
A ShExML perspective on mapping challenges:
already solved ones, language modifications and

future required actions

Herminio Garćıa-González

IT and Communications Service, University of Oviedo, Asturias, Spain
garciaherminio@uniovi.es

Abstract. Data mapping languages allow users to create knowledge
graphs with lower cost and time. Some challenges cannot be solved with
state-of-the-art languages and tools, though. Thus, in this paper we use
and modify ShExML to deal with some of them. We see how some chal-
lenges were already solved, which modifications we had to perform to
cover others, and how the rest of them could be covered in future ver-
sions. Then, we establish a demonstration on language integrity after
changes and a discussion on performed and upcoming changes. These
solutions, alongside the discussion and join analysis of other languages
and tools solutions, will drive us to effective techniques to solve all pro-
posed challenges.

Keywords: mapping challenges, ShExML, data mapping languages, knowl-
edge graph construction

1 Introduction

Mapping heterogeneous datasources using a single representation is an active
field which has been getting traction in the past years. For this purpose a set
of languages and tools have been proposed [7] which lower the cost and time
employed in these tasks. This trajectory ended up in the celebration of the 1st
International Workshop on Knowledge Graph Building [1] and, one year after,
the beginning of the Knowledge Graph Construction W3C Community Group1

where academia, industry and practitioners are gathered to envision new steps,
find unsolved problems, and face new challenges in this field2. One of the com-
munity outputs was a set of mapping challenges3 which are nowadays complicate
to solve with the current state-of-the-art languages, tools and techniques.

Therefore, in this paper we tackle some of these mapping challenges with
ShExML [4] and try to solve the following research questions:

– RQ1: How can mapping challenges be solved with ShExML?

1 https://kg-construct.github.io/tpac-web/
2 https://kg-construct.github.io/tpac-web/#report
3 https://kg-construct.github.io/workshop/2021/challenges.html

2 H. Garćıa-González

– RQ2: How can not addressed challenges be solved and implemented in ShExML?

– RQ3: Have modifications in ShExML affected the functioning of already
present features?

The rest of the paper is structured as follows: in Section 3 we see how cur-
rent language specification and engine can solve some of the challenges, we ex-
plain how solutions for other challenges have been implemented and included in
ShExML in Section 4. In Section 5 we propose some further language modifica-
tions and a discussion on how the rest of the challenges could be addressed. We
demonstrate old features integrity after including new ones and we establish a
discussion on mapping challenges results in Section 6. And, finally, in Section 7
we draw some conclusions.

2 Mapping challenges summary

During consecutive meetings in the Knowledge Graph Construction W3C Com-
munity Group, several mapping challenges and problems were arisen which are
collected in the workshop website4. Thus, in this paper we deal with this selec-
tion of mapping challenges, we examine them and propose solutions within the
ShExML language and our engine5. To categorise these solutions we link them to
ShExML versions so we can trace when these solutions were achieved, i.e., if they
were possible to solve before mapping challenges were defined (ShExML v0.2.3),
if they were solved after mapping challenges were defined (ShExML v0.2.4 &
v0.2.5) or if they are not yet solved (future versions).

Thus, in Table 1 a summary table is offered with the addressed challenges and
with which version of ShExML engine the expected output is achieved. Besides,
we offer a webpage6 with links to working solutions as supplementary material
for the sake of demonstration and reproducibility.

In the following sections we explain how solutions are achieved, which ShExML
constructions and techniques were used, we establish a discussion on reached so-
lutions and how not solved challenges could be addressed in ShExML.

3 Already solved mapping challenges

In this section, we deal with mapping challenges that can be solved without
any modification in ShExML language and engine. Therefore, these solutions
are those which are reachable with ShExML v0.2.3 (released on 29th October
2020)7, that is, before mapping challenges were defined.

