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ABSTRACT

Textual Inversion (TI) is an efficient approach to text-to-image personalization
but often fails on complex prompts. We trace these failures to embedding norm
inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt
conditioning in pre-norm Transformers. Empirically, we show semantics are pri-
marily encoded by direction in CLIP token space, while inflated norms harm
contextualization; theoretically, we analyze how large magnitudes attenuate posi-
tional information and hinder residual updates in pre-norm blocks. We propose
Directional Textual Inversion (DTI), which fixes the embedding magnitude to an
in-distribution scale and optimizes only direction on the unit hypersphere via Rie-
mannian SGD. We cast direction learning as MAP with a von Mises–Fisher prior,
yielding a constant-direction prior gradient that is simple and efficient to incorporate.
Across personalization tasks, DTI improves text fidelity over TI and TI-variants
while maintaining subject similarity. Crucially, DTI’s hyperspherical parame-
terization enables smooth, semantically coherent interpolation between learned
concepts (slerp), a capability that is absent in standard TI. Our findings suggest
that direction-only optimization is a robust and scalable path for prompt-faithful
personalization.

1 INTRODUCTION

Personalization in text-to-image generation involves the targeted adaptation of models to learn
representations of novel, user-provided concepts. This process allows for the creation of customized
images that faithfully render specific concepts, such as unique individuals, objects, or artistic styles,
in new contexts.

Current personalization approaches fall into two paradigms: parameter fine-tuning and embedding
optimization. Parameter fine-tuning methods, exemplified by DreamBooth (Ruiz et al., 2023),
optimize entire models using a few user-provided images. While effective, these approaches are
computationally expensive and require significant storage per concept. In contrast, embedding
optimization methods, such as Textual Inversion (Gal et al., 2023a), offer a more efficient alternative
by optimizing only token embeddings. This approach provides substantial advantages: minimal
storage per concept and seamless workflow integration. These advantages have made TI a foundational
component in numerous personalization frameworks (Hao et al., 2023; Kumari et al., 2023; Tewel
et al., 2023b; Lee et al., 2024) and align with a broader paradigm shared with other domains, such as
LLM (Lester et al., 2021) and VLM (Alaluf et al., 2024).

Despite its utility, TI suffers from critical limitations. The fundamental challenge stems from the
constraint of optimizing a single embedding vector to encapsulate complex visual concepts. This
limitation leads to two key problems. First, TI struggles to maintain high fidelity to complex prompts,
compromising its controllability and expressive range. Second, the extensive fine-tuning duration
required for each concept hinders its practical applicability. Recent works (Voynov et al., 2023; Alaluf
et al., 2023) have attempted to address these limitations through enriched embedding spaces, but
introduce significant computational overhead that undermines TI’s efficiency advantage. Moreover,
these methods do not directly address the underlying optimization dynamics of TI, leaving the
fundamental factors that govern semantic alignment in embedding-based personalization unclear.

This paper presents a systematic analysis of the optimization dynamics in TI, with a specific focus on
the characteristics of the token embedding space. Our investigation reveals that semantic information
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Figure 1: Empirical motivation for our method. Our analysis reveals two critical problems in standard
TI that degrade prompt fidelity. (a) TI produces embeddings with excessive norms compared to
model’s original vocabulary. (b) TI also suffers from semantic drift, where learned embedding
direction moves away from related concepts. These observations motivate DTI, an approach designed
to preserve both norm and directional integrity.

is predominantly encoded in the direction of the embedding vectors. Furthermore, we demonstrate
both theoretically and empirically that the magnitude of these embeddings is a primary source of
instability; specifically, excessively high embedding norms emerge during optimization and act as a
critical factor impairing image-text alignment.

Building on these findings, we introduce Directional Textual Inversion (DTI), a novel framework
designed to address these fundamental limitations. Unlike conventional methods that optimize the
entire token embedding, DTI decouples embeddings into their magnitude and directional components.
Our approach maintains the embedding magnitude at a scale consistent with in-distribution tokens
from the pre-trained model, while focusing the optimization exclusively on the embedding’s direction.
To enhance semantic coherence, we formulate this directional optimization as a Maximum a Posteriori
(MAP) estimation problem. This formulation incorporates a von Mises-Fisher (vMF) distribution as
a directional prior, which effectively regularizes the embedding towards semantically meaningful
directions in the hyperspherical latent space. The resulting framework preserves the lightweight
nature of TI while significantly improving its robustness, ensuring that personalization is both
computationally efficient and semantically faithful.

Our comprehensive evaluation demonstrates that DTI consistently outperforms conventional TI and
existing enhancement methods such as CrossInit (Pang et al., 2024a), achieving substantial improve-
ments in semantic fidelity while maintaining computational efficiency. Beyond performance gains, the
directionally optimized embeddings also enable novel applications, especially smooth interpolation
between personalized concepts, expanding creative possibilities in generative AI workflows.

2 ANALYZING TOKEN EMBEDDING GEOMETRY

This section examines the token embedding space of pre-norm Transformer architectures, such as the
CLIP text encoder (Radford et al., 2021) and Gemma (Team et al., 2024), which are foundational
to modern text-to-image models. Our analysis establishes two key findings. First, we demonstrate
that semantic information is primarily encoded in the direction of an embedding vector. Second, we
identify that an excessively large embedding magnitude is a common artifact of standard Textual
Inversion, a phenomenon we show is detrimental to model performance. We substantiate these
findings with empirical observations and subsequently develop a theoretical framework to elucidate
the underlying cause.

2.1 EMPIRICAL MOTIVATION: DIRECTION ENCODES SEMANTICS

Our first observation is that the semantic structure of the textual token embedding space is predom-
inantly directional. This aligns with the foundational principle of semantic vector spaces where
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meaning is encoded not in the vector’s magnitude, but in its direction (Mikolov et al., 2013; Penning-
ton et al., 2014). We empirically demonstrate this by comparing nearest neighbors for a given token
using two different distance metrics: Euclidean distance, which is sensitive to both magnitude and
direction, and cosine similarity, which is sensitive only to direction. The superior semantic coherence
of neighbors found using cosine similarity validates the principle that meaning in these vector spaces
is encoded primarily by direction.

Table 1: Top 5 nearest tokens to ‘apple’
under different measures.

Rank Euclidean Cosine

1 U+2069 apples
2 altrin fruit
3 lestwe peach
4 heartnews pear
5 samanthaprabhu egg

As shown in Table 1, an embedding’s nearest neighbors are
semantically coherent when measured by cosine similarity
but not by Euclidean distance. For the token ‘apple’, its
cosine-based neighbors include ‘apples’, ‘fruit’, and ‘pear’,
while its Euclidean-based neighbors are often unrelated
tokens with a similar magnitude. This indicates that an
embedding’s direction is the primary carrier of semantic
information. More results are provided in Appendix A.

