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Abstract

PANDORA’S BOX is a central problem in decision making under uncertainty that
can model various real life scenarios. In this problem we are given n boxes, each
with a fixed opening cost, and an unknown value drawn from a known distribution,
only revealed if we pay the opening cost. Our goal is to find a strategy for opening
boxes to minimize the sum of the value selected and the opening cost paid.
In this work we revisit PANDORA’S BOX when the value distributions are correlated,
first studied in Chawla et al. [2020]. We show that the optimal algorithm for the
independent case, given by Weitzman’s rule, directly works for the correlated case.
In fact, our algorithm results in significantly improved approximation guarantees
compared to the previous work, while also being substantially simpler. We also
show how to implement the rule given only sample access to the correlated distri-
bution of values. Specifically, we find that a number of samples that is polynomial
in the number of boxes is sufficient for the algorithm to work.

1 Introduction

In various minimization problems where uncertainty exists in the input, we are allowed to obtain
information to remove this uncertainty by paying an extra price. Our goal is to sequentially decide
which piece of information to acquire next, in order to minimize the sum of the search cost and the
value of the option we chose.

This family of problems is naturally modeled by PANDORA’S BOX, first formulated by Weitzman
[1979] in an economics setting, with multiple application in consumer search, housing markets and
job search (see [McCall and McCall, 2007] for more applications). In this problem where we are
given n boxes, each containing a value drawn from a known distribution and each having a fixed
known opening cost. We can only see the exact value realized in a box if we open it and pay the
opening cost. Our goal is to minimize the sum of the value we select and the opening costs of the
boxes we opened.

In the original work of Weitzman, an optimal solution was proposed when the distributions on the
values of the boxes were independent [Weitzman, 1979]. This algorithm was based on calculating
a reservation value (σ) for each box, and then choosing the box with the lowest reservation value
to open at every step. Independence, however, is an unrealistic assumption in real life; in a housing
market neighboring houses’ price are affected the same way, or in a job search setting, candidates
might share qualifications that affect them similarly. Wanting to tackle a more realistic setting,
Chawla et al. [2020] first studied the problem where the distributions are correlated, and designed an
algorithm giving a constant approximation guarantee. This algorithm is quite involved, it requires
solving an LP to convert the PANDORA’S BOX instance to a MIN SUM SET COVER one, and then
solving this instance to obtain an ordering of opening the boxes. Finally, it reduces the problem of
deciding when to stop to an online algorithm question corresponding to SKI-RENTAL.
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1.1 Our Contribution

In this work we revisit PANDORA’S BOX with correlations, and provide simpler, learnable algorithms
with better approximation guarantees, that directly generalize Weitzman’s reservation values.
More specifically, our results are the following.

• Generalizing: we first show how the original reservation values given by Weitzman [1979]
can be generalized to work in correlated distributions, thus allowing us to use a version of
their initial greedy algorithm.

• Better approximation: we give two different variants of our main algorithm, that each uses
different updates on the distribution D after every step.

1. Variant 1: partial updates. We condition on the algorithm not having stopped yet.
2. Variant 2: full updates. We condition on the exact value v revealed in the box opened.

Both variants improve the approximation given by Chawla et al. [2020] from 9.22 to 4.428
for Variant 1 and to 5.828 for Variant 2. It is worth noting that our result for Variant 1
is almost tight, since the best possible approximation factor we can obtain is 4, implied
by Feige [1998]. We include more details on the lower bound in Section A.4 of the Appendix.

• Simplicity: our algorithms are greedy and only rely on the generalized version of the
reservation value, while the algorithms in previous work rely on solving a linear program,
and reducing first to MIN SUM SET COVER then to SKI-RENTAL, making them not
straightforward to implement. A 9.22 approximation was also given in Gergatsouli and
Tzamos [2022], which followed the same approach but bypassed the need to reduce to MIN
SUM SET COVER by directly rounding the linear program via randomized rounding.

• Learnability: we show how given sample access to the correlated distribution D we
are able to still maintain the approximation guarantees. Specifically, for Variant 1 only
poly(n, 1/ε, log(1/δ)) samples are enough to obtain 4.428 + ε approximation with proba-
bility at least 1− δ. Variant 2 is however impossible to learn.

Our analysis is enabled by drawing similarities from PANDORA’S BOX to MIN SUM SET COVER,
which corresponds to the special case of when the values inside the boxes are 0 or∞. For MIN SUM
SET COVER a simple greedy algorithm was shown to achieve the optimal 4-approximation [Feige
et al., 2002]. Surprisingly, Weitzman’s algorithm can be seen as a direct generalization of that
algorithm. Our analysis follows the histogram method introduced in Feige et al. [2002], for bounding
the approximation ratio. However, we significantly generalize it to handle values in the boxes and
work with tree-histograms required to handle the case with full-updates.

1.2 Related Work

Since Weitzman’s initial work [Weitzman, 1979] on PANDORA’S BOX there has been a renewed
interest in studying this problem in various settings. Specifically Doval [2018], Beyhaghi and
Kleinberg [2019], Beyhaghi and Cai [2023a], Fu et al. [2023] study PANDORA’S BOX when we can
select a box without paying for it (non-obligatory inspection), in Boodaghians et al. [2020] there
are tree or line constraints on the order in which the boxes can be opened. In Chawla et al. [2020,
2021] the distributions on the values inside the boxes are correlated and the goal is to minimize
the search and value cost, while finally in Bechtel et al. [2022] the task of searching over boxes
is delegated by an agent to a principal, while the agent makes the final choice. The recent work
of Chawla et al. [2020] is the first one that explores the correlated distributions variant and gives
the first approximation guarantees. The recent survey by Beyhaghi and Cai [2023b] summarizes the
recent work on Pandora’s Box and its variants.

This problem can be seen as being part of the “price of information" literature [Charikar et al., 2000,
Gupta and Kumar, 2001, Chen et al., 2015b,a], where we can remove part of the uncertainty of the
problem at hand by paying a price. In this line of work, more recent papers study the structure of
approximately optimal rules for combinatorial problems [Goel et al., 2006, Gupta and Nagarajan,
2013, Adamczyk et al., 2016, Gupta et al., 2016, 2017, Singla, 2018, Gupta et al., 2019].

For the special case of MIN SUM SET COVER, since the original work of Feige et al. [2002], there has
been many follow-ups and generalizations where every set has a requirement of how many elements
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contained in it we need to choose [Azar et al., 2009, Bansal et al., 2010, Azar and Gamzu, 2011,
Skutella and Williamson, 2011, Im et al., 2014].

Note also that multiple results on problems related to Pandora’s box have been published in ML-
related conferences, as this is a problem that encompasses both algorithmic and learning aspects (e.g.
Esfandiari et al. [2019], Gergatsouli and Tzamos [2022], Bhaskara et al. [2020], Cesa-Bianchi et al.
[2021], Guo et al. [2021]).

