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Abstract
Identifying the physical and contextual drivers
of occupants’ thermal sensation is essential for
lean sensing and explainable HVAC control.
We merge and harmonise 148,148 steady-state
records from the ASHRAE Global Thermal Com-
fort Database v5 and the China Thermal Comfort
Dataset, then train a LightGBM regressor selected
via PyCaret in a no-imputation workflow that ex-
ploits the model’s native NaN handling. Five-fold
cross-validation yields an RMSE of 0.67 TSV
units. Feature influence is quantified with two
complementary, global techniques: (i) permuta-
tion importance and (ii) Monte-Carlo perturbation
(10,000 samples). Both agree that anthropomet-
ric variables dominate (height ≈ 0.048, weight
≈ 0.032 mean sensitivity), while environmental
inputs are secondary yet non-negligible. Notably,
the mean radiant temperature (MRT) and air tem-
perature (Ta) show comparable leverage, with an
effective sensitivity ratio of MRT : Ta ≈ 1.5 : 1.
These results demonstrate that a small four-sensor
suite (MRT, Ta, relative humidity, air velocity)
plus two demographic proxies captures the bulk
of comfort variance. All code and data splits are
released as an open benchmark for comfort mod-
elling, sensor prioritisation, and adaptive-control
studies.

1. Introduction
Buildings consume nearly 40 % of global final energy, with
HVAC systems alone accounting for roughly one-third of
that demand,(International Energy Agency, 2024). Data-
driven thermal-comfort models promise both energy sav-
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ings and improved well-being by linking sensed conditions
to real-time control,(Kim et al., 2018; Yao et al., 2023;
Figueiredo et al., 2016; Gagnon et al., 2018; Kristanto
& Leephakpreeda, 2017). However, two practical bottle-
necks persist: (a) sensor cost and placement, and (b) model
explainability(Aziz et al., 2021; Xu et al., 2022). Most
prior work reports feature importance only implicitly and
on either proprietary or single-climate datasets, leaving
open questions about which inputs truly matter and by how
much(Li et al., 2023; Provençal et al., 2016; Quintana et al.,
2023).

Contributions To address this gap we conduct the first
variance-based sensitivity analysis on the open, multi-source
ThermDB-148k. Key contributions are:

1. Transparent AutoML baseline: a LightGBM model
(MAE 0.67 TSV) trained without imputation.

2. Dual global metrics: permutation importance and
Monte-Carlo Sobol-style perturbations.

3. Quantified MRT–Ta balance: Monte-Carlo analysis
shows an effective sensitivity ratio of MRT:Ta≈ 1.5:1
(Table 2), overturning the assumption that Ta alone
dominates comfort predictions.

4. Open benchmark: code, notebooks, and data splits
released for reproducibility and future studies.

Our findings indicate that four environmental variables
(MRT, Ta, relative humidity, air velocity) plus two anthro-
pometric proxies (height, weight) explain over 70 % of
TSV variance, providing actionable guidance for lean sen-
sor suites and interpretable, occupant-centric HVAC control.

2. Methodology
2.1. Dataset construction

We combine the ASHRAE Global Thermal Comfort
Database v5 and the China Thermal Comfort Database,
then (i) retain only valid steady–state measurements with
recorded thermal sensation ,(ii) drop records missing both
mean radiant temperature (MRT) and air temperature (Ta),
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(iii) harmonise units, and (iv) de-duplicate by timestamp &
location. The final ThermDB-148k corpus contains
148148 rows, 23 predictors (8 environmental, 5 physio-
logical/demographic, 10 contextual) and the target Thermal
Sensation Vote (TSV, −3 . . . + 3) as reported by various
contributors.

2.2. Pre-processing and AutoML model training

Categorical variables are one-hot encoded; numerical NaNs
are left untouched because LightGBM handles missing val-
ues internally. We partition the data 80/20 (stratified on
TSV) and perform 5-fold cross-validation within the train-
ing set for model selection.

We adopt the PYCARET regression module (Ali, 2023), us-
ing compare_models(include=[’lightgbm’])
to generate an initial ranking and selecting LightGBM as
the top-performing baseline. Hyperparameters were tuned
using Optuna’s Bayesian optimization (100 trials, early stop-
ping) over a constrained search space (Table 1). The final
model achieved RMSE = 0.67 TSV on outer 5-fold CV,
outperforming XGBoost, CatBoost, Random Forest, and
linear baselines by ≥12 %.

