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Abstract
We focus on learning adversarially robust clas-
sifiers under cost-sensitive scenarios, where the
potential harm of different classwise adversarial
transformations is encoded in a cost matrix. Ex-
isting methods either are empirical that cannot
certify robustness or suffer from inherent scal-
ability issues. In this work, we study whether
randomized smoothing, a scalable robustness cer-
tification framework, can be leveraged to certify
cost-sensitive robustness. We first show how to
extend the vanilla certification pipeline to provide
rigorous guarantees for cost-sensitive robustness.
However, when adapting the standard randomized
smoothing method to train for cost-sensitive ro-
bustness, we observe that the naive reweighting
scheme does not achieve a desirable performance
due to the indirect optimization of the base clas-
sifier. Inspired by this observation, we propose a
more direct training method with fine-grained cer-
tified radius optimization schemes designed for
different data subgroups. Experiments on image
benchmarks demonstrate that our method signifi-
cantly improves certified cost-sensitive robustness
without sacrificing overall accuracy.

1. Introduction
Recent studies have revealed that deep learning models
are highly vulnerable to adversarial examples (Szegedy
et al., 2013; Goodfellow et al., 2014). To defend against
such attacks, various defensive mechanisms have been pro-
posed, primarily falling into two categories: empirical de-
fenses (Goodfellow et al., 2014; Carlini & Wagner, 2016;
Kurakin et al., 2016; Madry et al., 2017; Carlini & Wag-
ner, 2017) and certified methods (Raghunathan et al., 2018;
Wong & Kolter, 2018; Gowal et al., 2018; Cohen et al., 2019;
Lecuyer et al., 2019; Jia et al., 2019; Li et al., 2019). In
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particular, certified methods can produce a certificate for the
model prediction to remain unchanged within certain neigh-
borhood of any input and train models to be provably robust
for some specific norm-bounded adversarial perturbations.

Most existing adversarial defenses aim to improve the clas-
sifier’s overall robustness, which assumes the same penalty
on all kinds of adversarial misclassifications. For real-world
applications, however, it is likely that some specific misclas-
sifications are more important than others (Domingos, 1999;
Elkan, 2001). For instance, misclassifying a malignant tu-
mor as benign in the application of medical diagnosis is
much more detrimental to a patient than the reverse. There-
fore, instead of solely focusing on enhancing overall robust-
ness, the development of defenses should also account for
the difference in costs induced by different adversarial ex-
amples. In line with existing works on cost-sensitive robust
learning (Asif et al., 2015; Zhang & Evans, 2018; Domingos,
1999; Chen et al., 2021), our objective is to develop models
that are robust to cost-sensitive adversarial misclassifica-
tions, while maintaining the standard overall classification
accuracy. However, existing defenses are either hindered
by their foundational reliance on heuristics, which often
fall short of providing a robustness guarantee (Domingos,
1999; Asif et al., 2015; Chen et al., 2021), or suffer from
inherent scalability issues (Zhang & Evans, 2018). Detailed
discussions of related works are provided in Appendix A.

To achieve the best of both worlds, we propose to train
certified cost-sensitive robust classifiers using randomized
smoothing (Cao & Gong, 2017; Liu et al., 2018; Cohen et al.,
2019), a new certification technique that has attracted a lot
of attention due to its simplicity and scalability. However,
we discover that a straightforward reweighting scheme, typ-
ically employed for cost-sensitive learning, does not adapt
well when training a smoothed classifier, due to the indirect
optimization of the base classifier and the non-optimal trade-
off between sensitive and non-sensitive examples. There-
fore, we take the distinctive properties of different data sub-
groups into account and design an advanced certified cost-
sensitive robust training method based on MACER (Zhai
et al., 2020) to directly optimize the certified radius with
respect to the smoothed classifier.

Contributions. We are the first to adapt the randomized
smoothing framework to certify and train for cost-sensitive
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robustness. In particular, for any given binary-valued cost
matrix, we introduce the notion of cost-sensitive certified
radius (Definition 3.1), which captures the maximum allow-
able ℓ2 perturbation with respect to the smoothed classifier
for each input from a cost-sensitive seed class. We show
that the proposed definition subsumes the standard notion
of certified radius typically used in randomized smoothing,
thus is more tailored for certifying cost-sensitive robustness
(Section 3.1). Built upon the definition of cost-sensitive cer-
tified radius, we propose a practical certification algorithm
based on Monte Carlo samples (Algorithm 1). To train for
smoothed classifiers, we attempt to adapt the reweighting
method which commonly used in vanilla cost-sensitive learn-
ing, but observe a big accuracy drop for non-sensitive seed
examples (Section 4.1). Instead, we resort to MACER (Zhai
et al., 2020), a more direct training method and design a
more fine-grained certified robust training method by con-
sidering the distinction between different data subgroups
(Section 4.2). Experiments on image benchmarks illusrtrate
the superiority of our method, compared with baseline ran-
domized smoothing methods, in attaining high cost-sensitive
robustness for both seed-wise and pairwise cost matrices
while keeping overall accuracy (Section 5).

2. Preliminaries
In this section, we briefly introduce randomized smoothing
and the problem setting for cost-sensitive robustness.

Randomized Smoothing. Randomized smoothing (RS) is
a scalable, probabilistic certification framework proposed
in Cohen et al. (2019) for certifying model robustness. This
framework leverages the set of smoothed classifiers, which
first augment normal inputs with randomly sampled Gaus-
sian noise, then pass the noisy inputs through a base classi-
fier fθ and aggregate their predictions using majority voting.

Definition 2.1. Let X be the input space and [m] :=
{1, 2, . . . ,m} be the set of class labels. For any base classi-
fier fθ and σ > 0, the smoothed classifier is defined as:

gθ(x) = argmax
j∈[m]

Pδ∼N (0,σ2I)[fθ(x+ δ) = j], ∀x ∈ X .

