
Under review as a conference paper at ICLR 2022

REASONING WITH HIERARCHICAL SYMBOLS: RE-
CLAIMING SYMBOLIC POLICIES FOR VISUAL REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep vision models are nowadays widely integrated into visual reinforcement
learning (RL) to parameterize the policy networks. However, the learned policies
are overparameterized black boxes that lack interpretability, and are usually brittle
under input distribution shifts. This work revisits this end-to-end learning pipeline,
and proposes an alternative stage-wise approach that features hierarchical reason-
ing. Specifically, our approach progressively converts a policy network into the
interpretable symbolic policy, composed from geometric and numerical symbols
and operators. A policy regression algorithm called RoundTourMix is proposed to
distill the symbolic rules as teacher-student. The symbolic policy can be treated
as discrete and abstracted representations of the policy network, but are found to
be more interpretable, robust and transferable. The proposed symbolic distillation
approach is experimentally demonstrated to maintain the performance and “de-
noise” the CNN policy: on six specific environments, our distilled symbolic policy
achieved compelling or even higher scores than the CNN based RL agents. Our
codes will be fully released upon acceptance.

Detected
bounding box

Velocity could be measured as one
component of numerical state

The proposed policy
distillation learns to
draw auxiliary lines

and measure
geometric relations

The proposed
policy distillation

learns to condition
action on distance

1
The proposed

symbolic
distillation learns
to trigger action

based on
coordinates

Figure 1: Four example environments adopted for distilling the CNN policy network knowledge into
the symbolic policy. From left to right are: Airstriker-Genesis, Pong, CircusCharlie, Seaquest.

1 INTRODUCTION

Reinforcement learning (RL) is effective to explore complex environments through interactions
(Kaiser et al., 2019). A central target in building stronger RL algorithms is to learn reliable and
generalizable policies, robust to unseen real-world data with possible shifts. This is a difficult task,
especially when the input space is high-dimensional or continuous, e.g., the visual data, and the
sampled observations during training are hence destined to be extremely sparse. To learn sophisticated
policies from those data, it is common to parameterize policies as numerical predictors, e.g, neural
networks (Francois-Lavet et al., 2018). Despite their success, the neural network based RL algorithms
require prohibitive amounts of data to train, and the resultant rules are “black boxes” that are
hardly interpretable (Mnih et al., 2013; Heuillet et al., 2021) nor stable under input domain shifts
(Schmeckpeper et al., 2020).

To mitigate this gap, let us take inspirations from ourselves. Humans integrate information at
multiple levels of abstraction: from raw sensory, to concept symbols, and to more underlying

1

Under review as a conference paper at ICLR 2022

“computational” mechanisms (Timpf et al., 1992). The hierarchical and progressive integration of
concept abstraction serves as the key for intermediate states to enable interpretable logical reasoning
as well as for generalization: the latter because appropriate abstraction can eliminate nuisances
(Krawczyk et al., 2011). Therefore, we are motivated to program our visual RL policies into an
alternative representation of symbolic rules. Compared to its numerically parameterized counterparts,
a symbolic rule is significantly lighter-weight, likely more interpretable, and potentially more
generalizable.

Abstracting pure symbolic rules from data is not new. The family of symbolic regression (SR) methods
(Cranmer et al., 2020; Runarsson & Jonsson, 2000; Gustafson et al., 2005; Orchard & Wang, 2016)
have been studied to directly search from the discrete symbolic space to compose target equations.
Different from conventional regression techniques that optimize a pre-specified model structure,
SR infers both model structures and parameters from data. Most popular SR algorithms rely on
genetic programming to evolve symbolic math equations from scratch (Runarsson & Jonsson, 2000;
Gustafson et al., 2005; Orchard & Wang, 2016). However, compared to the differentiable learning
of numerical policy networks, those SR methods are slow on large/complicated problems and rely
on many heuristics to work (Runarsson & Jonsson, 2000; Gustafson et al., 2005; Orchard & Wang,
2016). Hence, naively plugging those methods as policy learners for visual RL, e.g., to initialize
a population of simple symbolic policies and then gradually mutate/select better candidates while
interacting with the environment, will be computationally prohibitive (Runarsson & Jonsson, 2000;
Gustafson et al., 2005; Orchard & Wang, 2016), in addition to suffering from the sparse rewards.

We thus propose to synergize the numerical and symbolic policy learning, hoping to gain the best
from both worlds. Inspired by the idea of “knowledge distillation” (Hinton et al., 2015), we propose
a symbolic policy distillation approach: it does not directly compose and evolve the symbolic policy
through RL interaction, but instead, distills a symbolic policy from the behavior of a numerical policy
network as the “teacher”. After the teacher is learned via conventional RL, our approach extracts
a symbolic form that approximates the relationship between the input visual observations and the
output actions of the teacher. A key barrier here is, however, the fact that the teacher’s input is an
image, while a symbolic policy cannot easily consume a high-dimension continuous input. A robust
parsing mechanism is thus needed to abstract an image into a set of symbolic input operands, on
top of which more symbolic operators can be defined to compose them. That requires us to cross
the famous “semantic gap” (Hein, 2010) in vision, by properly discretizing the perception-decision
procedure.

In view of the above challenges, we study the progressive discrete symbolization of representations,
from the continuous visual observations to the discrete actions, and accordingly design a symbolic
policy distillation procedure that leverages the resultant hierarchical symbols. The progressive
symbolization for visual RL bridges the raw image input, the desired symbolic input operands,
and the output action space. To achieve so, we first use an object detection module to achieve the
“first level” of discretization, i.e., from the input image to a discrete set of objects (both classes
and locations). We then proceed to the “second level”, to (iteratively) search the symbolic rule that
maps the input set of objects to the output set of actions. The second level is accomplished using a
symbolic teacher-student distillation algorithm named RoundTourMix. Our entire process yields a
hierarchical, explainable, and generalizable symbolic rule in the form of symbolic compositions, that
can be treated as discrete and abstracted representations of the visual policy network.

As observed through extensive experiments, our symbolic policy distillation approach captures the
underlying structure in a white-box form through data-driven experience, and meanwhile gets rid of
visual domain nuisances through state abstraction (e.g., detection). In particular, the distilled symbolic
policy leverages the representation of object location, velocity and class information, which naturally
group two scenarios (visual scenes) together if the same logical specifications are congruent even
if the scenes’ pixel-level attributes are markedly different. The distillation procedure also requires
orders of magnitude less data than policy neural network training. Our approach paves a new way to
make the visual RL more interpretable, reliable and generalizable, and also narrows the gap between
numerical and symbolic approaches in RL. Our concrete technical contributions are summarized as
follows:

• We propose a novel progressive discretization of the perception-decision procedure with
three logical hierarchies: from a raw image to its object-level abstraction (called “geometric
symbols” hereinafter), to the numerical state and discrete action spaces.