Figure 1b further illustrates this principle, showing that
related concepts are located proximally on the unit hyper-
sphere. Despite this, standard TI often neglects the importance of direction. This oversight leads to
semantic drift, where the learned embedding for a token like <cat> moves directionally away from
related concepts like ‘cat’ and ‘kitten’, as shown in the figure. This deficiency motivates the need for
a method that explicitly preserves the semantic direction of learned embeddings.

2.2 WHY LARGE MAGNITUDES LEAD TO LOW TEXT FIDELITY

As shown in Figure 1a, TI produces token embeddings with norms that are drastically larger than those
of the pre-trained vocabulary (often > 20 vs. ≈ 0.4). These out-of-distribution (OOD) magnitudes
consistently correlate with poor prompt fidelity. For instance, a prompt like “A painting of <dog>
wearing a santa hat” may generate the dog but omit the hat and background details. While simply
rescaling the embedding’s norm after training can partially recover text alignment, it does not solve
the underlying issue and can degenerate subject similarity. This raises a critical question: why do
large embedding norms degrade text fidelity in pre-norm Transformers?

Our analysis reveals two primary mechanisms through which large-norm embeddings disrupt the
Transformer’s ability to contextualize information. We analyze a standard pre-norm Transformer
block, y = x + Fℓ(Norm(x)), where Norm ∈ {LayerNorm,RMSNorm} and Fℓ denotes atten-
tion/MLP sub-layers. We decompose the learned token as x(0) = mv + p with m > 0 (magnitude),
∥v∥2 = 1 (direction), and an additive positional embedding p. Below, we explain how a large
magnitude m undermines the model’s performance. (For formal proofs, see Appendix B).

Effect I: Positional information is attenuated (see Lemma 1). After LayerNorm/RMSNorm layer,
the normalized signal that feeds attention/MLP becomes less sensitive to small additive terms as
m grows. Positional information contributes O(1/m) to the normalized signal Norm(mv + p).
Intuitively, a very large-norm token forgets where it is in the sequence, weakening contextualization,
resulting in omission of details such as style and background (see Figure 1).

Effect II: Residual update stagnate (see Lemma 2). The residual updates, Fℓ(Norm(x(ℓ))), are
computed from a normalized inputs and thus have a bounded magnitude. When this bounded update
is added through the skip connection to a large vector x(l), the relative change (i.e., turning angle
of the hidden state’s direction) becomes tiny, decreasing in proportion to 1/∥x(l)∥. In other words,
large-norm hidden states become stuck in their direction and are difficult for subsequent layers to
refine. This residual stagnation accumulates across layers, severely limiting the total directional
change the initial token can undergo, as formalized in the following proposition and corollary.

Proposition 1 (Accumulated directional drift across L pre-norm blocks). Let x(0) ̸= 0 and x(ℓ+1) =
x(ℓ) + Fℓ(Norm(x(ℓ))) for ℓ = 0, . . . , L − 1. Let Bℓ := supu∈S ∥Fℓ(u)∥2 < ∞, and SL :=∑L−1

j=0 Bj . Assume ∥x(0)∥2 > SL, then

∠
(
x(0),x(L)

)
≤ π

2

L−1∑
ℓ=0

Bℓ

∥x(0)∥2 −
∑

j<ℓ Bj
≤ π

2

SL

∥x(0)∥2 − SL
.
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Corollary 1 (Scaling⇒ directional freezing). With the notation of Proposition 1, for any α > 1,

∠(αx(0),x(L)(α)) ≤ π

2

SL

α
∥∥x(0)

∥∥− SL

−−−−→
α→∞

0,

where x(L)(α) denotes the depth-L output when the initial token is αx(0).

Together, these two effects explain why TI struggles with text fidelity. As token’s magnitude increases,
its ability to integrate contextual information from the prompt diminishes. The personalized token
becomes too dominant that it overshadows other critical details, such as stylistic elements, background
context, or additional subjects, from the generated output. To this end, this analysis highlights the
need for a method that explicitly controls the magnitude of personalized tokens, which we introduce
in the next section.

3 METHOD: DIRECTIONAL TEXTUAL INVERSION

Based on our observation and analysis on previous section that token embeddings exhibit strong
directional characteristics, we introduce Directional Textual Inversion (DTI), a framework that
optimizes an embedding’s direction with in-distribution norm to enhance text fidelity in personalized
text-to-image generation.

3.1 OPTIMIZING ONLY DIRECTION ON THE HYPERSPHERE

Algorithm 1 Directional Textual Inversion (DTI)

1: Inputs: Model ϵθ, text encoder c(·), init token einit,
magnitude m∗, κ, iterations K, learning rate η

2: v0 ← einit/∥einit∥2
3: µ← einit/∥einit∥2
4: for k = 0 to K − 1 do
5: Sample minibatch (z, t, ϵ)
6: gdata ← ∇v Ldata(m

∗vk)
7: geuc ← gdata − κµ (add prior gradient)
8: g ← geuc − (gT

eucvk)vk (tangent projection)
9: g′ ← g/∥g∥2 (gradient scaling)

10: vk+1 ←
vk − η g′

∥vk − η g′∥2
(retraction to Sd−1)

11: end for
12: return e∗ = m∗vK

We reformulate TI by decoupling the mag-
nitude and direction of the learnable token
embedding e ∈ Rd. The embedding can
be expressed as

e = m⋆v, v ∈ Sd−1. (1)

We fix the magnitude m⋆ and optimize only
the direction (v). Specifically, we set m⋆

to be an in-distribution magnitude derived
from the frozen vocabulary of text encoder
(e.g., the average norm). In this way, opti-
mization focuses on semantic in direction
while avoiding out-of-distribution (OOD)
norms.

This makes the parameter space is the
unit sphere, Euclidean updates drift off-
manifold, making AdamW (Loshchilov &
Hutter, 2017)) (default optimizer used in TI-like methods) not suitable. To solve this, we use Rie-
mannian stochastic gradient descent (RSGD) (Bonnabel, 2013) with tangent-space projection and
retraction:

g = geuc − (vT
k geuc)vk ∈ Tvk

Sd−1, vk+1 = Retrvk
(−ηg) =

vk − ηg

∥vk − ηg ∥2
. (2)

Here, geuc is a Euclidean space gradient, g ∈ Tvk
Sd−1 is a tangent-space gradient, and η > 0 is a

learning rate. In practice, we scaled the gradient g using its own norm similarly. This was inspired by
Euclidean space optimizers (Hinton et al., 2012; Kingma & Ba, 2015; Loshchilov & Hutter, 2019),
which normalizes the gradient based on moving average of squared gradients. See Algorithm 1 and
Appendix C.1 for further details.