To simplify notations, let hθ : X → [0, 1]m be the mapping
from the input space X to the prediction probabilities of gθ:

[hθ(x)]j = Pδ∼N (0,σ2I)[fθ(x+ δ) = j], ∀j ∈ [m].

The following theorem characterizes the maximum allow-
able ℓ2-perturbation radius for any input x ∈ X such that
the prediction of gθ remains the same within the radius.

Theorem 2.2 (Cohen et al. (2019)). Let x ∈ X and y be
the ground-truth class of x. If gθ classifies x correctly:

Pδ(fθ(x+ δ) = y) > max
j ̸=y

Pδ(fθ(x+ δ) = j),

where δ is sampled i.i.d. from N (0, σ2I), then gθ is prov-
ably robust at x with certified radius in ℓ2-norm given by:

R(x) =
σ

2

[
Φ−1

(
[hθ(x)]y

)
− Φ−1

(
max
j ̸=y

[hθ(x)]j
)]
, (1)

where Φ is the Gaussian CDF and Φ−1 denotes its inverse.

Cost-Sensitive Robustness. We consider robust classifi-
cation tasks for cost-sensitive scenarios, where the goal is
to learn a classifier with both high overall accuracy and
cost-sensitive robustness. Let X ⊆ Rd be the input space
and [m] be the label space. Suppose C ∈ {0, 1}m×m is
a cost matrix that encodes the potential harm of different
classwise adversarial transformations. Note that we only
consider binary-valued cost matrices in this work, where ex-
tending our method and results to more general real-valued
cost matrices (Zhang & Evans, 2018) is straightforward. In
particular, Cjj′ = 1 means misclassifications from seed
class j ∈ [m] to target class j′ ∈ [m] will bring a cost,
whereas Cjj′ = 0 suggests no incentive for an attacker to
trick the model to misclassify inputs from class j to class
j′. Therefore, we aim to reduce the number of adversarial
misclassifications that induce a cost defined by C.

Moreover, we introduce the following notations for the ease
of presentation. For any seed class j ∈ [m], we let Ωj =

{j′ ∈ [m] : cjj′ = 1} be the set of cost-sensitive target
classes. If Ωj is an empty set, all the examples from seed
class j is non-sensitive. Otherwise, we call any class j with
|Ωj | ≥ 1 a sensitive seed class. Correspondingly, given
a dataset S = {(xi, yi)}i∈[n], we define the set of cost-
sensitive examples as Ss = {(x, y) ∈ S : |Ωy| ≥ 1}, while
the remaining examples are all non-sensitive. In particular,
we study the following two categories of cost matrices:

1. Seed-wise cost matrix: for any (x, y) ∈ Ss, Ωy =
{j ∈ [m] : j ̸= y}, meaning that all possible classwise
adversarial transformations will incur a cost.

2. Pairwise cost matrix: for any (x, y) ∈ Ss, the cost-
sensitive target class set Ωy is a proper subset of [m],
and misclassifying to any target class in [m]\Ωy is
acceptable. It is worth noting that [m]\Ωy may include
target classes other than the ground-truth class y.

Note that the commonly-used definition of overall robust-
ness can be regarded as a special case of seed-wise cost
matrix, where the non-diagonal entries of C are all 1.

3. Certifying Cost-Sensitive Robustness
In this section, we illustrate how to certify cost-sensitive
robustness using randomized smoothing. We first introduce
the formal definition of cost-sensitive certified radius then
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discuss its connection to the standard certified radius (Sec-
tion 3.1). Finally, based on the proposed definition, we de-
sign a practical certification algorithm using finite samples
(Section 3.2) and lay out the metrics for measuring certified
cost-sensitive robustness and overall accuracy (Section 3.3).

3.1. Cost-Sensitive Certified Radius

Recall that for any example (x, y) ∈ Ss, only misclassify-
ing x to a target class in Ωy incurs a cost, whereas misclas-
sifications to any class from [m]\Ωy is tolerable. Below, we
formally define cost-sensitive certified radius, which adapts
the standard certified radius to cost-sensitive scenarios:

Definition 3.1 (Cost-Sensitive Certified Radius). Consider
the same setting as in Theorem 2.2. Let C be an m×m cost
matrix. For any example (x, y) where y ∈ [m] is a sensitive
seed class, the cost-sensitive certified radius at (x, y) with
respect to C is defined as:

Rc-s(x; Ωy, hθ) =
σ

2

[
Φ−1

(
max
j∈[m]

[hθ(x)]j
)

− Φ−1
(
max
j∈Ωy

[hθ(x)]j
)]

(2)

where Ωj = {j′ ∈ [m] : cjj′ = 1} for any j ∈ [m] and
Φ−1 denotes the inverse CDF of standard GaussianN (0, 1).

Similarly, we can extend the proof of Theorem 2.2 to the
cost-sensitive settings to produce a robustness certificate
using the above definition of cost-sensitive certified radius.

Theorem 3.2. Consider the same setting as in Definition
3.1. For any example (x, y), if the predicted class of the
smoothed classifier gθ at x does not incur a cost:

max
j∈[m]

[hθ(x)]j ≥ max
j∈Ωy

[hθ(x)]j , (3)

then gθ is provably robust at x with certified radius given
by Rc-s(x; Ωy, hθ) measured in ℓ2-norm.

Theorem 3.2 can be applied to certify cost-sensitive robust-
ness for any binary-valued cost matrix setting. According
to the definition of hθ(x), the term on the left hand size
maxj∈[m][hθ(x)]j denotes the maximum predicted proba-
bility across all classes, while maxj∈Ωy [hθ(x)]j denotes
the maximum predicted probability across all sensitive tar-
get classes within Ωy. Therefore, if the condition specified
by Equation 3 holds, the predicted class of gθ will fall out
of Ωy which is acceptable for cost-sensitive robustness.

