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ABSTRACT

Enforcing orthonormality constraints in deep learning has been shown to provide
significant benefits. Although hard restrictions can be applied by constraining
parameter matrices to the Stiefel manifold, this approach limits the solution space
to that specific manifold. We show that a generalized Stiefel constraint XTSX =
I for Riemannian optimization can lead to even faster convergence than in previous
work on CNNs, which enforced orthonormality. The gained flexibility comes
from a larger search space. In this paper, we therefore propose a novel approach
that retains the advantages of compact restrictions while using a gradient-based
formulation to adapt the solution space defined by S. This approach results in
overall faster convergence rates and improved test performance across CIFAR10,
CIFAR100, SVHN, and Tiny ImageNet32 datasets on GPU hardware.

1 INTRODUCTION

The incorporation of orthonormality constraints in deep learning has gained considerable interest
due to its potential benefits during training. For example, Bansal et al. (2018) have shown that
using orthogonality regularizations within the training of convolutional neural networks (CNNs)
can improve both the final accuracy and lead to faster and more stable convergence. Furthermore,
Huang et al. (2018) demonstrated that rectangular orthogonal matrices can stabilize the distribution
of network activations in feed-forward neural networks and Arjovsky et al. (2016) showed that
by constructing unitary weight matrices in recurrent neural networks (RNNs), they can mitigate
vanishing and exploding gradients.

One method to ensure orthonormality for parameter matrices is to use Riemannian optimization
techniques on the Stiefel manifold. The Stiefel manifold is the set of all orthonormal p-frames in an
n-dimensional Euclidean space. As Riemannian optimization is generally time-consuming, Li et al.
(2020) approximated the closed-form by an iterative version. Using this iterative version, they have
shown theoretically and empirically that the training of CNNs can be accelerated on modern GPUs.

Although the orthonormal Stiefel manifold restriction already yields many benefits for deep learn-
ing, it also reduces the solution space of the n×p parameter matrices to a subspace of the Euclidean
subspace of size np− p(p+1)

2 . Vorontsov et al. (2017) have shown that while orthogonal initialization
is beneficial in their experiments, enforcing strict orthogonality constraints can also be disadvanta-
geous. Instead of using orthormality only in the initialization phase, we propose an approach to
generalize the Stiefel manifold during training in order to better fit the training data set. Instead of
using only strict orthonormal matrices, the generalized form of the Stiefel manifold, which we use
in this paper, is defined by an overlap matrix S. The union over all overlap matrices is the space of
all full-rank matrices. This means that a flexible overlap matrix has the potential to greatly expand
the solution space. Although such generalized Stiefel manifolds have been of increasing interest
in recent years Sato & Aihara (2019); Li et al. (2021); Sedano-Mendoza (2022); Shustin & Avron
(2023), to the best of our knowledge, it has, in contrast to the non-generalized Stiefel manifold
efficiently used by Li et al. (2020), not yet been implemented on CNNs.
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We introduce a novel approach that restricts the parameter matrices to the set of generalized Stiefel
manifolds and dynamically optimizes the overlap matrix S (which completely determines this man-
ifold) using gradient-based optimization. Our optimization procedure builds on two novel parts, an
adapted Riemannian optimization procedure on the generalized Stiefel manifold given an overlap
matrix and a gradient-based optimization procedure of the generalized Stiefel manifold itself. We
use our generalized version of the Riemannian optimization to insure the inherited beneficial proper-
ties of the orthonormal approach, since we still optimize on a compact set. The generalization leads
to a much larger search space. Moving this hyper-parameter optimization problem into a gradient-
based optimization, we manage to tackle this problem efficiently without artificially restricting S.
Our results demonstrate improved empirical convergence rates and overall accuracy on not only for
specific manifolds but also that finding a fitting manifold can be efficiently realized within the same
CNN training framework using standard optimizers like Adam.