2

Under review as a conference paper at ICLR 2022

• We propose a novel policy regression algorithm that distills the teacher behaviors of policy
networks into symbolic rules. Our approach termed RoundTourMix is gradient-free and
data-efficient to train, and the output rule enjoys good interpretability and reliability.

• Through performance/interpretability/transferability evaluation, our distilled symbolic poli-
cies demonstrate comparable or even stronger effectiveness in seven highly challenging
visual RL environments. They achieve the comparative or higher scores with interpretable
actions while generalizing better on the new environments than their teacher policy networks.

2 RELATED WORKS

Our work tightly intersects with interpretable reinforcement learning, and mathematical symbolic
regression. In reinforcement learning, the way to boost interpretability can be roughly categorized
into (a) intrinsic interpretability based methods and (b) post-hoc explanation based methods. The
Intrinsic interpretability based methods require the learned models to be self-understandable by
learning over interpretable architectures. Among the existing methods, the authors in Lyu et al. (2019)
proposed to learn an interpretable policy online, Zambaldi et al. (2018); Jiang & Luo (2019); Dong
et al. (2019) to introduce architectural inductive biases to learn a interpretable policy, Dittadi et al.
(2020) to perform width-based planning on relevant features extracted from game frames, and Ma
et al. (2021) preserves interpretability by learning a set of logical rules. Other methods also leverage
imitation learning (Verma et al., 2018; 2019; Bastani et al., 2018). For post-hoc explanation based
methods, the papers in Zahavy et al. (2016); Greydanus et al. (2018); Gupta et al. (2019) propose to
use t-SNE and saliency map to explain the learned policy. (Liang et al., 2015) proposes to capture
key features of a DQN into practical linear representations. Other methods include attention based
method (Shi et al., 2020), visual summary based method (Sequeira & Gervasio, 2020), reward
decomposition based method (Juozapaitis et al., 2019), casual model based method (Madumal et al.,
2020), Markov chain based method (Topin & Veloso, 2019) and case-based expert-behaviour retrieval
method (Ontanón et al., 2007).

Our symbolic distillation falls within the post-hoc methods, as we first learn a CNN policy that
enjoys the neural network’s free form optimization, then distills it into an explainable symbolic policy.
Connecting to existing methods that follow this path, the work in (Coppens et al., 2019) distill the
learned policy into a soft decision tree. Their visual observations are coarsely quantized into 10× 10
cells, and the soft decision tree policy is learned over the 100 dimensional space. Garnelo et al.
(2016); Garcez et al. (2018) also learn symbolic RL algorithms, but the states of the environments
they considered are clean and simple, and are not as challenging as video games.

Symbolic Regression (SR) (Runarsson & Jonsson, 2000; Orchard & Wang, 2016; Schmidt & Lipson,
2009; Cranmer et al., 2020; Cranmer, 2020; Petersen et al., 2019; Gustafson et al., 2005) is a recently
emerging and promising approach for discovering underlying symbolic rules of the observed data.
In discovering the mathematical equations, several algorithms adopted the gradient-free genetic
programming method. These algorithms generate populations of candidates equations, mutate them
and select better candidates, then repeat this evolution procedure until certain thresholds of maximum
interation number or performance level are met. Examples include Eureqa (Schmidt & Lipson, 2009)
and PySR (Cranmer et al., 2020; Cranmer, 2020), and a few others (Runarsson & Jonsson, 2000;
Orchard & Wang, 2016; Gustafson et al., 2005). Some other methods leverage the deep neural
network to parse out equation trees, such as (Petersen et al., 2019; Bello et al., 2017).

3 THREE TYPES OF IMAGE DATA REPRESENTATIONS

In this work, we focus on the visual Reinforcement Learning (RL) domain, and distill the teacher
agent behavior into a symbolic form. We use the Gym Retro games (Nichol et al.) as primary
examples to study policy distillation. For the most common visual RL case, the agent is modeled by
an end-to-end neural network (usually based on a convolutional neural network, or CNN) that maps
the image type data to the action. As pixel level data representation, the raw image offers rich low
level information but without abstraction. On the other hand, as a high level decision regime, the
symbolic rule takes robust abstracted symbols as its input operands.

3

Under review as a conference paper at ICLR 2022

Figure 2: The discretized perception-decision procedure, with three representation types (see Sec. 3).

To bridge this gap, it is hence necessary to summarize the image pixels into symbolic operands
(also refered to as geometric objects in this work) as required by the symbolic policy. Besides the
object level abstraction of the raw image, richer numerical form representations are also needed, as
the numbers are the basic building blocks to effectively represent knowledge and conduct learning.
Summarizing these motivations, we introduce three types of representations, the visual observation,
the geometric symbol representation, and the numerical state.

The initially obtainable representation is the visual observation, which contains the raw information
and serves as the input for the CNN based model. With these visual observations, we run a (pre-
trained and fixed) object detection algorithm to obtain object lists in the images. The object detection
module will provide us the class, location, as well as the velocity of every single detected object
in the image sequence. The output of the object detection module is the second type of image data
representations, which we term as the geometric symbol representation. The geometric symbol
representation is the desired symbol abstraction of the pixel level raw image, and supplies the input
operands for the symbolic distillation to work on. We use optical flow to segment and estimate the
velocity of the objects, and further classify the objects based on their shapes. More details are in
Appendix B. Eventually, the third type of representation is the numerical state, which is obtained by
drawing auxiliary lines, and measuring/quantizing certain relationships of the geometric symbols
(distances, orientations, etc). The numerical state is then used to predict the final action.

Overall as illustrated in Fig. 2, in order to parse a raw image into a symbolic policy, the
perception-decision procedure is discretized into the following steps: visual observation→
geometric symbol representation→ numerical state→ action.

4 LEARNING TO DISTILL TEACHER BEHAVIOR INTO SYMBOLIC POLICY

With the discretized decision procedure defined above, the remaining question is how to concretely
distill the teacher behavior into the symbolic policy. In what follows, we summarize the learning/dis-
tillation objectives in section 4.1, then describe the components of symbolic search space in section
4.2, and finally describe the distillation algorithm in section 4.3.