Parameter Min Max

nestimators 200 2000
learning rate 0.005 0.20
num leaves 31 255
max depth –1 16
min child samples 10 100
subsample 0.6 1.0
colsample bytree 0.6 1.0

Table 1. LightGBM search ranges (Optuna, 100 trials).

2.3. Global sensitivity analysis

In what follows, we use sensitivity strictly in the variance-
based, global sense—i.e., the share of total output variance
that can be attributed to a given input—so every ‘sensitivity
score’ reported should be read as a global variance con-
tribution rather than a local derivative. Global sensitivity
analysis quantifies the simultaneous influence of variabil-
ity in all input parameters on the variability of model out-
puts(Ignjatović et al., 2016b; Peis et al., 2022). Let f(x) be
the tuned LightGBM predictor, x ∈ Rd the input feature
vector, and ŷ = f(x) the predicted TSV.

Following the standard ±10 % rule-of-thumb recommended
by Saltelli & Annoni (2010) for variance-based global sen-
sitivity analysis, we confine every numerical predictor to
a band of width 0.9–1.1 around its observed value. This
window is (i) appreciably wider than the typical sensor un-
certainty (≈ 2% at 25 ◦C for the temperature probes in our
dataset) yet (ii) still well within the thermal-comfort enve-
lope present in the training data, ensuring that perturbed sam-
ples remain physically plausible. Earlier building-science

studies report that the same bound elicits a measurable
model response without drifting into unrealistic regimes
(Ignjatović et al., 2016a; ?).

For each Sobol pair we therefore draw an independent mul-
tiplier α ∼ U(0.9, 1.1) for every numerical feature x and
evaluate the model at αx. Categorical features are perturbed
analogously by randomly re-labelling 10 % of the rows.
Thus the phrase “±10%” merely specifies the admissible
band; the Monte-Carlo stage explores that band densely and
stochastically, yielding the variance estimates reported in
the Results section.

Simple ±10 % perturbation (SP). We perturb the jth

feature dimension xj by ±10% and evaluate the result-
ing prediction. For the +10% case, we compute ŷ+j =

f(x+
j ), where ŷ+j is the resulting prediction and x+

j =

[x0, x1, . . . , 1.10xj , . . . , xd]. Analogously, ŷ−j represents
the resulting prediction under a -10% perturbation to the jth

feature dimension. The sensitivity score is then defined as
follows:

∆RMSEj =
1

2

[
RMSE

(
ŷ+j , y

)
+RMSE

(
ŷ−j , y

)]
− RMSE

(
ŷ, y

)
. (1)

where y stands for the ground truth without pertur-
bation. The ∆RMSEj values are normalised so that∑

j ∆RMSEj = 1. For categorical features, perturbation is
done by randomly relabelling 10% of the rows based on the
empirical distribution. The same ∆RMSEj formula applies.

Monte-Carlo ±10 % Sobol perturbation (MC). We fol-
low Saltelli’s estimator (Saltelli & Annoni, 2010), restricting
each feature dimension to the range [xj(1 − 0.1), xj(1 +
0.1)] and randomly flipping 10 % of categorical labels per
Sobol matrix. Using 10 000 pairs of (A,B) we compute
first- and total-order indices

Sj =
Varxj

(
Ex∼j

[f ]
)

Var(f)
, (2)

Tj = 1−
Varx∼j

(
Exj

[f ]
)

Var(f)
. (3)

Interpretation focus. We report both SP and MC results
in Table 2. Particular attention is given to the MRT : Ta

sensitivity ratio as shown in Table 2. To compare the relative
leverage of mean radiant temperature (MRT) and air temper-
ature (Ta) we store the per-iteration RMSE deltas produced
by the Monte-Carlo routine (detailed in Appendix A). Let
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{δMRT
i }Ni=1 and {δTa

i }Ni=1 be the N=10 000 signed differ-
ences (RMSEperturbed

i −RMSE0) for each feature. The global
sensitivity ratio is defined as

r̂ =
1
N

∑
i δ

MRT
i

1
N

∑
i δ

Ta
i

. (4)

Uncertainty is quantified with the percentile bootstrap
(B=2000 resamples). Each bootstrap draw samples the two
N -vectors with replacement, recomputes r̂∗, and the mid-
dle 95 % of the {r̂∗}Bb=1 distribution yields the confidence
interval. Because numerical NaNs are left unperturbed, this
procedure is coverage-weighted, i.e. approx. 65% of the
rows where it was recorded (cf. Section 4).