3.2 MAXIMUM A POSTERIORI FORMULATION WITH A DIRECTIONAL VMF PRIOR

To incorporate directional prior, we formulate the optimization for the optimal direction v∗ as a
Maximum A Posteriori (MAP) estimation problem. Given a dataset of images D = {z1, . . . ,zn},
the MAP estimate is found by maximizing the posterior probability:

v∗ = argmax
v

p(v | D) ∝ argmax
v

[log p(D | v) + log p(v)] . (3)
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Minimizing the negative log-posterior is equivalent to minimizing a loss function composed of a data
term and a prior term, L(v) = Ldata(v) + Lprior(v).

The data term, Ldata = − log p(D | v), is the negative log-likelihood of the images given the direction.
Following standard practice for diffusion models (Ho et al., 2020), we use the mean squared error
(MSE) between the true and predicted noise as the objective:

Ldata(v) := Ez,t,ϵ,c[∥ϵ− ϵθ(zt, t, c(v))∥22]. (4)

Here, ϵθ and c(·) are the diffusion model and text encoder, respectively. The Euclidean gradient of
this objective, geuc = ∇vL, is used in the RSGD update.

For the prior term, − log p(v), we use a von Mises-Fisher (vMF) distribution on the direction v
(detailed justification in Appendix C.2). The vMF distribution is a probability distribution on the
(d− 1)-sphere, analogous to the Gaussian distribution in Euclidean space. It is parameterized by a
mean direction µ ∈ Sd−1 and a concentration parameter κ ≥ 0. The probability density function is
given by:

p(v|µ, κ) = κd/2−1

(2π)d/2Id/2−1(κ)
exp(κµTv), (5)

where Id/2−1 is the modified Bessel function of the first kind. Here, we work with unnormalized
density: p(v) ∝ exp(κµTv). Ignoring constants, the negative log-prior yields our regularization
term, Lprior(v) = −κµTv.

Constant-direction prior gradient. A useful property is that the Euclidean gradient of log-prior
is a constant: ∇v(−κµTv) = −κµ. Practically, we just add this vector to the data gradient
before projecting to the tangent space and retracting. This is analogous in spirit to decoupled
weight decay (Loshchilov & Hutter, 2019), but adapted for the sphere with a directional prior. The
update is computationally cheap (requiring no new graph operations), numerically stable, and highly
interpretable: it applies a constant pull towards a semantically meaningful direction.

Selection of vMF parameters. The vMF prior is defined by a mean direction µ and a concentration
parameter κ. The mean direction µ is set to the normalized embedding of a corresponding class
token (e.g., ‘dog’) from the pre-trained text encoder and is held constant during optimization. Since
estimating κ is non-trivial, we treat it as a hyperparameter that controls the strength of the prior. We
performed a grid search and found that values in the range of 5e-5 to 2e-4 works well. Based on
this, we simply fixed the value of κ to 1e-4 for all experiments. Further discussion on the selection
of prior can be found in Appendix D.2 and D.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

All experiments were implemented using PyTorch (Paszke et al., 2019) and the HuggingFace
diffusers library (von Platen et al., 2022), with a single NVIDIA A6000 GPU. Detailed imple-
mentation specifications are provided in Appendix D.1.

Datasets. For subject personalization, we employed all reference images from the DreamBooth
dataset (Ruiz et al., 2023). Additional experiments on stylization and face personalization are
presented in Appendix D.7, utilizing StyleDrop (Sohn et al., 2023) and images from FFHQ (Karras
et al., 2019). We evaluated all methods using 40 prompts, comprising the complete set of prompts
from the DreamBooth dataset supplemented with 10 additional complex prompts.

Models. Unless otherwise specified, we employed Stable Diffusion XL (SDXL) (Podell et al., 2024)
as our primary model due to its superior performance and widespread adoption in concurrent research.
To demonstrate DTI’s applicability to more recent architectures, we conducted additional experiments
on SANA 1.5 (Xie et al., 2024), which employs Gemma (Team et al., 2024) as the text encoder and
DiT (Peebles & Xie, 2023) as the image generator.

Baselines. Our method extends Textual Inversion (TI) (Gal et al., 2023a), serving as our primary
baseline for direct comparison. We additionally evaluate against CrossInit (Pang et al., 2024a), an
enhanced TI variant that incorporates specialized initialization and regularization techniques. Com-
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Table 2: Our DTI consistently improves baselines by
generating outputs with enhanced text fidelity while
maintaining subject similarity.

SDXL SANA 1.5-1.6B SANA 1.5-4.8B
Methods Image Text Image Text Image Text

TI 0.561 0.292 0.480 0.621 0.446 0.646
TI-rescaled 0.243 0.466 0.253 0.655 0.287 0.548
CrossInit 0.545 0.464 0.344 0.614 0.299 0.622
DTI (ours) 0.450 0.522 0.479 0.744 0.452 0.757

Table 3: Ablation studies. We tested and
confirmed the effectiveness of every com-
ponent of our DTI.

Optimizer m⋆ κ× 10−3 Image Text
AdamW mean 0.1 0.335 0.463
RSGD min 0.1 0.030 0.074
RSGD 5.0 (OOD) 0.1 0.383 0.373
RSGD mean 0.0 0.507 0.436
RSGD mean 0.5 0.278 0.688
RSGD mean 0.1 0.450 0.522

prehensive comparisons with additional baselines, including P+ (Voynov et al., 2023), NeTI (Alaluf
et al., 2023), and CoRe (Wu et al., 2025), are provided in Appendix D.3.

Metrics. Following established evaluation protocols (Ruiz et al., 2023; Kumari et al., 2023; Gal
et al., 2023a), we assessed each method across two primary dimensions: subject fidelity and image-
text alignment. Subject fidelity was quantified using DINOv2 (Oquab et al., 2023) feature cosine
similarity. For image-text alignment, we employed SigLIP (Zhai et al., 2023), a more recent variant
of CLIP, following recent work (Lee et al., 2024). For each instance, we generated samples from 40
text prompts using 4 random seeds, yielding 160 samples per instance. Complete evaluation details
are provided in Appendix D.1. Results were further validated through a user study conducted via
Amazon Mechanical Turk.

4.2 MAIN RESULTS

Quantitative results. In Table 2, we quantitatively evaluate DTI along two axes: subject similarity
and text–prompt fidelity. DTI consistently produces outputs that adhere closely to the prompt while
maintaining high subject similarity. To isolate the role of embedding norm analyzed in Section 2.2,
we rescaled TI’s learned embeddings to the in-distribution norm—specifically, the average norm of
the vocabulary embeddings, matching the norm scale used in DTI. Consistent with our analysis, this
simple rescaling noticeably improves text fidelity but does not fully resolve the problem, as it degrades
image similarity. CrossInit achieves strong text fidelity on SDXL but fails to do so consistently on
SANA, which we attribute to differences in their text encoders; SDXL uses a CLIP text encoder,
while SANA employs the LLM-based encoder. Notably, DTI’s advantage over the baselines become
even more pronounced as the model size increases. Overall, these results clearly demonstrates the
advantage of DTI over competing baselines. Additional comparisons with further baselines on other
Stable Diffusion variants are provided in Appendix D.3.