4.1 THE LEARNING OBJECTIVES

Over the three representations discussed above, a hierarchical symbolic reasoning proce-
dure can be built. In this work, we posit that the step [visual observation →
geometric symbol representation] could be robustly implemented and is reliable for
the usage of future steps, therefore, we set it as learning-less. Based on the observed geometric symbol
representation, we learn the rest of reasoning steps [geometric symbol representation
→ numerical state→ action] through the proposed symbolic distillation.

Intuitively, there are three reasoning components subject to learning: Ê what geometric relation-
ship to measure out of the geometric symbol combinations, so as to compose the numerical state;
Ë what is the condition to take action based on the measured numerical state; and Ì how to
take action, under the current condition. In this research, the learning targets Ë and Ì are usu-
ally found to be stacked with each other in a hierarchical way, yielding a tree-shaped decision
procedure (Sutton et al., 1999; Dietterich, 2000; Botvinick et al., 2009). To connect these learning

4

Under review as a conference paper at ICLR 2022

targets with the discretized decision procedures in section 3, Ê determines the learning target for
the [geometric symbols→ numerical state] step, and Ë and Ì determine the learning
target for the [numerical state→ action] step. In the following section, we define and
construct the basic building block to compose these learning targets.

4.2 SYMBOLIC POLICY SEARCH SPACE

To make symbolic policy distillation executable, we have to answer two open questions: what are the
available building blocks to construct symbolic policy, and how can we construct it? In the following,
we answer them by defining the symbolic search space, which contains the geometric operator search
space and the numerical operator search space.

The geometric operator search space. The geometric operator search space is designed for the
learning target Ê in section 4.1, and the components within this space are geometric operator com-
binations applied to detected objects. To enable stronger expressiveness, we include two types of
geometric operators: the auxiliary line drawer and the geometric attribute measurer. The auxil-
iary line drawer takes the input of detected objects, and draw auxiliary lines according to certain
given descriptions. This type of operators include velocity extension (extend the line along
certain object’s velocity direction, and keep track of it), static line drawer (drawing static
vertical/horizontal/tilt auxiliary lines), and intersection marker (mark the intersection be-
tween the auxiliary lines and/or detected objects, and keep track of it). The newly drawn auxiliary
lines/intersection points are added into the collection of the geometric symbol representation.

For the second type of geometric operators, the geometric attribute measurer is responsible for
evaluating the exact geometric relationships given specified geometric objects. The evaluated
geometric relationships could be real/boolean values, or another geometric object. The real valued
operators include velocity of (certain given object), location of (certain given object),
distance between (two given objects), orientation between (two objects against each
other). The boolean valued operators include has intersection (detect intersection between
two objects or an object and an auxiliary line), is moving, is changing shape (inspect one
given object). Another special operator is find nearest object, which returns the nearest
class-i (i is given) object from a reference object in the current observation, and the attributes of this
object could be further measured by other geometric attribute measurer. This operator is found to be
frequently used, as it is usually the case that when multiple objects are present, the agent tends to
deal with the nearest object first.

The numerical operator search space. In correspondence with the geometric search space, the
numerical search space is designed for learning targets Ë and Ì, and its components are numerical
operator combinations applied to the variables in the measured numerical state. There are also two
types of numerical operators. The first type is the bool function/logical operators, which include
is(x < y), is(x ≤ y), is(x = y), a | b, a & b, ¬ a, and conditional combinations: a*x+(¬ a)*y. The
second type is the math operators, which include +,−, ∗, /, sin, cos, tan, cot, (·)2, (·)3,

√
·, exp, log.

To illustrate with two concrete examples, in the environment CircusCharlie (illustrated in Fig. 1
and Fig. 2), the agent’s target is to jump right into the fire ring and over the pot. One sample
distilled symboblic policy is presented in Fig 3. The equation 1 also represents a subtree of Fig 3
for simplicity. In Eq 1, xring, xpot and x0 are the x-coordinate of the detected fire ring, pot and
the protagonist objects. The distilled policy allows the agent to only jump when the condition
¬(10 < xpot − xring < 50) × (xring − x0 < 40) is met. In Pong (illustrated in Fig. 1), the agent
needs to control the right racket so as to hit the pong, which can collide and bounce with the walls.
One sample distilled symbolic policy is in Eq. 2, where xpong is the x coordinate of pong, S is
the intersection of the speed orientation and the right edge (drawn and tracked by the auxiliary
line drawer). Such policy allows the agent to ignore the bouncing procedure of the pong, only pay
attention to the speed orientation of the pong when it is near the edge (xpong > 40). More examples
of distilled policies and their interpretations are in Appendix. C.

One possible difficulty of the symbolic distillation procedure is the huge size of the search space:
it grows exponentially with longer time span. Denote the number of symbolic compositions in one
frame as N . If one consider stacking T consecutive frames without duplicate removal or other
engineering tricks, the total number of symbolic compositions will be NT . To reduce the size of
the search space, we primarily focus on single-frame policy distillation, i.e., infer the action only
based on the current frame observation. For the environments that require multi-frame tracking, those

5

Under review as a conference paper at ICLR 2022

long-term informations could be attached to the object as an attributes of the object, and are carried
and updated across time. For example, in the shooting based environments, whether an object has
been set as the “next shooting target” by the teacher agent could be set as an attribute of this object,
and this attribute could be measured by observing the teacher behavior, and backtrack in time to mark
previous frames (backtrack is allowed during distillation, since our distillation algorithm works with
the offline stored teacher behavior dataset), and could be presented as a component in the measured
numerical state. Under this strategy, the size of the symbolic search space is greatly reduced, and a
plenty of environments are found to be viable for symbolic distillation (approximately 85% of 1000+
gym retro environments). A sampled list of such environments are put in Appendix D.
policy-CircusCharlie = (10 < xpot − xring < 50)× go left +

¬(10 < xpot − xring < 50)× [(xring − x0 < 40)× jump+

¬(xring − x0 < 40)× go right]

(1)

policy-pong =(xpong > 40)× ((ypong > yS)× down + ¬(ypong > yS)× up) +

¬(xpong > 40)× no action
(2)

4.3 ROUNDTOURMIX: THE PROCEDURE TO DISTILL THE SYMBOLIC POLICY

Is nearest
entity type

Ring?

Yes

Is nearest
entity type

Pot?

