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ABSTRACT

Model fusion has emerged as a promising research direction, offering a resource-
efficient paradigm that leverages existing pre-trained models to circumvent the
need for training from scratch. In this work, we investigate the fusion of models
specifically adapted for decision-making tasks. This challenge divides into two
distinct, yet related subproblems: the direct fusion of models that act as policy
and the fusion of dynamics models that subsequently induce a policy. We sug-
gest that these seemingly divergent subproblems can be unified through the lens
of energy-based models (EBMs), which parameterizes a conditional distribution
via an energy function where lower energy implies higher probability. Our frame-
work, EMFuse, provides this convergence by leveraging the concept of energy
as a common currency for fusion. For direct fusion of policies, such as those
in language models, the output distribution is commonly softmax (Boltzmann),
which essentially defines the negative logarithmic probability as an energy func-
tion. For dynamics models, existing works often train a set of models on the same
dataset to obtain robust uncertainty estimation; such an ensemble approach leads
to an exponential explosion in computational complexity when it comes to dy-
namics fusion across multiple sets of models. To overcome this, we introduce the
Any-step Dynamics Energy-based Transition Model (ADETM), a novel architec-
ture that performs efficient single-model-per-dataset uncertainty estimation with
its energy-based backbone, thereby avoiding this computational explosion. Our
EMFuse framework surpasses other baselines by 0.34% to 6.63% on single/cross
domain discrete decision-making benchmarks, and achieved an extra 2.3 to 7.4
normalized points on average in D4RL MuJoCo continuous-control scenarios.

1 INTRODUCTION

Modern deep learning ecosystems are increasingly populated by highly specialized models that
power tasks from text generation to complex problem-solving (Alto, 2024; Wu et al., 2024). Directly
training new monolithic models is expensive, while discarding existing expertise is wasteful. Model
fusion promises a resource-efficient alternative by combining pre-trained experts into a stronger sys-
tem (Wortsman et al., 2022; Matena & Raffel, 2022; Hu et al., 2021; Lu et al., 2024). However,
while model fusion has seen rapid growth, its application to the specialized domain of decision-
making remains comparatively underexplored. Recognizing the immense potential in this area, our
work focuses specifically on fusion for decision making, a critical frontier for creating more capable
and adaptable intelligent agents from fusion (Levine et al., 2020; Moerland et al., 2023).

At a high level, the behavior of a decision making agent is governed by either a directly learned
policy or a policy derived from a learned dynamics model. This fundamental architectural choice
presents two distinct points of intervention for model fusion: (1) Direct policy fusion: This approach
involves combining the output distributions of multiple policies at the point of decision, potentially
deriving a single, more robust action by taking all distributions into consideration. (2) Dynamics
fusion: In model-based RL (MBRL), dynamics models learned from offline logs (Levine et al.,
2020) enable further policy training (Chua et al., 2018; Janner et al., 2019; Yu et al., 2020; Hafner
et al., 2020). The dynamics fusion approach acts at a more foundational level by merging the agent’s
dynamics model (their predictive understanding of the environment’s dynamics). The goal is to
construct a single, more comprehensive and reliable simulation of the transitions by unifying each
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model’s knowledge of the world. A superior policy could be learned under this unification, which
provides a richer and more accurate basis for decision-making.

These seemingly divergent subproblems can be unified. We take the perspective of Energy-Based
Models (EBMs), where distributions are represented through energies whose additive composition
corresponds to multiplicative densities (LeCun et al., 2006; Hinton, 2002). In this view, both policy
outputs and dynamics likelihoods can be written as p(y | x) = exp(−E(x, y))/Z(x), and fusion
becomes an energy sum Efuse =

∑
i λiEi. This makes policy fusion and dynamics fusion two

instances of the same principle, differing only by the choice of x, y and the sampler.

Our framework, EMFuse, applies energy-additive fusion to two key settings: (1) direct policy fusion
and (2) dynamics model fusion. This approach enables efficient and effective inference without re-
quiring additional training of the full models. We observe that the fused energy distribution remains
close to each constituent policy on its specific domain, as measured by small KL-divergence. This
faithfulness makes the fused energy a powerful indicator for selecting the best policy for a given
context, a principle we formalize in our EMSelect algorithm.

Most existing dynamics model learning work trains an ensemble of models for uncertainty estima-
tion (Yu et al., 2020). However, fusing ensembles of dynamics models quickly becomes intractable
due to exponential blow-up. Inspired by ADMPO (Lin et al., 2025) that enables uncertainty es-
timation on one model by its ability to predict multiple next state with flexible action sequence
input, we therefore introduce the Any-step Dynamics Energy-based Transition Model (ADETM), an
energy-based dynamics model that performs single-model-per-dataset uncertainty estimation while
retaining multi-step context. Additional state and action encoders are added to make ADETM avail-
able to the energy-based context. This setup avoids the combinatorial cost of cross-ensemble fusion.

Our main contributions are listed as follows:

• EMFuse: We formalize policy and dynamics fusion under the same energy framework
Efuse =

∑
i λiEi, connecting classical PoE (Hinton, 2002) to decision-making settings.

• EMSelect: A EMFuse based policy selection framework that achieved additional 1.18%-
1.31% gain on top of EMFuse.

• ADETM for tractable dynamics fusion: A single-model-per-dataset energy-based world
model with any-step context that circumvents cross-ensemble explosion while preserving
uncertainty-aware behavior.

• Empirical gains: On single/cross-domain discrete decision-making benchmarks, EMFuse
improves accuracy by 0.34%–6.63%, and on D4RL MuJoCo continuous control (Fu et al.,
2020) it adds +2.3 to +7.4 normalized points on average over other fusion baselines.

2 PRELIMINARIES

2.1 TOWARDS ENERGY-BASED MODELS FOR DECISION MAKING

Markov Decision Process We consider a discounted MDPM = (S,A, P, r, γ) with an offline
dataset D = {(s, a, r, s′)} collected by an unknown behavior policy πβ (Puterman, 1994; Sutton
& Barto, 2018; Levine et al., 2020). Offline training faces a support gap: test-time states/actions
may lie outside the empirical support ofD, causing distribution shift and value overestimation. This
makes calibrated uncertainty and support awareness central to algorithm design.

Behavior modeling: explicit vs. implicit One axis models or constrains by the behavior distri-
bution. The Explicit approaches fit an estimate π̂β(a | s) and use them as a prior or regularizer for
policy learning (Fujimoto et al., 2019; Kostrikov et al., 2022). Implicit approaches shape learning
objectives to bias solutions toward the dataset support, e.g., conservative value learning and pes-
simistic objectives (Kumar et al., 2020; Levine et al., 2020). Both aim to remain out-of-distribution
(OOD)-robust; they differ in how support is represented (density vs. objective penalties).

Dynamics Models and Uncertainty Estimation. A second axis learns a model of the dynamics
and plans or trains policies inside it. Classical likelihood models parameterize pθ(s

′ | s, a) with
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Gaussian or mixture families; latent/variational world models compress trajectories into learned
state abstractions (e.g., World Models, PlaNet, Dreamer) (Ha & Schmidhuber, 2018; Hafner et al.,
2019; 2020). Recent work also explores diffusion/score-based generative modeling for sequential
control (Janner et al., 2022). Likelihood models require calibration under off-distribution conditions;
consequently, robust uncertainty estimation becomes key.

Epistemic uncertainty is commonly estimated through bootstrapped or independently initialized
model ensembles; aleatoric uncertainty is captured by predictive dispersion (Kendall & Gal, 2017;
Chua et al., 2018). ADMPO (Lin et al., 2025) trains a single recurrent net on variable-length tran-
sitions, achieving ensemble-like robustness without model repetition, further simplifying the frame-
work. Ensembles not only improve robustness, they also provide composable uncertainty signals
that will align naturally with an energy-based view.

