89.9 100 99.8 99.4 97.2

NGM-v2 97.4 93.4 100 98.6 98.3 97.5
QC-DGM 98.0 92.8 100 98.8 99.0 97.7

COMMON 97.6 98.2 100 100 99.6 99.1
CREAM 97.7 98.4 100 100 99.6 99.2
GMTR 97.5 97.8 100 100 99.2 99.0

OTGM 98.8 99.1 100 100 99.8 99.6

Results on Willow Object. Willow Object
is a dataset that contains 256 images dis-
tributed across 5 categories. Each target
object in the dataset is annotated with 10
distinctive landmarks, providing valuable in-
formation for keypoint matching tasks. To
ensure a consistent evaluation, we follow the
protocol outlined in PCA, IPCA, and NGM
Wang et al. (2019; 2020b; 2021). Specifi-
cally, we train our methods using the first 20
images of the dataset and report the testing
results on the remaining images. Table 3
presents the keypoint matching accuracy re-
sults across all objects in the Willow Object
dataset. Our proposed method demonstrates
significant improvements over the baseline
methods, with an increase in accuracy of
+0.5%.

Results on SPair-71k. SPair-71k is a dataset that consists of 70,958 image pairs collected from
Pascal VOC 2012 and Pascal 3D+. In line with the data preparation methods used in PCA, IPCA, and
NGM Wang et al. (2019; 2020b; 2021), each object in the dataset is cropped to its bounding box and
scaled to a fixed size of 256× 256 pixels. Table 2 presents the keypoint matching accuracy results
on the SPair-71k dataset. Our proposed method consistently improves the matching performance by
+1.2% compared to the other methods. These results demonstrate the effectiveness of our method
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Figure 3: The qualitative visualization.

in enhancing the accuracy of keypoint matching tasks on the SPair-71k dataset. Our approach
outperforms existing methods and showcases the potential for improved performance in challenging
scenarios.

Qualitative Results and Visualizations. In Figure 3, our qualitative visualizations demonstrate
the effectiveness of our method in modeling both feature-specific and feature-invariant matching.
The figure showcases various examples where our approach successfully matches corresponding
nodes and edges between different graphs, highlighting its robustness and flexibility. The left side
of the figure depicts matching between different types of buses, illustrating how our method can
accurately align corresponding features despite variations in appearance and structure. This example
emphasizes the capability of our method to handle complex and heterogeneous data, providing
precise node-level and edge-level correspondences. The right side of the figure presents matching
between bicycles, further showcasing the versatility of our approach in dealing with objects that have
multiple corresponding parts. The visualizations reveal that our method can effectively establish
feature-specific correspondences, such as matching different parts of the bicycle frame and wheels,
which traditional feature-invariant matching methods might miss.

Figure 4: Ablation study of
OTGM on Pascal VOC and
Spair-71k datasets.

Ablation Studies and Parameter Analysis. To evaluate the ef-
fectiveness of our framework, we conduct comprehensive ablation
studies where we investigate each component separately. The
results, as shown in Figure 4, demonstrate that all modules are
integral to our approach and contribute significantly to perfor-
mance gains. To further analyze the sensitivity of our method to
parameter choices, we perform a parameter sensitivity analysis on
the β, as presented in Table 5 in Appendix. The results confirm
that our method is found to be relatively insensitive to the choice
of β. These ablation studies provide valuable insights into the
effectiveness and robustness of each component of our method. By
demonstrating their individual contributions and parameter insen-
sitivity, we establish the efficacy of our framework in addressing
noisy annotations and achieving superior matching performance.

6 CONCLUSION

In this study, we introduce Optimal Transport Graph Matching (OTGM), a novel approach designed
to address the inherent challenges in graph matching. OTGM redefines graph matching as a distribu-
tional alignment problem, effectively addressing errors resulting from viewpoint discrepancies and
occlusions, common challenges in graph matching. Additionally, we incorporate a graph denoising
module leveraging self-supervised learning techniques, significantly enhancing the robustness of our
method by filtering out noise and refining input graph quality. Theoretical analysis within this study
substantiates OTGM’s strong generalization capabilities. Moreover, comprehensive empirical evalua-
tions across various real-world datasets have demonstrated our method’s superiority, outperforming
leading baseline models in terms of robustness and overall performance.

Limitations and Future Work: OTGM’s adaptability to large-scale graphs remains an area for en-
hancement, as the complexity may impact processing times. Future efforts could explore algorithmic
optimizations to better manage large graph datasets. Broader Impacts can refer to Appendix D.
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Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9):1853–1865,
2016.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS,
volume 26, 2013.

Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, and Daniel Cremers. Deep shells: Unsupervised
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Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
distance matrices. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pp.
2664–2672, 2016.

Jingwei Qu, Haibin Ling, Chenrui Zhang, Xiaoqing Lyu, and Zhi Tang. Adaptive edge attention for
graph matching with outliers. In IJCAI, pp. 966–972, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763, 2021.

Qibing Ren, Qingquan Bao, Runzhong Wang, and Junchi Yan. Appearance and structure aware
robust deep visual graph matching: Attack, defense and beyond. In CVPR, pp. 15263–15272,
2022.

Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vı́t Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In ECCV, pp. 407–424,
2020.

Mahdi Saleh, Shun-Cheng Wu, Luca Cosmo, Nassir Navab, Benjamin Busam, and Federico Tombari.
Bending graphs: Hierarchical shape matching using gated optimal transport. In CVPR, pp. 11747–
11757, 2022.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
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