2 Preliminaries

In PANDORA’S BOX (PB) we are given a set of n boxes B, each with a known opening cost cb ∈ R+,
and a distribution D over a vector of unknown values v = (v1, . . . , vn) ∈ Rn

+ inside the boxes. Each
box b ∈ B, once it is opened, reveals the value vb. The algorithm can open boxes sequentially, by
paying the opening cost each time, and observe the value instantiated inside the box. The goal of the
algorithm is to choose a box of small value, while spending as little cost as possible “opening" boxes.
Formally, denoting by O ⊆ B the set of opened boxes, we want to minimize

Ev∼D

[
min
b∈O

vb +
∑
b∈O

cb

]
.

A strategy for PANDORA’S BOX is an algorithm that in every step decides which is the next box to
open and when to stop. We measure the performance of our algorithm usign the competitive (or
approximation) ratio; a strategy A is α-approximation if E [A] ≤ αOPT, where OPT is the optimal
online algorithm1

A strategy can pick any open box to select at any time. To model this, we assume without loss of
generality that after a box is opened the opening cost becomes 0, allowing us to select the value
without opening it again. In its full generality, a strategy can make decisions based on every box
opened and value seen so far. We call this the Fully-Adaptive (FA) strategy.

Different Benchmarks. As it was initially observed in Chawla et al. [2020], optimizing over the
class of fully-adaptive strategies is intractable, therefore we consider the simpler benchmark of
partially-adaptive (PA) strategies. In this case, the algorithm has to fix the opening order of the boxes,
while the stopping rule can arbitrarily depend on the values revealed.

2.1 Weitzman’s Algorithm

When the distributions of values in the boxes are independent, Weitzman [1979] described a greedy
algorithm that is also the optimal strategy. In this algorithm, we first calculate an index for every box
b, called reservation value σb, defined as the value that satisfies the following equation

Ev∼D
[
(σb − vb)

+
]
= cb, (1)

where (a− b)+ = max(0, a− b). Then, the boxes are ordered by increasing σb and opened until the
minimum value revealed is less than the next box in the order. Observe that this is a partially-adaptive
strategy.

3 Competing with the Partially-Adaptive

We begin by showing how Weitzman’s algorithm can be extended to correlated distributions. Our
algorithm calculates a reservation value σ for every box at each step, and opens the box b ∈ B with
the minimum σb. We stop if the value is less than the reservation value calculated, and proceed in
making this box free; we can re-open this for no cost, to obtain the value just realized at any later
point. The formal statement is shown in Algorithm 1.

We give two different variants based on the type of update we do after every step on the distribution
D. In the case of partial updates, we only condition on Vb > σb, which is equivalent to the algorithm

1The optimal online has the exact same information as our algorithm A but has infinite computation time to
solve the problem.
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not having stopped. On the other hand, for full updates we condition on the exact value that was
instantiated in the box opened. Theorem 3.1 gives the approximation guarantees for both versions of
this algorithm.

Algorithm 1: Weitzman’s algorithm, for correlated D.
Input: Boxes with costs ci ∈ R, distribution over scenarios D.

1 An unknown vector of values v ∼ D is drawn
2 repeat
3 Calculate σb for each box b ∈ B by solving:

Ev∼D
[
(σb − vb)

+
]
= cb.

4 Open box b = argminb∈Bσb

5 Stop if the value the observed Vb = vb ≤ σb

6 cb ← 0 // Box is always open now or can be reopened
7 Update the prior distribution

- Variant 1: D ← D|Vb>σb
(partial updates)

- Variant 2: D ← D|Vb=vb (full updates)

8 until termination;

Theorem 3.1. Algorithm 1 is a 4.428-approximation for Variant 1 and 5.828-approximation for
Variant 2 of PANDORA’S BOX against the partially-adaptive optimal.

Proof. We seperately show the two components of this theorem in Theorems 3.2 and 3.3.

Observe that for independent distributions this algorithm is exactly the same as Weitzman’s [Weitzman,
1979], since the product prior D remains the same, regardless of the values realized. Therefore, the
calculation of the reservation values does not change in every round, and suffices to calculate them
only once at the beginning.

Scenarios To proceed with the analysis of Theorem 3.1, we assume that D is supported on a
collection of m vectors, (vs)s∈S , which we call scenarios, and sometimes abuse notation to say that
a scenario is sampled from the distribution D. We assume that all scenarios have equal probability.
The general case with unequal probabilities follows by creating more copies of the higher probability
scenarios until the distribution is uniform.

A scenario is covered when the algorithm decides to stop and choose a value from the opened boxes.
For a specific scenario s ∈ S we denote by c(s) the total opening cost paid by an algorithm before
this scenario is covered and by v(s) the value chosen for this scenario.

Reservation Values To analyze Theorem 3.1, we introduce a new way of defining the reservation
values of the boxes that is equivalent to (1). For a box b, we have that

σb = min
A⊆S

cb +
∑

s∈A PrD [s] vsb∑
s∈A PrD [s]

The equivalence to (1), follows since σb is defined as the root of the expression

Es∼D
[
(σb − vsb)

+
]
− cb =

∑
s∈S

PrD [s] (σb − vsb)
+ − cb

= max
A⊆S

∑
s∈A

PrD [s] (σb − vsb)− cb.

If we divide the above expression by any positive number, the result will not be affected since we
require the root of the equation; σb being the root is equivalent to σb being the root of the numerator.
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Thus, dividing by
∑

s∈A PrD [s] we get that σb is also the root of

max
A⊆S

∑
s∈A PrD [s] (σb − vsb)− cb∑

s∈A PrD [s]
= σb − min

A⊆S

cb +
∑

s∈A PrD [s] vsb∑
s∈A PrD [s]

. (2)

This, gives our formula for computing σb, which we can further simplify using our assumption that
all scenarios have equal probability. In this case, PrD [s] = 1/|S| which implies that

σb = min
A⊆S

cb|S|+
∑

s∈A vsb
|A|

. (3)

3.1 Conditioning on Vb > σb

We start by describing the simpler variant of our algorithm where after opening each box we update
the distribution by conditioning on the event Vb > σb. This algorithm is partially adaptive, since
the order for each scenario does not depend on the actual value that is realized every time. At every
step the algorithm will either stop or continue opening boxes conditioned on the event “We have not
stopped yet" which does not differentiate among the surviving scenarios.

Theorem 3.2. Algorithm 1 is a 4.428-approximation for PANDORA’S BOX against the partially-
adaptive optimal, when conditioning on Vb > σb.

In this section we show a simpler proof for Theorem 3.2 that gives a 3+2
√
2 ≈ 5.828-approximation.

The full proof for the 4.428-approximation is given in section A.2 of the Appendix. Using the
equivalent definition of the reservation value (Equation (3)) we can rewrite Algorithm 1 as follows.

Algorithm 2: Weitzman’s rule for Partial Updates
Input: Boxes with costs ci ∈ R, set of scenarios S.