4 https://kg-construct.github.io/workshop/challenges.html
5 https://github.com/herminiogg/ShExML
6 http://herminiogg.github.io/mapping-challenges/challenges/solutions.html
7 https://github.com/herminiogg/ShExML/releases/tag/v0.2.3

A ShExML perspective on mapping challenges 3

Already solved
(v0.2.3)

With language modifications
(v0.2.4 & v0.2.5)

All challenges
solved

Access fields
outside iterators

x X(input 1) x (input 2)

Datatype map X(input 5) X X
Excel style x x x
Generate multiple
values

x X X

Join on literal X X X
Language map x X X
Multivalue references x (bug) X X
Process multivalue
references

x x x

RDF Collections x X(input 1) x (input 2 & 3)

Table 1. Coverage summary table of mapping challenges in ShExML language and
engine. Xmeans covered or partially covered and x means not covered or not completely
covered.

3.1 Datatype map (input 5)

Datatype map refers to the possibility to generate datatype tags from the input
content. Therefore, instead of defining them statically in the mapping rules, this
challenge aims to support the dynamic generation of datatype tags from input
content. In the case of input 5, it is intended that mapping languages would be
able to generate datatype tags according to the most probable value according
to values formats. For example, in input 5 it is expected that number 3 would
have an xsd:integer datatype and 3.14 would have an xsd:decimal one.

This inference mechanism was already implemented in ShExML engine which
in case that the user does not specifically define a datatype for an object value
it will infer the most probable one (see Listing 1.1). Although the current imple-
mentation solves this specific mapping challenge, it is a näıve implementation.
However, it can lead to a more complex inference system if it is desired or needed.

Listing 1.1. ShExML datatype inference function.

protected def searchForXSDType(o: String): RDFDatatype = {

if(Try(o.toInt). isSuccess)

XSDDatatype.XSDinteger

else if(Try(o.toDouble). isSuccess)

XSDDatatype.XSDdecimal

else if(Try(o.toBoolean). isSuccess)

XSDDatatype.XSDboolean

else

XSDDatatype.XSDstring

}

4 H. Garćıa-González

3.2 Join on literal

This challenge refers to the possibility to generate literals from a join condition
(i.e., from another source) where R2RML8 and RML [2] output a resource by
default.

In ShExML join conditions generate values without any specific form, so it
is not determined in this step if it is a literal or a resource. It is, then, defined by
the user in the shapes part where the user decides the form of the output. This
is a design decision on ShExML that was driven by the separation of concerns
main principle. In Listing 1.2 we can see how the join condition is defined in
familyName expression, and how then this expression is used in :Author shape
without any prefix, indicating that a literal must be generated.

Listing 1.2. ShExML solution for join on literals.

PREFIX : <http: // example.com/>

PREFIX experson: <http: // example.com/person/>

PREFIX dbr: <http: // dbpedia.org/resource/>

PREFIX schema: <http: // schema.org/>

SOURCE jsonfile <https: //raw.githubusercontent.com/

kg-construct/mapping -challenges/

2aac9680cd731fd647abd33d44a7f400e4278cf3/

challenges/join -on -literal/input -1/ input.json >

ITERATOR author <jsonpath: $.author [*]> {

FIELD id <id >

FIELD firstname <firstname >

FIELD affiliation <affiliation >

}

ITERATOR people <jsonpath: $.people [*]> {

FIELD firstname <firstname >

FIELD familyname <familyName >

}

EXPRESSION authors <jsonfile.author UNION jsonfile.people >

EXPRESSION familyName <jsonfile.people.familyname UNION

jsonfile.author.firstname JOIN jsonfile.people.firstname >

:Author experson:[authors.id] {

:affiliation [authors.affiliation] ;

:lastName [familyName] ;

}

3.3 Multivalue references

This challenge deals with the expected output of a hierarchical document (e.g.,
XML or JSON files) where multiple iterators are used. The discussion in this
challenge is whether we produce the cartesian product and provide a join condi-
tion to correlate values or if we just translate the hierarchical information as it

8 https://www.w3.org/TR/r2rml/

A ShExML perspective on mapping challenges 5

is without the need to provide any join condition9. This case comes more com-
plicated if a join condition needs to be provided over a JSON file because of the
impossibility to access parent nodes (see Section 4.1 for the specific challenge
on this topic). Therefore, it seems that in hierarchical data the expected output
should be a verbatim translation.