The paper is structured as follows: First, we will present related work on Riemannian optimiza-
tion as well as work on the generalized Stiefel manifold. Then, we will formally introduce the
generalized Stiefel manifold and some of its properties, as well as the generalization of the Cayley
transformation. Next, we discuss our optimization approach for S that leads to our final strategy
to train the CNNs. In a series of empirical experiments, we can show that the additional complex-
ity of hyperparameter optimization is outweighed by the faster convergence rates and higher test
accuracies. Finally, we discuss limitations and future research of this aproach.

2 RELATED WORK

A major challenge in Riemannian optimization is translation from one point on the manifold to
another. A standard solution is exponential mapping. However, for the Stiefel manifold, this is
computationally infeasible in most cases. There are many different retraction mappings Absil et al.
(2008). One of the more popular choices is the Cayley transformation, which in its closed form
requires a computationally expensive matrix inversion. However, a recent method uses an iterative
approximation Li et al. (2020), which is much more efficient and also the choice for our optimization
procedure. There are also other approaches to reduce computational cost, but they are restrictive,
such as e.g. Wen & Yin Wen & Yin (2013), whose approach is efficient only when the dimensions
of the Stiefel matrix are far apart.

Optimization on the generalized Stiefel manifold and its properties has received increasing inter-
est in recent years. Cholesky et al. Sato & Aihara (2019) generalized the QR-retraction to the
generalized Stiefel manifold and showed that it is more effective than retractions based on polar
factorization. Shustin & Avron Shustin & Avron (2023) have used Riemannian preconditioning to
overcome shortcomings of standard geometric components, such as slow convergence. Moreover,
Sedano-Mendoza Sedano-Mendoza (2022) has analyzed isometry groups of the generalized Stiefel
manifold by considering a non-associative algebra associated to the structure of the Stiefel mani-
fold. However, to the best of our knowledge there is no research of the impacts of implementing an
optimization procedure on the generalized Stiefel manifold for deep learning.

3 PRELIMINARY

This section gives an overview of the generalized Stiefel manifold, the generalization of the Cayley
transformation, and discusses the construction of the overlap matrix S. A deeper inside is given by
Shustin & Avron (2023).

3.1 THE GENERALIZED STIEFEL MANIFOLD

Definition 1 (Riemannian manifold) A Riemannian manifold (M, g) is a smooth manifold M
equipped with a Riemannian metric g. The Riemannian metric g is a smooth assignment of an
inner product gp on the tangent space TpM at each point p ∈M.

Definition 2 (Retraction) A retraction on a manifoldM is a smooth map Rx : TxM → M from
the tangent space TxM at the point x ∈ M to the manifoldM itself. For each point x ∈ M, the
retraction map Rx : TxM→M satisfies the following conditions: Rp(0p) = p and dRp(0p) is the
identity map on TpM, where 0p is the zero vector in TpM.
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Definition 3 (Generalized Stiefel Manifold) The generalized Stiefel manifold is given by

StS(n, p) = {X ∈ Rn×p : XTSX = I}

where n, p ∈ N with n ≥ p and S ∈ Rn×n being a symmetric matrix. The Stiefel manifold St(n, p)
is the generalized Stiefel manifold iff S = I.

The generalized Stiefel manifold is given by definition 3. For our purposes, we also restrict the
overlap matrix S to be strictly positive definite, which in particular means that it has full rank. Fur-
thermore, the generalized Stiefel manifold is a Riemannian manifold and an embedded submanifold
of a Euclidean space. One can define its Riemannian metric by g(Z1, Z2) = tr(ZT

1 SZ2). Moreover,
its tangent space is given by

TxStS(n, p) = {Z ∈ Rn×p : ZTSX +XTSZ = 0}

Another important mapping for optimization is the projection mapping. It can be calculated as
follows:

πTx(Z) = WSX,where W = Ŵ − ŴT (1)

with

Ŵ = ZXT − 1

2
X

(
XTSZXT

)
Our optimization procedure of the objective function f(X) follows the optimization procedure of
Li et al. Li et al. (2020). It can be separated into the following steps. First, we calculate the gradient
in the Euclidean space ∇f(X) and linearly combine it with any additional terms such as, e.g.,
the momentum. Then we project the linear combination onto the tangent space TXSt(n, p) using
equation 1. Note that the order can also be reversed: First, project the gradient and the additional
terms and then combine them linearly, since the projection mapping is linear. The projected gradient
can be written as∇Stf(X). Finally, using the previously calculated tangent vector, we calculate the
new point on the manifold. Since other methods like the exponential map or parallel transport are
computationally infeasible, we use the Cayley transformation, which will be discussed in the next
subsection.