No

Jump

Yes

Go Right

No

Jump

Yes

Go Right

No

Charlie
intersect with

Ground
Plane

Yes

Go Right

No

No

Go Right

Start

No Action

Go Left

Yes
No

Yes

Go LeftGo Right

Jump

Action Space

Figure 3: One sample distilled policy from a CNN
agent in the CircusCharlie environment.

Having established the search space and clarified
the learning targets, in this section, we propose
the RoundTourMix: a gradient-free policy dis-
tillation approach that iteratively optimize the
three learning target discussed in Section 4.1,
by switching back and forth between observ-
ing teacher’s behavior and interacting with the
environments. It follows the straightforward
philosophy of genetic programming: a mainline
guess of symbolic policy tree is maintained, new
variants are repeatedly mutated from the main-
line, and those better variants which minimize
the loss with the teacher’s actions are captured.
We take the Cross-Entropy loss as the metric
under the discrete action space we tested. We
also note the choice to use Mean Squared Error
loss if the action space is continuous. Through
this evolution procedure, the more complex and better performing mutations of symbolic policy are
iteratively discovered.

We note that the decision procedure of a wide range of CNN policy networks could be efficiently
represented as high-fidelity tree shaped symbolic policy similar to Fig. 3. Therefore, we extend it into
a generalizable form, where there are condition node and the action node co-existed. The condition
node serves as the branching node, which corresponds to the learning target Ë, and the action node
serves as the leaf node that corresponds to the learning target Ì.

The condition node has three key properties: the condition, aLEFT , and aRIGHT . Given a sample
of numerical state, the condition is a symbolic composition that evaluates into a boolean value.
aLEFT and aRIGHT are two of its children tree nodes, which can be either condition nodes or action
nodes. Given a numerical state, if the condition of this node is evaluated to be True, aLEFT will be
executed, otherwise aRIGHT will be executed.

The action node also have three key properties: the total condition, the depth, and the policy. The
total condition is the cascaded condition of its ancestral condition nodes, in other words, given any
sample state, the total condition of an action node is true only if the condition of all of its ancestral
nodes are met (either True or False), so that this action node can be reached along the path from the
root node. The depth of the action node means the length of the path from the root node to the action
node. The policy can either be a single action, or a mapping from the state space (a subspace that
already meets the total condition) to the action space. In practice, we encourage the policy to be a
single action, but if the tree search reached certain predefined maximum depth, we also allow this
policy to be the symbolic mapping recovered by symbolic regression (Cranmer et al., 2020; Cranmer,
2020), which is a subtree itself.

6

Under review as a conference paper at ICLR 2022

Algorithm: Distilling Teacher Behavior into
Symbolic Tree

Require: Temporary dataset Dtrain containing
X (numerical states), Y (actions)

Return: r: the root of symbolic policy tree
Maintain:S: the set of unsolved action nodes
1: Initializations
2: r← newActionNode(depth = 0)
3: S ← {r} ; cnt← 0
4: While S 6= {} & cnt < cntMAX :
5: cnt← cnt + 1
6: n← pop(S) � Sample action node
7: Ysub ← Y[n.total condition] � Slices
8: IF Entropy(Ysub) < Θentropy:
9: n.policy←Mean(Ysub)
10: ELSE: � Single action cannot fit
11: IF n.depth < depthMAX :
12: With probability p1: � Split condition
13: n← newConditionNode()
14: S ← S + {n.aLEFT , n.aRIGHT }
15: With probability 1− p1: � De-noise
16: n.policy← default action
17: ELSE: � Too deep, stop branching further
18: With probability p2:
19: Xsub ← X[n.total condition]
20: n.policy← runSR(Xsub,Ysub)
21: With probability p3: � De-noise
22: n.policy← default action
23: With probability 1− p2 − p3:
24: n′ ← Sample(pathToRoot(n))
25: removeSubtree(n′)
26: n′ ← newConditionNode()
27: S ← S+{n′.aLEFT , n

′.aRIGHT }
28: Return r

Table 1: RoundTourMix’s solve stage algorithm.

Specifically, the RoundTourMix is composed
of four mutually interactive stages:

1. Record Teacher Behavior. In the first
stage, the teacher interacts with the environ-
ment, and the visual observations are fully
recorded and converted to geometric symbols
frame-by-frame. We align these frames of
symbols with actions and store as an offline
teacher behavior dataset D0 (no need to store
teacher’s reward). This stage serve as the ini-
tialization of RoundTourMix, and is the only
stage that will be executed only once.

2. Guess and Observe. In this stage, we
make a random guess for the target geomet-
ric relations to be measured, then replay the
teacher’s interactions in D0. During the re-
play, the numerical states are evaluated using
geometric operators, and are recorded (instead
of measure all possible geometric relations
and yield gigantic numerical states). We col-
lect the numerical states and teacher’s actions
as a temporary dataset D, and split it into a
training set Dtrain and a validation set Dval.

3. Solve. In this stage, we iteratively search
the symbolic policy tree composed of the nu-
merical operators. Table 1 presents the details
of one round symbolic tree generation. This
procedure is repeated for multiple times, after
which a few of the best policy candidates on
Dval are collected and sent to the next stage.

4. Verify and Optimize. In this stage, we let
go the best few symbolic policies collected
from last stage to interact with the environ-
ment. If any candidate symbolic policy is
found to match or surpass the teacher’s score,
the RoundTourMix procedure is terminated
and the distilled symbolic policy is found. Oth-
erwise, return to the Guess and Observe stage and make new guess of which geometric relations to
measure.
Remark 1: More Details in Stage 3. The core part of the algorithm in Table. 1 is to repeatedly
guess branching conditions of the condition nodes (lines 13/26), slice out the subset of data that obey
the total condition (line 7), and fit action nodes with this subset of data (lines 9/16/20/22). The more
accurate the guessed condition, the easier it is to fit action node. If the guessed condition happen to
be near exact, the sliced teacher’s action tends to be nearly deterministic (i.e., low entropy, line 8,
where Θentropy is a threshold of the entropy). Otherwise, if the maximum depth depthMAX is met
and the leaf node still is not deterministic (line 17), then it has the option to directly fit symbolic
mapping (Cranmer, 2020) (line 20).
Remark 2: Teaching Behavior Denoising. An important mechanism in this algorithm is the de-
noising for the teacher behavior (lines 9/16/22). Under some conditions, the teacher model could
possibly take noisy or “seemingly random” actions, which make it difficult for the RoundTourMix to
find a single deterministic action that matches well (line 8 not satisfied). In these cases, the distillation
algorithm has the chance to assign the default action (line 16,22) to denoise it. On other scenarios, the
actions subset Ysub under certain total condition have low entropy but are not entirely deterministic,
the symbolic distillation can still smooth it into a deterministic single action (line 9), if the entropy is
below threshold Θentropy . Eventually, with the aid of the last screening stage of RoundTourMix, the
symbolic policy taking fewer but more efficient actions are picked as the winner.