In ShExML, this was the default behaviour from its inception as in ShExML
first versions it only supported XML and JSON files. Besides, we saw it as a
more usable manner to define these mapping as usability is the main goal of the
language [3]. Therefore, in Listing 1.3 we can see how using iterators and nested
iterators we can cover these hierarchical data models. If a user wants to generate
the cartesian product it would be as easy as to define different top level iterators.
In Table 1 this challenge is marked as not solved in ShExML v0.2.3 due to a bug
when using only the root node ($) in the top iterator query. However, we include
it here as the coverage of this challenge did not require syntax modifications nor
new features in ShExML engine, only a bug fix.

Listing 1.3. ShExML solution multivalue references.

PREFIX ex: <http: // example.com/>

PREFIX exLab: <http: // example.com/lab/>

PREFIX exArticle: <http: // example.com/article/>

PREFIX exAuthor: <http: // example.com/author/>

PREFIX exAff: <http: // example.com/aff/>

SOURCE lab_file <https: //raw.githubusercontent.com/

kg-construct/mapping -challenges/main

/challenges/multivalue -references

/input -1/ input.json >

ITERATOR lab <jsonpath: $> {

FIELD labName <labName >

ITERATOR articles <articles [*]> {

FIELD title <title >

ITERATOR authors <authors [*]> {

FIELD name <name >

ITERATOR affiliation <affiliation [*]> {

FIELD label <label >

}

}

}

}

EXPRESSION labValues <lab_file.lab >

ex:Lab exLab:[labValues.labName] {

a ex:Lab ;

ex:hasArticles @ex:Article ;

ex:hasMembers @ex:Author ;

}

9 See discussion about this topic in RMLMapper reference implementation:
https://github.com/RMLio/rmlmapper-java/issues/28

6 H. Garćıa-González

ex:Article exArticle:[labValues.articles.title] {

ex:hasAuthor @ex:Author ;

}

ex:Author exAuthor:[labValues.articles.authors.name] {

ex:hasAffiliation

exAff:[labValues.articles.authors.affiliation.label] ;

}

4 Language modifications

In this section, we deal with mapping challenges that needed some modifications
in ShExML language and engine. Therefore, these solutions are those which
are reachable with ShExML v0.2.4 (released on 18th January 2021)10 or with
ShExML v0.2.5 (released on 27th January 2021)11, that is, after mapping chal-
lenges were defined.

4.1 Access fields outside iterators

Sometimes, in hierarchical data models, there is the need to access values outside
the iteration pattern. For example, we may need to obtain values which are
parents of the current iterated node. When dealing with XML files it does not
involve any modification in ShExML, as using XPath queries we are able to
access upper nodes with double dot and slash notation (i.e., ../). However,
when dealing with JSON files, this is not possible because of JSONPath not
supporting parent access notation12.

This is a well-known problem in data mapping languages as they use Json-
Path to define values accesses. Indeed, in xR2RML [10], authors defined a prop-
erty called xrr:pushDown that takes a value in the hierarchy and pushes it down
into their offsprings iterators so it can be available further [11].

Following this experience with xR2RML, we implemented a similar solu-
tion in ShExML using PUSHED_FIELD and POPPED_FIELD keywords. When using
PUSHED_FIELD keyword ShExML engine saves the value using the name as the
identifier for further uses. Then, when POPPED_FIELD is used ShExML engine
searches for the saved value with an identifier which is equal to that given in
the query part (i.e., inside < and >). Therefore, in Listing 1.4, id field is saved
and then used in cars iterator, so we can establish a relation from the car to the
owner.

Listing 1.4. ShExML solution for accessing fields outside iterations.