1 t← 0
2 R0 ← S the set of scenarios still uncovered
3 while Rt ̸= ∅ do
4 Let σt ← minb∈B,A⊆Rt

cb|Rt|+
∑

s∈A vs
b

|A|
5 Let bt and At be the box and the set of scenarios that achieve the minimum
6 Open box bt and pay cbt
7 Stop and choose the value vbt at box bt if it is less than σt (see also Fact 3.2.1)
8 Set cbt ← 0
9 Rt ← Rt \At

10 t← t+ 1
11 end

Structure of the solution. An important property to note is that by the equivalent definition of the
reservation value (3) the set of scenarios that stop at each step are the ones that give a value at most σ
for the box opened, as we formally state in the following fact.

Fact 3.2.1. The value at box bt is less than σt if and only if s ∈ At.

In equation (8) the set At that maximizes the expression contains all the scenarios with value at
most σb for the box b. Therefore, the set At are exactly the scenarios covered at each step t of the
algorithm, and can be removed from consideration.

Before showing our result, observe that this algorithm is partially adaptive; the order of the boxes
does not depend on the scenario realized. This holds since we only condition on “not having stopped"
(i.e. DVb>σb

) and therefore each scenario either stops or uses the same updated prior as all other
surviving scenarios to calculate the next reservation values. If we were to draw our solution, it would
look like a line, (see also Figure 2 in Appendix A.2), which as we observe in Section 3.2 differs from
Variant 2.

Moving on to show the proof, we first start by giving a bound on the cost of the algorithm. The cost
can be broken down into opening cost plus the value obtained. Since at any time t, all remaining
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scenarios Rt pay the opening cost cbt , we have that the total opening cost is
∑

t cbt |Rt|. Moreover,
the chosen value is given as

∑
t

∑
s∈At

vsbt . Overall, we have that

ALG =
∑
t

(
cbt |Rt|+

∑
s∈At

vsbt

)
=
∑
t

|At|
cbt |Rt|+

∑
s∈At

vsbt
|At|

=
∑
t

|At|σt.

Defining σs to be the reservation value of scenario s at the time it is covered, i.e. when s ∈ At, we
get ALG =

∑
s∈S σs

2. We follow a histogram analysis similar to the proof of Theorem 4 in Feige
et al. [2004] for MIN SUM SET COVER and construct the following histograms.

• The OPTo histogram: put the scenarios on the x-axis on increasing opening cost order cOPT
s

according to OPT, the height of each scenario is the opening cost it paid.

• The OPTv histogram: put the scenarios on the x-axis on increasing covering value order
vOPT
s according to OPT, the height of each scenario is the value with which it was covered.

• The ALG histogram: put scenarios on the x-axis in the order the algorithm covers them.
The height of each scenario is σs. Observe that the area of the ALG histogram is exactly the
cost of the algorithm.

Proof of Theorem 3.2. Initially, observe that the algorithm will eventually stop; every time we open
a box we cover at least one scenario (since line 3 is cannot be∞ while scenarios are left uncovered).

To show the approximation factor, we scale the histograms as follows; OPTo scale horizontally
by 1/αo and vertically by 1/(β · γ), and OPTv scale by 1/αv horizontally, for some constants
αo, αv, γ, β ∈ (0, 1) to be determined later3. We align the ALG histogram with OPTv and OPTo so
that all of them have the same right-hand side. Observe that the optimal opening cost is the area
below the histogram OPTo and has increased by β · γ · αo, and similarly the area below OPTv has
increased by αv as a result of the scaling.

To conclude the proof it suffices to show that any point in the ALG histogram is inside the sum of
the rescaled OPTv and OPTo histograms. Consider any point p in the ALG histogram, and let s be
its corresponding scenario and t be the time this scenario is covered. We have that the height of the
ALG histogram is

σs =
cbt |Rt|+

∑
s∈At

vsbt
|At|

≤
cb|Rt|+

∑
s∈A vsb

|A|
(4)

where the last inequality holds for all A ⊆ Rt and any b ∈ B.

Denote by c∗ the opening cost such that γ|Rt| of the scenarios in Rt have opening cost less than
c∗, and by Rlow = {s ∈ Rt : cOPT

s ≤ c∗} the set of these scenarios. Similarly denote by v∗

the value of scenarios in Rlow such that β|Rlow| of the scenarios have value less than v∗ and by
L = {s ∈ Rlow : vOPT

s ≤ v∗} these scenarios. This split is shown in Figure 1, and the constants
β, γ ∈ (0, 1) will be determined at the end of the proof.

|Rt|v∗ c∗

γ|Rt| (1− γ)|Rt|

βγ|Rt|
(1− β)γ|Rt|

Figure 1: Split of scenarios in Rt.

Let BL be the set of boxes that the optimal solution uses to cover the scenarios in L. Let Lb ⊆ L ⊆ Rt

be the subset of scenarios in L that choose the value at box b in OPT. Using inequality (4) with

2Throughout this proof we omit the normalization term 1/|S| both on the algorithms cost and on the optimal
cost, without loss of generality, since our guarantee is multiplicative.

3Scaling horizontally means that we duplicate every scenario and scaling vertically we just multiply the
height at every point by the scale factor.
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b ∈ BL and A = Lb, we obtain σs|Lb| ≤ cb|Rt|+
∑

s∈Lb
vOPT
s , and by summing up the inequalities

for all b ∈ BL we get

σs ≤
|Rt|

∑
b∈BL

cb +
∑

s∈L vOPT
s

|L|
≤
|Rt|c∗ +

∑
s∈L vOPT

s

|L|
≤ c∗

β · γ
+

∑
s∈L vOPT

s

|L|
(5)

where for the second inequality we used that the cost for covering the scenarios in L is at most c∗
by construction, and in the last inequality that |L| = |Rt|/(β · γ). We consider each term above
separately, to show that the point p is within the histograms.

Bounding the opening cost. By the construction of c∗, the point in the OPTo histogram that has
cost at least c∗ is at distance at least (1 − γ)|Rt| from the right hand side. This means that in the
rescaled histogram, the point that has cost at least c∗/(β · γ) is at distance at least (1− γ)|Rt|/αo

from the right hand side.

On the other hand, in the ALG histogram the distance of p from the right edge of the histogram is at
most |Rt|, therefore for the point p to be inside the OPTo histogram we require

αo ≤ 1− γ. (6)

Observe that throughout the proof we did not use the fact that we change the opening cost to 0,
therefore the bound on our cost works even if we re-pay the boxes that are reopened.

The fact that the opening cost becomes 0 is not directly used in the analysis (i.e. inequalities (4) and
(5) ). Our analysis gives an upper bound on the cost of the algorithm, even if the algorithm never
changes the cost of an opened box to 0. That is the reason in (4) and (5) the cost appears unchanged
but the analysis still works for the algorithm since we just want an upper bound (and if we changed
the cost to 0 this would only lower the cost of the algorithm).

Bounding the values cost. By the construction of v∗, the point in the OPTv histogram that has
value v∗ is at distance at least |Rt|(1− β)γ from the right hand side. This means that in the rescaled
histogram, the point that has value at least v∗ is at distance at least (1− β)γ|Rt|/αv from the right
hand side.