7

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

1000

2000

3000

4000

5000

Re
wa

rd

AdventureIsland3-Nes

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

100

200

300

400

500

Airstriker-Genesis

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

250

500

750

1000

1250

1500

1750

AstroRoboSasa-Nes

0.0 0.2 0.4 0.6 0.8 1.0
Total Timesteps of Training Episodes 1e7

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
wa

rd

CircusCharlie-Nes

0.0 0.2 0.4 0.6 0.8 1.0
Total Timesteps of Training Episodes 1e7

20

10

0

10

20

Pong-Atari2600

0.0 0.2 0.4 0.6 0.8 1.0
Total Timesteps of Training Episodes 1e7

101

102

103

104
Seaquest-Atari2600

PPO A2C Human Distilled Symbolic Rule

(a) Training performance

400 800
Button

None

Select

Reset

Up

Down

Left

Right

Ac
tio

n

Pong - PPO Evaluation

400 800
Button

None

Select

Reset

Up

Down

Left

Right

Ac
tio

n

Pong - Distilled Policy Evaluation

400 800
Button

None

Select

Reset

Up

Down

Left

Right

Ac
tio

n

Seaquest - PPO Evaluation

400 800
Button

None

Select

Reset

Up

Down

Left

Right

Ac
tio

n

Seaquest - Distilled Policy Evaluation

(b) Action distribution

Figure 4: Performance validation and behavior comparisons for the CNN based RL agents and the
distilled symbolic rule. Action distribution (right) is for a single evaluation round

Although this smoothing and denoising effect might potentially overlook some subtle behaviors of the
teacher agent, we argue that the benefits of introducing such mechanism outweigh the disadvantages.
On one hand, symbolic rules can still be encouraged to evolve into more complex trees to capture
intricate teacher behaviors, e.g., by setting the depth of the tree controllable by depthMAX , and the
richness/complexity of the symbolic building blocks, as defined by the search space. On the other
hand, not all environments require intricate manipulations. For a few environments that challenges
on “balancing ability” (no need to involve much reasoning), such as CartPole or LunarLander, it
is difficult to distill reliable symbolic policy. However, the visual reasoning tasks dominates the
gym retro environments, and in these tasks, the denoised symbolic rules have demonstrated quite
unbeatable competence across a host of them, as to be seen in section 5.

5 EXPERIMENTAL SETTINGS AND RESULTS

In this section, we select several retro visual RL environments to train CNN policy networks, then
distill, verify and interpret the symbolic policy. Specifically, the selected environments include:
AdventureIsland2, AdventureIsland3, Pong, CircusCharlie, Airstriker-Genesis, Seaquest, and As-
troRoboSasa. More illustrative visualizations of our experiments can be found in the videos in the
supplementary materials, and we sincerely recommend our readers could check them out.

Performance validation. We first compare the performance of the distilled symbolic policy against
the RL teacher models. Fig. 4 shows the performance of PPO (Schulman et al., 2017), A2C (Mnih
et al., 2016), human player, and the proposed symbolic policy distillation. In the experiments, the
symbolic policies are all distilled from the PPO teacher model. The score of the human player is
obtained by a gaming master controlling the agent under the lowered frame rate. Due to engineering
facilitation considerations, in this work we set the agents in the environments as to only have one life
for all. As can be seen in the figure, the distilled policy maintained comparable performance with the
teacher model, and for some environments, the distilled policy is even better thanks to the denoising
mechanism of symbolic distillation.

Interpretability validation. Besides verifying the performance, we also evaluate the interpretability
of the regressed policy. This requires to check the symbolic operators combinations learned in the tree
nodes, re-write them as readable form and analyze. On the selected environments, highly interpretable
and hierarchical forms of symbolic policy trees are all found in the distilled equations. One sample
distilled policy for Pong is displayed in Eq. 2, and one sample for CircusCharlie is displayed in Fig. 3.
More interpretable distilled policies on other environments are put in appendix C.

Behavior comparison with the neural network teacher. In Fig. 4, we plotted the action and the
accumulated reward, both for the trained teacher model and the distilled symbolic policy. As can be
seen in the figure, a well-trained teacher model make more frequent actions, while still underperform

8

Under review as a conference paper at ICLR 2022

Evaluation on AdventureIsland3 AdventureIsland2
Checkpoints from AI-3 10M 1.0M 2.5M 5.0M 7.5M 10M Best

A2C 5150 0 200 50 100 100 200
PPO 3000 150 0 100 50 50 50

Distilled Symbolic Policy 3250 1950

Table 2: Policy Transfer comparisons. PPO and A2C are trained on AdventureIsland3 (AI-3), tested
on AdventureIsland2. The symbolic policy is distilled from PPO agent trained on AdventureIsland3.
Neither PPO/A2C nor symbolic rules are fine-tuned/modified on AdventureIsland2.

the distilled symbolic rule. More differences are better shown in the video in the supplementary
materials. The results there shows that in the Pong env, the trained CNN-based teacher model
frequently “jitters” up and down even when the pong is very far away from the right racket. In those
cases, the pong is usually going to bounce with the wall to change its heading direction, making those
states “hardly controllable”. Due to the near-random behavior of the teacher under these “difficult”
states, the symbolic distillation fails to converge to one single action under these cases, and hence
mapped default action to them, accidentally generated more efficient rules, and those rules are picked
through the last screening step of RoundTourMix.

Figure 5: Visual comparison
between the AdventureIsland2
(top) and AdventureIsland3
environments (bottom)

Transferablity validation. Since the object detection step provide
robust environment representations that group different scenarios
together, even if the scenes’ pixel-level attributes are markedly dif-
ferent, the distilled symbolic rule should transfer well if the logical
specifications are congruent. In order to test the transferability/gener-
alizability of the distilled symbolic rule, we compare the the distilled
rules against CNN policies using the AdventureIsland2 and Adven-
tureIsland3 environments (Refer Fig. 5). We first train a teacher
CNN policy networks on AdventureIsland3 and distill symbolic
policy with PPO; we then directly test both the CNN models and
the distilled symbolic rule on AdventureIsland2, without tuning the
CNN policy networks nor changing the symbolic rule.