Energy Based Models (EBMs) . EBMs represent distributions via unnormalized energies,
pθ(x) ∝ exp

(
− Eθ(x)

)
, trained with contrastive or score-based criteria (Hinton, 2002; Hyvärinen,

2005; LeCun et al., 2006). Energies add linearly when combining independent experts, correspond-
ing to multiplicative composition of their unnormalized densities. Specializing to dynamics, Energy-
based Transition Models (ETMs) (Chen et al., 2024) learn a transition energy Eθ(s, a, s

′) whose
negative exponent defines a next-state distribution,

pθ(s
′ | s, a) ∝ exp

(
− Eθ(s, a, s

′)
)
, (1)

enabling support-aware modeling and contrastive learning of transitions. Behavior priors also admit
an energy view, Eβ(s, a) = − log πβ(a | s). Given expert energies {Ei}, Product-of-Experts fusion
corresponds to an energy sum

Efuse(x) =
∑
i

λi Ei(x), pfuse(x) ∝ exp
(
− Efuse(x)

)
, (2)

which can combine multiple transition experts (ensembles, domains) and behavior priors in a single,
support-conscious objective (Hinton, 2002; LeCun et al., 2006). This additive structure underpins
the tractable fusion rules we use later for both policy and dynamics.

Policy learning ETMs or fused ETMs can be used to generate rollouts for policy learning un-
der pessimism/regularization (Rubinstein & Kroese, 2004; Chua et al., 2018; Feinberg et al., 2018;
Buckman et al., 2018; Kumar et al., 2020). This closes the loop in offline MBRL: behavior pri-
ors constrain actions, world models predict consequences with quantified uncertainty, and additive
energies provide a principled path to compose experts while remaining support-aware.

2.2 BOLTZMANN OUTPUT AS ENERGIES

Autoregressive policies, such as those in modern LLMs, can be viewed directly through an energy-
based lens. The key prerequisite for fusing such policies is that they must operate over a shared,
finite vocabulary V , a condition typically met by using a common tokenizer (Vaswani et al., 2017;
Brown et al., 2020; Hoffmann et al., 2022; Touvron et al., 2023). This shared support makes their
output distributions directly comparable and fusible.

At each step t, the model maps a context x≤t to a vector of logits zt ∈R|V|. These logits define a
normalized next-token policy via the softmax function with temperature τ :

pθ(yt | x≤t) = softmax
(
1
τ zt

)
=

exp
(
zt(y)/τ

)∑
y′∈V exp

(
zt(y′)/τ

) . (3)

Trained via maximum likelihood, this is the canonical estimator for conditional token probabilities
(Bishop, 2006; Goodfellow et al., 2016). Critically, it is equivalent to a Boltzmann(softmax) dis-
tribution with energy Eθ(x≤t, y) = −zt(y)/τ . This direct equivalence—where log-probabilities
are scaled negative energies—is the cornerstone that allows us to apply our energy-additive fusion
framework to LLM policies.

3
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3 ENERGY-BASED MODEL FUSION FOR DECISION MAKING

In this section, we will mainly discuss applications of our Energy-based Model Fusion for Decision
Making (EMFuse) framework to direct policy fusion and dynamics fusion. A subsequent applica-
tion of EMFuse in policy selection (EMSelect) will be mentioned and the supporting architecture
that enables dynamics training (ADETM) will be introduced.

The property of energy additivity forms the core of our fusion framework (Hinton, 2002), which
we now define formally. Let {Ei(x, y)}ni=1 be the energy of the policy model / dynamic model
that defines normalized conditionals pi(y | x) = exp

(
− Ei(x, y)

)
/Zi(x) on a shared support. For

nonnegative weights λi with
∑

i λi = 1, define the fused energy

Efuse(x, y) =

n∑
i=1

λi Ei(x, y). (4)

Then the fused distribution is

pfuse(y | x) =
exp

(
− Efuse(x, y)

)
Zfuse(x)

∝
n∏

i=1

pi(y | x)λi , (5)

i.e., a logarithmic opinion pool (geometric mixture, or LogOP), which is the unique minimizer
of the weighted reverse-KL projection argminq

∑
i λiKL(q∥pi) (Heskes, 1998; Genest & Zidek,

1986). This rule is application-agnostic; subsequent subsections instantiate Ei for (i) energy-based
policies (e.g. LLMs; via equation 3) and (ii) dynamics models (e.g. ETMs; Eq. equation 1).

3.1 DIRECT POLICY FUSION

The following conditional is spotted when we take an energy-based perspective to examine recent
decision-making model: pθ(y | x) = exp(−Eθ(x, y))/Zθ(x). Whenever experts expose such
normalized policies on a shared support, EMFuse fuses them by adding energies (equivalently,
multiplying their distributions): Efuse =

∑
i λiEi ⇐⇒ pfuse(y | x) ∝

∏
i pi(y | x)λi , which is

precisely the logarithmic opinion pool (LogOP)—the optimizer of a weighted reverse-KL projection
and coincides with a Product-of-Experts (PoE) in probability space (Heskes, 1998; Genest & Zidek,
1986; Hinton, 2002; LeCun et al., 2006).

We extend this to a real case-study by taking modern LLMs as an energy-based policy example.
Contemporary LLMs are decoder-only Transformers trained with next-token prediction (Vaswani
et al., 2017; Brown et al., 2020; Hoffmann et al., 2022; Touvron et al., 2023). By equation 3, at
time t, each expert Mi induces energies Ei(x≤t, y) = −zi(y)/τi over the shared vocabulary V , so
log pi(· | x≤t) are (negative) energies up to a normalizer.

Maximum-likelihood training makes equation 3 the canonical estimator of conditional token prob-
abilities (Bishop, 2006; Goodfellow et al., 2016). Equivalently, this is a Boltzmann distribution
with energy Eθ(x≤t, y) = −zt(y)/τ , so log pθ is (negative) energy up to a normalization con-
stant—exactly the form required for energy-additive fusion.

Let experts {Mi}ni=1 share (or be mapped to) the same tokenizer, hence the same support V . Each
produces pi(y | x≤t) = softmax(zi/τi). EMFuse defines the fused policy pfuse as the LogOP
solution

pfuse(· | x≤t) = arg min
q∈∆(V)

n∑
i=1

λi KL(q ∥ pi(· | x≤t)) =⇒ pfuse(y | x≤t) ∝
n∏

i=1

pi(y | x≤t)
λi ,

(6)
with nonnegative weights λi summing to 1. Writing pi = exp(−Ei) yields energy additivity
Efuse =

∑
i λiEi, i.e., multiplicative densities with additive energies (Hinton, 2002; LeCun et al.,

2006). Check Algo.1 for details, experiments w.r.t. LLM settings will be discussed in section 4.

The following discussions should be noticed: Fusion operates over an identical support V; this
avoids vocabulary mismatch and makes Eq. equation 6 well-defined, broader extensibility is en-
sured for tokenizer(vocabulary) mapping is verified(Sennrich et al., 2016; Kudo & Richardson,
2018; Mavromatis et al., 2024). For weights, λi can be static (uniform/held-out tuned) or context-
adaptive (e.g., entropy-aware); mild per-expert temperatures τi adjust sharpness without changing
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Algorithm 1 EMFuse-Policy (Case study on LLM)

1: Input: context x≤t; experts M1:n; per-expert temperatures {τi};
weights {λi} (λi≥0,

∑
i λi=1); optional decoding (temperature/top-k/top-p).

2: For i = 1..n: compute logits zi ←Mi.logits(x≤t); log-probs ℓi ← logsoftmax(zi/τi)
3: Fuse in log-space: ℓfuse ←

∑n
i=1 λi ℓi

4: Normalize: pfuse ← exp
(
ℓfuse − logsumexp(ℓfuse)

)
5: Decode: sample/argmax yt ∼ pfuse(· | x≤t); append yt to context.
6: Output: fused next-token distribution (and the generated token if decoding).

the EMFuse form (Guo et al., 2017; Hinton et al., 2015). In practice we are applying uniform
weights, ablation studies on Entropy-based weight showed statistically insignificant results, will be
discussed in the Appendix §E. Apply decoding heuristics (temperature, top-k, top-p) post-process
pfuse but do not alter its normalized form (Holtzman et al., 2020). We observed minimal, statisti-
cally insignificant gains from adding Laplace smoothing of per-expert distributions (to prevent mul-
tiplicative collapse when a policy assigns zero probability to a viable token); details and ablations in
Appendix §E.1.