On the other hand, in the ALG histogram the distance of p from the right edge of the histogram is at
most |Rt|, therefore for the point p to be inside the OPTo histogram we require

αv ≤ (1− β)γ. (7)

We optimize the constants αo, αv, β, γ by ensuring that inequalities (6) and (7) hold. We set αo =
1 − γ and αv = (1 − β)γ, and obtain that ALG ≤ OPTo/(β · γ · (1 − γ)) + OPTv/((1 − β)γ).
Requiring these to be equal we get β = 1/(2−γ), which is minimized for β = 1/

√
2 and γ = 2−

√
2

for a value of 3 + 2
√
2.

3.2 Conditioning on Vb = v

In this section we switch gears to our second variant of Algorithm 1, where in each step we update
the prior D conditioning on the event Vb = v. We state our result in Theorem 3.3. In this case, the
conditioning on D implies that the algorithm at every step removes the scenarios that are inconsistent
with the value realized. In order to understand better the differences of the two variants and their
conditioning we included an example and a discussion in section A.1 of the Appendix.
Theorem 3.3. Algorithm 1 is a 3 + 2

√
2 ≈ 5.828-approximation for PANDORA’S BOX against the

partially-adaptive optimal, when conditioning on Vb = v.

The main challenge was that the algorithm’s solution is now a tree with respect to scenarios instead
of a line as in the case of D|Vb>σb

. Specifically, in the D|Vb>σb
variant at every step all scenarios

that had Vb ≤ σb were covered and removed from consideration. However in the D|Vb=v variant
the remaining scenarios are split into different cases, based on the realization of V , as shown in the
example of Figure 4, which is deferred to Section A.3 of the Appendix due to space constraints.

This results into the ALG histogram not being well defined, since there is no unique order of covering
the scenarios. We overcome this by generalizing the histogram approach to trees.
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Proof of Theorem 3.3. The proof follows similar steps to that of Theorem 3.2, thus we only highlight
the differences. The algorithm is presented below, the only change is line 5 where we remove the
inconsistent with the value revealed scenarios, which also leads to our solution branching out for
different scenarios and forming a tree.

Algorithm 3: Weitzman’s rule for Full Updates
Input: Boxes with costs ci ∈ R, set of scenarios S.

1 Define a root node u corresponding to the set S
2 Ru ← S the set of scenarios still uncovered
3 while Ru ̸= ∅ do
4 Let σu ← minb∈B,A⊆Ru

cb|Ru|+
∑

s∈A vs
b

|A|
5 Let bu and Au be the box and the set of scenarios that achieve the minimum
6 Open box bu paying cbu and observe value v
7 Stop and choose the value at box bu if it is less than σu: this holds iff s ∈ Au

8 Set cbu ← 0
9 Let u′ be a vertex corresponding to the set of consistent scenarios with

Ru′ ≜ Ru \
(
Au ∪ {s ∈ Ru : vsbu ̸= v}

)
// Remove inconsistent scenarios

10 Set u← u′

11 end

Bounding the opening cost Consider the tree T of ALG where at every node u a set Au of
scenarios is covered. We associate this tree with node weights, where at every node u, we assign |Au|
weights (σu, ..., σu). Denote, the weighted tree by TALG. As before, the total cost of ALG is equal to
the sum of the weights of the tree.

We now consider two alternative ways of assigning weights to the the nodes, forming trees TOPTo
,

TOPTv
using the following process.

• TOPTo
. At every node u we create a vector of weights wOPTo

u = (cOPT
s )s∈Au

where each
cOPT
s is the opening cost that scenario s ∈ Au has in the optimal solution.

• TOPTv . At every node u we create a vector of weights wOPTv
u = (vOPT

s )s∈Au where each
vOPT
s is the value the optimal uses to cover scenario s ∈ Au.

We denote by cost(TALG) the sum of all weights in every node of the tree T . We have that cost(T ) is
equal to the total cost of ALG, while cost(TOPTo

) and cost(TOPTv
) is equal to the optimal opening

cost OPTo and optimal value OPTv respectively. Intuitively, the weighted trees correspond to the
histograms in the previous analysis of Theorem 3.2.

We want to relate the cost of ALG, to that of TOPTo
and TOPTv

. To do this, we define an operation
similar to histogram scaling, which replaces the weights of every node u in a tree with the top
ρ-percentile of the weights in the subtree rooted at u. As the following lemma shows, this changes
the cost of a tree by a bounded multiplicative factor.

Lemma 3.3.1. Let T be a tree with a vector of weights wu at each node u ∈ T , and let T (ρ) be the
tree we get when we substitute the weights of every node with the top ρ-percentile of all the weights
in the subtree of T rooted at u. Then

ρ · cost(T (ρ)) ≤ cost(T ).

We defer the proof of Lemma 3.3.1 to Section A.3 of the Appendix. To complete the proof of
Theorem 3.3, and bound cost(TALG), we show as before that the weights at every node u, are bounded
by the weights of T (1−γ)

OPTo
scaled by 1

βγ plus the weights of T ((1−β)γ)
OPTv

, for the constants β, γ ∈ (0, 1)

chosen in the proof of Theorem 3.2. This implies that

cost(TOPTo
) ≤ 1

βγ
cost(T (1−γ)

OPTo
) + cost(T ((1−β)γ)

OPTv
)
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≤ 1

βγ(1-γ)
cost(TOPTo

) +
1

(1-β)γ
cost(TOPTv

)

which gives ALG ≤ 5.828OPT for the choice of β and γ. The details of the proof are similar to the
one of Theorem 3.1, and are deferred to section A.3 of the Appendix.

Note on the approximation factors. Observe that Variant 2, where we condition on Vb = v has a
worse approximation factor than Variant 1 where we only condition on Vb > σb. Intuitively someone
might expect that with more information the approximation factor will improve. However, it is
challenging to argue about this formally. It is also plausible that such monotonicity may not hold
as more information might lead the greedy algorithm to make wrong decisions. Instead of making
any such claims, we analyze this case directly by showing that our proof approach extends to the full
update variant with a generalization of the histogram method to work on trees. Our technique for
improving the approximation for the partial updates variant could not be generalized however and
thus we only obtain the worse approximation guarantee.

4 Learning from Samples

In this section we show that our algorithm also works when we are only given sample access to the
correlated distribution D.

We will mainly focus on the first variant with partial updates D|V >v. The second variant with full
Bayesian updates D|V=v requires full knowledge of the underlying distribution and can only work
with sample access if one can learn the full distribution. To see this consider for example an instance
where the values are drawn uniformly from [0, 1]d. No matter how many samples one draws, it is
impossible to know the conditional distribution D|V=v after opening the first box for fresh samples v,
and the Bayesian update is not well defined4.