The following theorem, proven in Appendix B, characterizes
the connection between cost-sensitive certified radius and
the standard notion for different cost matrix scenarios.

Theorem 3.3. For any seed-wise cost matrix, our cost-
sensitive certified radius equals to Cohen et al. (2019)’s

standard certified radius, i.e, Rc-s(x; Ωy, hθ) = R(x). For
pairwise cost-sensitive scenarios, if the prediction gθ(x)
does not incur a cost, then Rc-s(x; Ωy, hθ) ≥ R(x).

Theorem 3.3 suggests that using Rc-s(x; Ωy, hθ) always
yields a higher certified cost-sensitive robustness for any
binary cost matrix. In particular, for pairwise cost matrices,
there will be a larger benefit in choosing Rc-s(x; Ωy, hθ).

3.2. Practical Certification Algorithm

According to the construction of hθ, it requires access to
an infinite number of Gaussian samples to compute the
cost-sensitive certified radius. However, it is computa-
tionally infeasible in practice to obtain the true value of
Rc-s(x; Ωy, hθ) even for a single example (x, y). In ad-
dition, as discussed in Theorem 3.3, the key difference
between Rc-s(x; Ωy, hθ) and the standard certified radius
R(x) lies in the pairwise cost matrix scenarios, which also
necessitates a new certification process. In this section, we
put forward a new Monte Carlo algorithm for certifying
cost-sensitive robustness by adapting Cohen et al. (2019)’s,
which can be applied to any binary cost matrix scenario.

Algorithm 1 describes the pseudocode of the proposed cer-
tification algorithm. In particular, it provides two different
ways to compute probabilistic bounds on cost-sensitive certi-
fied radius. R1 is computed using a lower 1− α confidence
bound on pA, while R2 is computed using both a lower
1−α/2 confidence bound of pA and an upper 1−α/2 con-
fidence bound of pB . According to Theorem 1 and Proposi-
tion 2 in (Cohen et al., 2019), we can show by union bounds
that with probability at least 1− α over the randomness of
Gaussian samples, the returned output max(R1, R2) by Al-
gorithm 1 is guaranteed to be a certified radius for any given
cost matrix. In other words, the prediction of the smoothed
classifier gθ at (x, y) will not incur any undesirable cost
for any ℓ2 perturbations within radius max(R1, R2). De-
tails of the sampling scheme used in Algorithm 1 and more
discussions are provided in Appendix C.

We remark that the certification algorithm for overall robust-
ness proposed in Cohen et al. (2019) only considers the first
approach to compute certified radius. This is because the
first approach always yields a larger lower confidence bound
on pA by choosing 1−α thus a larger certified radius, under
condition that pB is close to 1− pA which typically holds
for seed-wise cost matrices. For certain pairwise scenarios,
however, it is possible that R2 > R1 for some inputs, since
the maximum class probabilities for computing pB with
respect to Ωy could be very small, which may not contain
the second-highest probability class, especially when the
number of cost-sensitive target classes |Ωy| is small. To
ensure that we always produce the largest possible certified
radius for any scenario, Algorithm 1 selects the larger value
of R1 and R2 to be its output for any cost-sensitive example.
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Algorithm 1 Certification for Cost-Sensitive Robustness
0: function CERTIFY(f, σ,x, n0, n, α,Ωy)
1: counts0 ← SAMPLEUNDERNOISE(f,x, n0, σ)
2: ĉA ← top index in counts0
3: ĉB ← top index in counts0[Ωy]
4: counts← SAMPLEUNDERNOISE(f,x, n, σ)
5: pA ← LOWERCONFBND(counts[ĉA], n, 1− α)

6: R1 = σΦ−1(pA)
7: pA ← LOWERCONFBND(counts[ĉA], n, 1− α/2)
8: pB ← UPPERCONFBND(counts[ĉB ], n, 1− α/2)
9: R2 = σ

2 (Φ
−1(pA)− Φ−1(pB))

10: if max(R1, R2) > 0 then
11: return prediction ĉA and max(R1, R2)
12: else
13: return ABSTAIN
14: end if

3.3. Evaluation Metrics

Recall that the goal of robust cost-sensitive learning is to
produce a classifier that is both robust to cost-sensitive adver-
sarial misclassifications, while maintaining overall accuracy
at the same time. Based on the definition of cost-sensitive
certified radius introduced in Section 3.1 and Algorithm 1,
we can now define the evaluation metrics for measuring a
classifier’s certified performance in cost-sensitive scenarios.

For any binary cost matrix, we define the certified cost-
sensitive robustness of a smoothed classifier gθ over dataset
S = {xi, yi}i∈[n] as the ratio of cost-sensitive examples
that are provably robust against ℓ2 perturbations with ϵ:

Robc-s(gθ) =
1

|Ss|
∑

(x,y)∈Ss

1
{
Rc-s(x; Ωy, hθ) > ϵ

}
. (4)

In practice, the term Rc-s(x; Ωy, hθ) in Equation 4 will be re-
placed by the output max(R1, R2) of Algorithm 1, leading
to an empirical estimate R̂obc-s(gθ). As explained in Section
3.2, max(R1, R2) is guaranteed to be a probabilistic lower
bound of Rc-s(x; Ωy, hθ) with 1−α confidence level. There-
fore, gθ will be provably robust with certified cost-sensitive
robustness R̂obc-s(gθ) against ℓ2 perturbations with ϵ.

The overall accuracy of gθ is defined as the fraction of cor-
rectly classified samples with respect to the whole dataset:

Acc(gθ) =
1

|S|
∑

(x,y)∈S

1
{
R(x) > 0

}
. (5)

We follow the standard procedure of randomized smoothing
(Cohen et al., 2019) to estimate Acc(gθ) in our experiments.