3.2 THE ADAPTED CAYLEY TRANSFORMATION

The Cayley transformation is a retraction map on the Stiefel manifold. We need to adapt it slightly
to generalize it to the generalized Stiefel manifold. It is given by:

Y (α) =
(
I− α

2
WS

)−1 (
I+

α

2
WS

)
X (2)

where X ∈ StS(n, p), W ∈ Rn×n is skew-symmetric (WT = −W ) and α is a parameter that
represents the step size. One can easily verify that this is indeed a retraction given by definition 2
by showing Y (0) = X and d

dαY (0) = WSX . Even though we can assume that Y (α) ∈ StS(n, p)
if X ∈ StS(n, p), there is a proof of this in Appendix A. By choosing W corresponding to the
projection mapping in equation 1, the Cayley transformation implicitly initially projects the gradient
on the tangent space. The Cayley transformation has the advantage that, by using its iterative form,
it is computationally inexpensive. The closed form still has an expensive matrix inversion part. The
iterative form is given by a slight modification of the fixed-point form, which can be obtained by
rearranging equation 2. The fixed-point form and the iterative form are given by

Y (α) = X +
α

2
WS(x+ Y (α)), Y i+1 = X +

α

2
WS

(
X + Y i

)
. (3)

Li et al. Li et al. (2020) show that for S = I the iterative Cayley transformation converges to the
closed form. Formally, for α ∈ (0,min{1, 2/∥W∥}), the iterative Cayley transformation given by
equation 3 is a contraction mapping and converges to the closed form given by equation 2 under the
condition of Lipschitz continuity of the gradient of the objective function. This can be generalized
for a general S as a symmetric, positiv definite matrix analogously to their proof. We only need to
adapt α ∈ (0,min{1, 2/∥WS∥}).

3
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4 ALGORITHMS

Algorithm 1 Cayley SGD with momentum on
the generalized Stiefel manifold

Input: learning rate l, momentum coefficient
β, ϵ = 10−8, q = 0.5, s = 5
Initialize S = R⊤R and X̂ as an orthonormal
matrix; M1 = 0
X1 = R−1X̂
for k = 0 to T do

Mk+1 ← βMk −∇Xk

Ŵk ←Mk+1Xk − 1
2Xk(X

⊤
k SMk+1Xk)

Wk ← Ŵk − Ŵ⊤
k

Mk+1 ←WkSXk

α← min
{
l, 2q

∥WkS∥+ε

}
Initialize Y 0 ← Xk + αMk+1

for i = 1 to s do
Y i ← Xk + α

2WkS(Xk + Y i−1)
end for
Update Xk+1 ← Y s

end for

Algorithm 2 Cayley ADAM on the generalized
Stiefel manifold

Input: learning rate l, momentum coefficients
β1 and β2, ϵ = 10−8, q = 0.5, s = 5
Initialize S = R⊤R and X̂ as an orthonormal
matrix; M1 = 0, v1 = 1
X1 = R−1X̂
for k = 0 to T do

Mk+1 ← β1Mk + (1− β1)∇Xk

vk+1 ← β2vk + (1− β2)∥∇Xk∥2
v̂k+1 ← vk+1

(1−βk
2 )

r ← (1−βk
1 )

v̂k+1

Ŵk ←Mk+1Xk − 1
2Xk(X

⊤
k SMk+1Xk)

Wk ← (Ŵk−Ŵ⊤
k )

r
Mk+1 ←WkSXk

α← min
{
l, 2q

∥WkS∥+ε

}
Initialize Y 0 ← Xk − αMk+1

for i = 1 to s do
Y i ← Xk − α

2WkS(Xk + Y i−1)
end for
Update Xk+1 ← Y s

end for

This section introduces the algorithms used to restrict CNN training to the set of generalized Stiefel
manifolds. First, generalized versions of the Cayley SGD with momentum and the Cayley ADAM
are presented. Second, the gradient-based search for S is discussed. Both are contributions of this
paper.