3.2 DIRECT POLICY FUSION - AN ALTERNATIVE

EMFuse provides a consensus distribution by additive energies (Eq. equation 4–equation 5). Empir-
ically, when experts are domain-specialized, this consensus tends to lie close (in KL) to the expert
whose domain dominates the current context. This suggests using EMFuse as a reference to decide
which expert should act at each decoding step, which is the heart of our EMSelect algorithm.

Two-expert derivation. Consider two experts i and j with token policies pi(· | x≤t) and pj(· |
x≤t). Instantiate EMFuse on this pair with weights α ∈ [0, 1] and 1− α (defaults to α = 1

2 ):

pi⊕j(· | x≤t) ∝ pi(· | x≤t)
α pj(· | x≤t)

1−α.

Select the expert whose policy is closer (smaller KL) to this pairwise fused reference:

choose i iff KL
(
pi⊕j ∥ pi

)
≤ KL

(
pi⊕j ∥ pj

)
.

Since KL(p∥q) = Ep[log p− log q], the entropy term cancels and the decision reduces to

Epi⊕j
[log pi] ≥ Epi⊕j

[log pj ],

i.e., pick the expert with higher expected log-likelihood under the pairwise EMFuse reference.

EMSelect (tournament over n experts). For n≥2, apply the two-expert selector sequentially in
a lightweight tournament without any initial seeding: (i) fix a deterministic order over experts (e.g.,
their indices), (ii) set the incumbent to the first expert in that order, (iii) compare the incumbent
against the next expert using the two-expert rule, (iv) keep the winner as the new incumbent, and (v)
continue until all experts have been compared once.

Algorithm 2 EMSelect: KL-guided per-step policy choice from EMFuse

1: Input: context x≤t; experts M1:n; pairwise weight α∈ [0, 1] (default α = 1
2 ).

2: Expert log-probs: for all i, compute ℓi ← log pi(· | x≤t) (via logits→ log-softmax).
3: Initialize incumbent: let the comparison order be (1, 2, . . . , n); set i⋆ ← 1.
4: for j = 2 to n do
5: Pairwise EMFuse: ℓi⋆⊕j ← α ℓi⋆ + (1− α) ℓj ; pi⋆⊕j ← softmax(ℓi⋆⊕j)
6: Score experts: S(i⋆)←

∑
y pi⋆⊕j(y) ℓi⋆(y); S(j)←

∑
y pi⋆⊕j(y) ℓj(y)

7: Advance winner: i⋆ ← argmaxk∈{i⋆,j} S(k)
8: end for
9: Decode: use pi⋆(· | x≤t) to sample/argmax yt; append to context.

10: Output: selected expert i⋆ and per-step policy pi⋆ .

EMSelect complements EMFuse: EMFuse aggregates all experts into a conservative consensus,
while EMSelect commits per step to the expert that best preserves that consensus locally. In domains
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with strong specialization and mild calibration differences, this targeted commitment yields the
additional accuracy we report in our benchmarks.

3.3 DYNAMICS MODEL FUSION

Recall the general EMFuse rule (Eqs. equation 4–equation 5): expert energies add and their (un-
normalized) densities multiply. Specializing to Energy-based Transition Models (ETMs; Eq. equa-
tion 1), a set of n expert transitions {Ei(s, a, s

′)}ni=1 defines the fused transition

Efuse(s, a, s
′) =

n∑
i=1

λi Ei(s, a, s
′), pfuse(s

′ | s, a) ∝ exp
(
− Efuse(s, a, s

′)
)
, (7)

with nonnegative weights λi (we use λi =
1
n by default), assuming shared state/action spaces and

possibly different training datasets/domains per expert. In continuous state spaces, normalization is
unnecessary for ranking or sampling procedures that operate in energy/log-space.

Algorithm 3 EMFuse–Dynamics (one step)

1: Input: current state st; action at; expert ETM energies {Ei}ni=1; fusion weights λi =
1
n .

2: Per-expert energies: compute Ei(st, at, ·) for all i (on candidate s′ or as an energy field).
3: Fuse in energy space: Efuse(st, at, ·)←

∑n
i=1 λi Ei(st, at, ·).

4: Sample/score next state: draw st+1 ∼ pfuse(· | st, at) via Langevin dynamics on Efuse (as in
ETM), or take a MAP estimate st+1 = argmins′ Efuse(st, at, s

′) if sampling is not used.
5: Output: st+1 (optionally, diagnostics derived from Efuse).

Padding

Predicted Next State

Input State

Input Action Sequence

Valid Length Seq: [4]

Action 
Encoder 

(Attention)

State 
Encoder 
(MLP)

ETM

Embedded State

Embedded Action

Revised Energy-based Transition Model 

Input State

Input Fixed 
Len Act Seq

Input Valid 
Length Seq

Padding

Fixed Length Sequence (n=5)

Valid Length Seq: [4,3,2,1]

State

Act 

Len
AE

SE

ETM

Predicted Next States

Do Ensemble,
Calculate Uncertainty,

etc.

Input Action Sequence Fixed Length Sequence Matrix (n=5)
Input State

Figure 1: Any-step Dynamics Energy-based Transition Model for dynamics fusion 3.3. Top: single-
step next-state prediction; bottom: stacked-input variant for parallel multi-step prediction.

ADETM: any-step ETM enabling single-model uncertainty. We employ an Any-step Dynamics
Energy-based Transition Model (ADETM) to retain ETM’s training recipe while equipping each
expert with robust, ensemble-like uncertainty at single-model cost. This is inspired by the ADMPO
(Lin et al., 2025) framework. Concretely, ADETM wraps the ETM energy network with (i) an
MLP state encoder and (ii) a multi-head-attention action-sequence encoder operating on a fixed
history window k with a valid-length mask. The encoders produce a joint embedding [hs ∥ ha ]
that conditions the ETM energy Eθ(s, at−k:t, s

′). This preserves the ETM module and its training
dynamics (contrastive / InfoNCE objective, Langevin sampling for training and diagnostics), while
allowing ADETM to exploit short-horizon action context without duplicating models. Figure 1
illustrates the architecture; full encoder details and hyperparameters are deferred to the appendix.
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Uncertainty without ensembles via stacked histories. ADETM yields a practical history-
sensitivity regularizer by stacking feasible history slices from a FIFO queue of the last k state–action
pairs and measuring dispersion across the resulting next-state predictions. Let the queue contain
(st−4, at−4), . . . , (st, at). For the same target step t+1, construct up to k valid history slices

(st−4, at−4:t)→ ŝ
(1)
t+1, (st−3, at−3:t)→ ŝ

(2)
t+1, . . . , (st, at)→ ŝ

(k)
t+1.

Define the uncertainty score as the sample variance (or mean-squared dispersion) across predictions,

uθ(st, at) =
1

k

k∑
m=1

∥∥ŝ(m)
t+1 − st+1

∥∥2
2
, st+1 =

1

k

k∑
m=1

ŝ
(m)
t+1. (8)

This dispersion behaves analogously to ensemble disagreement but requires only one trained
ADETM per expert, effectively solving the exponential explosion when fusing ensembled mod-
els. The fused transition pfuse(s

′ | s, a) and ADETM’s uncertainty are then utilized within an offline
RL loop to generate model rollouts and train a policy; we defer training protocols and all evaluations
to the Experiments section and the appendix.

4 EXPERIMENTS

4.1 EVALUATION OVERVIEW

We evaluate EMFuse on two complementary LLM families and on model-based offline con-
trol. Family L (Llama Touvron et al. (2023)) is used to assess mechanistic fidelity via length-
controlled preference (§C.3) and token-level KL to domain experts (§C.4). Family Q (Qwen
Yang et al. (2024); OpenCompass Contributors (2023)) is used to assess task accuracy on fi-
nance/mathematics/medication under the standard OpenCompass protocol (§C.2). This design high-
lights model-agnostic benefits (accuracy under an external evaluator; Family Q) while establishing
distributional faithfulness under controlled tokenization/training (Family L).

4.2 RESEARCH QUESTIONS

RQ1 (Policy fusion effectiveness). Does EMFuse improve decision performance over parameter-
space and regularized merging baselines? Metrics: OpenCompass accuracy (Family Q; Table 18);
AlpacaEval length-controlled win rate (Family L; Tables 14, 15).