4. Training for Cost-Sensitive Robustness
A popular training scheme for cost-sensitive learning is
reweighting (Elkan, 2001), which assigns larger weights to

cost-sensitive inputs during model training. Thus, a natural
question is whether the reweighting scheme can be incor-
porated in randomized smoothing to train for cost-sensitive
robustness. In this section, we first study the effectiveness
of reweighting methods, where we empirically observe a
non-optimal trade-off between the performance of sensitive
and non-sensitive examples. Motivated by this observation,
we propose to leverage the design insight of MACER (Zhai
et al., 2020) and develop a training method to maximize cer-
tified cost-sensitive robustness while minimizing the impact
on non-sensitive data (Section 4.2).

4.1. Reweighting Methods Sacrifice Overall Accuracy

We consider the base classifier training method introduced
in Cohen et al. (2019), which proposes to inject Gaussian
noise to all inputs during the training process of fθ. Given
a binary cost matrix, let Ds be the distribution of all sensi-
tive examples which incur costs if misclassified and let Dn

represent the distribution of the remaining normal examples.
Intuitively, the training pipeline of randomized smoothing
can be adapted to cost-sensitive settings using a simple
reweighting scheme by increasing the weights assigned to
the loss function of sensitive examples. More concretely,
the total training objective function is defined as follows:

min
θ∈Θ

Eδ∼N (0,σ2I)

[
E(x,y)∼Dn

LCE(fθ(x+ δ), y)

+ α · E(x,y)∼Ds
LCE(fθ(x+ δ), y)

]
, (6)

where Θ denotes the set of model parameters, LCE repre-
sents the cross-entropy loss, and α ≥ 1 is a trade-off param-
eter which controls the performance between sensitive and
non-sensitive examples. When α = 1, the above objective
function is equivalent to the training loss used in standard
randomized smoothing (Cohen et al., 2019). However, we
note that such adaptation of reweighting (Equation 6) can
only works for seed-wise cost matrices, which can not be
directly applied for pairwise cost matrix scenarios.

Visualizations. We further study the performance of the
naive reweighting scheme defined by Equation 6, where we
empirically observe that naive reweighting sacrifices overall
accuracy if we target for improved cost-sensitive robustness.
Figure 1 visualizes the distributions of certified radius for
both sensitive and non-sensitive classes with respect to the
smoothed classifier learned by naive reweighting. We also
tune the trade-off parameter α to maximize the performance
of the final produced smoothed classifier. Here, the certi-
fied radius is estimated using Equation 2 with empirical
Gaussian samples on the testing dataset. Note that negative
certified radius indicates an incorrect classification, whereas
positive radius means the prediction of gθ is correct.

Compared with standard randomized smoothing, naive
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Figure 1. Density plots of certified radius regarding gθ learned by
Cohen et al. (2019)’s and naive reweighting methods with σ = 0.5
for different set of examples: (a) sensitive class (b) normal class.
The sensitive seed class is selected as the CIFAR-10 class “cat”.

reweighting increases the certified radius for sensitive class,
suggesting an improvement in cost-sensitive robustness.
However, the normal class’s radius distribution shifts to
the left for the naive reweighting method. In particular,
for the cost matrix scenario considered in Figure 1, naive
reweighting improves certified cost-sensitive robustness to
a large extent from 19% to 58% compared with Cohen et al.
(2019)’s, but the overall accuracy degrades from 65% to
62%. This observation illustrates that the naive adaptation
of a reweighting scheme tends to result in an undesirable
sacrifice of overall clean accuracy, likely due to the fact
that reweighting is only indirectly applied to the smoothed
classifier gθ through optimization of the base classifier fθ.

4.2. Our Method

Motivated by the observation discussed in Section 4.1, we
propose a more direct optimization scheme based on the
proposed notion of certified cost-sensitive radius, which
leverages a similar insight of MACER (Zhai et al., 2020).

To simplify notations, we first introduce a general class of
margin-based losses. Given l ≤ u denoting the thresholding
parameters, we define the following class of margin losses:
for any r ∈ R representing the certified radius,

LM

(
r; l, u

)
= max{u− r, 0} · 1(l ≤ r ≤ u).

Here, the indicator function selects data points whose certi-
fied radius falls within the range of [l, u].

For seed-wise cost matrices, the training objective of method
is defined as:

min
θ∈Θ

I1 + λ · I2 + λ · I3, (7)

where I1 = E(x,y)∼D LCE(hθ(x), y),

I2 = E(x,y)∼Dn
LM

(
Rc-s(x; Ωy, hθ); 0, γ1

)
,

I3 = E(x,y)∼Ds
LM

(
Rc-s(x; Ωy, hθ);−γ2, γ2

)
,

where λ, γ1, γ2 > 0 are hyperparameters, D is the underly-
ing data distribution, and Ds,Dn denote the distributions of

cost-sensitive and the normal examples, respectively.

Equation 7 consists of three terms: I1 represents the cross-
entropy loss with respect to hθ over D, which controls the
overall accuracy; I2 and I3 control the robustness with a
shared trade-off parameter λ. The range of the interval [l, r]
represents which data subpopulation we want to optimize.
A larger thresholding parameter such as γ1 and γ2 lead to
a higher data coverage, whereas the range with a smaller
threshold includes fewer data points. We set γ2 > γ1 to
have a wider adjustment range for sensitive seed examples.
As shown in Wang et al. (2020), optimizing misclassified
samples can help adversarial robustness, thus, we intend to
include sensitive seed examples with a negative radius in
[−γ2, 0) in the design of I3 for a better performance.

For pairwise cost matrices, we replace the term I2 by:

I ′2 = E(x,y)∼D LM

(
Rc-s(x; Ωy, hθ); 0, γ1

)
.