4.1 OPTIMIZATION OF THE GENERALIZED STIEFEL MAINFOLD

The following section describes the optimization procedures. We have modified two different al-
gorithms from Li et al. Li et al. (2020), namely the Cayley SGD with momentum and the Cayley
ADAM. Both algorithms require that the initial state is an element of the generalized Stiefel man-
ifold. Similar to Li et al., we use the QR decomposition Absil et al. (2008) to initialize the first
state. The QR decomposition returns a matrix on the regular Stiefel manifold. Using the property
S = RTR, we can set the initial state to

X1 = R−1Q

where Q is the Stiefel part of the QR-decomposition. Therefore, X1 is an element of StS(n, p)

4.1.1 CAYLEY SGD WITH MOMENTUM

Stochastic gradient descent Robbins & Monro (1951) with momentum is a widely used optimization
method in machine learning. We adapt the algorithm so that it optimizes only on the generalized
Stiefel manifold. The updated momentum is computed by projecting the linear combination of the
momentum of the previous step and the Euclidean gradient:

Mk+1 = πTXk
(βMk −∇Xk)

here β is a hyperparameter. Note that this is equivalent to projecting the momentum and the gradient
before linearly combining since the projecting map itself is linear. The new momentum Mk+1 gives
the direction. By applying the Cayley transformation given by equation 3, we calculate the next
point on the manifold. The detailed algorithm is presented as algorithm 1.

4
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4.1.2 CAYLEY ADAM

ADAM Kingma & Ba (2014) is a commonly used optimization algorithm. The first-order gradient-
based algorithm is based on adaptive estimates of lower-order moments. Like the SGD, we adapt
the algorithm to restrict X to the generalized Stiefel manifold. The procedure is similar to the
modification of the SGD and its details can be reviewed in algorithm 2.

4.2 GRADIENT-BASED MANIFOLD OPTIMIZATION

We use a gradiend-based optimization of the generalized Stiefel manifold. Since the overlap matrix
S is symmetric and positive definite, it can be decomposed into S = RTR where R ∈ Rn×n. With
this property we can define a map Xi ∈ StSi

(n, p) to Xi+1 ∈ StSi+1
(n, p) with the following

equation:

Xi+1 = R−1
i+1RiXi (4)

This is a straightforward way to update the kernel matrices X to a new Stiefel restriction. We apply
this update of the weight matrices at the beginning of the forward pass for given Ri and Xi. With
this relationship between weight matrices under different generalized Stiefel restrictions, we can
compute the gradient of the loss with respect to the new matrix Ri+1 during backpropagation. Ri+1

then defines the new generalized Stiefel matrix. During this procedure the weights are only updated
using equation 4.

Note that this procedure expands our solution space to every full-rank matrix. A larger solution
space can be advantageous, but the set of all full-rank matrices is no longer compact. One solution
is to mainly use the optimization process with a constant S. Another method could be to regularize
of the loss function with a term of the form ∥S−I∥µ with a large µ. However, this loss regularization
was not necessary for our experiments due to a small learning rate and the predominant use of the
Riemannian optimization for a constant S.

The disadvantage of this procedure is the computationally expensive calculations of the inverse
matrix. One epoch takes a little more than twice as long as the Riemannian optimization with a
constant S.

5 EXPERIMENTS

In this section, we present the experiments of our method. First, we present the datasets, models, and
parameter choices for the experiments. Then, we discuss our training strategy. Finally, we discuss
the impact of our method on training convergence, test performance, and the behaviour over time.