RQ2 (Faithful distribution). Does EMFuse preserve each expert’s distribution on its own domain?
Metric: token-level DKL(1Bexpert ∥ ·) under teacher forcing (Family L; Table 16).

RQ3 (Selection vs. fusion). Does EMSelect (KL-guided tournament) provide additional gains over
EMFuse? Metrics: same as RQ1 (deltas over EMFuse; see §3.2 and aggregated gains reported).

RQ4 (Dynamics fusion). Does EMFuse with ADETM improve offline RL returns versus dynamics-
level baselines? Metric: D4RL normalized return (IQM) with BCa 95% CIs (Table 17).

4.3 MODELS, DATA, AND TASKS

Family L (Llama). We train 1B SFT experts on language (harmless/helpful) and subject (agricul-
ture/medication/philosophy) splits; 8B counterparts follow a FLOPs-matched budget (Eq. 9). Full
training and generation settings are in §B.2. Family Q (Qwen). We SFT mixed-subject experts
(finance/mathematics/medication) and specific-subject (within finance, 3 different categories)§B.1
; Evaluation is done with OpenCompass defaults (§C.2). Dynamics. ADETM (§3.3) is trained on
D4RL-v2; rollout and SAC details are in §B.4.

4.4 BASELINES

We compare to three representative training-free baselines spanning the main fusion axes:

• Uniform Model Soup (Wortsman et al., 2022): a data-less, parameter-space merger
widely adopted in practice; it requires no access to the original training data and provides
a reference point for weight-space averaging.
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• RegMean (Nguyen et al., 2025): a training-free (and data-less) regularized weight merging
method that aligns statistics without task data; this family is commonly identified as a
canonical training-free approach in recent overviews.

• PackLLM (Mavromatis et al., 2024): a training-free, logit-space policy fusion method at
inference time. PackLLM’s pairwise packing informed our EMSelect tournament design
(§3.2). This baseline is exclusive to the policy fusion.

Together these baselines test EMFuse against: (i) parameter-space averaging (Soup), (ii) trainless
weight alignment (RegMean), and (iii) output/logit-space fusion (PackLLM).

4.5 EVALUATION PROTOCOLS

Family L (mechanistic fidelity). We use AlpacaEval with length control to mitigate verbosity
bias (§C.3) and measure token-level DKL from each 1Bexpert to EMFuse and its 8B counterpart
under a shared tokenizer (§C.4), isolating distributional faithfulness from capacity. Family Q (task
accuracy). We report OpenCompass accuracy on finance/mathematics/medication using framework
defaults (§C.2). Dynamics. We report D4RL normalized returns as IQM with BCa confidence
intervals under identical SAC/ADETM settings.

Reporting. RL results use IQM with BCa 95% CIs over N=5 seeds. LLM results follow the same
protocol: AlpacaEval uses paired bootstrap over prompts; OpenCompass uses its default resampling.

4.6 RESULTS SUMMARY AND VALIDITY CONSIDERATIONS

RQ1/RQ3 — Policy fusion effectiveness. On OpenCompass, EMFuse improves over parameter-
space and logit-space training-free baselines on both aggregates reported in Table 1. On the subject-
mix, EMFuse attains 63.49+1.23

−1.23, outperforming Soup (60.88) and RegMean (60.31), and narrowly
exceeding PackLLM (63.15). On the finance-suite, EMFuse reaches 89.21+0.01

−1.40 versus 88.27 (Pack-
LLM), 83.51 (Soup), and 82.58 (RegMean). Task-level details are in Appendix Tables 18 and 19.
Complementary preference evaluations on Family L (AlpacaEval with length control) show EM-
Fuse strongly outperforming Soup/RegMean and remaining competitive with larger 8B variants on
some subject splits; see Appendix Tables 14–15 for per-dataset win rates and CIs. Using EMFuse as
a reference for per-step selection further improves accuracy. From Table 1, EMSelect gains +1.31
points on the subject-mix and +1.18 on the finance-suite over EMFuse. Per-task breakdowns in
Appendix Tables 18 and 19 show improvements concentrated in finance (e.g., FPB +2.07, Lend-
ingClub +1.42) and medication (e.g., MedQAM +2.68), with small regressions on some math sets
(e.g., MGSMZ −2.40), yielding positive aggregate deltas.

Table 1: OpenCompass (Family Q) — average accuracy. Two aggregates are shown: subject-mix
(finance/mathematics/medication) and finance-suite. Numbers are averages with 95% CIs (+u

−l ). See
Appendix Tables 18 and 19 for per-task breakdowns as tables are too large to fit in this section.

Aggregate Soup RegMean PackLLM EMFuse (Ours) EMSelect (Ours)

Subject-mix 60.88+1.25
−1.25 60.31+1.25

−1.25 63.15+1.24
−1.24 63.49+1.23

−1.23 64.80+1.25
−1.25

Finance-suite 83.51+0.94
−0.79 82.58+0.91

−0.85 88.27+1.42
−0.04 89.21+1.40

−0.01 90.39+1.39
−0.07

Table 2: Distributional faithfulness (Family L). KL-divergence from each 1Bexpertise model to
its 8Bexpertise and EM-F(EMFuse) counterparts, evaluated on the 1B model’s own domain (e.g.,
1Bharmless→8Blanguage on the harmless set). Lower is better. Evaluation details in Appendix §C.4.

Test Dataset harmless helpful agriculture medication philosophy

1Bexp → EM-F 0.0391+0.0015
−0.0014 0.0801+0.0035

−0.0034 0.0485+0.0027
−0.0025 0.0481+0.0014

−0.0014 0.0459+0.0005
−0.0005

1Bexp → 8B 0.5063+0.0191
−0.0190 0.3075+0.0124

−0.0121 0.5880+0.0190
−0.0177 0.2827+0.0079

−0.0081 0.2041+0.0022
−0.0022

RQ2 — Faithful distribution on experts’ home domains. Table 2 shows that the token-level
DKL(1Bexpert ∥ ·) from each 1B domain expert to EMFuse is consistently small (≈0.04–0.08),
and markedly below the divergence to its 8B counterpart (≈0.20–0.59). This supports that EMFuse
preserves domain-specific token probabilities more faithfully than capacity scaling.
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Table 3: Offline-RL performance on the MuJoCo medium quality benchmark (5 seeds, evaluation
over the last 100 steps). Higher IQM return is better. Bootstrap CI provided on the right-hand side.

Environment EMFuse
(Ours)

RegMean Soup Mixed
(Oracle)

Hopper 49.03+0.66
−0.47 46.34+3.44

−2.68 47.33+3.19
−3.01 49.35+2.73

−1.06

Walker2d 59.53+7.13
−6.87 52.24+12.29

−8.18 46.52+12.44
−19.31 51.64+16.24

−28.64

HalfCheetah 41.83+1.06
−1.98 32.80+0.33

−2.89 34.36+2.38
−3.92 42.48+0.53

−1.37

AVERAGE 50.1 43.8 42.7 47.8

RQ4 — Dynamics fusion for offline control. Table 3 reports D4RL IQM returns: EMFuse av-
erages 50.1 across Hopper/Walker2d/HalfCheetah, exceeding our data-free (Soup) and training-free
(RegMean) baselines, and slightly surpassing the Mixed-data oracle baseline (47.8) on average.
These findings support the conclusion that EMFuse, together with ADETM, provides a tractable
policy training framework that not only sidesteps the exponential overhead of naı̈ve ensembling but
also preserves or enhances the performance of domain-matched experts across control tasks.