In seed-wise cost matrix optimization, I2 only includes nor-
mal seed examples, while in pairwise cases, we also include
all the sensitive seed examples. This difference mainly lies
in that for pairwise scenarios, there is a mismatch between
the cost-sensitive certified radius Rc-s(x; Ωy, hθ) and the
standard certified radius R(x) due to the difference between
the cost-sensitive target set Ωy and the ground-truth label y.
Therefore, only considering normal seed examples would
not be sufficient to ensure a desirable accuracy performance
on sensitive distribution Ds under pairwise settings.

Intuitively speaking, by imposing different threshold restric-
tions [l, u] on the certified radius of sensitive seed classes
and normal seed classes, the optimization process can prior-
itize making adjustments to data subpopulations of specific
classes rather than considering all data points belonging to
those classes. This is also a key advantage of our method
over the naive reweighting method. As will be shown in
our experiments, such fine-grained optimization enables our
method to improve certified cost-sensitive robustness to a
large extent without sacrificing overall accuracy.

5. Experiments
We evaluate the performance of our method on two image
benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009)
and MNIST (LeCun et al., 1998). For CIFAR-10, we use
the same ResNet (He et al., 2016) architecture as employed
in Cohen et al. (2019). Specifically, we choose ResNet-56
network, since it attains comparable performance to ResNet-
110 with a shorter computation time. Following existing
works (Zhai et al., 2020; Shafahi et al., 2019), we choose
the commonly-used LeNet (LeCun et al., 2015) for MNIST.

Baselines. We primarily compare our method with two base-
line randomized smoothing methods: Cohen (Cohen et al.,



Provably Robust Cost-Sensitive Learning via Randomized Smoothing

Table 1. Certification results of different randomized smoothing
based training methods for various seed-wise cost matrices. The
noise level σ is 0.5 for CIFAR-10 and 1.0 for MNIST. Acc stands
for overall accuracy and Robc-s is certified cost-sensitive robust-
ness with ϵ = 0.5. Our results are highlighted in bold.

Task Type Method Acc Robc-s

CIFAR

Vuln
(3)

Cohen 0.654 0.193
MACER 0.647 0.189

Ours 0.661 0.583

Rand
(4)

Cohen 0.654 0.358
MACER 0.647 0.438

Ours 0.654 0.724

Multi
(2, 4)

Cohen 0.654 0.253
MACER 0.647 0.233

Ours 0.654 0.455

MNIST

Rand
(4)

Cohen 0.964 0.867
MACER 0.940 0.807

Ours 0.949 0.930

Multi
(4, 7)

Cohen 0.964 0.838
MACER 0.940 0.837

Ours 0.973 0.912

2019) and MACER (Zhai et al., 2020). We select Cohen
for comparisons with standard randomized smoothing and
MACER for comparing with methods that optimize for certi-
fied radius. Both of these baselines are optimized for overall
robustness, so we expect our method by design can largely
improve the cost-sensitive robustness. In addition, our ex-
periments are mainly conducted for two categories of cost
matrices: seed-wise and pairwise, as their corresponding
certification and training procedures are different.

Experimental Details. For both CIFAR-10 and MNIST, we
follow Zhai et al. (2020)’s training setting with a total of 440
training epochs and the same learning rate decay schedule
(an initial learning rate of 0.01 and decay factor of 0.1 every
200 epochs). The main difference between our method and
MACER is the parameter choice of λ and γ. λ trades off
the overall accuracy and certified robustness. For CIFAR10
dataset we find λ = 3 works best for cost-sensitive scenarios
whereas MACER selects λ = 4. For MNIST dataset, we
follow the setting in MACER where λ = 16. In addition,
MACER uses γ = 8 to enhance all classes’ robustness,
whereas we set γ1 = 16 for sensitive classes and γ2 = 4
for normal classes, since such choices lead to the optimal
result. Our method’s performance for other combinations
of hyperparameters is discussed in Appendix E. In addition,
we compare our method with the convex relaxation-based
method of Zhang & Evans (2018) in Appendix D.
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Figure 2. Certified accuracy curves under seed-wise cost matrix
settings. Here, we choose class “cat” as the single sensitive seed
class for CIFAR-10 and digit 4 as the sensitive seed for MNIST.

Seed-wise Cost Matrix. Table 1 reports the performance in
terms of overall accuracy and certified cost-sensitive robust-
ness of our method and the two baselines with respect to
different seed-wise cost matrices. In particular, we consider
three types of seed-wise cost matrices in our experiments:
(1) Vuln: a “vulnerable” sensitive seed class, where we
choose the class “cat” (label 3) for CIFAR-10, since stan-
dard trained classifiers achieve the highest misclassification
rates for such class; (2) Rand: a randomly-selected sensitive
seed class from all available classes, where we report the
performance on the fourth class “deer” (label 4) for CIFAR-
10 and digit 4 for MNIST; (3) Multi: multiple sensitive seed
classes, where “bird” (label 2) and “deer” (label 4) are con-
sidered as the sensitive seed classes for CIFAR-10, while we
choose digits 4 and 7 as sensitive for MNIST. We observe
in Table 1 that our cost-sensitive robust training method
achieves a significant improvement in terms of certified
cost-sensitive robustness compared with baselines. In addi-
tion, our method achieves comparable or slightly improved
overall accuracy performance for all cost matrix scenarios.

Moreover, we further compare the certified accuracy curves
of cost-sensitive examples with varying radius for the afore-
mentioned methods in Figure 2. For CIFAR-10, it is evident
that our method consistently outperforms the baseline in
terms of certified cost-sensitive accuracy across various
radius. More specifically, when the radius equals zero,
our method’s cost-sensitive accuracy peaks at 76.9%, a sig-
nificant improvement over Cohen’s 45.5% and MACER’s
35%. When the radius is 0.5, the results correspond to certi-
fied cost-sensitive robustness presented in Table 1. Similar
trends are observed for MNIST, and we note that once the ra-
dius exceeds 2.5, the performance of the baselines drops to
zero, whereas our method still achieves non-trivial certified
accuracy, indicating its robustness to larger perturbations.