Variant 1 does not face this problem and can be learned from samples if the costs of the boxes are
polynomially bounded by n, i.e. if there is a constant c > 0 such that for all b ∈ B, cb ∈ [1, nc]. If
the weights are unbounded, it is impossible to get a good approximation with few samples. To see
this consider the following instance. Box 1 has cost 1/H → 0, while every other box has cost H for
a very large H > 0. Now consider a distribution where with probability 1 − 1

H → 1, the value in
the first box is 0, and with probability 1/H is +∞. In this case, with a small number of samples we
never observe any scenario where v1 ̸= 0 and believe the overall cost is near 0. However, the true
cost is at least H · 1/H ≥ and is determined by how the order of boxes is chosen when the scenario
has v1 ̸= 0. Without any such samples it is impossible to pick a good order.

Therefore, we proceed to analyze Variant 1 with D|V >σ in the case when the box costs are similar.
We show that polynomial, in the number of boxes, samples suffice to obtain an approximately-optimal
algorithm, as we formally state in the following theorem. We present the case where all boxes have
cost 1 but the case where the costs are polynomially bounded easily follows.
Theorem 4.1. Consider an instance of Pandora’s Box with opening costs equal to 1. For any given
parameters ε, δ > 0, using m = poly(n, 1/ε, log(1/δ)) samples from D, Algorithm 1 (Variant 1)
obtains a 4.428 + ε approximation policy against the partially-adaptive optimal, with probability at
least 1− δ.

To prove the theorem, we first note that variant 1 of Algorithm 1 takes a surprisingly simple form,
which we call a threshold policy. It can be described by a permutation π of visiting the boxes and
a vector of thresholds τ that indicate when to stop. The threshold for every box corresponds to the
reservation value the first time the box is opened. To analyze the sample complexity of Algorithm 1,
we study a broader class of algorithms parameterized by a permutation and vector of thresholds given
in Algorithm 4.

Our goal now is to show that polynomially many samples from the distribution D suffice to learn
good parameters for Algorithm 4. We first show a Lemma that bounds the cost of the algorithm
calculated in the empirical D̂ instead of the original D (Lemma 4.1.1), and a Lemma 4.1.2 that shows
how capping the reservation values by n/ε can also be done with negligible cost.

4For a discrete distribution example see Section A.5 of the appendix.
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Algorithm 4: General format of PANDORA’S BOX algorithm.
Input: Set of boxes, permutation π, vector of thresholds τ ∈ Rn

1 best←∞
2 foreach i ∈ [n] do
3 if best > τi then
4 Open box πi, see value vi
5 best← min(best, vi)
6 else
7 Accept best
8 end

Lemma 4.1.1. Let ε, δ > 0 and let D′ be the empirical distribution obtained from poly(n, 1/ε,
log(1/δ)) samples from D. Then, with probability 1− δ, it holds that∣∣∣∣ED̂

[
ALG(π, τ)−min

b∈B
vb

]
− ED

[
ALG(π, τ)−min

b∈B
vb

]∣∣∣∣ ≤ ε

for any permutation π and any vector of thresholds v ∈
[
0, n

ε

]n
We defer the proof of Lemmas 4.1.1, 4.1.2 and that of Theorem 4.1 to Section A.5 of the Appendix.
Lemma 4.1.2. Let D be any distribution of values. Let ε > 0 and consider a permutation π and
thresholds τ . Moreover, let τ ′ be the thresholds capped to n/ε, i.e. setting τ ′b = min{τb, n/ε} for all
boxes b. Then,

Ev∼D [ALG(π, τ ′)] ≤ (1 + ε)Ev∼D [ALG(π, τ)] .

Note on Continuous vs Discrete Distributions. The results of Section 4 apply for general distribu-
tions (discrete or continuous) and show that the partial updates variant leads to good approximation
when run on the empirical distribution obtained just with polynomially many samples. In contrast, the
full updates variant requires a complete description of the distribution. However, as the approximation
factor does not depend on the support size, It can also apply even for continuous distributions with
arbitrary large support by taking a limit over a very fine discretization

5 Conclusion

We present a summary of our results with a comparison to previous work on Table 1. Our main
contribution was to improve the approximation factor for Pandora’s Box with correlations given
by Chawla et al. [2020], while also greatly simplifying their approach. Our algorithm also directly
extends the independent case algorithm, giving us a unified way to solve this problem. An interesting
open question is to try and improve their results for more complex combinatorial constraints, like
selecting k boxes (instead of one) or for selecting a basis of size k, when the boxes are part of a
matroid.

Approx. Factor Learnable from Samples

Algorithm of Chawla et al. [2020] 9.22 Yes

Variant 1 (DVb>σb
) 4.428 (Thm 3.2) Yes (Thm 4.1 )

Variant 2 (DVb=v) 5.828 (Thm 3.3) No (Sec. 4)
Table 1: Summary of our results (in bold) and comparison to previous work.

Observe also that the more natural Variant 2 seems worse than Variant 1 even though the algorithm
has more accurate information through the update of the prior. Intuitively we would expect a better
factor, however since the algorithm is greedy approximation, and not the optimal, the factor may
not necessarily be monotone on the amount of information given. We leave as an open problem
whether our analysis in Variant 2 is tight or this greedy algorithm cannot perform better under full
information.
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A Appendix

A.1 Supplemental Preliminaries

Updating the prior. We include an example showing the process of updating the prior for our
two different updating rules. The (correlated) distribution is a set of vectors of size n, where each is
drawn with some probability. When we open a box and see a value, some scenarios are not “possible”
anymore, i.e. we know they cannot be the ones realized. We illustrate in the following example.
Assume there are 3 of these vectors (scenarios).

b1 b2 b3
S1 3 4 7
S2 6 4 2
S3 7 7 2

Table 2: Example with 3 scenarios and 3 boxes.

The rows in the matrix above are the scenarios, and the columns are the boxes. For example, if
scenario S2 is the one realized (i.e. drawn from the distribution) then the values inside boxes b1, b2
and b3 are 6, 4 and 2 respectively. The distribution D is essentially drawing one of the scenarios with
some probability.

To see what the conditioning means: assume we open box b1 and we see the value 6 (and assume for
the sake of the example that the reservation value of box 1 is σ1 = 5).

• Variant 1: we condition on 6 = Vb > σ1 = 5 meaning that scenario S1 is not possible
anymore (because if S1 was the one drawn from D, then we would have seen a value less
than σ1 = 5 when opening the box), and is removed from the set S the algorithm considers
(line 9, Alg 2)

• Variant 2: we condition on Vb = 6, which means that scenarios S1 and S3 are both removed
(similarly, because if any of these were drawn, we would not have seen 6 upon opening the
box)

Differences in the variants. As a result of the different conditioning, the solution for the Vb > σ
variant is partially adaptive meaning that the next box the algorithm opens, only depends on the
scenarios that remain. However, for the Vb = v variant the solution is fully adaptive (meaning that
the next box opened, depends on the exact value seen). This is illustrated in Figures 2 and 4 in the
Appendix, where Variant 1’s solution can be represented by a line graph (Figure 2), while Variant 2’s
solution is a tree (Figure 4).