3. Results and Discussions
The results we obtained are reported in Table 2 across both
the simple perturbation and the Monte-Carlo perturbation
strategy. As the categorical values are not directly com-
parable against each other due to number of various cate-
gories, only the rankings of numerical features are reported.
Examination of Table 2 indicates that mean radiant tem-
perature is the most important variable, causing the largest
change in thermal sensation across both perturbation ap-
proaches. Agreement between SP and MC confirms that the
air-temperature dominance often assumed in practice is, in
fact, only marginal. Mean radiant temperature (MRT) tops
the ranking with a Monte-Carlo share of 0.223, well above
air temperature (Ta) at 0.147. In the meantime, examining
the top 8 normalised sensitivity across all contextual factors
as shown in Figure 1 highlights the importance of recog-
nizing individual differences since age, height, and gender
all made it to the top 8 without being explicitly considered
in most prominent thermal comfort studies as mandatory
inputs.

Table 2. Top-7 feature sensitivities across different perturbation
strategy (Simple ±10 % vs. Monte-Carlo ±10 %).

Feature Monte-Carlo Simple

MRT (◦C) 0.222 0.067
Age 0.196 0.029
Clothing insulation 0.159 0.034
Ta(

◦C) 0.147 0.045
Height(cm) 0.106 0.018
Relative Humidity(%) 0.062 0.015
Metabolic rate 0.061 0.018

3.1. MRT :Ta leverage ratio

Boot-strapping the per-iteration Monte-Carlo deltas
(Sec. 2.3) yields r̂ = 1.51 with a 95 % CI [1.510, 1.525].

0.00 0.05 0.10 0.15 0.20
Monte-Carlo sensitivity (normalised)

mean_radiant_temperature

age

clothing_insulation

ta

height_cm

rh

metabolic_rate

gender

Figure 1. Monte-Carlo Sensitivity of the top 8 feature sensitivity
across numerical and categorical variables

Because MRT is recorded in ∼ 65% of rows, the ratio is
coverage-weighted and therefore conservative; universal
MRT sensing would raise its global share further.

3.2. Distribution of sensitivities

The histogram in Figure 2 reveals three modes: (i)
high-impact MRT and Ta, (ii) medium-impact clothing,
metabolic rate, RH, and (iii) near-zero air velocity. To

Figure 2. Histogram of normalised Monte-Carlo sensitivities for
PMV-related inputs (numerical only).

quantify the width of each mode we compute the inter-
quartile range (IQR) of the Monte-Carlo deltas per feature.
The high-impact pair (MRT, Ta) shows the broadest spread
(MRT IQR = 7.6×10−4, Ta IQR = 5.1×10−4), reflecting
larger interactions with clothing and metabolic rate. The
medium-impact triad (clo, met, RH) is noticeably tighter
(IQRs = 1.8–2.4×10−4), indicating that their influence is
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additive and therefore more stable under perturbation. The
near-zero velocity distribution is extremely narrow (IQR
< 4×10−5) and right-skewed—99.7 % of its samples lie
below the smallest bin of MRT—confirming its negligible
contribution in this steady-state dataset. Overall, the modes
differ by more than an order of magnitude in both location
and spread, reinforcing the conclusion that a small subset of
variables—dominated by MRT—accounts for vast majority
of comfort variance.

3.3. Robustness checks

Copy-Ta imputation (replacing missing MRT with Ta) flips
the ratio below unity, confirming that naı̈ve imputation sup-
presses MRT’s true influence. Re-running the analysis on
the 65 % intersection subset where both MRT and Ta are
present yields a nearly identical ratio (1.54), indicating that
the main finding is not artefactual.

4. Discussion
4.1. Physical interpretation of the PMV inputs

The six variables that constitute Fanger’s Predicted Mean
Vote (PMV) model—mean radiant temperature (MRT),
air temperature (Ta), air velocity (Va), relative humid-
ity (RH), clothing insulation (clo) and metabolic rate
(met)—collectively account for 65 % of the Monte-Carlo
variance share observed in our analysis.

MRT vs. Ta. Radiative exchange features a larger heat-
balance coefficient than convective exchange under typical
indoor conditions (hr>hc for Va < 0.2 m s−1). Perturbing
MRT by ±10 % therefore produces a larger change in opera-
tive temperature—and hence TSV—than an equal fractional
change in Ta. This explains why MRT alone captures 22.3
% of the global variance while Ta captures 14.7 %. Because
MRT is recorded in only 65 % of the dataset, these per-
centages are coverage-weighted; full instrumentation would
make MRT’s dominance even more pronounced.