As can be seen in Table 2, when directly transfered to a new environ-
ment with similar underlying rule but slightly different image styles,
the CNN models completely fail to match their performances in the
original environment, over the checkpoint from the entire training
history. Additionally, fine-tuning the CNN policy network to adapt
to the new environment will require another considerable amount of
training. In contrary, the distilled symbolic rule painlessly transfer
to the new environment, with significantly fewer performance loss.
This is due to that our object detection module dwells on optical
flow and object shape, which is robust to color/style changes. The
comparison between the symbolic policy and the CNN based policy
network again endorses the better transferability of the symbolic rule.

6 CONCLUSION

This paper study the distillation of CNN based reinforcement learning agent into a symbolic policy
that dwells on geometric and numerical operands and operators. Thanks to the the denoising and the
screening mechanisms in the distillation procedure, the distilled symbolic policy achieves comparable
or even better performance than the CNN teacher model. Our results point to the new opportunity
to make the visual RL more interpretable, reliable and generalizable, by reclaiming a symbolic
design with the proposed symbolic policy distillation. Our future work aims for more integrated
neural-symbolic solutions for visual RL.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY CHECKLIST

To ensure reproducibility, we use the Machine Learning Reproducibility Checklist v2.0, Apr. 7
2020 (Pineau et al., 2021).

• For all models and algorithms presented,
– A clear description of the mathematical settings, algorithm, and/or model. We

clearly describe all of the settings, formulations, and algorithms in Section 4.3.
– A clear explanation of any assumptions. We do not make assumptions.
– An analysis of the complexity (time, space, sample size) of any algorithm. We do

not make the analysis.
• For any theoretical claim,

– A clear statement of the claim. We do not make theoretical claims.
– A complete proof of the claim. We do not make theoretical claims.

• For all datasets used, check if you include:
– An explanation of any data that were excluded, and all pre-processing step. We

did not exclude any data or perform any pre-processing.
– A link to a downloadable version of the dataset or simulation environ-

ment. All ROMs used can be downloaded from https://archive.
org/details/No-Intro-Collection_2016-01-03_Fixed and
http://www.atarimania.com/rom_collection_archive_atari_
2600_roms.html.

– For new data collected, a complete description of the data collection process, such
as instructions to annotators and methods for quality control. We do not collect
or release new datasets.

• For all reported experimental results, check if you include:
– A clear definition of the specific measure or statistics used to report results. We

use the accumulated reward gained in a single episode as our statistical measure.
– A description of results with central tendency (e.g. mean) & variation (e.g. error

bars). We do not report mean and standard deviation for experiments.
– The average runtime for each result, or estimated energy cost. We do not report

the running time or energy cost.
– A description of the computing infrastructure used. We do not report the computing

infrastructure used.

REFERENCES

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. arXiv preprint arXiv:1805.08328, 2018.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with rein-
forcement learning. In International Conference on Machine Learning, pp. 459–468. PMLR,
2017.

Matthew M Botvinick, Yael Niv, and Andew G Barto. Hierarchically organized behavior and its
neural foundations: a reinforcement learning perspective. Cognition, 113(3):262–280, 2009.

Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber, and
Daniele Magazzeni. Distilling deep reinforcement learning policies in soft decision trees. In
Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence, pp. 1–6, 2019.

Miles Cranmer. Pysr: Fast & parallelized symbolic regression in python/julia, September 2020. URL
https://doi.org/10.5281/zenodo.4052869.

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. arXiv
preprint arXiv:2006.11287, 2020.

10

https://archive.org/details/No-Intro-Collection_2016-01-03_Fixed
https://archive.org/details/No-Intro-Collection_2016-01-03_Fixed
http://www.atarimania.com/rom_collection_archive_atari_2600_roms.html
http://www.atarimania.com/rom_collection_archive_atari_2600_roms.html
https://doi.org/10.5281/zenodo.4052869

Under review as a conference paper at ICLR 2022

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research, 13:227–303, 2000.

Andrea Dittadi, Frederik K Drachmann, and Thomas Bolander. Planning from pixels in atari with
learned symbolic representations. arXiv preprint arXiv:2012.09126, 2020.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. arXiv preprint arXiv:1904.11694, 2019.

Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and Joelle Pineau. An
introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11
(3-4):219–354, 2018.

Artur d’Avila Garcez, Aimore Resende Riquetti Dutra, and Eduardo Alonso. Towards symbolic
reinforcement learning with common sense. arXiv preprint arXiv:1804.08597, 2018.

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement
learning. arXiv preprint arXiv:1609.05518, 2016.

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding
atari agents. In International Conference on Machine Learning, pp. 1792–1801. PMLR, 2018.

Piyush Gupta, Nikaash Puri, Sukriti Verma, Sameer Singh, Dhruv Kayastha, Shripad Deshmukh, and
Balaji Krishnamurthy. Explain your move: Understanding agent actions using focused feature
saliency. arXiv preprint arXiv:1912.12191, 2019.

Steven Gustafson, Edmund K Burke, and Natalio Krasnogor. On improving genetic programming
for symbolic regression. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pp.
912–919. IEEE, 2005.

Andreas M Hein. Identification and bridging of semantic gaps in the context of multi-domain
engineering. In Forum on Philosophy, Engineering & Technology, pp. 58–57, 2010.

Alexandre Heuillet, Fabien Couthouis, and Natalia Dı́az-Rodrı́guez. Explainability in deep reinforce-
ment learning. Knowledge-Based Systems, 214:106685, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2462–2470, 2017.

Zhengyao Jiang and Shan Luo. Neural logic reinforcement learning. In International Conference on
Machine Learning, pp. 3110–3119. PMLR, 2019.

Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. Explainable
reinforcement learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable
Artificial Intelligence, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Daniel C Krawczyk, M Michelle McClelland, and Colin M Donovan. A hierarchy for relational
reasoning in the prefrontal cortex. Cortex, 47(5):588–597, 2011.

Yitao Liang, Marlos C Machado, Erik Talvitie, and Michael Bowling. State of the art control of atari
games using shallow reinforcement learning. arXiv preprint arXiv:1512.01563, 2015.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: interpretable and data-efficient
deep reinforcement learning leveraging symbolic planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 2970–2977, 2019.