A.2 Proofs from Section 3

s1, s2, s3

Open b2

s2, s3

Open b1

s3

Open box b4

∅

Stop

V s2
b2

> σb2

V s3
b2

> σb2
V s3
b1

> σb3

Figure 2: Algorithm’s solution when D ← DV >σ, for an instance with scenarios S = {s1, s2, s3},
and boxes B = {b1, b2, b3, b4}. The circles contain the scenarios that have not stopped at each step.
Scenario s1 stopped at box b2, scenario s2 stopped at box b1 and s3 at box b4.

Theorem 3.2. Algorithm 1 is a 4.428-approximation for PANDORA’S BOX against the partially-
adaptive optimal, when conditioning on Vb > σb.
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The tighter guarantee proof follows the steps of the proof in section 3.1 for the opening cost, but
provides a tighter analysis for the values cost.

Tight proof of Theorem 3.2. Denote by σs the reservation value for scenario s when it was covered
by ALG and by T the set of boxes opened i.e. the steps taken by the algorithm. Then we can write
the cost paid by the algorithm as follows

ALG =
1

|S|
∑
s∈S

σs =
1

|S|
∑
p∈T
|At|σp. (8)

We use the same notation as section 3.1 which we repeat here for convenience. Consider any point
p in the ALG histogram, and let s be its corresponding scenario and t be the time this scenario is
covered.

• Rt : set of uncovered scenarios at step t

• At : set of scenarios that ALG chooses to cover at step t

• c∗: the opening cost such that γ|Rt| of the scenarios in Rt have opening cost less than c∗

• Rlow = {s ∈ Rt : c
OPT
s ≤ c∗} the set of these scenarios

• v∗: the value of scenarios in Rlow such that b|Rlow| of the scenarios have value less than v∗

• L = {s ∈ Rlow : vOPT
s ≤ v∗} the set of scenarios with value at most v∗

• BL: set of boxes the optimal uses to cover the scenarios in L of step t

The split described in the definitions above is again shown in Figure 3, and the constants 1 > β, γ > 0
will be determined in the end of the proof.

|Rt|v∗ c∗

γ|Rt| (1− γ)|Rt|

βγ|Rt|
(1− β)γ|Rt|

Figure 3: Split of scenarios in Rt.

Continuing from equation (8) we obtain the following.

ALG ≤ 1

|S|
∑
t∈T
|At|
|Rt|

∑
b∈BL

cb +
∑

s∈L vOPT
s

|L|
Inequality 5

≤ 1

|S|
∑
t∈T

(
|At|

c∗

βγ
+

∑
s∈L vOPT

s

|L|

)
Ineq. 5 and |L| = γβ|Rt|

≤ OPTo

βγ(1− γ)

∑
t∈T

|At|
|S|

+
∑
t∈T

|At|
|S|

∑
s∈L vOPT

s

|L|
Since c∗ ≤ OPTo/(1− γ)

=
OPTo

βγ(1− γ)
+
∑
p∈T

|At|
|S|

∑
s∈L vOPT

s

|L|
Since

∑
t

|At| = |S|

Where in the second to last inequality we used the same histogram argument from section 3.1, to
bound c∗ by OPTo/(1− γ).

To bound the values term, observe that if we sorted the optimal values vOPT
s that cover each scenario

by decreasing order, and denote js the index of vOPT
s in this ordering, we add vOPT

s multiplied by
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the length of the interval every time js ∈
[
(1− β)γ|Rt|, γ|Rt|

]
. This implies that the length of the

intervals we sum up for vOPT
s ranges from js/γ to js/((1− β)γ), therefore the factor for each vOPT

s is

1

γ

js/(1−β)γ∑
i=js/γ

1

i
≤ 1

γ
log

(
1

1− β

)

We want to balance the terms 1/(βγ(1− γ)) and 1/γ log(1/(1− β)) which gives that

γ = 1− 1

β log
(

1
1−β

) .
Since we balanced the opening cost and value terms, by substituting the expression for γ we get that
the approximation factor is

1

βγ(1− γ)
=

β log2
(

1
1−β

)
β log

(
1

1−β

)
− 1

.

Numerically minimizing that ratio for β and ensuring that 0 < β, γ < 1 we get that the minimum is
4.428 obtained at β ≈ 0.91 and γ ≈ 0.55.

A.3 Proofs from Section 3.2

s1, s2, s3

Open b2

s1
Stop

s2, s3
Open b1

V = 2 V = 5

s3
Stop

s2
Stop

V = 2 V = 1

Figure 4: Algorithm’s solution when conditioning on V = v, for an instance with scenarios S =
{s1, s2, s3}, and boxes B = {b1, b2}. The nodes contain the consistent scenarios at each step, and
the values V are revealed once we open the corresponding box.

Theorem 3.3. Algorithm 1 is a 3 + 2
√
2 ≈ 5.828-approximation for PANDORA’S BOX against the

partially-adaptive optimal, when conditioning on Vb = v.

Continued proof of Theorem 3.3. We now proceed to give the bound on the weights of the nodes of
TALG. Consider any node u. We have that the weights at this node are equal to

σu =
cbu |Ru|+

∑
s∈At

vsbu
|At|

≤
cb|Ru|+

∑
s∈A vsb

|A|

where the last inequality holds for all A ⊆ Ru and any b ∈ B.

Let c∗u be the opening cost such that γ|Ru| of the scenarios in Ru have opening cost less than
c∗u, and by Rlow = {s ∈ Ru : cOPT

s ≤ c∗u} the set of these scenarios. Similarly denote by v∗u
the value of scenarios in Rlow such that β|Rlow| of the scenarios have value less than v∗u and by
L = {s ∈ Rp

low : vOPT
s ≤ v∗u} these scenarios. This split is shown in Figure 1.
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Note that, c∗u corresponds to the weights of node u in T (1−γ)
OPTo

, while the weights of node u at T (1−γ)
OPTv

are at least v∗u.

Let BL be the set of boxes that the optimal solution uses to cover the scenarios in L. Let Lb ⊆ L ⊆ Ru

be the subset of scenarios in L that choose the value at box b in OPT. Using inequality (4) with
b ∈ BL and A = Lb, we obtain σu|Lb| ≤ cb|Ru|+

∑
s∈Lb

vOPT
s , and by summing up the inequalities

for all b ∈ BL we get

σu ≤
|Ru|

∑
b∈BL

cb +
∑

s∈L vOPT
s

|L|
≤
|Ru|c∗ +

∑
s∈L vOPT

s

|L|
≤ c∗u

β · γ
+ v∗u (9)

where for the second inequality we used that the cost for covering the scenarios in L is at most c∗u
by construction, and in the last inequality that |L| = |Rt|/(β · γ). We consider each term above
separately, to show that the point p is within the histograms.

Lemma 3.3.1. Let T be a tree with a vector of weights wu at each node u ∈ T , and let T (ρ) be the
tree we get when we substitute the weights of every node with the top ρ-percentile of all the weights
in the subtree of T rooted at u. Then

ρ · cost(T (ρ)) ≤ cost(T ).

