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Abstract—Thyroid eye disease (TED) detection presents diag-
nostic challenges due to its heterogenoous clinical presentation
and limited data availability across institutions. In this paper, we
propose FedTED, a privacy-preserving framework that integrates
Federated Learning and self-supervised pretraining to detect
TED from external facial images without sharing sensitive patient
data. Our method integrates masked autoencoders to capture rich
representations, followed by fine-tuning under a federated setting.
We evaluate FedTED across different training regimes and
show that federated MAE-based models outperform supervised
baselines, achieving highest performance - AUC up to 98.70% -
across validation folds. These results demonstrate the feasibility
and utility of combining federated learning with self-supervised
training for sensitive medical applications, particularly in settings
with limited data and privacy constraints. In clinical settings,
this translates to potential for deploying robust models in the
real world for early disease detection.

Index Terms—Federated Learning, Self-Supervised Training,
Thyroid Eye Disease

I. INTRODUCTION

Thyroid eye disease (TED), otherwise known as Graves
Ophthalmopathy or Graves Orbitopathy, is an autoimmune
disorder caused by the same antibodies as autoimmune thyroid
disorders. In TED, multiple different parts of a patient’s
immune system are inappropriately called to action, causing
inflammation, swelling, excess tissue, and scarring [1]. The
majority of patients with TED have hyperactive Graves’ dis-
ease of the thyroid, though it is also possible to have an
underproductive or even a normal thyroid level. Diagnosis of
TED is classically based on the marriage of clinical appearance
and labwork demonstrating the presence of thyroid antibodies
[2], though radiologic imaging can be helpful in confirming the
diagnosis and/or preparing for surgery. The clinical appearance
of TED can vary greatly between individuals, and may include
retraction, or extra stimulation, of the eyelids, known as a
‘thyroid stare;’ bulging of the eyes, known as exophthalmos
or proptosis; cross-eyed appearance, known as strabismus; and
swelling and/or redness of the skin and tissues around and
of the eye. TED can be graded as mild, moderate, or severe
in nature, and in severe TED patients are at risk of losing
vision due to compression of the optic nerve, which brings
visual data from the eye to the brain. TED typically stabilizes

over several years, by which time many patients may look
permanently different than their pre-TED state.

Unfortunately, surgery is an imperfect medium, and current
treatment and research is aimed at considering medical treat-
ments that may be started earlier in the disease process in order
to help permanently prevent some or, ideally, all of the changes
of TED. Currently, patients are referred to TED experts (typ-
ically oculofacial plastic and reconstructive surgeons) by en-
docrinologists, primary care physicians, and ophthalmologists
who note possible evidence of TED. However, this referral
pattern typically means patients have significant enough TED
to be obvious to the relatively untrained eye. Additionally,
while clinical trials currently aim to identify patients with
moderate TED – bad enough to be on a trial, but not so severe
so as to preclude immediate treatment with known agents – the
future of TED is one in which treatments will be gentle and
effective enough to start in the earliest, most mild cases so as
to preclude moderate and severe disease. Therefore, creating
an automated system to easily and quickly identify TED of all
severity types would be invaluable in both current and future
states of TED treatment.

AI, particularly deep learning, has shown promise in de-
tecting TED from orbital CT/MRI and external facial photos.
However, developing robust models requires large, diverse
datasets, especially for identifying subtle or early-stage dis-
ease. This is challenging because facial images are highly
sensitive and cannot be freely shared between institutions, and
because such images are not routinely collected from patients
without TED, limiting the pool of eligible control cases. Given
the relatively low prevalence of TED at a single institution [3],
[4], assembling a sufficiently large and representative dataset
is rarely feasible at one site alone. Federated learning offers an
ethical solution by enabling multi-institutional AI development
without requiring the transfer of facial images, thus improving
model diversity and generalizability.

We propose a federated learning framework that integrates
self-supervised pretraining, enabling collaboration across dif-
ferent institutions while preserving data privacy. This approach
increases the diversity of TED manifestations represented in
the training set, thereby improving the model robustness.
Additionally, self-supervised pretraining improves representa-



Fig. 1: a: FL preserves privacy by repeatedly aggregating models trained on clients’ data. Different colors indicate that data remains local,
with each site and the aggregator maintaining its own model copy: blue for Columbia, red for Stanford and green for the aggregated global
model. b: Preprocessing helps to standardize inputs. We first detect key points and then crop the periocular region. c: Self-supervised
pretraining helps to improve representations. Figure presents MAE; contrastive methods are also compared in our study. Patches of training
images are masked as a pretext task, enabling the encoder to learn meaningful features for reconstruction. Images shown are from [5].

tion quality, which is particularly important for fine-grained
classification.