Qualitative results. Figure 2 illustrates qualitative comparisons across various prompts. DTI
consistently generates images that more accurately reflect the content of the captions, while effectively
preserving subject consistency. For instance, for ‘Pop-art style illustration of <cat>’, TI omits the
cat while DTI renders the cat in the specified style. Similarly, in the second column, TI and CrossInit
fail to incorporate all elements of the prompt, disregarding either the subject or details such as ‘music
stage’ and ‘spotlight’. In contrast, DTI integrates both the subject and these details, producing a
more complete output. Collectively, these examples highlight DTI’s superior compositional fidelity
and subject preservation, showing its powerfulness that consistently satisfies all prompt constraints.
This attributes to DTI’s stable optimization within the directional space, which facilitates improved
integration of multiple prompt components. DTI’s ability to maintain subject fidelity and adhere
to textual intent establishes it as a robust choice for a wide range of text-to-image generation tasks.
Additional qualitative results including those of SANA can be found in Appendix D.6.

4.3 ABLATION STUDY

We performed ablation study to verify the effectiveness of components of our DTI, including the
optimization space, the embedding magnitude m, and the concentration parameter of vMF distribution
κ. The results are summarized in Table 3. To validate our choice of Riemannian SGD (RSGD),
we compared it against a baseline using the AdamW optimizer. This baseline performs standard
Euclidean updates and then projects the vector back onto the unit sphere after each step, which
is not a true Riemannian update. The results show that RSGD substantially outperforms AdamW,
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Figure 2: We compare DTI with previous methods across diverse subjects and textual prompts,
ranging from simple to complex variations in attributes, backgrounds, and styles (same random seeds).
The results demonstrate that DTI consistently and accurately captures the intended user prompts.

highlighting the benefit of respecting the geometry of the directional manifold. Next, we found that
fixing the magnitude to minimum or out-of-distribution scale has negatively affect either subject
similarity or text fidelity. Setting the magnitude to an in-distribution scale yields the best results.
Lastly, removing the prior (i.e., κ = 0) or extremely high values of κ hurts the performance, while
moderate incorporation of prior provides the most stable results. Overall, we confirm that these
ablation results validate our design choices. Further analyses are provided in Appendix D.4.

4.4 HUMAN EVALUATION

Table 4: We surveyed real-world user prefer-
ences regarding subject fidelity and image-text
alignment. DTI ranks the top in both metrics,
confirming its practical benefits.

TI CrossInit DTI (ours)
Image fidelity 13.78 42.87 43.45
Text alignment 10.83 22.40 66.77

To further examine the effectiveness of our
method, we conducted a large scale user study
to measure real-world user preferences. Each par-
ticipant was asked to respond to 20 questions, com-
prising 10 questions assessing subject fidelity and
10 questions evaluating image-text alignment. Par-
ticipants were instructed to select the output that
best met the specified criteria for each question.
To ensure the reliability of the study, we excluded
four user responses that did not adhere to the spec-
ified instructions. A fixed random seed was employed, and the answer options were shuffled for
each question. The results, summarized in Table 4, show that DTI consistently outperforms the other
methods on both metrics, indicating that its improvements in alignment are clearly perceived by
human evaluators. More details of this user study can be found in Appendix D.5.

4.5 EMBEDDING INTERPOLATION FOR CREATIVE APPLICATIONS

We demonstrate the creative potential of our DTI through embedding interpolation experiments. As
illustrated in Figure 3, our DTI generates coherent interpolations via spherical linear interpolation
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Figure 3: We compare images generated by a TI and our DTI. Two personalized subjects are
interpolated, including interpolation between inanimate and animate subjects, live subjects, and human
faces. Images are generated with interpolation ratio [0.0, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 1.0]
for better visualization. Our DTI offers smooth interpolation between concepts, expanding the
personalization in more creative axis.

(SLERP), which matches the unit-sphere parameterization. This capability is a direct result of DTI’s
unit-spherical embedding space, which enables smooth and effective transitions. In contrast, the
linear interpolation used by TI often fails to produce coherent intermediate results.

The advantages of our approach are clearly visible across different domains. As shown in the first
rows of the figure, one can seamlessly merge a dog and a teapot, resulting in imaginative hybrid
objects like an adorable teapot that progressively adopts the features of the dog. This indicates that
DTI excels at blending conceptually distinct subjects, a significant creative application. In the second
example, it can create the creative animal between a dog and a cat, that merges the features of each
animal in a smooth manner. Lastly, DTI smoothly interpolates between the faces of a young boy and
an older woman, generating a plausible progression that simultaneously alters age and appearance
while maintaining facial coherence. This highlights its potential for nuanced face personalization.

Throughout these transitions, DTI produces visually consistent and creative outputs that retain
semantic meaning, unlocking novel user-driven applications and establishing it as a powerful tool for
intuitive concept blending. We provide the results of other applications, including face personalization,
stylization and subject-style generation throughout Appendix D.7.

5 RELATED WORK

5.1 PERSONALIZED TEXT-TO-IMAGE GENERATION

Recent advancements in text-to-image (T2I) generation have considerably expanded the creative
capabilities and flexibility of generative models (Ramesh et al., 2021; Rombach et al., 2022; Nichol
et al., 2022; Ramesh et al., 2022; Yu et al., 2022; Podell et al., 2024). Despite these innovations,
natural language inherently struggles to precisely convey nuanced, user-specific concepts. This
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inherent limitation has driven the development of personalization methods, which allow users to
generate images reflecting unique concepts with creative prompts.

Textual Inversion (Gal et al., 2023a), which is most well-known for its lightweight integration to
many other personalization works, uses embedding optimization by introducing learnable tokens for
personalized information without model modification. Subsequent work explored diverse embedding
strategies (Voynov et al., 2023; Alaluf et al., 2023; Wu et al., 2025; Zhang et al., 2024a), often with
demanding excessive computational costs. Among them, CrossInit (Pang et al., 2024a) offered an
efficient initialization strategy with minimal overhead, replacing initialization tokens with the output
of text encoder and using regularization loss.

In contrast, fine-tuning based methods such as DreamBooth (Ruiz et al., 2023) achieve high sub-
ject fidelity, but require significant computational resources compared to embedding optimization
methods (Kumari et al., 2023; Han et al., 2023; Gu et al., 2023; Chen et al., 2023a; Tewel et al.,
2023a; Zhang et al., 2024b; Qiu et al., 2023; Pang et al., 2024b) . More recently, Park et al. (2024)
proposed fine-tuning text encoder instead of image generator for efficiency, but they still demand
more parameters compared to embedding optimization methods.