Pairwise Cost Matrix. It is worth noting that the certifi-
cation Algorithm 1 and our training method proposed in
Section 4.2 for pairwise cost matrices are different from
the seed-wise scenarios. Similar to the previous setting,
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Table 2. Certification results for pairwise cost matrices. The noise
level σ is 0.5 for CIFAR-10 and 1.0 for MNIST. Acc stands
for overall accuracy and Robc-s refers to certified cost-sensitive
robustness with ϵ = 0.5. Our results are highlighted in bold.

Task Type Methods Acc Robc-s

CIFAR

Rand
(3→ 5)

Cohen 0.654 0.504
MACER 0.647 0.543

Ours 0.673 0.924

Multi
(3→ 2, 4, 5)

Cohen 0.654 0.336
MACER 0.647 0.385

Ours 0.643 0.822

MNIST

Rand
(4→ 9)

Cohen 0.964 0.934
MACER 0.940 0.908

Ours 0.954 0.971

Multi
(4→ 3, 5, 9)

Cohen 0.964 0.924
MACER 0.940 0.895

Ours 0.950 0.957

we consider two types of pairwise cost matrices: (1) Rand:
a randomly-selected sensitive pairwise transformation; (2)
Multi: a single sensitive seed class with multiple sensitive
target classes. Table 2 compares the performance of our
method with baselines for the aforementioned pairwise cost
matrices on CIFAR-10 and MNIST datasets, while Figure
3 depicts the certified accuracy curves for cost-sensitive
examples with varying radius for different methods.

Compared with our results for seed-wise cost sensitive
settings, our method achieves a larger improvement in
cost-sensitive robustness for pariwise cost matrices. This
larger improvement can be attributed to the design of our
method that optimizes the cost-sensitive certified radius
Rc-s(x; Ωy, hθ), which is more tailored for pairwise cost-
sensitive scenarios. This also confirms the superiority of our
certification algorithm for certifying cost-sensitive robust-
ness over the standard one. We notice that for certain pair-
wise cost matrices, there is a slight drop in overall clean ac-
curacy. Given the significant improvement in cost-sensitive
performance, such small decrease in overall performance is
negligable, which can be tolerated for typical applications.

6. Conclusion
We developed a generic randomized smoothing framework
to certify and train for cost-sensitive robustness. At the core
of our framework is a new notion of cost-sensitive certified
radius, which is applicable to any binary cost matrix. Built
upon fine-grained thresholding techniques for optimizing
the certified radius with respect to different subpopulations,
our method significantly improves the certified robustness
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Figure 3. Certified accuracy curves for cost-sensitive examples
under pairwise cost-sensitive scenarios. Here, we select pairwise
transformation 3 → 5 as sensitive for CIFAR-10, while the right
figure is for MNIST with sensitive transformation 4 → 9.

performance for cost-sensitive transformations. Compared
with naive reweighting approaches, our method achieves a
much more desirable trade-off between overall accuracy and
certified cost-sensitive robustness. Experiments on image
benchmarks demonstrate the superior performance of our
approach compared to various baselines. Our work opens up
new possibilities for building certified robust models based
on randomized smoothing for cost-sensitive applications.
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A. Related Work
Randomized smoothing (Cohen et al., 2019) proposes to first convert any base neural network into a smoothed classifier by
injecting spherical Gaussian noises to inputs followed by majority voting, then provides a robust certificate that can guarantee
the prediction of the resulting smoothed classifier is constant within some ℓ2-norm ball for any given input. Compared with
other robustness certification methods, the biggest advantage of the randomized smoothing framework is its scalability to
large neural networks and large-scale datasets such as classification task for ImageNet. In particular, Cohen et al. (2019)
provided a tight robustness guarantee for randomized smoothing with ℓ2 perturbations. Later, SmoothADV (Shafahi et al.,
2019) improved the proposed training method in Cohen et al. (2019) by designing an adaptive attack on the smoothed
classifier using adversarial training and first-order approximations. In addition, MACER (Zhai et al., 2020) developed
a more direct way which directly optimizes the smoothed classifiers’ certified radius with respect to correctly-classified
samples using margin based loss and achieves better robustness and accuracy trade-off than previous methods.

Cost-sensitive learning deals with the situation where different misclassifications will induce different costs (Domingos,
1999; Elkan, 2001). For example, misclassifying a malicious tumor to benign (Khan et al., 2017) will bring more harmful
consequences to the patient than the reverse. In adversarial training, it’s also valuable to make the classifier adapt to
the cost-sensitive setting so that adversarial transformations with high costs will be less likely to happen. Most of the
cost-sensitive robust training methods are either could only be employed on linear classifiers or are empirical training
methods without any robust certification (Khan et al., 2017; Chen et al., 2021). Zhang & Evans (2018) proposed a method
to train cost-sensitive certifiable classifiers using certified methods based on convex optimization, however, it can not scale
to large neural network or large datasets such as ImageNet. Our work combines randomized smoothing and cost-sensitive
learning to provide more scalable classifiers with good certifiable robustness guarantees under cost-sensitive scenarios.

B. Comparisons with Standard Certified Radius
The main distinction between our cost-sensitive certified radius Rc-s(x; Ωy, hθ) and Cohen et al. (2019)’s standard certified
radius R(x) lies in the pairwise cases. In the following, we provide the detailed proof of Theorem 3.3.