Our contributions are as follows:

• We propose FedTED, the first framework that combines
federated learning with masked autoencoder pretraining
for Thyroid Eye Disease detection from external facial
images. This enables cross-institution collaboration with-
out sharing sensitive data.

• We conduct extensive experimentation across clinical
sites to show the utility of personalized vs. global fed-
erated learning and self-supervised (SSL) pretraining,
outperforming local and non-SSL-pretrained baselines in
classification performance.

• We systematically compare different widely adopted pre-
training strategies, including large-scale generic pretrain-
ing on an open-source facial dataset, to identify the most
effective training regimes to enhance TED detection.

II. RELATED WORK

A. Deep Learning for Ophthalmic Disease and TED Detection

Deep learning has shown success across different medical
disciplines. In ophthalmology, eye diseases are often diagnosed
from imaging modalities such as fundus photographs or optical
coherence tomography (OCT) scans. Babenko and colleagues
[6] built an Inception-v3 based model to predict diabetic
retinopathy (DR), diabetic macular edema, and poor blood
glucose control using a multitask training objective. There
have been an array of recent works using either orbital CTs
or external facial images to classify TED.

Lin and colleagues [7] used orbital CTs to predict no TED,
mild TED and severe TED with 1187 scans from 141 patients
over a 10 year period and achieved high test accuracies. Wu
and colleagues [8] also applied the Inception-v3 architecture
on 55 normal and 3 abnormal cases on CT images. Ha
and colleagues [9] applied VGG-16 to detect TED or orbital
myositis on orbital CT images, with 1628 single coronal slices
from 31 controls, 83 mild TED, 40 severe TED, and 51 orbital
myositis patients. Karlin and colleagues [10] used an ensemble
of models to achieve high TED prediction performance with
a dataset of 2248 facial images in total. Successful TED
detection in clinical settings requires data from multiple sites
to ensure generalizability, motivating our use of FL to help
integrate deep learning into the clinical workflow.

B. Federated Learning in Medicine

Federated learning (FL) is a decentralized approach that
enables training across multiple institutions while preserving
privacy. This is particularly valuable in medicine where data
privacy, security, and availability all pose significant challenges
to centralized training and thus generalizability of model
performance.

Dayan and colleagues [11] used data from 20 institutions
to train a FL model that predicted future oxygen requirements
of patients with COVID-19 using chest X-ray and electronic
health record (EHR) features. The global FL model was more
robust and achieved performance improvement at each site
compared to local training. Pan and colleagues [12] applied
personalized FL to EHR data to predict Alzheimer’s disease
progression, achieving an improvement in AUC compared to
local models.



Category Attribute TED CONTROL
Columbia (N=135) Stanford (N=100) Columbia (N=156) Stanford (N=100)

Sex
Female 111 (82%) 86 (86%) 123 (79%) 86 (86%)
Male 24 (18%) 14 (14%) 33 (21%) 14 (14%)

Race

American Indian or Alaska Native 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Asian 8 (6%) 40 (40%) 12 (8%) 32 (32%)
Black or African American 16 (12%) 2 (2%) 10 (6%) 0 (0%)
Native Hawaiian or Other Pacific Islander 0 (0%) 4 (4%) 0 (0%) 0 (0%)
White 59 (44%) 25 (25%) 88 (56%) 42 (42%)
Other 17 (13%) 24 (24%) 21 (13%) 17 (17%)
Declined 35 (26%) 5 (5%) 25 (16%) 9 (9%)

Ethnicity
Hispanic or latino/a 15 (11%) 16 (16%) 20 (13%) 12 (12%)
Not hispanic or latino 85 (63%) 78 (78%) 107 (69%) 79 (79%)
Declined 35 (26%) 6 (6%) 29 (19%) 9 (9%)

Conditions

Thyroid eye disease 135 (100%) 100 (100%) – –
Eyelid Lesion – – 56 (36%) 0 (0%)
Eyelid aging/malposition – – 70 (45%) 95 (95%)
Epiphora – – 40 (26%) 0 (0%)
Non-structural cosmetic issues – – 5 (3%) 5 (5%)
Other – – 11 (7%) 0 (0%)

TABLE I: Columbia/Stanford Data Demographics and Summary Statistics

In ophthalmology, Gholami and colleagues [13] [14]
demonstrated the effectiveness of integrating self-supervised
pretraining with domain-adaptation for federated learning of
ophthalmic diseases using OCT images. They showed that
applying this framework led to a significant increase in model
performance compared to local models.