Meanwhile, there exists a line of encoder-based approaches (Wei et al., 2023; Ruiz et al., 2024; Ye
et al., 2023; Gal et al., 2023b; Chen et al., 2023b; Li et al., 2023; Pang et al., 2024b; Ma et al., 2024)
that offer fast inference, but they necessitate substantial pre-training.

5.2 DIRECTIONAL EMBEDDING SPACE

A number of prior works has emphasized constraining embedding representations to the hypersphere.
These include using vMF mixtures for directional clustering (Jameel & Schockaert, 2019), normaliz-
ing norms for face recognition (Meng et al., 2019), angle-optimized embeddings to address cosine
saturation (Li & Li, 2024), and spherical constraints for uniform document clustering (Zhang et al.,
2020). Wang & Isola (2020) offered theoretical support for hyperspherical constraints in contrastive
learning. Our method aligns with this trend by modeling embeddings as directional distributions but
uniquely decomposes and explicitly optimizes textual embedding direction using a vMF prior within
Textual Inversion framework.

6 DISCUSSION & CONCLUSION

Our DTI primarily improves text prompt fidelity as it does not directly optimize for subject similarity.
For applications where high subject fidelity is paramount, DTI can be used in conjunction with
complementary lightweight fine-tuning methods, such as LoRA, as we demonstrate qualitatively in
Figure 8. Furthermore, our analysis is centered on the geometry of modern pre-norm text encoders.
An interesting direction for future work would be to investigate whether our findings generalize to
other types of encoders with different normalization or positional encoding schemes.

Overall, our work tackles a key challenge in personalized text-to-image generation: achieving a strong
alignment between text prompts and generated imagery. We have identified and rigorously analyzed
embedding norm inflation as a significant bottleneck to this alignment, providing both theoretical and
empirical evidence of its detrimental effects. In addition, our investigation focuses on the directional
characteristics of the token embedding space, an area that has been comparatively underexplored in the
literature, particularly when contrasted with the extensive research dedicated to the output embedding
space of text encoders. Leveraging this key insight into the semantic significance of token embedding
directionality, we proposed Directional Textual Inversion (DTI), a novel framework that keeps the
embedding norm to in-distribution scale and solely optimizes the direction. We further reformulate
the conventional Textual Inversion optimization process by incorporating directional priors. Our
DTI demonstrably enhances prompt fidelity, thereby substantially improving the practicality of
token embedding-based personalization and enabling innovative creative applications such as the
smooth interpolation of learned concepts. We truly hope our work paves the way for more effective
and versatile token embedding-based personalization within generative AI, unlocking enhanced
capabilities for users to articulate their unique creative visions with greater precision and control.

9
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REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we provide our complete source code, experimental
details, and dataset information in the supplementary material, which will be made publicly available
on GitHub upon publication. We utilized publicly available datasets, mostly from DreamBooth,
FFHQ and StyleDrop, and our repository will include scripts for any necessary preprocessing. Also,
all of the packages are explicitly stated in the pyproject.toml file of our code. All experiments
were conducted on a single NVIDIA A6000 GPU, with a training per subject for approximately 7
minutes with SDXL-base and 30 minutes with SANA1.5-1.6B. All hyperparameters are explicitly
defined in the Appendix, and also in the run files of our code to ensure transparency and ease of use.

LLM USAGE STATEMENT

We utilized Large Language Models (LLMs) to improve the grammar and clarity of this manuscript.
The core research, including the analysis and method, is the exclusive work of the authors.
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A EMBEDDING NORM AND DIRECTION

Original norm m = 0.5

Fixed magnitude

m = 1.0

Figure 4: Effect of magnitude change. We set the magnitude to a fixed value to analyze the impact
of magnitude changes. The resulting outputs show no noticeable difference.

We altered the magnitude of the token as exemplified in Figure 4. However, the resulting output re-
mained mostly unchanged. This indicates that minor adjustments to the magnitude do not significantly
affect the outcome.

Table 5: Nearest tokens under different measures. We show the nearest tokens to the query words
‘study’ and ‘writing’ using both cosine similarity and Euclidean distance.

Query Cosine Euclidean

study studies, studying, research, bookclub,
reading, studied, sketches, measurements, thumbnail

U+3160, texanscheer, asober, instaweatherpro,
mydayin, premiosmtvmiaw, tairp, thepersonalnetwork, U+2412

writing writer, write, written, writ,
writers, writings, recording, blogging, wrote

phdlife, poetryday, tomorrowspaper, urstrulymahesh,
@ , twitterkurds, asober, fakespeare, jamiedor

In Table 5, we provide additional examples illustrating the nearest words retrieved for each query
under different similarity measures, which strongly correlate with either direction or magnitude.
Our analysis reveals that cosine similarity retrieves words that share semantic meaning with the
query. Conversely, Euclidean distance is significantly affected by embedding magnitude, often
retrieving words with limited or no semantic relevance. This demonstrates that semantic meaning is
predominantly associated with embedding direction rather than magnitude. Note that words beginning
with U+ denote Unicode.

B PROOFS FOR THEORETICAL STATEMENTS

B.1 SETUP

Pre-norm block. We study pre-norm Transformer blocks

x(ℓ+1) = x(ℓ) + Fℓ(Norm(x(ℓ))), ℓ = 0, . . . , L− 1, (6)

where Norm ∈ {LayerNorm,RMSNorm} (with optional affine (γ, β) absorbed into Fℓ).

Scale invariance. For normalizations, we use the standard, scale-invariant definitions:

RMSN(x) =
√
d

x

∥x∥2
, LN(x) =

√
d

Cx

∥Cx∥2
, C := I − 1

d
11⊤. (7)

Thus RMSN(sx) = RMSN(x) and LN(sx) = LN(x) for all s > 0. Please refer to original papers
(Ba et al., 2016; Zhang & Sennrich, 2019) for further details.

Token decomposition. For the input token, we denote x(0) = mv + p with m > 0, ∥v∥2 = 1, and
(optional) absolute positional embedding p ∈ Rd.

Bounded sub-layers. Define S = {Norm(z) : z ̸= 0}. Since Norm maps into a fixed scale,
bounded set and Fℓ (attention/MLP plus projections) is continuous on bounded sets,

Bℓ := sup
u∈S
∥Fℓ(u)∥2 <∞. (8)
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B.2 POSITIONAL ATTENUATION

Lemma 1 (Absolute positional embedding attenuates as m→∞). Let x(0) = mv+p with ∥v∥2 = 1,
m > 0, and absolute positional embedding p ∈ Rd. Suppose Norm ∈ {LayerNorm,RMSNorm}
and v is non-degenerate for LayerNorm (i.e., its per-feature variance is nonzero; this holds for
generic token embeddings). Then∥∥Norm(mv + p)−Norm(mv)

∥∥
2
= O(∥p∥2

m
).

Hence the positional contribution shrinks linearly in 1/m.

Proof. By scale invariance, Norm(mv + p) = Norm
(
v + ε

)
with ε := p/m, and Norm(mv) =

Norm(v).