Scope and caveats. (1) Evaluator heterogeneity. Family Q uses accuracy-based OpenCompass,
while Family L uses preference-based AlpacaEval (mitigated via length control); we therefore avoid
cross-family numeric comparisons and interpret each within its protocol. (2) Tokenizer/control of
confounds. KL analyses are restricted to Family L to ensure shared tokenization; extending KL
to other families is left for future work due to compute limits. (3) Uncertainty in RL. Offline-RL
results show wide CIs in some environments; we emphasize aggregate IQM and provide per-env
CIs (Table 3) to avoid over-interpreting single tasks. (4) Selection trade-offs. EMSelect’s gains
are not uniform across tasks (notably some math sets); we attribute this to local selection being
most beneficial when expert specialization is strong and calibration is comparable, consistent with
the per-task deltas in Appendix Tables 18 and 19. (5) Scope of baselines. We focus on widely used
training-free mergers (Soup/RegMean) and a logit-space method (PackLLM) to match our operating
regime; parameter-tuned or data-hungry mergers are out of scope. (6) Weight-related ablations. We
use uniform fusion weights by default; entropy-based reweighting yielded statistically insignificant
differences, and Laplace smoothing produced minimal gains. Check Appendix §E.1.

5 CONCLUSION

In this work, we introduced EMFuse, a principled framework that unifies model fusion for decision-
making under the lens of energy-based models. By treating energy as a common currency, our ap-
proach recasts the seemingly disparate problems of direct policy fusion and dynamics model fusion
as two instances of a single, elegant principle: the additive composition of energies.

Our core contributions are synergistic. The EMFuse framework provides the theoretical foundation,
while the ADETM architecture makes this theory practical for modern offline reinforcement learning
by circumventing the intractable computational cost of fusing model ensembles. Furthermore, our
investigation reveals a fundamental trade-off between two distinct fusion philosophies: consensus
versus commitment. EMFuse, as a logarithmic opinion pool, generates a conservative consensus
distribution, hedging against the failure of any single expert. In contrast, EMSelect implements a
higher-variance commitment strategy, making a winner-take-all decision at each step. Our empirical
results underscore this trade-off; while EMSelect excels when a context aligns perfectly with one
expert’s specialty, the consensus approach of EMFuse proves more robust on complex reasoning
tasks where a synthesis of diverse perspectives is superior to a single, potentially flawed, viewpoint.

While our current study was scoped to a shared-vocabulary setting due to computational constraints,
we view the challenge of aligning heterogeneous tokenizers as a tractable engineering problem rather
than a fundamental barrier, especially given recent successes in vocabulary mapping (Mavromatis
et al., 2024). Integrating these techniques will unlock the full potential of applying EMFuse to
diverse, off-the-shelf models. Overall, EMFuse provides a solid and extensible foundation for col-
laborative AI, demonstrating that the simple addition of energies is a powerful and versatile tool for
decision-making.
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A LLM USAGE STATEMENT

In compliance with the ICLR 2026 Code of Ethics, we disclose the use of Large Language Models
(LLMs) in this work. Our usage is detailed as follows:

1. LLMs as Research Subjects: The core of our experimental evaluation involved using
various large language models (e.g., Llama and Qwen families) to generate outputs for
benchmarking purposes. All performance metrics and subsequent analyses presented in
Section 4 are derived from the outputs of these models.

2. LLMs as an Assisting Tool: A large language model was used for minor stylistic improve-
ments and to assist in generating the LaTeX code for some of the tables presented in the
manuscript.

The authors have meticulously reviewed and verified all content, including any text or code assisted
by an LLM, to ensure its correctness and factual accuracy. The authors take full responsibility for
the entire content of this submission.

B POLICY TRAINING DETAILS

B.1 TRAINING THE QWEN FAMILY OF EXPERTS (THE Q FAMILY)

We instantiate ALL Q experts from Qwen 2.5 7B(Yang et al., 2024; Team, 2024) using supervised
fine-tuning (SFT) with LoRA (Hu et al., 2021). Following a uniform recipe, we apply instruction-
style formatting (answer-only loss), cosine LR with warm-up, and LoRA on all linear submodules.
For each adapter we train multiple runs (varying seed and a small LoRA grid) and select the best per-
forming checkpoint by validation loss and downstream OpenCompass score (§C.2). To standardize
training length, we use the largest epoch budget per group: 4 epochs for Subject-Mix and 10 epochs
for the Finance-suite. This setup aims to explore cross domain (Subject-Mix) and within domain
(Finance-suite) fusion results, with each post-SFT policy relatively strong in their own expertise, as
we can see in table 18 19. All training regarding the Qwen family was conducted on a single A100
node containing 4 GPUs.

Adapters and training sets. Table 4 lists the exact adapter names (as shown in the results tables)
and their paired training sets. Evaluation benchmarks are summarized separately in Table 5.

Table 4: Q-family adapters and their training sets (Qwen 2.5 7B base). Best checkpoint per adapter
is selected from multiple runs.

Group Adapter name Training set(s)

Subject-Mix
Finance CRA LendingClub(Ariza-Garzón et al., 2024)
Mathematics Orca Math Word Problems (Mitra et al., 2024)
Medication MedQA + MedMCQA (Jin et al., 2020; Pal et al., 2022)

Finance-suite
FPB Financial PhraseBank (Malo et al., 2014)
Headlines Financial news headlines (Sinha & Khandait, 2020)
LendingClub LendingClub (TheFinAI, 2024; Ariza-Garzón et al., 2024)

Evaluation benchmarks (OpenCompass). We evaluate with OpenCompass defaults under fixed
decoding and normalization rules (cf. §C.2), macro-averaging within domains. Benchmarks per
domain are:

Decoding and score selection. OpenCompass decoding parameters are left at framework defaults
for comparability. For each adapter we keep the checkpoint with the lowest validation loss; ties are
broken by the higher domain score under the corresponding OpenCompass evaluator.
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Table 5: Evaluation benchmarks used for the Q family.

Domain Benchmark (full name) abbriv

Finance (Subject-Mix) Financial Opinion Mining & QA—Sentiment Analysis FiQASA
LendingClub approval / credit risk LendingClub

Mathematics (Subject-Mix)
Grade School Math (8K) GSM8K
Multilingual GSM (English) MGSME
Multilingual GSM (Chinese) MGSMZ

Medication (Subject-Mix)

MedQA (Mainland/CN/ZH) MedQAM
MedQA (Taiwan/CN/ZH) MedQAT
MedQA (USMLE/US/EN) MedQAU
MedMCQA (Medical MCQ benchmark) medmcqa

Finance-suite
Financial PhraseBank (AllAgree subset) FPB
Financial news headline sentiment Headline
LendingClub approval / credit risk LendingClub

Table 6: Canonical SFT hyper-parameters for Subject-Mix adapters (Qwen 2.5 7B).

Parameter Value

Base model Qwen2.5-7B
Epochs (num train epochs) 4
Per-device train batch size 2
Gradient accumulation steps 8
Learning rate 2× 10−5

Weight decay 0
Max grad norm 1
Warmup ratio 0.03
LR scheduler cosine
LoRA rank (lora r) 64
LoRA alpha (lora alpha) 128
LoRA dropout 0
LoRA target modules all linear layers
Context length (max length) 8192
Loss masking answer tokens only

Table 7: Canonical SFT hyper-parameters for Finance-suite adapters (Qwen 2.5 7B).

Parameter Value

Base model Qwen2.5-7B
Epochs (num train epochs) 10
Per-device train batch size 2
Gradient accumulation steps 4
Learning rate 2× 10−5

Weight decay 0
Max grad norm 1
Warmup ratio 0.03
LR scheduler cosine
LoRA rank (lora r) 32
LoRA alpha (lora alpha) 64
LoRA dropout 0
LoRA target modules all linear layers
Context length (max length) 4096
Loss masking answer tokens only
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B.2 TRAINING THE LLAMA FAMILY OF EXPERTS (THE L FAMILY)

We instantiate all L experts from the Llama 3.x line using supervised fine-tuning (SFT) on shared
tokenizers so that all policies operate over an identical vocabulary V (cf. §2.2). Unless other-
wise noted, we perform full-parameter SFT (no LoRA), adopt answer-only loss masking, and use
standard transformers+DeepSpeed training (§B.2.2). For robustness, we train multiple runs
(varying seed and modest optimizer/schedule settings) and select the best checkpoint by validation
loss and downstream metrics (length-controlled AlpacaEval win rate; KL to domain experts; see
§C.3, §C.4). To match compute across capacities, the 8B expert training is FLOPs-capped to the
aggregate of the 1B experts as in Eq. equation 9 (within 1%).

n∑
i=1

FLOPs(1Bi) ≈ FLOPs(8B) , (9)

Experts and training sets. We organize L experts into two groups—Language Quality (helpful-
ness/harmlessness) and Subject Knowledge (agriculture/medication/philosophy). Table 8 enumer-
ates each expert, its base model, and the corresponding training set(s).