Given the sensitivity of facial images and the limited data
availability, FL offers a compelling solution for collaboratively
developing robust models while preserving patient privacy.

III. METHODOLOGY

Our framework consists of a server orchestrating federated
training with 2 clients for 10 rounds. Each round includes
local training for 10 epochs for each client, respectively.
Personalized FL occurs after global training, where the global
model is finetuned on local data for 10 epochs. Local training
involves either self-supervised pretraining or finetuning, and
image preprocessing is applied before all model training.
Figure 1 illustrates our pipeline.

A. Data

Data: Table I presents summary statistics of datasets across
different sites. Notably, the demographic distributions and
conditions for controls vary between the two institutions
in this federated collaboration: Columbia and Stanford. The
Stanford dataset contains a higher proportion of eyelid ag-
ing/malposition, while the Columbia dataset includes more
eyelid lesions and epiphora. Stanford also contains a much
higher percentage of Asians compared to Columbia.

Preprocesing: To standardize inputs to our model, we crop
images around the periocular region by first detecting corners
of the eye and cropping the surrounding area with MediaPipe
[15]. This preprocessing is applied to all data from all sites,
including the external FFHQ dataset used for pretraining.

Pretraining Data: In addition to pretraining on patient data,
we also consider pretraining on a large dataset of facial images
to further improve representations. Flickr-Faces-HQ (FFHQ)
[5] is a high quality dataset of human faces, originally curated

for training generative adversarial networks. It contains 70,000
facial images of people across different age and ethnicity
groups as well as from different backgrounds. The aligned
and cropped images were used to pretrain our model, using
the same preprocessing pipeline described in Figure 1. For the
minority of images for which MediaPipe failed to detect key
points of the eye, we manually cropped the images.

B. Models

1) Image Encoders: We focus on ResNet-18 [16] and ViT-
Base (ViT-B) [17] model backbones, and for all pretained
ViTs, we utilize Masked Autoencoder (MAE)-pretrained ViTs.
Empirically, we find that ResNet-50 can degrade performance
due to overfitting on our relatively small local training datasets;
therefore, ResNet-50 is excluded from our experiments. En-
semble of ResNet-18 [10] is also evaluated to compare with
non-ensemble architecture for examining if variance reduction
techniques could yield consistent performance gain.

2) Self-Supervised Pretraining: To improve learned rep-
resentations and robustness of our model, we first pretrain
our image encoders with self-supervision. We evaluate two
different self-supervision techniques, MAE and SimCLR, to
understand how different pretraining methods affect detecting
TED. These methods represent different paradigms: MAE
focuses on reconstruction which allows the model to capture
global context from incomplete data, while contrastive objec-
tives force the model to learn invariant representations.

Masked Autoencoder: Masked autoencoders (MAE) use
vision transformers (ViT) as their backbone, and their pretext
task is to predict masked-out patches’ pixel values. A typical
MAE consists of an asymmetrical transformer encoder, a
ViT, and a transformer decoder. During pretraining, 75% of
the patches are masked out, and only the unmasked patches
are passed through the encoder. The encoded patches are
then combined with masked tokens and decoded through the
decoder. MAEs are trained with mean square error objective.

SimCLR: SimCLR is a contrastive self-supervision frame-
work, where each image is passed through a set of augmen-



Method FFHQ Columbia Acc Precision Recall/Sensitivity Specificity F1-Score
Direct Finetuning* - - 75.86%± 12.90 71.92%± 12.74 78.41%± 17.42 73.71%± 12.51 74.66%± 14.44
Direct Finetuning† - - 78.23%± 10.16 76.01%± 11.44 78.96%± 11.46 77.46%± 12.75 77.14%± 12.32
Ensemble [10] - - 76.55%± 11.81 76.10%± 14.61 74.56%± 13.25 78.13%± 18.26 74.76%± 12.36
MAE - ✓ 77.19%± 9.590 76.08%± 12.89 72.49%± 18.44 82.97%± 8.720 76.08%± 12.89
MAE ✓ ✓ 78.16%± 8.260 79.48%± 7.210 83.74%± 7.65 72.58%± 18.52 77.22%± 9.710
SimCLR - ✓ 76.55%± 10.23 75.04%± 12.60 79.12%± 12.32 74.21%± 20.16 76.05%± 9.24
SimCLR ✓ ✓ 77.24%± 9.37 74.51%± 11.29 81.92%± 11.75 72.96%± 18.56 77.09%± 8.15