10 https://github.com/herminiogg/ShExML/releases/tag/v0.2.4
11 https://github.com/herminiogg/ShExML/releases/tag/v0.2.5
12 https://goessner.net/articles/JsonPath/

A ShExML perspective on mapping challenges 7

ITERATOR records <jsonpath: $.records [*]> {

PUSHED_FIELD id <id >

FIELD enteredBy <enteredBy >

ITERATOR cars <cars[*]> {

FIELD make <make >

POPPED_FIELD carOwner <id>

}

}

4.2 Datatype map

As we mentioned in Section 3.1, this challenge aims to generate datatype tags
dynamically from data content. Therefore, the datatype inputs can appear in
multiple ways: full URI, prefix plus datatype, or simply datatype name without
prefix.

ShExML v0.2.3 supports the creation of static datatype tags with prefix
plus datatype syntax (see Listing 1.5). Therefore, we should derive this syntax
and maintain its proven usability [3] but giving dynamic datatype generation
possibilities. The natural expansion of this syntax is to include the same object
generation expression but also for datatypes and language tags (see Section 4.4).
So, the final syntax is prefix plus generation expression (inside square brackets)
as we can see in Listing 1.6. Prefix can be optional if data value already contains
it (e.g., input 1 and 2) and values can be transformed using Matcher feature13

to expected XML Schema valid datatypes (e.g., input 4).

Listing 1.5. ShExML static datatypes syntax.

ex:Person exPerson:[person.firstname] {

ex:num [person.num] xsd:integer ;

}

Listing 1.6. ShExML dynamic datatypes syntax.

ex:Person exPerson:[person.firstname] {

ex:num [person.num] xsd:[person.dt] ;

}

4.3 Generate multiple values

This challenge wants to address the problem of generating various datatypes or
language tags for the same subject (e.g., a multi-language value). Once datatype
maps (see Section 4.2) and language maps (see Section 4.4) are supported in
ShExML it is straightforward as ShExML will generate a triple per value re-
turned from the object expression. Therefore, to generate multi-language values
the syntax is like in Listing 1.7 and to generate multi-language values with a
default language the syntax is like in Listing 1.8.

13 http://shexml.herminiogarcia.com/spec/#matcher

8 H. Garćıa-González

Listing 1.7. ShExML multiple values with language tags.

ex:Person exPerson:[person.lastname] {

ex:name [person.firstname.label] @[person.firstname.lang] ;

}

Listing 1.8. ShExML multiple values with language tags and with a default language.

ex:Person exPerson:[person.firstname] {

ex:name [person.firstname] @en ;

ex:name [person.firstname] @[person.lang] ;

}

4.4 Language map

As with datatype maps in Section 4.2, language map challenge want to ad-
dress the problem of generating language tags dynamically from input data. In
ShExML v0.2.3 language tags were supported statically, that is, it was possible
to tag an object expression with a specific language but it would be applied to
all values (see Listing 1.9).

We performed a syntax and engine modification, like in datatype maps, to
be able to generate language tags with expressions. Final syntax is @ plus gen-
eration expression (between square brackets) as it can be seen in Listing 1.10.
Here, again, the idea was to preserve usability as the main goal and to make it
as simpler as possible. Input 1 tests the generation with a valid tag following
BCP4714, input 2 tests the transformation of a language value to a valid tag (in
ShExML this is done using Matchers functionality15), and in input 3 how two
different sources can be joined to provide language information.

Listing 1.9. ShExML static generation of language tags.

ex:Person exPerson:[person.firstname] {

ex:lastName [person.lastname] @en ;

}

Listing 1.10. ShExML dynamic generation of language tags

ex:Person exPerson:[person.firstname] {

ex:lastName [person.lastname] @[person.lang] ;

}

4.5 RDF Collections

This challenge puts on the table the necessity for a mechanism to create RDF
Collections from some values. Normally, in ShExML, and in other data mapping

14 https://tools.ietf.org/html/bcp47
15 http://shexml.herminiogarcia.com/spec/#matcher

A ShExML perspective on mapping challenges 9

languages, when an object generation expression returns multiple values multiple
triples are generated (see Section 3.3). However, in certain cases it is necessary
to encapsulate these values inside a collection (e.g., to preserve order).