5.1 DATASETS, MODELS AND PARAMETER CHOICES

CNN filter can be represented by the matrix K ∈ Rp×n, where p = cout is the output dimension of
the filter and n = cin ·h ·w, where cin is the input dimension and h and w are respectively the height
and width of the filter. If n ≥ p, which is the case most of the time, then the convolutional layer is
constrained to StS(n, p). In all other cases, we use the standard SGD or standard ADAM.

To obtain comparable results, we chose our models and our parameters similar to the choices of Li et
al. Li et al. (2020). We used four datasets, the CIFAR 10 and CIFAR 100 datasets Krizhevsky et al.
(2009), the SVHN dataset Netzer et al. (2011) and the Tiny ImageNet dataset Le & Yang (2015)
with size-reduced images to 32×32. The CIFAR datasets contains 60,000 32 × 32 color images
which are equally divided into 10 and 100 classes, respectively. There are 50,000 training images
and 10,000 test images. The SVHN data set contains 73,257 training images and 26032 test images
divided into 10 classes. Lastly, Tiny ImageNet32 contains 100,000 training images and 10,000 test
images equally divided into 200 classes. For computational feasibility, we reduced the original size
of 64×64 color images to 32×32 using box filter, which is used to reduce the size of the ImageNet
Deng et al. (2009) itself by the authors.

Furthermore, we used a Wide ResNet Zagoruyko & Komodakis (2016) of depth 28 and width 10 and
a VGG Simonyan & Zisserman (2014) with depth 16. The basic structure of both models consists of

5
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convolutional layers of size 3 × 3 followed by batch normalization and ReLU activation functions.
To train the network during the optimization with the generalized Cayley transformation, we used
two different learning rates of 0.01 and 0.1 for the Euclidean space layers and the generalized Stiefel
manifold layers, respectively. During the manifold search we used a the standard ADAM optimizer
with a learning of 0.00005. Furthermore, we used a batch size of 128, a weight decay of 0.0005 and
a learning rate decay of the factor 0.2 at epochs 60, 120 and 160. The maximum number of epochs
was 200. The overlap matrix was initialized as the unit matrix, i.e. S = I. As a baseline, we did our
experiments without a manifold search to reproduce the results with the regular Stiefel manifold.

5.2 TRAINING STRATEGY

Our training consists of two parts, the Riemannian optimization procedure on the generalized Stiefel
manifold for a fixed overlap matrix and the gradient-based optimization of the overlap matrix itself.
This leaves flexibility in the order in which each part is applied during the training procedure. We
have chosen the following. We start by optimizing the overlap matrix for twenty epochs and then
switch to Riemannian optimization with a fixed overlap matrix S for the remaining epochs. The
idea for this approach has several reasons. One reason is that we first try to find a good solution
space determined by the overlap matrix and then optimize with the resulting manifold until the
end. Furthermore, we want to minimize the switching between the two algorithms, since the search
spaces of the two algorithms are fundamentally different. Each switch changes the landscape of local
minima, which works against finding them quickly. In addition, we want to finish the procedure with
one algorithm for a majority of epochs to run into the local minimum. Therefore, we minimized the
number of switches to one. Another aspect is time efficiency, which will be discussed in more detail
in the 5.4 section. Since the manifold search takes more time, it is preferable to apply it to a minority
of epochs.

5.3 CONVERGENCE ANALYSIS

Figure 1: Logarithmically scaled training loss displayed for the entire training process with a Wide
ResNet on the SVHN dataset with the generalized Cayley SGD approach. The blue lines represent
the baseline approach and the red line our approach with the manifold optimization and the general-
ized Stiefel manifold restriction.