Proof of Lemma 3.3.1. We denote by Tu the subtree rooted at u, by W (T ) = {w : w ∈ wv for v ∈
T } the (multi)set of weights in the tree T . Denote, by qρ(T ) be the top ρ percentile of all the weights
in T . Finally, we define Q(ρ|T ) for any tree T as follows:

• We create a histogram H(x) of the weights in W (T ) in increasing order.

• We calculate the area enclosed within (1− ρ)|W (T )| until |W (T )|:

Q (ρ|T ) =
∫ |W (T )|

(1−ρ)|W (T )|
H(x)dx

This is approximately equal to the sum of all the values greater than qρ(T ) with values
exactly qρ(T ) taken fractionally so that exactly ρ fraction of values are selected.

We show by induction that for every node u, it holds that ρ · cost(T (ρ)
u ) ≤ Q (ρ|T )

• For the base case, for all leaves u, the subtree Tu only has one node and the lemma holds as
ρqρ(Tu) ≤ Q (ρ|Tu).

• Now, let r be any node of the tree, and denote by child(r) the set of the children nodes of r.

ρ · cost(T (ρ)
r ) = ρ · qρ(Tr)|wr|+ ρ ·

∑
v∈child(r)

cost(T (ρ)
v ) Definition of cost(T (ρ)

r )

≤ ρ · qρ(Tr)|wr|+ ρ ·
∑

v∈child(r)

Q(ρ|Tv) From induction hypothesis

≤ ρ · qρ(Tr)|wr|+Q

(
ρ
|W (Tr)| − |wr|
|W (Tr)|

∣∣∣∣∣Tr

)
Since Tv ⊆ Tr

≤ Q (ρ|Tr)

The second-to-last inequality follows since Q is defined as the area of the largest weights of the
histogram. Including more weights only increases and keeping the length of the integration range the
same (equal to ρ(|W (Tr)| − |wr|)) can only increase the value Q.

The last inequality follows by noting that if H(x) is the histogram corresponding to the values of Tr,
then

Q (ρ|Tr)−Q

(
ρ
|W (Tr)| − |wr|
|W (Tr)|

∣∣∣∣∣Tr

)
=

∫ |W (Tr)|

(1−ρ)|W (Tr)|
H(x)dx−

∫ |W (Tr)|

(1−ρ)|W (Tr)|+ρ|wr|
H(x)dx
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=

∫ (1−ρ)|W (Tr)|+ρ|wr|

(1−ρ)|W (Tr)|
H(x)dx ≥

∫ (1−ρ)|W (Tr)|+ρ|wr|

(1−ρ)|W (Tr)|
qρ(Tr)dx

= ρqρ(Tr)|wr|
where the inequality follows since H(x) ≥ qρ(Tr) for x ≥ (1 − ρ)|W (Tr)| by the definition of
qρ(Tr) as the top-r quantile of the weights in Tr.

Q

(
ρ |w(Tr)|−|wr|

|w(Tr)|

∣∣∣∣∣Tr
)qρ(Tr)

ρqρ(Tr)|wr|

ρ|wr| ρ(|w(Tr)| − |wr|)

Figure 5: Picture depicting the proof above.

A.4 Lower Bound

To show that our algorithm is almost tight, we observe that the lower bound of Min Sum Set Cover
presented in Feige et al. [2004] also applies to PANDORA’S BOX. In MIN SUM SET COVER we are
given n elements ei, and m sets sj where each sj ⊆ [n]. We say a set sj covers an element ei if
ei ∈ sj . The goal is to select elements in order to minimize the sum of the covering times of all the
sets, where covering time of a set is the first time an element ei ∈ sj is chosen. This lower bound
is also mentioned in Chawla et al. [2020], but we include it here with more details for the sake of
completeness.

In Feige et al. [2004] the authors show that MIN SUM SET COVER cannot be approximated better
than 4− ε even in the special case where every set contains the same number of elements5. We restate
the theorem below.
Theorem A.1 (Theorem 13 of Feige et al. [2004]). For every ε > 0, it is NP-hard to approximate
min sum set cover within a ratio of 4− ε on uniform hypergraphs.

Our main observation is that MIN SUM SET COVER is a special case of PANDORA’S BOX. When the
boxes all have the same opening cost cb = 1 and the values inside are vbs ∈ {0,∞}, we are required
to find a 0 for each scenario; equivalent to covering a scenario. The optimal solution of MIN SUM
SET COVER is an algorithm that selects elements one by one, and stops whenever all the sets are
covered. This is exactly the partially adaptive optimal we defined for PANDORA’S BOX. The theorem
restated above results in the following Corollary.
Corollary A.1.1. For every ε > 0 it is NP-Hard to approximate Pandora’s Box against the partially-
adaptive within a ratio better than 4− ε.

A.5 Proofs from Section 4

We first present an example of a discrete distribution that shows that one needs exponentially many
samples in the number of boxes to learn DV=v .

Discrete Distribution Example Consider a distribution that only takes values 0, H,H + 1 for
some very large H > 0. The scenario is drawn by choosing a random bit bi ∈ {0, 1} for every box

5Equivalently forms a uniform hypergraph, where sets are hyperedges, and elements are vertices.
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and depending on the realized sequence b a single box f(b) ∈ [n] is chosen for an unknown and
arbitrary function f . The value at box i is then chosen to be H + bi unless i is the box f(b) in which
case it is 0. In this case learning the probability DV=v would require learning the unknown function
f on all inputs which are exponentially many. In particular, if we only take s << 2n samples, for
any order of choosing boxes after ≈ log s steps, none of the samples in our collection will match the
observed sequence of bits, therefore it will not be possible to compute a posterior distribution.

We continue by giving the omitted proofs.
Lemma 4.1.1. Let ε, δ > 0 and let D′ be the empirical distribution obtained from poly(n, 1/ε,
log(1/δ)) samples from D. Then, with probability 1− δ, it holds that∣∣∣∣ED̂

[
ALG(π, τ)−min

b∈B
vb

]
− ED

[
ALG(π, τ)−min

b∈B
vb

]∣∣∣∣ ≤ ε

for any permutation π and any vector of thresholds v ∈
[
0, n

ε

]n
Proof of Lemma 4.1.1. We first argue that we can accurately estimate the cost for any vector of
thresholds τ when the order of visiting boxes is fixed.

Consider any fixed permutation π = π1, π2, . . . , πn be any permutation of the boxes, we relabel the
boxes without loss of generality so that πi is box i.