RMSNorm. With ∥v∥ = 1,

v + ε

∥v + ε∥
= v + (Id − vv⊤)ε+ ( ∥ε∥2),

hence RMSN(v + ε) − RMSN(v) =
√
d (Id − vv⊤)ε + O(∥ε∥2) and

∥RMSN(mv + p)− RMSN(mv)∥ ≤
√
d ∥p∥ /m+O(m−2).

LayerNorm. Write a := Cv ̸= 0, u := a/ ∥a∥. Then

a+Cε

∥a+Cε∥
= u+

(Id − uu⊤)Cε

∥a∥
+O(∥ε∥2),

so ∥LN(mv + p)− LN(mv)∥ =
√
d (Id−uu⊤)Cp

m∥Cv∥ +O(m−2), which is O(∥p∥ /m).

B.3 RESIDUAL STAGNATION

Lemma 2 (Residual stagnation in a pre-norm block). Let x(ℓ+1) = x(ℓ) + Fℓ(Norm(x(ℓ))) with
x(ℓ) ̸= 0 and Norm ∈ {LN,RMSN}, and let

Bℓ := sup
u∈S
∥Fℓ(u)∥2 <∞.

Then
∥x(ℓ+1) − x(ℓ)∥2
∥x(ℓ)∥2

≤ Bℓ

∥x(ℓ)∥2
, ∠(x(ℓ),x(ℓ+1)) ≤ arcsin

( Bℓ

∥x(ℓ)∥2

)
.

Proof. Since Norm(x(ℓ)) ∈ S, we have ∥x(ℓ+1) − x(ℓ)∥2 = ∥Fℓ(Norm(x(ℓ)))∥2 ≤ Bℓ, giving
the first bound. Write x(ℓ+1) = x(ℓ) + δ. The orthogonal component of δ is at most ∥δ∥, hence
sin∠(x(ℓ),x(ℓ+1)) ≤ ∥δ∥2/∥x(ℓ)∥2 ≤ Bℓ/∥x(ℓ)∥2, which implies the stated angle bound.

Proposition 1 (Accumulated directional drift across L pre-norm blocks). Let x(0) ̸= 0 and x(ℓ+1) =
x(ℓ) + Fℓ(Norm(x(ℓ))) for ℓ = 0, . . . , L − 1. Let Bℓ := supu∈S ∥Fℓ(u)∥2 < ∞, and SL :=∑L−1

j=0 Bj . Assume ∥x(0)∥2 > SL, then

∠
(
x(0),x(L)

)
≤ π

2

L−1∑
ℓ=0

Bℓ

∥x(0)∥2 −
∑

j<ℓ Bj
≤ π

2

SL

∥x(0)∥2 − SL
.

Proof. Let θℓ := ∠(x(ℓ), x(ℓ+1)). By the recall above, θℓ ≤ arcsin
(
Bℓ/

∥∥x(ℓ)
∥∥ ) ≤ π

2 Bℓ/
∥∥x(ℓ)

∥∥.
Also

∥∥x(ℓ)
∥∥ ≥ ∥∥x(0)

∥∥−∑
j<ℓ Bj (each step can shrink the norm by at most Bℓ). Summing angles

(spherical triangle inequality) gives the first display; since
∥∥x(0)

∥∥−∑
j<ℓ Bj ≥

∥∥x(0)
∥∥− SL, each

fraction is ≤ Bℓ/(
∥∥x(0)

∥∥− SL), yielding the last bound.
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C EXTENDED METHODS

C.1 RSGD FOR TOKEN EMBEDDING OPTIMIZATION

We observe that gradient magnitudes tend to increase as training progresses, which often leads to
instability in the later stages. Although standard learning rate schedules can help mitigate this issue,
the gradient dynamics vary considerably across different datasets and training settings, limiting the
effectiveness of fixed schedules. To address this, we draw inspiration from adaptive optimization
techniques in Euclidean space (Kingma & Ba, 2015; Duchi et al., 2011) and propose a simple yet
effective gradient scaling scheme based on gradient norms:

g′
k = gk/∥gk∥2, (9)

where g is the gradient at iteration k. This approach allows the learning rate to scale inversely with the
gradient magnitude, reducing the step size when gradients are large and thereby promoting stability
during training. Note that a similar technique was previously explored in the context of Riemannian
optimization (Cho & Lee, 2017).

C.2 WHY VMF OVER OTHER DISTRIBUTIONS?

We chose the von Mises-Fisher (vMF) distribution as it is ideally suited for modeling the directional
characteristics of token embeddings we identified in Section 2.1. Our central hypothesis is that
the token embedding vocabulary can be modeled as a mixture of vMF distributions, where each
component corresponds to a distinct semantic cluster (e.g., one for animals, another for objects). The
vMF distribution is the suitable building block for this model for three key reasons:

• It’s a natural fit. The vMF is the natural analog to the Gaussian distribution on a hyper-
sphere, making it a principled and standard choice for modeling directional data clusters.

• It’s computationally efficient. The vMF’s mathematical form is exceptionally convenient
for optimization. In our MAP formulation, the gradient of the log-prior is a constant-
direction vector (−κµ), which provides a stable and efficient semantic pull without requir-
ing complex calculations. This simplicity makes it more suitable for high-dimensional
embeddings in large-scale models than alternatives like the Kent and Bingham distributions.

• It’s interpretable and controllable. The parameters are easy to understand. The mean
direction µ serves as a semantic anchor to prevent the learned token from drifting away
from related concepts, while the concentration κ allows us to control the strength of this
regularization.

These factors collectively make the vMF distribution a superior choice for our application, providing
the necessary regularization in a way that is both mathematically principled and computationally
tractable.

D EXTENDED EXPERIMENTS

D.1 IMPLEMENTATION DETAILS

Following the protocol of recent studies, we primarily conducted experiments using Stable Diffusion
XL (SDXL). To demonstrate broader applicability to different models, we also conducted experiments
with very recent model, SANA 1.5 (Xie et al., 2024), where the results can be found in Table 2.

For a fair comparison, we adopted most of the hyperparameter settings from the Textual Inversion (TI)
implementation provided by the HuggingFace diffusers library. Specifically, we used a training
batch size of 4, and enabled mixed-precision training with the bfloat16 (bf16) format. We set the learn-
ing rate commonly-used 5e−3. All experiments were run with a fixed random seed of 42, and the max-
imum number of training steps was set to 500. For output generation, we used the DDIMScheduler
with 50 inference steps for SDXL and 20 steps with FlowMatchEulerDiscreteScheduler
for SANA.

Hyperparemeters. There can be various approaches to selecting the concentration parameter κ. We
performed a grid search and found that values in the range of 5e-5 to 2e-4 works well. Therefore,
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we did not conduct a extensive search for an optimal decimal value. Throughout the experiments, we
simply fixed value to 1e-4, which generalizes well to experiments with different settings. Examples
illustrating the effects of different κ settings are provided in Table 3.