(a) Columbia: Local Performance on Columbia Dataset

Method FFHQ Stanford Acc Precision Recall/Sensitivity Specificity F1-Score
Direct Finetuning* - - 89.50%± 13.48 90.01%± 12.95 88.00%± 16.61 91.00%± 10.44 93.71%± 13.50
Direct Finetuning† - - 90.00%± 6.82 90.33%± 7.83 90.00%± 7.75 90.00%± 8.94 90.06%± 6.89
Ensemble [10] - - 95.91%± 5.14 93.45%± 8.61 99.00%± 3.0 92.00%± 10.77 96.25%± 4.58
MAE - ✓ 93.00%± 8.12 94.14%± 8.13 92.00%± 9.80 94.00%± 9.17 92.85%± 8.31
MAE ✓ ✓ 93.33%± 9.65 93.48%± 10.09 93.33%± 9.43 93.33%± 10.27 93.37%± 9.59
SimCLR - ✓ 88.00%± 8.12 89.69%± 7.90 86.00± 11.14 90.00%± 7.75 87.55%± 8.58
SimCLR ✓ ✓ 91.00%± 8.89 93.14%± 9.75 89.00%± 10.44 93.00%± 10.05 90.76%± 8.96

(b) Stanford: Local Performance on Stanford Dataset

TABLE II: Performance comparison of training methods on Columbia and Stanford datasets. ∗ denotes ResNet-18 as backbone, and †
denotes MAE pretrained ViT-B as backbone.

tations, creating two views of the same image, xi and xj .
The objective is to maximize the agreement of the latent
representation, zi = f(xi) and zj = f(xj), since both
zi and zj stem from the same image, while maximizing
disagreement with latent representation of other samples in
the batch. SimCLR relies heavily on augmentation, since it
increases the diversity of different possible views to allow the
encoders to learn similarities between two images. SimCLR
minimizes the objective L = E[l(i, j) + l(j, i)], where:

l(i, j) = − log
exp(zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)
(1)

A(i) is the set of all latent embeddings except xi, and τ is
the temperature.

3) Federated Learning: Federated learning enables dis-
tributed privacy-preserving training; both self-supervised pre-
training and supervised finetuning are trained in a federated
manner. We adopt Federated Averaging [18] as our main
federated algorithm. During pretraining, the server shares all
meta-data including learning rate, epoch, model architecture,
and batch size. Each client then trains for a set number of
epochs and shares its weights with the server. The server then
averages the weights and sends back the updated global model
weights to the local clients.

We also consider the personalized FL approach, similar
to that used by Pan and colleagues [12], to address the
heterogeneity of the data distribution across the two different
sites, whereby we finetune the global model to enhance local
adaptation.

4) Model Training: We applied different data augmenta-
tions and regularization techniques to avoid overfitting.

Data: Images are resized to 512 × 512 for ResNet-18,
and 224 × 224 for ViT. We found that ResNet does not
converge with smaller input-image size; hence, a higher res-
olution is adapted to ensure stable training and convergence.
Augmentations include random resize crop, rotation, flip and
RandAugment [19] applied randomly.

Method FFHQ Columbia AUC
Direct Finetuning∗ - - 83.38%± 11.87
Direct Finetuning† - - 86.54%± 8.60
Ensemble [10] - - 83.70%± 9.68‡‡

MAE - ✓ 88.35%± 5.37
MAE ✓ ✓ 82.80%± 8.16
SimCLR - ✓ 82.33%± 6.78‡‡

SimCLR ✓ ✓ 86.30%± 6.78

Method FFHQ Stanford AUC
Direct Finetuning∗ - - 93.30%± 11.83‡‡

Direct Finetuning† - - 96.70%± 3.49‡‡

Ensemble [10] - - 99.70%± 0.46
MAE - ✓ 97.10%± 3.88
MAE ✓ ✓ 97.17%± 4.63
SimCLR - ✓ 94.80%± 5.06‡‡

SimCLR ✓ ✓ 95.80%± 4.53‡‡

TABLE III: Area-under-the-curve (AUC) results on Columbia (top)
and Stanford (bottom) datasets. ∗ResNet-18 backbone, †ViT-B back-
bone. ‡‡Statistically significant increase for Personalized FL MAE.
See Table IV.