Denote by V̂i = minj≤i vj , and observe that V̂i is a random variable that depends on the distribution
D. Then we can write the expected cost of the algorithm as the expected sum of the opening cost and
the chosen value: ED [ALG] = ED [ALGo] + ED [ALGv]. We have that:

ED [ALGo] =

n∑
i=1

PrD [reach i] =

n∑
i=1

PrD

i−1∧
j=1

(V̂j > τj+1)


Moreover, we denote by V

i

τ =
∧i−1

j=1

(
V̂j > τj+1

)
and we have

ED

[
ALGv − V̂n

]
=

n∑
i=1

ED

[
(V̂i − V̂n) · 1{stop at i}

]
=

n−1∑
i=1

ED

[
(V̂i − V̂n) · 1

{
V

i

τ ∧
(
V̂i ≤ τi+1

)}]
=

n−1∑
i=1

ED

[
τi+1Prr∼U [0,τi+1]

[
r < V̂i − V̂n

]
· 1
{
V

i

τ ∧
(
V̂i ≤ τi+1

)}]

=

n−1∑
i=1

τi+1PrD,r∼U [0,τi+1]

[
V

i

τ ∧
(
r + V̂n ≤ V̂i ≤ τi+1

)]

In order to show our result, we use from Blumer et al. [1989] that for a class with VC dimension d <
∞ that we can learn it with error at most ε with probability 1− δ using m = poly(1/ε, d, log (1/δ))
samples.

Consider the class Fτ (V̂ , r) =
∧i−1

j=1(V̂j > τj+1). This defines an axis parallel rectangle in
Ri, therefore its VC-dimension is 2i. Using the observation above we have that using m =
poly(1/ε, n, log (1/δ)) samples, , with probability at least 1− δ, it holds∣∣∣∣PrD

[
Fτ (V̂ , r)

]
− PrD̂

[
Fτ (V̂ , r)

] ∣∣∣∣ ≤ ε

for all τ ∈ Rn.

Similarly, the class Cτ (V̂ , r) =
∧i−1

j=1

(
V̂j > τj+1

)
∧
(
r + V̂n ≤ V̂i ≤ τi+1

)
has VC-dimension

O(n) since it is an intersection of at most n (sparse) halfspaces. Therefore, the same argument as
before applies and for m = poly(1/ε, n, log (1/δ)) samples, we get∣∣∣∣PrD,r∼U [0,τi+1]

[
Cτ (V̂ , r)

]
− PrD̂,r∼U [0,τi+1]

[
Cτ (V̂ , r)

] ∣∣∣∣ ≤ ε
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for all τ ∈ Rn, with probability at least 1− δ.

Putting it all together, the error can still be unbounded if the thresholds τ are too large. However,
since we assume that τi ≤ n/ε for all i ∈ [n], poly(n, 1/ε, log(1/δ)) samples suffice to get ε error
overall, by setting ε← ε2

n .

While we obtain the result for a fixed permutation, we can directly obtain the result for all n!
permutations through a union bound. Setting δ ← δ

n! only introduces an additional factor of
log(n!) = n log n in the overall sample complexity.

Lemma 4.1.2. Let D be any distribution of values. Let ε > 0 and consider a permutation π and
thresholds τ . Moreover, let τ ′ be the thresholds capped to n/ε, i.e. setting τ ′b = min{τb, n/ε} for all
boxes b. Then,

Ev∼D [ALG(π, τ ′)] ≤ (1 + ε)Ev∼D [ALG(π, τ)] .

Proof of Lemma 4.1.2. We compare the expected cost of ALG with the original thresholds and the
transformed one ALG′ with the capped thresholds. For any value vector v ∼ D, either (1) the
algorithms stopped at the same point having the same opening cost and value, or (2) ALG stopped
earlier at a threshold τ > n/ε, while ALG′ continued. In the latter case, the value v that ALG gets
is greater than n/ε, while the value v′ that ALG′ gets is smaller, v′ ≤ v. For such a scenario, the
opening cost c of ALG, and the opening cost c′ of ALG′ satisfy c′ ≤ c+ n. Thus, the total cost is
c′ + v′ ≤ c+ v + n ≤ (1 + ε)(c+ v) Overall, we get that

ED
[
ALG′] ≤ ED [ALG] (1 + ε).

Theorem 4.1. Consider an instance of Pandora’s Box with opening costs equal to 1. For any given
parameters ε, δ > 0, using m = poly(n, 1/ε, log(1/δ)) samples from D, Algorithm 1 (Variant 1)
obtains a 4.428 + ε approximation policy against the partially-adaptive optimal, with probability at
least 1− δ.

Proof of Theorem 4.1. With poly(n, ε, log(1/δ)) samples from D, we obtain an empirical distribu-
tion D̂.

From Lemma 4.1.1, we have that with probability at least 1− δε/ log(1/δ), the following holds∣∣∣∣Ev∼D̂

[
ALG(π, τ)−min

b∈B
vb

]
− Ev∼D

[
ALG(π, τ)−min

b∈B
vb

] ∣∣∣∣ ≤ ε (10)

for any permutation π and any vector of thresholds v ∈
[
0, n

ε

]n
. This gives us that we can estimate

the cost of a threshold policy accurately.

To compare with the set of all partially adaptive policies that may not take the form of a threshold
policy, we consider the set of scenario aware policies (SA). These are policies SA(π) parameterized
by a permutation π of boxes and are forced to visit the boxes in that order. However, they are aware
of all values in the boxes in advance and know precisely when to stop. These are unrealistic policies
introduced in Chawla et al. [2020] which serve as an upper bound to the set of all partially adaptive
policies.

As shown in Chawla et al. [2020] (Lemma 3.3), scenario-aware policies are also learnable from
samples. With probability at least 1− δε/ log(1/δ), it holds that for any permutation π∣∣∣∣Ev∼D̂

[
SA(π)−min

b∈B
vb

]
− Ev∼D

[
SA(π)−min

b∈B
vb

] ∣∣∣∣ ≤ ε. (11)

The α-approximation guarantees (with a ≈ 4.428) of Algorithm 1 hold even against scenario aware
policies as there is no restriction on how the partially-adaptive policy may choose to stop. So for the
empirical distribution, we can compute a permutation π̂ and thresholds τ̂ such that:

ED̂ [ALG(π̂, τ̂)] ≤ α ·min
π

ED̂ [SA(π)]

Clipping the thresholds to obtain τ̂ ′ = min{τ̂ , n/ε}, and letting ∆ = Ev∼D̂ [minb∈B vb] −
Ev∼D [minb∈B vb], we have that:

ED [ALG(π̂, τ̂ ′)] ≤ ED̂ [ALG(π̂, τ̂ ′)]−∆+ ε
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≤ (1 + ε)ED̂ [ALG(π̂, τ̂)] + ∆ + ε/4

≤ (1 + ε)α ·min
π

ED̂ [SA(π)]−∆+ ε/4

≤ (1 + ε)α ·min
π

ED [SA(π)] +O(∆ + ε)

By Markov’s inequality, we have that Pr
[
Ev∼D̂ [minb∈B vb] ≤ (1 + ε)Ev∼D [minb∈B vb]

]
≥ ε

1+ε ≥
ε/2.

Thus, repeating the sampling process O(log 1/δ)
ε times and picking the empirical distribution with

minimum Ev∼D̂ [minb∈B vb] satisfies ∆ ≤ εEv∼D [minb∈B vb] with probability at least 1 − δ and
simultaneously satisfies equations (10) and (11).

This shows that ED [ALG(π̂, τ̂ ′)] ≤ (1 +O(ε))α ·minπ ED [SA(π)] which completes the proof by
rescaling ε by a constant.
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