Proof of Theorem 3.3. To characterize the connection, we introduce an intermediate cost-sensitive certified radius R(x; Ωy):

R̃(x; Ωy, hθ) =
σ

2
·
[
Φ−1

(
max

j∈Y\Ωy

[hθ(x)]j
)
− Φ−1

(
max
j∈Ωy

[hθ(x)]j
)]
.

Note that Rc-s(x; Ωy, hθ) and R̃(x; Ωy, hθ) are equivalent to each other under our evaluation metrics (Equation 4 and
Equation 5). Thus, the relationship between Rc-s(x; Ωy, hθ) and R(x) translates to that between R̃(x; Ωy, hθ) and R(x).
For seed-wise cases, R̃(x; Ωy, hθ) and R(x) are equivalent as the set of target classes in both definitions are identical,
while for pairwise cases, their relationship can be explained according to the predicted results, note the prerequisite in the
definition of R(x) guarantees that x is correctly classified.

To be more specific, we have the following observations:

1. For seed-wise cost matrices, R̃(x; Ωy, hθ) > ϵ⇔ R(x) > ϵ. Since Ωy = {j|j ̸= y, j ∈ [m]} and [m]\Ωy = {y}, the
two probability terms are fully matched for both radius, so R̃(x; Ωy, hθ) degenerates to R(x).

2. For pairwise cost matrices, R̃(x; Ωy, hθ) ≥ R(x) for the second term in R̃(x; Ωy, hθ) is a relaxed version of R(x), as
Ωy ∈ {j ̸= y, j ∈ [m]}, so R̃(x; Ωy, hθ) ≥ R(x). If the prediction is ground-truth label y (which falls in [m]\Ωy),
then R̃(x; Ωy, hθ) ≥ R(x). If the prediction is not the ground-truth label but is cost-sensitively correct, then R(x) < 0

but R̃(x; Ωy, hθ) > 0. If the prediction incurs a cost and falls in Ωy, then all the values of three certified radius are
smaller than 0, thus they are all the same.

Therefore, we complete the proof of Theorem 3.3.

C. Details of Algorithm 1
In this section, we provide further details and discussions of Algorithm 1 for certifying cost-sensitive robustness presented in
Section 3.2. We follow the same sampling procedure of Cohen et al. (Cohen et al., 2019). To be more specific, the sampling
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Table 3. Comparison results of our method with convex relaxation based method (Zhang & Evans, 2018) for ℓ2 perturbations on CIFAR-10,
where a single pairwise cost-sensitive transformation (3 → 5) is considered.

Method ℓ2 perturbations Cost-sensitive robustness Overall accuracy

Zhang & Evans (2018) ϵ = 0.25 0.944 0.480
Ours ϵ = 0.5 0.924 0.673

function SAMPLEUNDERNOISE(f, x, n, σ) is defined as:

1. Draw n i.i.d. samples of Gaussian noises δ1 . . . δn ∼ N (0, σ2I).

2. Obtain the predictions f(x+ δ1), . . . , f(x+ δn) with base classifier f on noisy images.

3. Return the counts for each class, where the count for class c is
∑

i∈[n] 1[f(x+ δi) = c].

We have two certification methods for pairwise cost matrices: Either Condition 1 or Condition 2 is sufficient to achieve our
goal. We have two potential approaches: 1) similar to standard randomized smoothing, using one lower bound for seed
class; 2) compute both lower and upper bounds.

1. Use the original randomized smoothing certification with one pA (with respect to all classes [m]).

2. Compute both lower bound pA (with respect to all classes [m]) and upper bound pB (with respect to Ωy), but the
significance level needs to be set as α/2 instead of α.

D. Comparisons with Zhang & Evans (2018)
Zhang & Evans (2018) proposed a method to certify cost-sensitive robustness of any classifier based on convex relaxation
(Wong & Kolter, 2018), which provides a robustness guarantee for a given input via minimizing the worst-case loss within the
relaxed convex outer polytype. Also, Zhang & Evans (2018) developed a training method for training provably cost-senstive
robust classifiers. In particular, their method incorporates different types of cost matrices into the convex optimization
process to train cost-sensitive robust classifiers.

However, the initial work of Wong & Kolter (2018) only focuses on ℓ∞-norm bounded perturbations and does not consider
perturbations in ℓ2-norm. As a result, the proposed method in Zhang & Evans (2018) also did not address the cost-sensitive
robustness for ℓ2 perturbations. We note that in a follow-up work of Wong et al. (2018), they extend the developed
certification techinques to ℓ2 perturbations. For fair comparisons with our method, we further extend the cost-senstive robust
learning method of Zhang & Evans (2018) to handle ℓ2-norm perturbations using the method of Wong et al. (2018). We
report their comparisons in Table 3, the certified cost-sensitive robustness for the convex-relaxation method is computed
as the cost-sensitive robust error defined in Zhang & Evans (2018), which represents the fraction of test samples that are
guaranteed to be robust to certain ℓ2 perturbations.

Table 3 shows that our method achieves much higher overall accuracy even against larger ℓ2 perturbations, suggesting a better
cost-sensitive robustness and overall accuracy trade-off. Also, we find in our implementation that convex relaxation-based
methods is not applicable to large ℓ2 perturbations (e.g., ϵ = 0.5), due to memory issues. We also remark that randomized
smoothing techniques proposed in existing works (Cohen et al., 2019; Li et al., 2019; Jia et al., 2019) primarily focus on
defending against ℓ2-perturbations. As a result, our methods excel in achieving good cost-sensitive performance under
ℓ2-norm bounded perturbations. There are limitations when it comes to certifying cost-sensitive robustness using our method
under other types of perturbations, such as perturbations with ℓ1-norm, ℓ∞-norm and even beyond ℓp-norm.