Optimization: We use AdamW [20] optimizer with weight
decay of 1e−5 for both pretrainined and supervised finetuning.
For self-supervised pretraining, we use learning rate of 2e−5
with 5 warm-up epochs with 1e − 2 rate. We pretrain for 30
epochs on FFHQ, 50 epochs on local datasets, and 50 epochs
for supervised finetuning. We employ a cosine annealing
scheduler with 1e − 5 minimum rate. We use early stopping
with validation loss to prevent overfitting.

To avoid client drift during FL training, each round would
only consist of 10 epochs, and 10 FL rounds are performed.

IV. RESULTS

In this section, we show that our framework enables ef-
fective detection of TED by leveraging FL. We divide our
experiments into two stages: local and FL training.

Local non-FL experiments confirm MAE consistently out-
performs direct finetuning with highest AUC of 88.35% on
Columbia data and AUC of 97.10% on Stanford data, as well
as lowest variance on both datasets (excluding the ResNet



Method / Test Set Acc Precision Recall Specificity F1-Score AUC
Direct Finetuning∗

Global
Columbia 74.83%± 8.31 73.17%± 7.80 71.59%± 17.38 77.46%± 7.63 71.57%± 11.55 82.76%± 9.82‡‡

Stanford 74.50%± 11.50 69.33%± 13.88 97.00%± 4.58 52.00%± 24.41 79.98%± 8.15 95.30%± 5.50‡‡

Personalized
Columbia 76.55%± 10.99 74.55%± 11.35 73.68%± 21.18 78.75%± 9.64 73.13%± 14.94 85.05%± 10.18‡‡

Stanford 92.50%± 7.50 92.64%± 10.49 93.00%± 7.81 92.00%± 14.00 92.88%± 6.72 96.80%± 3.82 ‡‡‡

Direct Finetuning†
Global

Columbia 76.55%± 4.57 72.44%± 5.12 80.50%± 14.54 72.83%± 8.89 75.50%± 7.73 84.62%± 6.77‡‡

Stanford 79.50%± 11.06 74.57%± 11.92 95.00%± 8.06 65.00%± 20.13 82.59%± 8.53 95.50%± 5.02‡‡

Personalized
Columbia 82.41%± 4.57 80.80%± 6.78 82.53%± 6.62 82.62%± 7.11 81.30%± 5.21 88.56%± 5.77 ‡

Stanford 93.00%± 6.78 93.65%± 8.40 93.00%± 7.81 93.00%± 10.05 93.06%± 6.68 97.50%± 3.00 ‡

MAE
Global

Columbia 78.62%± 7.20 81.81%± 11.55 71.65%± 14.06 75.15%± 9.08 84.67%± 10.98 85.47%± 9.06
Stanford 85.50%± 7.57 82.13%± 11.94 95.00%± 9.22 76.00%± 18.00 87.06%± 6.17 97.30%± 3.20

Personalized
Columbia 81.72%± 9.39 82.51%± 13.82 79.84%± 13.33 83.50%± 14.67 79.99%± 10.92 89.26%± 6.99
Stanford 94.50%± 5.22 95.42%± 5.92 94.00%± 9.17 95.00%± 6.71 94.32%± 5.68 98.70%± 3.26 ‡

TABLE IV: Federated training performance across different methods and backbones. We present global federated model as well as
personalized model. Personalized models are finetuned on local data and then tested on the datasets shown. ∗ denotes ResNet-18, † denotes
ViT, and ‡ denotes statistically significant increase in AUC compared to the global counterpart using DeLong’s test, where p < 0.05.
‡‡denotes statistically significant increase for Personalized FL MAE at corresponding site.

ensemble). Although the ensemble model offers improvement
for Stanford data, we focus on single-model improvements to
isolate the benefit of FL and pretraining.

We show that personalized FL MAE achieves AUC of
89.26% vs. 88.35% via local MAE for Columbia and 98.70%
vs. 97.10% for Stanford, as shown in Table IV and Figure 2.