Baselines. Throughout this paper, we compare our method with two baseline approaches: Textual
Inversion (TI) (Gal et al., 2023a) and CrossInit (Pang et al., 2024a). Since the official CrossInit
implementation is based on Stable Diffusion v2.1 with hyperparameters tailored to that version, we
reconfigure it to operate on SDXL by aligning its training setup with that of TI. Specifically, we adopt
the same hyperparameters as used for TI, and we set the regularization weight for CrossInit to 1e− 5,
as specified in the original paper.

D.2 ON THE CHOICE OF PRIOR

For all of our experiments in the main section, we used the initial tokens as prior from the DreamBooth
dataset as is. However, we would like to note that since our DTI can leverage the prior, searching for
better priors can lead to better results. This demonstrates the effectiveness of the prior.

To test this, we experimented with having a VLM recommend initial tokens. More specifically, we
provided reference images to the VLM and asked it to recommend 1-2 words that best describe them.
For the experiments, we used Qwen-VL 2.5 (Bai et al., 2025) as the VLM. The results are shown in
Table 6.

The results indicate that changing the prior affects performance, although the overall effect is modest.
For both TI and our DTI, Qwen-VL initialization tends to increase subject similarity, accompanied
by a slight decrease in text fidelity. Practitioners may leverage VLMs or manually craft priors with
targeted terms to emphasize desired attributes. Overall, these findings demonstrate the flexibility and
effectiveness of leveraging priors.

Table 6: Results with VLM-recommended priors. We compare Qwen-VL recommended initial tokens
with DreamBooth initial tokens as priors for DTI.

Method Initialization SDXL SANA
Image Text Image Text

TI DreamBooth init 0.561 0.292 0.480 0.621
Qwen-VL init 0.583 0.273 0.501 0.619

DTI (ours) DreamBooth init 0.450 0.522 0.479 0.744
Qwen-VL init 0.520 0.391 0.504 0.697

D.3 COMPARISON WITH OTHER BASELINES

We expand our comparative analysis to include additional baselines: P+ (Voynov et al., 2023),
NeTI (Alaluf et al., 2023), and CoRe (Wu et al., 2025). We run these experiments mainly on SD1.5
and SD2.1-base as these baseline papers work on those versions. Adhering to the evaluation protocol
of the main paper, we measure subject similarity using DINOv2 similarity and prompt fidelity with
the CLIP-variant, SigLIP. The results demonstrate that across both architectures, DTI consistently
achieves the most favorable balance between these metrics compared to all baselines.

Table 7: Results on SD1.5 and SD2.1-base. We compare the baselines that improve TI on different
versions of Stable Diffusion. DTI achieves the best balance between subject similarity and text
fidelity compared to other baselines.

Method SD1.5 SD2.1-base
Image Text Image Text

P+ (Voynov et al., 2023) 0.273 0.719 0.238 0.663
NeTI Alaluf et al. (2023) 0.408 0.579 0.565 0.517
CoRe Wu et al. (2025) 0.340 0.661 0.357 0.654
DTI (ours) 0.418 0.554 0.469 0.568
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D.4 ABLATION STUDY

Effect of Riemannian optimization. Our DTI framework employs Riemannian optimization
to ensure embeddings lie on the spherical manifold Sn−1. An alternative is to simply re-scale
embeddings after each Euclidean optimization step to achieve this constraint. However, Table 3
(first row) shows this latter Euclidean-based approach with re-scaling achieves suboptimal results,
highlighting the benefit of direct Riemannian optimization.

Effect of magnitude (m). We investigated the impact of the fixed embedding magnitude, m, on
personalization performance. Our DTI framework, by default, sets m to the average norm observed
in the pre-trained CLIP token vocabulary. We compared this “mean” strategy under the Riemannian
optimization setting with κ = 1e− 4:

• Setting m to the minimum vocabulary norm (“min”).
• Setting m to the mean vocabulary norm (“mean”).
• Setting m to a large, out-of-distribution (OOD) value of 5.0.

As shown in Table 3:

• The “mean” strategy achieves the highest subject similarity and strong text fidelity.
• The “min” strategy results in significantly poorer performance in both metrics.
• Using an OOD magnitude of 5.0 also leads to a degradation in both metrics.

These results validate our choice of fixing the magnitude to an in-distribution scale, specifically the
average vocabulary norm, as it provides a strong balance of subject similarity and text alignment.
Both excessively small (“min”) and out-of-distribution large (“OOD”) magnitudes are detrimental.

Effect of concentration parameter (κ). The concentration parameter κ of the von Mises-Fisher
(vMF) prior controls the strength of the directional regularization. We analyzed its effect by varying
κ while using Riemannian optimization and the “mean” embedding magnitude. We tested κ = 0.0
(no prior), κ = 1e− 4 (DTI default), and κ = 5e− 4.

The results in Table 3 indicate:

• With κ = 1e− 4, we observe the best balance between subject similarity and text fidelity.
• Setting κ = 0.0, which removes the directional prior, leads to lower scores in text fidelity,

which validates our method’s priority in model’s enhancing semantic understanding.
• Increasing the regularization strength with κ = 5e− 4 yields the highest text fidelity among

the tested values but at the cost of reduced subject similarity.

Overall, our default choice of κ = 1e − 4 provides a better balance between maintaining subject
similarity and ensuring text fidelity. Note that κ = 1e− 4 may not be strictly optimal in decimals
across all criteria but works reasonably well by providing robust overall performance.

D.5 DETAILS OF USER STUDY

To evaluate real-world user preferences for image generation quality, we conducted a comprehensive
user study involving 100 participants recruited through Amazon Mechanical Turk. Each participant
completed a survey consisting of 20 questions, evenly divided into two critical evaluation criteria:
subject similarity and text prompt fidelity. For each question, participants were presented with three
distinct image options, generated by: Textual Inversion (Gal et al., 2023a), CrossInit (Pang et al.,
2024a), and our proposed Directional Textual Inversion (DTI). The order of these three choices was
randomized for each question, using a fixed random seed to ensure consistent shuffling across all
participants. Sample questions can be found in Figure 5. We collected a total of 96 valid responses,
with 4 submissions being excluded due to invalid patterns such as selecting the same answer for all
questions. The results, as detailed in Table 3 (in the main paper), demonstrate that our Directional
Textual Inversion (DTI) consistently outperforms both Textual Inversion and CrossInit across both
evaluation metrics: image subject similarity and text prompt fidelity. These findings confirm the
superior performance of our proposed method in generating images that more accurately align with
user expectations regarding both visual content and textual descriptions.
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“A	dog	exploring	a	vibrant	coral	reef	underwater.”