The training loss for all 200 epochs is shown in figure 1. Here, the procedure was applied to the
SVHN dataset using the generalized Cayley SGD method. The red line represents the baseline
approach with S = I for the entire training. The blue line is our approach. For the first twenty
epochs, the baseline approach shows better convergence because the manifold optimization does
not optimize the loss as efficiently as the Riemannian method. However, when we switch to the
Riemannian method at epoch 20, the loss converges faster than the baseline approach. This shows
that a solution space with better convergence properties has been found. The training loss shows
similar behavior for the other datasets for both generalized Cayley optimization methods.

5.4 PERFORMANCE

Table 1 shows the classification error on the test set for all four datasets. Eight different experiments
with two different approaches are shown for each dataset. These were run three times each to

6
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Table 1: Classification test error in % of all datasets

MODEL OPTIMIZER S CIFAR10 CIFAR100 SVHN TINY IMAGENET

WRN
CAYLEY SGD UNIT 3.73 ± 0.17 18.35±0.22 3.41±0.06 47.09± 0.33

GEN ST 3.34 ± 0.06 17.33±0.10 2.97±0.01 44.99± 0.52

CAYLEY ADAM UNIT 3.62±0.07 18.3±0.16 2.84±0.13 45.79±0.17
GEN ST 3.61±0.11 18.1±0.21 2.63±0.11 44.66±0.15

VGG
CAYLEY SGD UNIT 5.81 ± 0.19 25.70±0.25 3.78± 0.10 60.98± 0.35

GEN ST 5.78±0.24 23.95±0.38 3.74±0.10 57.34±0.29

CAYLEY ADAM UNIT 5.97± 0.17 25.53± 0.33 3.44±0.11 57.93±0.11
GEN ST 5.95± 0.15 25.45±0.23 3.41± 0.04 56.72±0.81

calculate the standard deviation. The first four experiments show the results for the Wide ResNet
and the last four for the VGG. The four experiments are further divided by the optimization method
(generalized Cayley SGD and generalized Cayley ADAM). The baseline approach is denoted by
Unit and our approach is denoted by gen St. The Unit approach shows the results for S = I,
which makes the optimization procedure identical to the one proposed by Li et al. (2020). For our
approach, we used the manifold optimization procedure to find a good overlap matrix S for the first
20 epochs, and then completed the training with the generalized Cayley optimization methods for
the remaining 180 epochs. The results show that our method improves the prediction accuracy for
most combinations of datasets and models, achieving at least the baseline performance. The largest
improvements are given by the WRN with Cayley SGD for all four datasets.

Table 2 shows the computation time for each model and dataset for the Cayley approach and the
manifold optimization procedure. It also shows the total training time for the baseline Cayley trans-
formation approach and the total training time for our approach. To train the networks in a reasonable
time, a GPU is required. Using the NVIDIA GeForce RTX 3080, the duration of a single experi-
ment ranges from 5.42 hours for the VGG model on the CIFAR10 dataset to 30.12 hours for the
Wide ResNet on the Tiny ImageNet32. The manifold optimization takes slightly more than twice as
long per epoch. This is due to the costly inversion of the R matrix, which is part of the computational
graph during backpropagation.

However, our approach remains competitive. Figure 2 shows the test accuracy over the training time.
The blue line represents the baseline approach and the red line represents our approach. Note that
our approach uses the slower manifold optimization for the first 20 epochs. The change in method
is particularly noticeable for the Tiny ImageNet dataset, as it results in a drop in accuracy. However,
our test accuracy surpasses the baseline at the first drop in learning rate at 60 epochs, which is before
the 100th epoch of the baseline. This shows that finding an appropriate overlap matrix can increase
the overall accuracy before half of the training is complete, even with the costly manifold search at
the beginning.

Overall, our method shows faster convergence on the training data, competitive test errors that de-
crease for most combinations of datasets, models, and methods, and it still provides practical advan-
tages due to its behavior over time.