This was already explored by some languages (e.g., SPARQL-Generate [6])
which provide some directives to create collections. Therefore, we applied this
experience in ShExML to cover RDF Collections and Containers (i.e., Lists, Seqs,
Bags and Alts.). Now, it is possible to indicate to the engine that a collection
or container should be generated using keyword AS plus the desired collection
or container (i.e., RDFList, RDFBag, RDFSeq or RDFAlt). See Listing 1.11 for an
example.

Listing 1.11. ShExML support for RDF collections and containers.

ex:Article exArticle:[labValues.articles.title] {

a ex:Article ;

ex:hasAuthors

exAuthor:[labValues.articles.authors.name AS RDFList] ;

}

5 Future required actions

In this section we discuss further challenges that are not solved with previously
mentioned modifications. These are challenges that would require to rethought
some functionality or to include new ones but that would need from a well
planned inclusion due to their possible interference with other features.

5.1 Access fields outside iterators (input 2)

Although this challenge was already addressed in Section 4.1, only input 1 was
completely solved. In the case of input 2, where data is in the same hierarchi-
cal level (like it would come from two different files), using join conditions in
ShExML only one car is linked to each owner when the expected result was two
cars per person. To solve this problem we think of two possible solutions.

First one is to review join condition functionality to check whether something
is failing (a bug) or if join condition need to be rethought and reimplemented to
cover further challenges.

Another possibility, which is already present in other languages like YARRRML
[5], is to provide conditional generation. With conditional content generation we
are able to test a condition (e.g., in input 2 for value equality) and generate or
not the resulting triple depending on its result.

5.2 Excel style

A classic solution when dealing with Excel sheets was to convert them to CSV a
then treat them as tables to be processed by data mapping languages. However,

10 H. Garćıa-González

this challenge found this solution not appropriate when the style of the Excel
sheet want to be preserved. Two solutions could cover this challenge.

First one is to preprocess Excel sheet and convert it to CSV but adding
columns with style information so it can be processed by state-of-the-art tools.
However, it would require some preprocessing work which would weaken the goal
of low cost and time invested when using data mapping tools.

Second one is to include a specific Excel processor with its own query lan-
guage which can express not only access to cell but also to cell and text style.
Thus, in Java based implementations it can be considered to use Apache POI to
process sheets and include some simple query support to retrieve styles.

5.3 Process multivalue references

This challenge is very close to multivalue references (see Section 3.3), but in this
case multivalues are included all within a string value and separated by commas.

Therefore, here the challenge is not about how to output multivalues or create
RDF collections but how to effectively process these multivalues which need
some processing. Therefore, this would require some sort of data transformations
functions that can be applied to extracted values. Therefore, the most effective
way to extend ShExML and enable users to transform data is to provide the
possibility to execute transformation functions which can be defined by users.

Data transformation functions have been already explored in RML through
the FnO library [8] which provides a set of implementation independent reusable
functions [9]. So, one possibility is to support FnO functions inside ShExML. The
advantage of this proposal is that it moves all function infrastructure outside
ShExML language and engine. Conversely, we add more dependencies to users
(which can find it hard to learn), we force them to use a third party environment
and we lose control of this part.

Another possibility is to provide an environment to define inline functions like
semantic actions in Shape Expressions (ShEx) [12]. Therefore, we can provide
a restricted environment where higher order functions could be executed (see
Listing 1.12 for an example). The advantages are that there is no need for third
party dependencies, it provides a higher flexibility and users do not need to learn
another tool. However, it can increase complexity due to the necessity to know
about functional programming.

Listing 1.12. ShExML support for RDF collections and containers.