We test our model with collaborative cross-validation, in-
spired by [21], through which each institution’s data is split
into k-folds, and fold i from both sites are paired for valida-
tion. All results we present are 10-fold cross-validated.

A. Local Site Training Performance

Table III reports area under the curve (AUC), and table II
presents accuracy, precision, recall/sensitivity, specificity, and
F1 score for local site performance.

1) Direct Finetuning: Using ImageNet-pretrained ResNet-
18 and ViT backbones, ViT consistently outperforms ResNet-
18 across both sites. On Columbia data, ViT achieves 78.23%
accuracy, 86.54% AUC (3.16% improvement over ResNet-18
AUC), improved precision, recall, specificity, and F-1 score.
Local performance on Stanford’s dataset also shows similar
trends, with higher AUC and reduced variance, 96.70% (σ =
3.49), for ViT compared to ResNet-18’s AUC of 93.30% (σ =
11.83).

These results suggest that ViT, benefiting from its
transformer-based architecture, model size, and strength of
MAE pretext tasks, may be better suited at capturing subtle
visual features relevant to TED detection from external facial
images even with smaller input images. Furthermore, although
an ensemble of 5 ResNet-18 models attains the highest Stan-
ford AUC, its Columbia performance matches that of a single
ResNet-18; we therefore don’t consider ensemble models for
our FL runs.

2) Self-Supervised Pretraining Improves Performance: We
compare different pretraining methods and varying amounts
of pretraining data. For both MAE and SimCLR, we evaluate
two strategies: (1) pretraining first with FFHQ followed by
local site dataset, and (2) pretraining on local site dataset
alone. The goal is to assess whether pretraining on a large,
diverse facial-images dataset improves our model’s ability to
learn subtle differences for the downstream TED detection
task. SimCLR uses ResNet-18 as backbone, while MAE uses
ViT-B as backbone.

MAE-pretrained ViT offers slightly better results, with
higher precision achieved by both MAE-pretrained models
compared to SimCLR-pretrained models at both sites. Notably,
MAE pretraining on both Columbia’s and Stanford’s dataset
exhibits the highest AUC and lowest standard deviation (after
the ResNet18 ensemble for Stanford). MAE pretraining on
FFHQ followed by pretraining (for Columbia only), on the
other hand, does not yield meaningful improvement, and
this is most likely due to our use of an ImageNet MAE-
pretrained ViT. This suggests ImageNet potentially provides
sufficient pre-training in spite of not being a tailored facial-
image dataset. Interestingly, recall and specificity are flipped
between MAE pretraining with Columbia data only vs. MAE
pretraining with FFHQ pretraining followed by Columbia pre-
training. This is potentially due to non-converging validation
folds and the inherent randomness in each validation run.
In these cases, models may predict near-random probabilities
with a slight class bias. Therefore, recall and specificity across
all methods tend to show similar mean and standard deviation
or skew towards one class. This behavior is not seen on
the Stanford dataset, as all Stanford methods achieve very
high performance compared to their Columbia counterparts,
suggesting Stanford’s dataset has patterns that our models are



able to distinguish more easily overall.

B. Federated Training Performance

We compare federated training with and without self-
supervised pretraining. We found that personalized FL is
paramount to achieving good performance due to data avail-
ability and distribution shift. Our main comparison for FL is
between models with FL, shown in Table IV, and without
FL, shown in Tables IIa and IIb along with AUCs in Tables
III. We show that all FL models achieve comparable or better
performance than local models.

1) Direct Finetuning: Personalized FL ResNet-18 achieves
higher AUC of 85.05% on Columbia’s dataset (compared
to local AUC shown in Table III); it also achieves higher
AUC of 96.80% compared to the local AUC on Stanford’s
dataset (shown in Table III). Direct finetuning alone shows
promising results, with personalized FL ViT showing im-
provement compared to local models on both Columbia and
Stanford datasets. For Columbia, personalized FL ViT shows
an improvement across all metrics with accuracy of 82.41%
compared to 78.23% without FL training (Table IIa), and it
does not suffer from validation instability, as seen by reduced
variance in recall and specificity. On Stanford’s dataset, we
also see a small improvement for the personalized FL ViT
over its non-FL model (Table IV).