Table 8: L-family experts and their training sets. The 8B experts are trained under a FLOPs budget
matched to the aggregate 1B experts (Eq. 9).

Group Expert Base model Training set(s)

Language
1Bbase Llama 3.2-1B —
1Bharmless Llama 3.2-1B RLHF-harmless (Bai et al., 2022; Ouyang et al., 2022)
1Bhelpful Llama 3.2-1B RLHF-helpful (Bai et al., 2022; Ouyang et al., 2022)

Subject

1Bbase Llama 3.2-1B —
1Bagriculture Llama 3.2-1B Agriculture-QA (KisanVaani, 2024)
1Bmedication Llama 3.2-1B Consumer Health QA (Savery et al., 2020)
1Bphilosophy Llama 3.2-1B Ethical Problem-Solving (Corrêa et al., 2024)

Aggregate

8Blanguage Llama 3.1-8B RLHF-harmless (Bai et al., 2022; Ouyang et al., 2022)
RLHF-helpful (Bai et al., 2022; Ouyang et al., 2022)

8Bsubject Llama 3.1-8B
Agriculture-QA (KisanVaani, 2024)
Consumer Health QA (Savery et al., 2020)
Ethical Problem-Solving (Corrêa et al., 2024)

Canonical SFT hyper-parameters. To keep this section parallel to the Qwen presentation, we
summarize the SFT settings used for 1B and FLOPs-capped 8B Llama experts in two compact
tables (Meta, 2024a;b). These consolidate the Trainer/DeepSpeed configuration into the key choices
that most affect optimization and throughput. (Full details remain in §B.2.2.)

Table 9: Canonical SFT hyper-parameters for Llama 1B experts.

Parameter Value

Base model Llama-3.2-1B
Epochs (num train epochs) 3
Per-device train batch size 4
Gradient accumulation steps 8
Max sequence length 256
Optimizer AdamW
LR scheduler linear (WarmupDecayLR equiv.)
Precision fp16
Loss masking answer tokens only
DeepSpeed ZeRO-3 (off by default for 1B)

Evaluation protocol and checkpoint selection. For L, we evaluate with AlpacaEval under length
control (§C.3) and compute token-level DKL to domain experts (§C.4). Best checkpoints per expert
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Table 10: Canonical SFT hyper-parameters for Llama 8B experts (FLOPs-capped to Eq. 9).

Parameter Value

Base model Llama-3.1-8B
Epochs (num train epochs) 3 (stop early on FLOPs target)
Per-device train batch size 2
Gradient accumulation steps 8
Max sequence length 256
Optimizer AdamW (β1=0.9, β2=0.999, ϵ=1e−8)
LR scheduler linear (WarmupDecayLR equiv.)
Precision fp16
DeepSpeed ZeRO-3 with CPU offload (params & optimizer)
Loss masking answer tokens only

are chosen by (i) lowest validation loss and (ii) highest downstream score on these evaluators (ties
broken by the latter). Decoding uses a uniform configuration across models (Table 11); EOS or
max new tokens terminates generation.

Licenses. All Llama checkpoints are retrieved via Hugging Face (Davison et al., 2019). Please
review the associated Meta licenses before use (Meta Platforms, Inc., 2024b;a).

B.2.1 LLM EXPERTS AND TRAINING SETS

Table 8 specifies base models and datasets for all L experts.

B.2.2 TRAINING SETUP AND FLOPS PARITY

We train with transformers’ Trainer and DeepSpeed ZeRO-3. The 8B experts use a
FLOPsStopCallback to enforce the budget

∑
i FLOPs(1Bi) ≈ FLOPs(8B) (Eq. 9). Hard-

ware (typical): 1B experts on one 4090 node (2 GPUs); 8B experts on one 4090 node (4 GPUs).

B.2.3 GENERATION CONFIGS

We implement Algorithm 1 by computing per-expert log-probabilities (log softmax), summing
in log-space with weights λi, normalizing, then decoding. Each expert runs on a dedicated GPU;
the fusion step executes on a single device.

Table 11: LLM generation configuration.

Config Value

max new tokens 200
temperature 1.0
top p 0.95

We terminate on EOS or max new tokens, applying the same decoding heuristics to the fused
distribution as to single models (cf. §2.2).
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B.3 ADETM ARCHITECTURE AND TRAINING

We adopt the Energy-based Transition Model (ETM) formalism (Chen et al., 2024) and use the Any-
step Dynamics Energy-based Transition Model (ADETM; cf. §3.3) to encode short action histories
at single-model cost. Figure 2 shows the single-step and stacked multi-step variants.

Padding

Predicted Next State

Input State

Input Action Sequence

Valid Length Seq: [4]

Action 
Encoder 

(Attention)

State 
Encoder 
(MLP)

ETM

Embedded State

Embedded Action

Revised Energy-based Transition Model 

Input State

Input Fixed 
Len Act Seq

Input Valid 
Length Seq

Padding

Fixed Length Sequence (n=5)

Valid Length Seq: [4,3,2,1]

State

Act 

Len
AE

SE

ETM

Predicted Next States

Do Ensemble,
Calculate Uncertainty,

etc.

Input Action Sequence Fixed Length Sequence Matrix (n=5)
Input State

Figure 2: ADETM variants: top—single-step next-state prediction; bottom—stacked history for
parallel multi-step predictions. Mirrors Fig. 1 in the main text.

State encoder. Given s∈Rds ,

hs = LN
(
σ(W2 σ(W1s+ b1)) + b2

)
∈ Rdh ,

with two fully connected layers W1∈Rdh×ds , W2∈Rdh×dh , ReLU activations, and LayerNorm.

Action-sequence encoder. Let A ∈ RB×Lmax×da be padded action sequences with true lengths
ℓ ∈ {1, . . . , Lmax}B .

Algorithm 4 ActionEncoder(A, ℓ)

1: X ← Linearda→dh
(A) // projection

2: X ← X + PosEmb(0:Lmax − 1)
3: maskij ← [ j ≥ ℓi ] // key-padding mask
4: Y ← MHA(X;mask)
5: Y ← LN(Y +X)
6: Z ← FFN(Y )
7: Z ← LN(Z + Y )
8: return ha = 1

ℓi

∑
j<ℓi

Zij

The ADETM energy network conditions on [hs ∥ha].

Environments and hyper-parameters. We use D4RL-v2 (Fu et al., 2020) (Apache 2.0) across
Hopper, Walker2d, and HalfCheetah, with random/medium/expert splits. Each split yields a
fixed offline buffer; unless otherwise noted, training uses a single RTX 4090. ADETM defaults:
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Table 12: ADETM training defaults. Entries above the midrule follow ETM (Chen et al., 2024);
embedding hidden dims applies to both state and action encoders.

Config Default

etm lr 1× 10−3

etm hidden dims [200, 200, 200, 200]
etm activation relu
etm with reward true
etm softmax temperature 1.0
etm num negative samples 16
etm loss type info nce
etm add grad penalty true
etm grad penalty margin 5.0
etm langevin iter 50

etm max epochs 500
etm batch size 1024

embedding hidden dims 256

B.4 POLICY LEARNING (OFFLINE SAC IN WORLD MODELS)

We adopt Soft Actor–Critic (SAC) with two Q-networks (ensemble) (Haarnoja et al., 2018; An et al.,
2021; Nikulin, 2023). Hyper-parameters are held fixed across environments; Table 13. Rollouts use
ADETM with a short FIFO history (up to the maximum action-sequence length; cf. Fig. 2). At step
t, we backtrack up to min(Lmax, t) and compute dispersion across stacked predictions to obtain the
penalty signal (as in Eq. equation 8 in the main text).

Table 13: Offline SAC hyper-parameters for world-model experiments.