PREFIX ex: <http: // example.com/>

SOURCE lab_file <https: //raw.githubusercontent.com/

kg-construct/mapping -challenges/main/challenges/

process -multivalue -references/input -1/ input.json >

FUNCTION splitFunction <n => n.split(’,’)>

ITERATOR lab <jsonpath: $> {

FIELD labName <labName >

ITERATOR articles <article > {

FIELD title <title >

A ShExML perspective on mapping challenges 11

FIELD tags <tags >

}

}

EXPRESSION labValues <lab_file.lab >

ex:Tag ex:[lab.articles.tag WITH splitFunction] {

ex:label [lab.articles.tag WITH splitFunction] ;

}

5.4 RDF Collections (input 2 & 3)

Although RDF collections and containers were included in ShExML (see Section
4.5) input 2 and 3 present some particularities. In the case of input 2 the use of
different keys would require a more complex query or some sort of parametri-
sation in executed queries. In input 3 the per row iteration model for CSV
files implemented in ShExML does not create collections effectively. Therefore,
it would imply a reimplementation of per row iteration model for these cases.
However, it could affect overall functionality for CSV files.

6 Evaluation and Discussion

In RQ3 we have posed a question about the possible effects that modifications
in ShExML could have in already working features. The idea of this research
question is to demonstrate validity of RQ1 solutions alongside old features that
should still work as expected. This type of testing, known as regression testing,
have been included in ShExML from the very beginning16 so we are able to add
new features in ShExML knowing that old features are still working as expected.
Thus, every time a new version is released these tests must be executed to
validate language and engine integrity. Continuous integration is the perfect tool
for this task, as every time that a change is submitted to ShExML repository all
tests are executed to verify integrity. In ShExML repository we have configured
Travis CI17 for this task. Therefore, these regression tests in v0.2.418 and v0.2.519

are telling us that all features are still working as expected, and equally, giving
a negative answer to RQ3. So, we can conclude that integrity is held.

In Sections 3 and 4 we have seen how some mapping challenges were already
solved in ShExML and how we have made some modifications in ShExML lan-
guage and engine to deal with others. These two sections give an answer for
RQ1. These solutions were designed to maintain ShExML usability [3] using a

16 To see all tests that are executed over ShExML engine
https://github.com/herminiogg/ShExML/tree/master/src/test/scala-
2.12/es/weso/shexml

17 https://travis-ci.org/
18 https://travis-ci.org/github/herminiogg/ShExML/builds/755033209
19 https://travis-ci.org/github/herminiogg/ShExML/builds/756419674

12 H. Garćıa-González

similar and continuist syntax, so that users can use these new features with the
minimum learning curve possible; in other words, making the smallest modifi-
cations in ShExML syntax. In addition, in Section 3 we have highlighted how
ShExML design have already given an answer to some challenges, emphasising
how ShExML separation of concerns principle can give answer to some of them
(e.g., Join on literal).

In Section 5 we have given some intuition on how remaining challenges could
be solved, answering to RQ2. They would require harder and more complex
modifications; in some cases the modification of an already working mechanism
(e.g., inputs 2 and 3 in RDF Collections), the inclusion of a new iteration model
and the design of a new query language (e.g., Excel style) or the choice between
two different systems (e.g., data transformation functions in process multivalue
references). All these inclusions will require a careful study and implementation
in the language so they do not affect other features and to select the better
option from a usability perspective.

7 Conclusions

In this paper we have explored how ShExML can deal with some of the challenges
defined in the Knowledge Graph Construction W3C Community Group. We have
divided them into challenges already solved by ShExML before their definition,
challenges solved by latest versions of ShExML and challenges that are not yet
solved for which we have given some notions and intuitions on how ShExML
can be modified to cover them. Furthermore, we have demonstrated that the
modification of ShExML to cover new challenges has not affected other language
and engine features. Therefore, we see this work as a first step on how challenges
can be solved and, together with solutions from other languages and the joint
discussion, we will be able to offer unified solutions to posed mapping challenges.