Q.	Which	photo	most	follows	the	given	text	prompt?

(a) (b) (c)

Q.	Which	photo	most	resembles	the	given	subject?

(a) (b) (c)

(a)	Subject	similarity (b)	Text	prompt	fidelity

Figure 5: User Study Design. We conducted a user study with 100 participants recruited via Amazon
Mechanical Turk to evaluate 20 questions. The evaluation focused on two key aspects: subject
similarity (10 questions) and text prompt fidelity (10 questions). To ensure fair comparison, the
random seed was fixed and option order was shuffled.

D.6 MORE QUALITATIVE RESULTS

We present additional qualitative comparisons with TI-based approaches (Gal et al., 2023a; Pang et al.,
2024a) in Figure 6 (SDXL) and 7 (SANA). The results illustrate that our proposed DTI consistently
generates outputs that accurately align with the provided text prompts, even in challenging cases
where the baseline methods fail to do so.

Our DTI serves as a drop-in replacement for TI, enhancing the model’s performance when combined
with LoRA. The qualitative results in Figure 8 demonstrate that DTI consistently generates outputs
that both precisely follow the text prompt and accurately capture the subject’s details.

D.7 MORE RESULTS ON APPLICATIONS

Stylization. We explore the combination of personalized subject embeddings and style embeddings.
Our method, DTI, consistently generates images that accurately reflect both the personalized subject
and the specified style. In contrast, TI frequently fails in this task, either by omitting the subject
altogether (top row) or by inadequately capturing the intended style or subject details (bottom row) of
Figure 9.

My object in my style. We also compare our results in simultaneous generation of personalized
subject and style. The results demonstrated in Figure 10 shows that DTI successfully generates
outputs that are faithful to both subject and style, while TI fails to.

Face personalization. To evaluate and showcase the capability of our DTI method in face personal-
ization, we conducted experiments using randomly selected faces from the FFHQ dataset (Karras
et al., 2019) as well as faces generated by DALL·E (Ramesh et al., 2021).

Since CrossInit specifically focuses on facial personalization, we compare TI, CrossInit and our DTI
on this task. Given that CrossInit does not explicitly provide hyperparameters (including learning rate)
tailored for SDXL, we performed a grid search across various learning rates. Our empirical results
indicated that the learning rate used by TI yielded reasonable performance for CrossInit as well.
Figure 11 illustrates a comparison between the three methods, demonstrating that all methods perform
effectively for facial personalization. Nevertheless, as the complexity of text prompts increases
(rows depicted in the left columns), the baseline methods struggle to accurately reflect all described
components of the prompts. In contrast, our DTI method consistently captures the critical components
precisely, demonstrating superior performance in achieving enhanced textual fidelity.
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A <candle> in a luxurious interior living room

TI CrossInit DTI	(ours)Input

A <candle> with a mountain in the background

TI CrossInit DTI	(ours)

A <dog> in a dream of a distant galaxy A <dog> with a Japanese modern city in the background

A <dog> among the skyscrapers in New York city A <dog> on a cobblestone street

A <dog> in a movie theater A <dog> exploring a vibrant coral reef underwater

A <dog> wearing a black top and a monocle A <dog> wearing a spacesuit, 
planting a flag on the moon

A <dog> in a police outfit A <dog> wearing a santa hat

A <teapot> among the skyscrapers in New York city A <teapot> beside a rushing waterfall

Figure 6: Qualitative results with SDXL. Here, we provide more qualitative comparison with TI
and CrossInit. Our DTI consistently generates results that precisely reflect the user text prompts,
maintaining the subject similarity at the same time.
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A <cat> wearing a police outfit A <cat> with a beautiful sunset

A <cat> with a blue house in the background A <cat> in a chef outfit

A <dog> as an explorer, navigating through an 
icy Arctic landscape

A <dog> in a movie theater

A <dog> wearing a red hat A <dog> as a firefighter, extinguishing a fire 
in a skyscraper

A <toy> in a luxurious interior living room A <toy> on top of a mirror

A <teapot> in the jungle A <teapot> with a tree and autumn leaves in 
the background

TI CrossInit DTI	(ours) TI CrossInit DTI	(ours)Input

Figure 7: Qualitative results with SANA1.5-1.6B. Here, we provide more qualitative comparison
with TI and CrossInit on SANA. Our DTI consistently generates results that precisely reflect the user
text prompts, maintaining the subject similarity at the same time.
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TI
D
TI
	(o
ur
s)

Input

A <dog> sitting next to an 
old man on a bench

A <dog> wearing a sun cap 
is riding a surfboard in the 
ocean

A cyberpunk digital 
painting of a <dog> with 
neon lights

A watercolor painting of 
<dog> wearing a shirt, on 
the beach at sunset

Input

A <duck_toy> photographed 
in black and white on a 
vintage armchair

A watercolor painting of 
<duck_toy> wearing a 
santa hat, standing on a 
frozen lake

TI
D
TI
	(o
ur
s)

A <duck_toy> dressed in a 
tiny superhero cape, with a 
city in the background

A vintage advertisement 
poster featuring a 
<duck_toy> wearing a tie

Figure 8: Qualitative results with TI/DTI with LoRA on SDXL. We have performed qualitative
comparison of applying TI and DTI on model fine-tuning methods using LoRA (rank 32). DTI
consistently improves the text prompt fidelity compared to TI.
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A teddy bear in <style> 

TI
D
TI
	(o
ur
s)

In
pu
t

Figure 9: Stylization. Qualitative comparison of
personalization with diverse style inputs.

A <dog> in <style>

TI DTI	(ours)

Inputs

Figure 10: My subject in my style. Qualitative
comparison of subject-style mixing within the
same prompt.

Input

A <woman> wearing futuristic sunglasses, 
cyberpunk neon city background

TI CrossInit DTI	(ours)

A sand sculpture of <man> A sketch of <man> wearing tie

A sketch of <woman> wearing hat

TI CrossInit DTI	(ours)

Figure 11: Comparison of face personalization methods. We compare our method and Textual
Inversion (TI) against CrossInit, which specifically targets face personalization. To prevent bias
from celebrity faces, we evaluate personalization using two alternative sources: images generated
by DALL·E (Ramesh et al., 2021) (top row) and randomly selected images from the FFHQ (Karras
et al., 2019) (bottom row).

E SOCIETAL IMPACTS

The rapid advancement of text-to-image diffusion models, especially in the domain of personalization
techniques, raises important societal considerations. In particular, the ease of generating highly
specific and detailed images can raise concerns related to copyright infringement, as personalized
generative models may inadvertently or intentionally reproduce objects protected by intellectual
property laws. Therefore, we note that it is important for users and distributors of the model to
develop comprehensive awareness and implement guidelines addressing copyright boundaries, fair
use, and ethical content generation. Moreover, we note that, since our method does not modify the
underlying parameters of the generative model but solely adjusts the token embeddings that capture
personalized concepts, the quality of generated images inherently depends on the capabilities of the
underlying text-to-image model.
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