Config Default

actor lr 1× 10−4

critic lr 3× 10−4

critic nums 2
gamma 0.99
tau 0.005
alpha 0.2
alpha lr 1× 10−4

rollout freq 1,000
rollout batch size 5,000
rollout length 15
penalty coef p
model retain epochs 5
real ratio 0.5
epoch 2,500
step per epoch 1,000
batch size 256
eval episodes 10
penalty type ensemble std

We set p=0.3 for Hopper and p=0.7 for HalfCheetah/Walker2d. Seeds: [1, 2, 3, 4, 5]. A
fixed budget of 2,500 steps is used; checkpoints are saved every 10 steps. Evaluation on the true
*-medium environments uses 10 episodes per checkpoint. We report normalized return with inter-
quartile mean (IQM) and BCa bootstrap 95% CIs across 5 seeds following Agarwal et al. (2022).
ADETM hyper-parameters match Table 12 at rollout.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C EVALUATION

C.1 BASELINES

We compare to three representative training-free baselines spanning the main fusion axes:

• Uniform Model Soup (Wortsman et al., 2022): a data-less, parameter-space merger
widely adopted in practice; it requires no access to the original training data and provides
a reference point for weight-space averaging.

• RegMean (Nguyen et al., 2025): a training-free (and data-less) regularized weight merging
method that aligns statistics without task data; this family is commonly identified as a
canonical training-free approach in recent overviews.

• PackLLM (Mavromatis et al., 2024): a training-free, logit-space policy fusion method at
inference time. PackLLM’s pairwise packing informed our EMSelect tournament design
(§3.2).

C.2 CONFIG DRIVEN EVALUATION BY OPENCOMPASS

OpenCompass is an open-source, configuration-centric evaluation framework for large language
models that standardizes prompt templates, post-processing, and metrics across diverse datasets and
tasks (Contributors, 2023). It supports both local checkpoints (e.g., via vLLM/Transformers)
and hosted APIs through a unified model interface, enabling apples-to-apples comparisons under
fixed decoding and normalization rules. This become more helpful when we can create customized
wrapper to delegate existing models, therefore simplified the model evaluation pipeline in great ex-
tend. Although good number of datasets have already been supported, we add customized dataset
entries to further complement our evaluation framework. On evaluation, each dataset is paired with
its built-in prompt template and label normalizer; metrics are the framework defaults (classification
accuracy for multiple-choice and exact-match style tasks). We aggregate results at the dataset level
and then macro-average within each domain, matching the protocol reported in Tables 18 and 19.
We bookkeep the configs (model adapters, dataset lists, decoding parameters, evaluators) for repro-
ducibility. Consistent with the main text, OpenCompass scores are only compared within the Q
family to avoid cross-framework or tokenizer confounds.

C.3 LENGTH-CONTROLLED WIN RATE BY ALPACAEVAL

To assess domain expertise without relying on noisy absolute metrics, we use AlpacaEval (Li et al.,
2023; Dubois et al., 2024). This length-controlled preference evaluation is strongly correlated with
human judgments (Spearman up to 0.97, Pearson up to 0.93 with alpaca eval gpt4) while
remaining cost-effective (Dubois et al., 2023). We pre-generate responses over each test set to avoid
adaptivity and then run pairwise comparisons with a fixed rubric; the harmlessness prompt template
is shown below.

<|im_start|>system
You are a helpful instruction-following assistant.
<|im_end|>
<|im_start|>user
Select the output (a) or (b) that best matches the given
instruction while still maintaining harmlessness and keep
language usage free from cuss words. ...
... (omitted for brevity; identical to main text template) ...
<|im_end|>

We use DeepSeek-V2 as the judge model (DeepSeek-AI, 2024) via the official API,1 respecting its
license terms (DeepSeek-AI, 2023).

1https://api.deepseek.com/
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C.4 KL DIVERGENCE TO DOMAIN EXPERTS

We measure DKL from each 1Bexpertise distribution to (i) its corresponding 8B expert and (ii) EM-
Fuse (pair or group), token-by-token under teacher forcing, averaged per prompt and then across the
dataset (see Table 16 in the main text). FLOPs are controlled as in Eq. equation 9 within 1%.

Given shared tokenizer V , for each context x≤t we compute

DKL

(
P ∥ Q

)
=

∑
y∈V

P (y) log
P (y)

Q(y)
,

where P = softmax(z1B) and Q is either softmax(z8B) or the fused pfuse from Algorithm 1. After
scoring, we append the ground-truth next token and proceed to t+1 until EOS.

D ALL EXPERIMENT RESULTS

Table 14: Win rate (%) of EMFuse against other methods on language datasets without additional
training. 95% CIs shown as +u

−l . When evaluating 1Bexpertise, the dataset’s matching domain expert
is used (e.g., HH-RLHF harmless→ 1Bharmless).

1Bbase 1Bexpertise RegMean Soup 8Blanguage

harmless 78.55+1.47
−1.62 52.48+1.87

−1.96 78.54+1.70
−1.47 62.61+1.74

−1.90 52.28+1.86
−1.93

helpful 52.48+1.92
−1.73 35.23+1.89

−1.94 51.32+1.84
−1.96 47.67+2.03

−1.85 31.34+1.69
−1.81

Average 65.52 43.86 64.93 55.14 41.81

Table 15: Win rate (%) of EMFuse against other methods on subject datasets without additional
training. 95% CIs shown as +u

−l .

1Bbase 1Bexpertise RegMean Soup 8Bsubject

agriculture 87.21+0.53
−0.50 48.27+1.62

−1.60 86.73+0.50
−0.58 53.33+0.76

−0.79 47.57+1.28
−1.31

medication 84.03+0.62
−0.64 28.11+0.78

−0.78 83.63+0.62
−0.67 51.48+0.91

−0.88 62.31+0.87
−0.83

philosophy 88.30+0.36
−0.41 34.65+0.57

−0.56 88.22+0.41
−0.41 52.56+0.59

−0.63 36.14+0.59
−0.54

Average 86.51 37.01 86.19 52.46 48.67

Table 16: KL-divergence from each 1Bexpertise model to its 8Bexpertise and EBMF counterparts, eval-
uated on the 1B model’s own domain (e.g., 1Bharmless→ 8Blanguage on the harmless set). Lower is
better.

Test Dataset harmless helpful agriculture medication philosophy

1Bexp → EBMF 0.0391+0.0015
−0.0014 0.0801+0.0035

−0.0034 0.0485+0.0027
−0.0025 0.0481+0.0014

−0.0014 0.0459+0.0005
−0.0005

1Bexp → 8B 0.5063+0.0191
−0.0190 0.3075+0.0124

−0.0121 0.5880+0.0190
−0.0177 0.2827+0.0079

−0.0081 0.2041+0.0022
−0.0022

Table 17: Offline-RL performance on the MuJoCo medium quality benchmark (5 seeds, evaluation
over the last 100 steps). Higher IQM return is better. Bootstrap CI provided on the right-hand side.

Environment EMFuse
(Ours)

RegMean Soup Mixed
(Oracle)

Hopper 49.03+0.66
−0.47 46.34+3.44

−2.68 47.33+3.19
−3.01 49.35+2.73

−1.06

Walker2d 59.53+7.13
−6.87 52.24+12.29

−8.18 46.52+12.44
−19.31 51.64+16.24

−28.64

HalfCheetah 41.83+1.06
−1.98 32.80+0.33

−2.89 34.36+2.38
−3.92 42.48+0.53

−1.37

AVERAGE 50.1 43.8 42.7 47.8
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Table 18: Performance across finance, mathematics, and medication benchmarks. Higher is better;
bootstrap CI at 95% is shown.