E. Hyperparameter Tuning
In this section, we study the effect of hyperparameters γ1 and γ2 used in our method proposed in Section 4.2 on the two
evaluation metrics, certified overall accuracy and cost-sensitive robustness. Note that our goal is to improve cost-sensitive
robustness without sacrificing overall accuracy, where γ1 controls the margin of normal classes and γ2 controls the margin
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Figure 4. Visualizations of our method with γ1 ∈ {4, 6, 8} and fixed γ2 = 10 with comparisons to baseline methods with: (a) overall
performance and (b) cost-sensitive performance. Here, we consider a single cost-sensitive seed class “Cat” for the cost matrix.

of sensitive classes. In particular, we report the parameter tuning results on CIFAR-10. Here, the cost matrix is selected as a
seed-wise cost matrix with a sensitive seed class “cat”. We choose the specific “cat” class only for the purpose of illustration,
as we observe similar trends in our experiments for other cost matrices, similar to the results shown in Table 1.

In addition, we consider two comparison baselines:

1. MACER (Zhai et al., 2020) with γ = 8, restricting only on correctly classified examples.

2. Our method with γ1 = 8 and γ2 = 8, the only difference with MACER is that our method contains misclassified
examples for sensitive classes.

Below, we show the effect of γ1 and γ2 on the performance of our method, respectively.

Effect of γ1. Note that γ1 is used to restrict the certified radius with respect to normal data points. Figure 4 illustrates
the influence of varying γ1 ∈ {4, 6, 8} and fixed γ2 = 10 for our method, with comparisons to the two baselines, on both
overall accuracy and cost-sensitive robustness.

For the original implementation of MACER, γ is selected as 8 for the best overall performance. Although it achieves
good overall robustness, it does not work for cost-sensitive settings, which suggests the possibility of a trade-off space,
where different classes can be balanced to achieve our desired goal of cost-sensitive robustness. The second baseline is
our method with γ1 = 8 and γ2 = 8. By incorporating misclassified samples for sensitive seed class, the cost-sensitive
performance substantially improvemes. This results shows the significance of including misclassified sensitive samples
during the optimization process of the certified radius.

Moreover, we can observe from Figure 4(b) that as we reduce the value of γ1, the robustness performance of the cost-sensitive
seed class increases. This again confirms that by limiting the certified radius of normal classes to a small threshold in our
method, the model can prioritize sensitive classes and enhance cost-sensitive robustness.

Effect of γ2. Figure 5 illustrates the influence of varying γ2 ∈ {8, 12, 16} with fixed γ1 = 4 or fixed γ1 = 8 for our method,
with comparisons to the two baselines, on both overall accuracy and cost-sensitive robustness. Moreover, we can observe
from Figure 5(b) and Figure 5(d) that as we increase the value of γ2, the robustness performance of the cost-sensitive seed
class increases. This confirms that by optimizing the certified radius of sensitive classes to a large threshold in our method,
the model can focus more on sensitive classes and enhance cost-sensitive robustness. Additionally, there is a slight increase
in the overall certified accuracy. This can be attributed to the fact that the overall accuracy takes into account both the
accuracy of sensitive samples and normal samples. As the certified accuracy of sensitive samples increases, it dominates the
overall accuracy and leads to its overall improvement.
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Figure 5. Visualizations of our method for two groups comparisons to baseline methods in terms of (a)(c) overall performance and (b)(d)
cost-sensitive performance. The first with γ2 ∈ {8, 12, 16} and fixed γ1 = 4, the second with γ2 ∈ {8, 12, 16} and fixed γ1 = 8. The
cost matrix is set as the matrix representing a single cost-sensitive seed class “Cat”.

Table 4 demonstrates the impact of different combinations of hyperparameters of (γ1, γ2) on both the overall accuracy and
cost-sensitive performance. The choice of γ1 and γ2 is crucial and requires careful consideration. For γ2, setting a value
that is too small can greatly undermine the overall accuracy, even though it may improve cost-sensitive robustness. This is
because the performance of normal classes deteriorates, resulting in a degradation of overall performance. On the other
hand, if the value is too large such as γ2 = 8, it may have a negative impact on cost-sensitive performance.

Regarding γ1, it is evident that increasing its value while keeping γ2 fixed leads to a significant improvement in cost-sensitive
robustness. It is worth noting that even though the cost-sensitive seed class represents only a single seed, accounting for only
10% of the total classes, enhancing its robustness has a positive effect on overall accuracy as well. For instance, let’s compare
the combination (γ1 = 8, γ2 = 4) to (γ1 = 8, γ2 = 8). We observe that the former, which exhibits better cost-sensitive
robustness, outperforms the latter in terms of both overall accuracy and cost-sensitive robustness. It achieves an approximate
improvement of 1.52% in overall accuracy and a significant improvement of approximately 50% in cost-sensitive robustness.

This finding highlights the effectiveness of our sub-population-based methods. It demonstrates that by fine-tuning the
optimization thresholds for the certified radius of sensitive classes and normal classes separately, we can achieve a better
trade-off between overall accuracy and cost-sensitive robustness.
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Table 4. Performance of our method for different parameter combinations of γ1 and γ2. Here, the cost-sensitive scenario is captured by
the seed-wise cost matrix with a single sensitive seed class “Cat” for CIFAR-10.

Method sensitive normal Overall accuracy Cost-Sensitive robustness

MACER - - 0.647 0.189
Ours 8 8 0.660 0.338

Ours

8 2 0.654 0.633
10 2 0.634 0.687
12 2 0.637 0.691
16 2 0.630 0.705

Ours

8 4 0.670 0.507
10 4 0.653 0.597
12 4 0.659 0.576
16 4 0.661 0.583

Ours

8 6 0.673 0.396
10 6 0.660 0.493
12 6 0.655 0.544
16 6 0.649 0.552

Ours

8 8 0.660 0.338
10 8 0.650 0.432
12 8 0.641 0.474
16 8 0.645 0.463