11

Under review as a conference paper at ICLR 2022

Zhihao Ma, Yuzheng Zhuang, Paul Weng, Hankz Hankui Zhuo, Dong Li, Wulong Liu, and Jianye
Hao. Learning symbolic rules for interpretable deep reinforcement learning. arXiv preprint
arXiv:2103.08228, 2021.

Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. Explainable reinforcement learning
through a causal lens. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 2493–2500, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gym retro. https:
//github.com/openai/retro.

Santiago Ontanón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram. Case-based planning and
execution for real-time strategy games. In International Conference on Case-Based Reasoning, pp.
164–178. Springer, 2007.

Jeff Orchard and Lin Wang. The evolution of a generalized neural learning rule. In 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 4688–4694. IEEE, 2016.

Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim,
and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer,
Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine
learning research. Journal of Machine Learning Research, 22:1–20, 2021.

Thomas Philip Runarsson and Magnus Thor Jonsson. Evolution and design of distributed learning
rules. In 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural
Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation
and Neural Networks (Cat. No. 00, pp. 59–63. IEEE, 2000.

Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Reinforce-
ment learning with videos: Combining offline observations with interaction. arXiv preprint
arXiv:2011.06507, 2020.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pedro Sequeira and Melinda Gervasio. Interestingness elements for explainable reinforcement
learning: Understanding agents’ capabilities and limitations. Artificial Intelligence, 288:103367,
2020.

Wenjie Shi, Shiji Song, Zhuoyuan Wang, and Gao Huang. Self-supervised discovering of causal
features: Towards interpretable reinforcement learning. arXiv preprint arXiv:2003.07069, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Sabine Timpf, Gary S Volta, David W Pollock, and Max J Egenhofer. A conceptual model of
wayfinding using multiple levels of abstraction. In Theories and methods of spatio-temporal
reasoning in geographic space, pp. 348–367. Springer, 1992.

12

https://github.com/openai/retro
https://github.com/openai/retro

Under review as a conference paper at ICLR 2022

Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2514–
2521, 2019.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045–5054. PMLR, 2018.

Abhinav Verma, Hoang M Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. arXiv preprint arXiv:1907.05431, 2019.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns. In
International Conference on Machine Learning, pp. 1899–1908. PMLR, 2016.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

A JUSTIFICATION FOR KEY NOTES

In this section we provide justifications for the architectural and algorithmic designs of our proposed
RoundTourMix algorithm.

A.1 DETAILS ON THE SEARCH SPACE

Geometric and Numerical Operator Search Space. Precisely, we have a total of 11 different
functions in the geometric operator search space and 19 different functions in the numerical operator
search space. As mentioned in section

Temporal Tracking and Memory-Attributes. We include mechanisms that make our symbolic
algorithm aware of the temporal behavior of its entities using memory-attributes. For instance, in
shooting-based environments, relying just on the current frame gives rise to the agent shooting
multiple times at the same enemy if it is not aware of the enemies that it has already launched its
bullet at. Another memory-attribute in such games arises when the agent needs to remember the
target (out of multiple targets) it has locked on to, get in a suitable position and then fire.

A.2 MOTIVATIONS BEHIND THE ALGORITHMIC CHOICES

In this section we break down the Step 2 and Step 3 of RoundTourMix while providing validation for
the specific choices in the same.

Justification for Random Selection. Exhaustive search will ensure that excellent performance will
be achieved with virtually unlimited hardware and software resources. However, as previously
mentioned in 4.2, one potential challenge of the symbolic distillation technique is that the geometric
representation’s search space is exponentially huge. As a result, as compared to exhaustive search,
random selection is the only viable option. Furthermore, our investigations show that the random
search paradigm produces more reliable outcomes over exhaustive searching. If we compose symbolic
compositions of length 20, the total possible policies are (11 + 19)20 = 3020 = 3.48e29 which is a
gigantic number. Furthermore, because there is no ”learning” involved, any exhaustive or brute-force
search goes against the spirit of reinforcement learning. Traditional reinforcement learning does not
use such comprehensive methods because of the vast number of viable policies, as earlier noted.

Guess and Observe. As earlier discussed the geometric search space is very large. Hence we
randomly guess the 16 different geometric relations to be guessed. We then iterate over the image
from the teacher behaviour, evaluate the randomly sampled geometric and numerical relations. For
each frame we create a vector of size 16 of possible logics which are then later on used as the
numerical state for symbolic distillation - The set numerical state vectors as extracted from each
image constitutes the offline teacher dataset

Explanation of Branching Conditions.

13

Under review as a conference paper at ICLR 2022

• Search the symbolic policy tree composed of numerical operators
• Performed to get suitable candidate policies
• We perform the search a total of cntMAX times
• At the start of each search we first sample an action node from the set of all unsolved action

nodes
• We then slice out the subset of the offline teacher data that aligns with the guessed branching

condition.
• If the sampled branching condition was a step in the right direction, the entropy of the subset

sliced remains at a low value
• If it does not, it is an indicator that the underlying rule was more complex and the path is to

be explored deeper
• If the tree is already at its maximal depth, we either (A) directly run and fit symbolic

regression between the sliced numerical state vs action offline dataset (B) assign a default
action to that action node or (C) prune off the entire sub-tree containing the action node in
question

• Else if the tree is not yet at its maximal depth and the entropy is high, we either (A) explore
deeper by creating a left/right branching condition or (B) assign a default action at the action
node in order to denoise it

B DETAILS OF OPTICAL FLOW BASED OBJECT DETECTION

Since in most retro environments, the image styles are simple, where the backgrounds are nearly
fixed and the objects share similar patterns. Therefore, we take the optical flow as a simplified object
detection module.

We first segment out the object list from template matching, then estimate the velocity using the
pretrained FlowNet (Ilg et al., 2017), and get the speed via the average optical flow of detected objects.
The classes of the objects are obtained based on the shape in the predefined templates.

C EXAMPLES OF DISTILLED SYMBOLIC POLICY

We check the learned symbolic operators in the tree nodes, and re-write them as interpretable symbolic
tree policy. The results are plotted in Fig. 9, Fig. 7, Fig 10, Fig 6, Fig 8, and Fig 11.