2) MAE: MAE pretraining helps improve personalized
model performance on both client sites. On Columbia data,
there is a slight improvement in accuracy and AUC of 89.26%
compared to 88.35% on local data only. On Stanford’s data, FL
MAE-pretraining exhibits an improvement across all metrics
compared to other personalized models and all local models,
excluding the ensemble model, achieving single network AUC
of 98.70%. Pairwise DeLong’s tests show that Personalized FL
MAE models have higher AUC (p < 0.05) than 5/12 and 8/12
models for Columbia and Stanford, respectively, including
local and FL models. This indicates that FL and specifically
MAE-pretraining do improve overall model performance.

C. Limitations

1) Limited Institutional Diversity: Our federated frame-
work is evaluated on two institutions, which might not capture
all exogenous TED variations, including age and ethnic dis-
tribution shifts. This also limits the amount of training data
available, therefore hindering model performance. However,
we expect model performance to improve using our proposed
framework with the addition of more sites, and future work
will scale up the number of participating institutions to capture
the spectrum of TED across broader populations.

2) Validation Instability in Limited-Data Regimes for Local
Sites: Despite improved robustness through self-supervised
training, we observed high variance in model performance
across validation folds in some settings, particularly in folds
where training data did not align well with the validation set
distribution. We qualitatively examined these folds containing
a disproportionately higher number of mild TED cases. Such
cases exhibit subtle features, making them challenging to

detect. This challenge can be mitigated by expanding the local
datasets at each site and increasing the number of sites to
improve representation of mild cases. Future work toward
domain adaptation between local sites could address this by
applying domain adaptation techniques, as shown in [13].

V. DISCUSSION

A. Role of Pretraining, Importance of FL, Feature Analysis

In Section IV-A, we presented that MAE-pretrained ViT
on both datasets has the highest cross-validated AUC among
the different models for local training. We also found that
additional facial-image pretraining exhibited comparable per-
formance to ImageNet pretraining alone. At the same time,
the performance gain from SSL-pretraining was marginal;
performance across methods and backbones saturates for local
models, regardless of SSL-pretraining. We hypothesize that
this is due to the heterogeneity of TED manifestations and
the lack of representation of these variations at a given
local site. Across different cross-validation folds and across
methods, there are folds where test loss does not converge
due to differences between training and testing sets, further
emphasizing the need for federated training. We conducted
analysis of facial features used by our models by examining
attention maps of MAE-pretrained ViT and found that the
model frequently focused on the palpebral fissure height (the
vertical distance between the upper and lower eyelid margins
when the eyes are open) as well as the eyebrow region. These
areas are clinically meaningful and consistent with existing
literature.

B. Importance of Personalization in FL for TED

Our experiments showed that personalization in FL is im-
portant, especially when the data distribution between two sites
is drastically different. This approach combined the benefits
from both collaborative training and specializing to local data
distributions. We performed Delong’s test to compare AUCs
and found that personalized FL ViT on both sites, FL MAE
on Stanford data, and FL ResNet-18 on Stanford data, all
exhibited statistically significant performance improvement
(p < 0.05) compared to global FL models.

Collaborative training for TED, especially with heteroge-
neous data distributions, requires personalization to achieve
the best results.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we developed and evaluated a framework
for federated learning of deep learning based detection of
thyroid eye disease. We integrated self-supervised learning into
model training to improve model representations. We found
that MAE pretraining outperforms SimCLR pretraining and
that additional self-supervised pretraining on a large facial-
image dataset was not needed to achieve maximal perfor-
mance on datasets at local sites. While these findings stream-
line local training pipelines, they also emphasize the need
for cross-institution collaboration to develop high-performing
deep learning models for TED detection. The future vision



Fig. 2: Receiver operating characteristic (ROC), on Columbia (left) and Stanford (right), trained locally and via FL.

for our study is to ultimately deploy our TED models on
smartphones, enabling federated training using images cap-
tured from distributed smartphone cameras to expedite early
TED detection. To further validate the clinical impact of
our workflow, a third institution will be added as a held-
out validation set; we are also expanding the number of data
samples for training at each site for future iterations of our
algorithm. We anticipate our MAE approach will exhibit the
best generalizability due to MAE pretraining. Different FL
algorithms such as SCAFFOLD [22] can also be implemented
in future work to address differences in data distributions
across sites, potentially adding communication overhead to the
FL process while improving performance. Lastly, our study
lays the groundwork for future cross-institutional collabora-
tion through FL using sensitive medical data, incorporating
multimodal information such as patient history, genetic data,
and other imaging modalities, moving towards personalized
medicine.
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