References

1. Chaves-Fraga, D., Heyvaert, P., Priyatna, F., Sequeda, J.F., Dimou, A., Jabeen,
H., Graux, D., Sejdiu, G., Saleem, M., Lehmann, J. (eds.): Joint Proceedings of the
1st International Workshop on Knowledge Graph Building and 1st International
Workshop on Large Scale RDF Analytics co-located with 16th Extended Semantic
Web Conference (ESWC 2019), Portorož, Slovenia, June 3, 2019, CEUR Workshop
Proceedings, vol. 2489. CEUR-WS.org (2019)

2. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.:
RML: A generic language for integrated RDF mappings of heterogeneous data. In:
Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd
International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8,
2014. (2014)

3. Garćıa-González, H., Boneva, I., Staworko, S., Labra-Gayo, J.E., Lovelle, J.M.C.:
ShExML: improving the usability of heterogeneous data mapping languages for
first-time users. PeerJ Computer Science 6, e318 (2020)

A ShExML perspective on mapping challenges 13

4. Garćıa-González, H., Fernández-Álvarez, D., Gayo, J.E.L.: ShExML: An Heteroge-
neous Data Mapping Language based on ShEx. In: Proceedings of the EKAW 2018
Posters and Demonstrations Session co-located with 21st International Conference
on Knowledge Engineering and Knowledge Management (EKAW 2018), Nancy,
France, November 12-16, 2018. pp. 9–12 (2018)

5. Heyvaert, P., Meester, B.D., Dimou, A., Verborgh, R.: Declarative rules for linked
data generation at your fingertips! In: The Semantic Web: ESWC 2018 Satellite
Events - ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June 3-7, 2018,
Revised Selected Papers. pp. 213–217 (2018)

6. Lefrancois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generat-
ing RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) The Semantic Web - 14th Inter-
national Conference, ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10249, pp. 35–50
(2017)

7. Meester, B.D., Heyvaert, P., Verborgh, R., Dimou, A.: Mapping languages: Analy-
sis of comparative characteristics. In: Chaves-Fraga, D., Heyvaert, P., Priyatna, F.,
Sequeda, J.F., Dimou, A., Jabeen, H., Graux, D., Sejdiu, G., Saleem, M., Lehmann,
J. (eds.) Joint Proceedings of the 1st International Workshop on Knowledge Graph
Building and 1st International Workshop on Large Scale RDF Analytics co-located
with 16th Extended Semantic Web Conference (ESWC 2019), Portorož, Slovenia,
June 3, 2019. CEUR Workshop Proceedings, vol. 2489, pp. 37–45. CEUR-WS.org
(2019)

8. Meester, B.D., Maroy, W., Dimou, A., Verborgh, R., Mannens, E.: RML and
fno: Shaping dbpedia declaratively. In: Blomqvist, E., Hose, K., Paulheim, H.,
Lawrynowicz, A., Ciravegna, F., Hartig, O. (eds.) The Semantic Web: ESWC 2017
Satellite Events - ESWC 2017 Satellite Events, Portorož, Slovenia, May 28 - June
1, 2017, Revised Selected Papers. Lecture Notes in Computer Science, vol. 10577,
pp. 172–177. Springer (2017)

9. Meester, B.D., Seymoens, T., Dimou, A., Verborgh, R.: Implementation-
independent function reuse. Future Gener. Comput. Syst. 110, 946–959 (2020)

10. Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of relational
and non-relational databases into RDF with xr2rml. In: Monfort, V., Krempels,
K., Majchrzak, T.A., Turk, Z. (eds.) WEBIST 2015 - Proceedings of the 11th
International Conference on Web Information Systems and Technologies, Lisbon,
Portugal, 20-22 May, 2015. pp. 443–454. SciTePress (2015)

11. Michel, F., Djimenou, L., Zucker, C.F., Montagnat, J.: xr2rml: Relational and
non-relational databases to rdf mapping language. Tech. rep. (2017)

12. Prud’hommeaux, E., Gayo, J.E.L., Solbrig, H.R.: Shape expressions: an RDF val-
idation and transformation language. In: Sack, H., Filipowska, A., Lehmann, J.,
Hellmann, S. (eds.) Proceedings of the 10th International Conference on Semantic
Systems, SEMANTICS 2014, Leipzig, Germany, September 4-5, 2014. pp. 32–40.
ACM (2014)