D EXAMPLES OF RETRO-ENV LIST THAT ONE-FRAME SYMBOLIC
DISTILLATION CAN WORK WELL

After checking the underlying logics and evaluated the possible strategies of gym-retro environments,
a plenty of them are found to be solvable by our symbolic policy distillation. Several examples
include: 8Eyes-Nes, 1942-Nes, BadDudes-Nes, BioSenshiDanIncreaserTonoTatakai-Nes, BreakThru-
Nes, BubbleBobble-Nes, CodeNameViper-Nes, FrontLine-Nes, GhostsnGoblins-Nes, KidIcarus-Nes,
KidNikiRadicalNinja-Nes, Parodius-Nes, RoboccoWars-Nes, Sansuu5And6NenKeisanGame-Nes,
Seicross-Nes, SonSon-Nes, Tennis-Atari2600, TwinEagle-Nes, ViceProjectDoom-Nes, Xexyz-Nes,
MysteryQuest-Nes. The screenshots for them are displayed in Fig. 12.

E OTHER ILLUSTRATIONS

The pseudo-code for the algorithm in table 1 are presented in Fig. 13

14

Under review as a conference paper at ICLR 2022

Is nearest
entity type

Ring?

Yes

Is nearest
entity type

Pot?

No

Jump

Yes

Go Right

No

Jump

Yes

Go Right

No

Charlie
intersect with

Ground
Plane

Yes

Go Right

No

No

Go Right

Start

No Action

Go Left

Yes
No

Yes

Go LeftGo Right

Jump

Action Space

Figure 6: Distilled policy for CircusCharlie-Nes

15

Under review as a conference paper at ICLR 2022

Shoot

Left

Right

No Action

Start

Go Right

Yes

No

Shoot

No

Protagonist
is Tracking

Yes

Enemy
Present?

Yes

Nearest Enemy
attended

tracking True

attended

tracking False

No Action

No

No

Yes

Left

In immediate
Danger?

NoYes

Go Left

Yes
No

Go Right

Yes

Go Center

No

Figure 7: Distilled policy for Airstriker-Genesis

16

Under review as a conference paper at ICLR 2022

Up

Down

No Action

Start

No

No Action

Yes

Down

Yes

Up

No

Yes

No Action

No

Figure 8: Distilled policy for Pong-Atari2600

17

Under review as a conference paper at ICLR 2022

Jump

Go Right

No Action

Start

Player
intersect with

Ground
Plane

No
Yes

Right

Is nearest
entity type

Fruit?

Yes

Is nearest
entity type

Avoid?

No

Jump

Yes

Go Right

No

No

Jump

Yes

Go Right

No Yes

Is nearest
entity type

Egg?
NoYes

Go Right

Is nearest
entity type

Snake?

Yes

Yes No

Jump Go Right

Yes No

No Action

Yes

Go Right

No

Figure 9: Distilled policy for AdventureIsland3-Nes

Up

Down

Down
Shoot

Right

Left

No Action

Start

Player
intersect with

Ground
Plane

No
Yes

No Action

Closest Point
on Right?

No

Right

Yes

Closest Point
on Left?

Left

Yes

Down

Shoot

Up
Shoot

Closest
Point Directly

Above?
Yes

Closest
Balloon Directly

Above?

No

Up

Shoot

No Action

Yes No

Figure 10: Distilled policy for AstroRoboSasa-Nes

18

Under review as a conference paper at ICLR 2022

Up

Down

Shoot

Right

Left

No Action

Start

Player is
Tracking?

Yes

No

Down

Yes

Yes

Out of
Oxygen
detected?

No

Up

Yes

Shoot

tracking False

Fish
Present?

Yes

Nearest Fish
attended

tracking True

No Action

No

No

Other
Fish directly

Below?
No

Other Fish
Moving
Right?

Left

Yes

Yes

Right

No

Up

Other
Fish directly

Above?
No

Other Fish
Moving
Right?

Left

Yes

Yes

Right

No

No

Figure 11: Distilled policy for Seaquest-Atari2600

Figure 12: Several environments found to be viable for symbolic distillation.

19

Under review as a conference paper at ICLR 2022

psudo-code for the solve stage of RoundTourMix

def solve_policy_as_symbolic_tree(x, y):

 # input is a list of pairs of teacher behaviors:

 # x: numerical state

 # y: action

 # output: a symbolic tree with condition nodes and action nodes

 root = new_action_node(depth=0) # initialize the root node as an action node

 unsolved_action_nodes = { root }

 loop_cnt = 0

 while (unsolved_action_nodes is not empty) and (loop_cnt < max_cnt):

 loop_cnt += 1

 node = sample(unsolved_action_nodes).pop() # randomly sample an unsolved action node

 # First check if the actions under the current total_condition is near deterministic.

 y_subset = y[node.total_condition] # select slices that satisfy total_condition

 if entropy(y_subset) < entropy_threshold:

 # If a single action fits under the current total_condition, then resolve and close this branch

 node.policy = mean(y_subset)

 else:

 if node.depth < max_depth:

 # If max depth is not met, branch on this node by a randomly guessed

 # condition, and mark new child nodes as unsolved

 replace_action_node_with_new_condition_node(node)

 unsolved_action_nodes.add([node.a_LEFT,node.a_RIGHT])

 else:

 # If the current node is already too deep, then stop branching further.

 uniform_0_1 = rand() # sample from a uniform distribtion [0,1]

 if uniform_0_1 > p_SR:

 # With probability p_SR, directly solve this node using Symbolic_Regression.

 x_subset = x[node.total_condition]

 node.policy = Symbolic_Regression(x_subset, y_subset)

 elif uniform_0_1 > p_SR + p_default_action:

 # With probability p_default_action, set to default action to de-noise teacher behavior.

 node.policy = default_action

 else:

 # Otherwise, remove a subtree containing this node, then renew the searches.

 node_father = sample(node.father_nodes_list)

 remove_subtree(node_father)

 node_father = new_condition_node()

 unsolved_action_nodes.add([node_father.a_LEFT,node_father.a_RIGHT])

 return root

 Figure 13: The pseudo-code for the algorithm in table 1.

20

	Introduction
	Related Works
	Three Types Of Image Data Representations
	Learning To Distill Teacher Behavior Into Symbolic Policy
	The Learning Objectives
	Symbolic Policy Search Space
	RoundTourMix: The Procedure To Distill The Symbolic Policy

	Experimental Settings And Results
	Conclusion
	Reproducibility Checklist
	Justification for Key Notes
	Details on the Search Space
	Motivations behind the Algorithmic Choices

	Details of optical flow based object detection
	Examples of distilled symbolic policy
	Examples of Retro-Env List That One-Frame Symbolic Distillation Can Work Well
	Other illustrations