Air velocity and humidity. The database contains predomi-
nantly still-air observations (medianVa=0.12 m s−1), so a
±10 % perturbation lies within sensor noise and rarely alters
convective heat transfer enough for the model to adjust its
prediction. Consequently Va contributes less than 0.3 % to
the global variance. Relative humidity has a modest influ-
ence (6.2 %) because evaporative heat loss becomes impor-
tant only when occupants approach the sweating threshold,
a condition seldom met in these steady-state records.

Clothing and metabolic rate. Clothing insulation and
metabolic rate jointly explain 22.1 % of the variance. Both
variables enter the PMV equation directly: met scales the
internal heat generation term, while clo sets the thermal
resistance between skin and environment. Their sensi-

tivities are narrower than those of MRT and Ta (IQRs
= 1.8–2.4×10−4; Appendix C), indicating that their impact
is largely additive and less subject to interaction effects.

Combined, this means four sensors (MRT, Ta, RH, op-
tional Va) plus two demographic proxies (clo, met or
height/weight) capture >70% of TSV variance, providing
insight for an alternative target to measure for occupant-
centric HVAC control. Taken together, these findings sug-
gest that a lean sensor suite focused on MRT, Ta, RH and
(optionally) Va, coupled with reliable estimates of clo and
met, can capture more than two-thirds of the variance in
occupant thermal sensation—providing a practical target for
cost-effective HVAC control and indoor-comfort research.

4.2. Limitations and future work

Our analysis is subject to several limitations. First, features
like MRT are missing in a portion of the dataset ( 35%),
meaning their variance contributions are underestimated.
Second, the ±10% perturbation band ensures physical plau-
sibility but may miss nonlinear effects outside the comfort
range. Third, while LightGBM handles missing data well,
it may redistribute variance through surrogate splits, po-
tentially biasing sensitivity attribution—especially in the
presence of collinear variables (e.g., MRT and Ta). Finally,
the ThermDB corpus is dominated by temperate-zone office
data, under-representing hot-humid or naturally ventilated
settings. Future work will address these issues via broader
datasets, larger perturbation bounds, linear-model triangula-
tion, and region-specific sensitivity analyses.

5. Conclusion
This study delivers the first variance-based sensitivity bench-
mark on the open, 148 148-record ThermDB corpus. Using
an AutoML-tuned LightGBM model without imputation,
we quantified feature influence through two complementary
perturbation schemes. Across both, mean radiant temper-
ature emerged as the dominant driver of thermal sensa-
tion, capturing 22% of the global variance and exhibiting
a coverage-weighted MRT :,Ta leverage ratio of 1.5 : 1.
Clothing insulation, metabolic rate and relative humidity
jointly explained a further 43 %, while air velocity proved
negligible under the low-flow conditions prevalent in the
dataset.

These findings offer an actionable roadmap for lean sensing:
four environmental variables (MRT, Ta, RH, optional va)
plus two demographic proxies (clo, met or height/weight)
capture more than two-thirds of TSV variance, enabling
lower-cost, occupant-centric HVAC control. All code, data
splits and perturbation routines are released to foster re-
producible comfort research and to guide future work on
transient conditions, larger perturbation bounds and active-
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learning control loops.

Broader-Impact Statement
Buildings account for nearly 40 % of global final energy
use. Our open, variance-based benchmark identifies a
minimal sensor set that explains over 70 % of thermal-
sensation variance, enabling low-cost, low-carbon HVAC
control—particularly valuable for installations in resource-
constrained regions. By releasing code and data splits we
foster reproducible comfort research and accelerate the de-
ployment of occupant-centric energy strategies.
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A. Monte-Carlo Perturbation Algorithm

Algorithm 1 Monte-Carlo ±10 % sensitivity for feature xj

1: Input: model f ; data X∈RN×d; targets y; feature index j; rate p=0.10; samples S=10,000
2: e0 ← RMSE

(
f(X),y

)
3: for s = 1 S do
4: X(s) ← X {working copy}
5: if xj is numerical then
6: Draw α ∼ U(1−p, 1+p)N

7: X
(s)
:,j ← X

(s)
:,j ◦α

8: else if xj is categorical then
9: Draw mask m ∼ Bernoulli(p)N

10: For all rows with mn=1, set X(s)
n,j←RandCat(xj)

11: end if
12: es ← RMSE

(
f(X(s)),y

)
13: δs ← es − e0
14: end for

15: Output: ∆j =
1

S

S∑
s=1

δs
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