6 LIMITATIONS

While the extension of the Caley algorithm to a generalized form is relatively straightforward, it
also leads to the problem of defining a generalized form. When we started this work, we used
standard hyperparameter optimization strategies such as Bayesian optimization to find S. Due to
the high dimensionality and structure of the search space, it is difficult to search. Using gradient-
based methods, we were not only able to solve this problem within the same optimization regime as
training, but we also made it possible to switch between different overlap matrices S during training.
Despite empirical success on several datasets, any heuristic optimization strategy is prone to local
optima. Furthermore, our experiments show that for CNNs, optimizing S early (as in classical
hyperparameter optimization) instead of optimizing both together over the entire training process

7
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Figure 2: The test accuracy over time for all four datasets with the Wide ResNet. The blue lines
represent the baseline approach and the red lines our approach with the manifold optimization and
the generalized Stiefel manifold restriction. For each dataset in the upper plots the generalized
Cayley SGD was used and for the lower plots the generalized Cayley ADAM.

Table 2: Training time for different methods, models and datasets

CIFAR SVHN TINY IMAGENET
SGD ADAM SGD ADAM SGD ADAM

WRN

TIME PER EPOCH (CAYLEY) IN S 237 240 344 350 479 488
TOTAL TRAINING TIME (200 EPOCHS) IN H 13,17 13,33 19,12 19,45 26,62 27,12

TIME PER EPOCH (MANI. OPT.) IN S 516 516 735 735 1030 1030
TIME FOR GEN ST (OURS) IN H 14.72 14.78 20.45 20.65 29.67 30.12

VGG

TIME PER EPOCH (CAYLEY) IN S 87 88 129 131 161 163
TOTAL TRAINING TIME (200 EPOCHS) IN H 4.83 4.89 7.17 7.28 8.94 9.05

TIME PER EPOCH (MANI. OPT.) IN S 193 193 286 186 346 346
TIME FOR GEN ST (OURS) IN H 5.42 5.47 8.04 8.14 9.97 10.07

still gives the best overall convergence. However, optimal training strategies may differ for other
datasets, and we have only focused on image data at this stage.

Since we have focused on understanding and extending the previous work of Li et al. (2020), we
have also only applied our generalization approach to CNNs. Although we believe that this ap-
proach could be applied to other types of neural networks, the kernel structure is unique to CNNs.
Furthermore, the success of Stiefel restrictions for other types of neural networks, such as RNNs, is
based on their unit norm preservation, which is not given by the generalized approach we used in
this paper.

7 SUMMARY

Building on the work of Li et al. Li et al. (2020), we propose to generalize the orthogonality con-
straints of the Stiefel manifold to the generalized Stiefel manifold for training CNNs. This greatly
increases the flexibility of the constraint while maintaining positive effects on training. By not only
generalizing both Cayley SGD and Cayley ADAM, but also formulating the optimization of the
overlap matrix S as a gradient based method, we can improve the training procedure on the CI-
FAR10, CIFAR100, SVHN, and Tiny ImageNet32 datasets, both in terms of convergence rate and
accuracy, by relaxing the constraints imposed by the orthonormal Stiefel manifold.

Our results show that not only orthonormality can help the learning process in neural networks, but
also that we can learn other restrictions within the Stiefel manifold that fit the data.
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A PROOF THAT THE CAYLEY TRANSFORMATION STAYS ON THE
GENERALIZED STIEFEL MANIFOLD

To prove that Y (α) ∈ StS(n, p) we need to show Y (α)TSY (α) = I. To do so, we will show that
QTSQ = S, where Q = (I −WS)−1(I + WS) with W as an abitrary skew-symmetric matrix.
Note that S is invertable and symmetric.

QTSQ = (I− SW )(I+ SW )−1S(I−WS)−1(I+WS)

= (I− SW )
[
(I−WS)S−1(I+ SW )

]−1
(I+WS)

= (I− SW )
[
S−1 −W +W −WSW

]−1
(I+WS)

= (I− SW )
[
(I+WS)S−1(I− SW )

]−1
(I+WS)

= (I− SW )(I− SW )−1S(I+WS)−1(I+WS)

= S

The claim Y (α) ∈ StS(n, p) for all α follows directly from XTQTSQX = XTSX
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