Task raw + SFT fusing 3 SFT models

Qwen 2.5
(7B)

Fin Math Med Soup RegM Pack EM-F
(Ours)

EM-S
(Ours)

LendingClub 78.67
+1.51
−1.59

97.99
+0.47
−0.60

76.59
+1.56
−1.64

80.71
+1.45
−1.53

81.31
+1.43
−1.52

79.86
+1.47
−1.56

96.58
+0.62
−0.75

96.80
+0.60
−0.73

97.73
+0.50
−0.63

FiQASA 43.83
+6.39
−6.19

56.17
+6.19
−6.39

37.45
+6.34
−5.94

34.04
+6.27
−5.76

42.98
+6.39
−6.17

43.40
+6.40
−6.18

45.11
+6.39
−6.24

42.55
+6.39
−6.15

53.19
+6.28
−6.38

GSM8K 79.98
+2.08
−2.24

83.24
+1.92
−2.11

84.00
+1.88
−2.07

81.12
+2.02
−2.20

83.40
+1.91
−2.11

82.79
+1.94
−2.13

84.99
+1.82
−2.03

84.69
+1.84
−2.05

83.62
+1.90
−2.09

MGSME 78.40
+4.65
−5.51

82.00
+4.27
−5.24

78.80
+4.61
−5.48

80.80
+4.40
−5.33

80.80
+4.40
−5.33

80.40
+4.45
−5.37

82.40
+4.22
−5.20

83.20
+4.12
−5.13

82.00
+4.27
−5.24

MGSMZ 58.80
+5.92
−6.19

53.20
+6.09
−6.19

54.00
+6.07
−6.19

42.80
+6.20
−5.98

58.80
+5.92
−6.19

59.20
+5.91
−6.19

54.00
+6.07
−6.19

56.00
+6.02
−6.20

53.60
+6.08
−6.19

MedQAM 44.19
+1.67
−1.65

56.60
+1.65
−1.67

52.77
+1.67
−1.67

71.28
+1.49
−1.54

60.01
+1.63
−1.65

55.93
+1.65
−1.67

60.07
+1.63
−1.65

63.05
+1.60
−1.63

65.73
+1.57
−1.60

MedQAT 47.13
+2.61
−2.59

57.54
+2.55
−2.60

59.02
+2.54
−2.58

60.08
+2.53
−2.57

56.05
+2.57
−2.60

55.27
+2.58
−2.60

56.76
+2.56
−2.60

57.68
+2.55
−2.59

58.24
+2.55
−2.59

MedQAU 37.23
+2.70
−2.61

44.46
+2.74
−2.71

37.78
+2.70
−2.62

49.18
+2.74
−2.74

43.91
+2.74
−2.70

42.81
+2.74
−2.69

47.76
+2.75
−2.73

47.29
+2.75
−2.73

48.00
+2.74
−2.74

medmcqa 48.72
+1.52
−1.51

45.71
+1.51
−1.51

36.84
+1.47
−1.45

41.02
+1.50
−1.48

40.62
+1.49
−1.48

43.13
+1.50
−1.50

40.66
+1.50
−1.47

40.14
+1.49
−1.48

41.05
+1.50
−1.48

Average 57.44
+1.26
−1.27

64.10
+1.24
−1.24

57.47
+1.26
−1.25

60.11
+1.24
−1.23

60.88
+1.25
−1.25

60.31
+1.25
−1.25

63.15
+1.24
−1.24

63.49
+1.23
−1.23

64.80
+1.24
−1.25

Table 19: Finance-suite performance (LendingClub, FPB, Headline). Higher is better; bootstrap CI
at 95% is shown.

Task raw + SFT (finance) fusing 3 SFT models

Qwen 2.5
(7B)

FPB Head Lend Soup RegM Pack EM-F
(Ours)

EM-S
(Ours)

FPB 81.85
+1.53
−1.65

98.81
+0.37
−0.54

85.78
+1.38
−1.50

86.62
+1.34
−1.47

93.15
+0.97
−1.11

91.96
+1.05
−1.19

92.71
+1.00
−1.14

95.94
+0.73
−0.90

98.01
+0.50
−0.66

Headline 72.42
+1.87
−1.94

71.76
+1.88
−1.96

79.33
+1.67
−1.78

73.08
+1.85
−1.93

75.17
+1.79
−1.89

75.02
+1.80
−1.89

76.30
+1.76
−1.86

75.40
+1.79
−1.88

75.45
+1.79
−1.88

LendingClub 78.67
+1.51
−1.59

78.56
+1.51
−1.59

77.26
+1.54
−1.62

97.99
+0.47
−0.60

82.20
+1.40
−1.49

80.75
+1.45
−1.53

95.80
+0.70
−0.82

96.28
+0.66
−0.78

97.70
+0.50
−0.64

Average 77.65
+1.12
−0.81

83.04
+0.83
−0.92

80.79
+0.72
−1.12

85.90
+1.77
−0.19

83.51
+0.94
−0.79

82.58
+0.91
−0.85

88.27
+1.42
−0.04

89.21
+1.40
−0.01

90.39
+1.39
−0.07

E ADDITIONAL DISCUSSIONS: SMOOTHING AND ENTROPY-WEIGHTED
FUSION

This section documents two lightweight modifications to EMFuse used in our policy-fusion exper-
iments: (i) Laplace (add-α) smoothing to avoid zero support per expert, and (ii) entropy-based,
step-wise expert weighting. Both variants were evaluated under the same OpenCompass protocol as
the main results (cf. §C.2). Across tasks, neither approach yielded statistically significant improve-
ments relative to the uniform-weight EMFuse baseline; for completeness we report definitions and
ablation summaries below, with tables to follow.
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E.1 LAPLACE SMOOTHING FOR EMFUSE POLICY FUSION

Definition. Given an expert’s next-token distribution p(· | x≤t) over a vocabulary of size V , we
form a smoothed distribution

p̃ = (1− α) p + αU, U(y) = 1
V . (10)

We apply this independently to each expert at every decoding step and then perform LogOP/PoE
fusion on the smoothed log-probabilities:

pPoE(y | x≤t) = softmax
(∑

i

λi · log p̃i(y | x≤t)
)
. (11)

Motivation. Smoothing guarantees strictly positive support on all tokens and mitigates numerical
fragility when an expert assigns (near-)zero mass off its top-k. In practice we keep α small to
preserve the experts’ calibration.

Observation. On the finance, mathematics, and medication suites, add-α had mixed, magnitude-
small effects; its CIs largely overlapped the baseline EMFuse (Tables 20–21). We therefore retain
unsmoothed EMFuse in the main experiments.

E.2 ENTROPY-BASED EXPERT WEIGHTING

Definition. Let πi(· | x≤t) be expert i’s next-token distribution with Shannon entropy Hi(t) =
−
∑

y πi(y | x≤t) log πi(y | x≤t). We define step-wise fusion weights

wi(t) ∝ exp
(
− β Hi(t)

)
,

∑
i

wi(t) = 1 , (12)

and use these weights to fuse the experts’ log-probabilities before decoding:

ℓfuse(t) =
∑
i

wi(t) log πi(· | x≤t) (13)

πfuse(t) = exp
(
ℓfuse(t)− logsumexp(ℓfuse(t))

)
(14)

Here β > 0 sharpens the preference for lower-entropy (more confident) experts.

Motivation. Per-step entropy modulates experts by a simple, calibration-agnostic proxy of confi-
dence, without additional training or task labels. Computationally, the overhead is negligible relative
to computing per-expert logits.

Observation. Entropy weighting occasionally nudged scores upward on some finance benchmarks
but produced minor regressions elsewhere; the average effects were not statistically significant under
our bootstrap CIs (Tables 20–21). Consequently, we use uniform λi in the main text and report these
variants as ablations.
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Table 20: Ablation on EMFuse across finance, mathematics, and medication benchmarks. Higher is
better; 95% bootstrap CIs shown under each score.

Task EM-Fuse
(baseline)

+ Laplace
Smoothing

+ Entropy-based
Weighting

LendingClub 96.80
+0.60
−0.73

94.28
+0.81
−0.95

97.81
+0.49
−0.63

FiQASA 42.55
+6.39
−6.15

40.43
+6.38
−6.08

43.83
+6.39
−6.19

GSM8K 84.69
+1.84
−2.05

84.46
+1.85
−2.06

84.38
+1.86
−2.06

MGSME 83.20
+4.12
−5.13

82.80
+4.17
−5.17

82.40
+4.22
−5.20

MGSMZ 56.00
+6.02
−6.20

55.20
+6.04
−6.20

58.40
+5.94
−6.19

MedQAM 63.05
+1.60
−1.63

61.15
+1.62
−1.64

61.88
+1.61
−1.64

MedQAT 57.68
+2.55
−2.59

56.55
+2.56
−2.60

56.97
+2.56
−2.60

MedQAU 47.29
+2.75
−2.73

46.66
+2.75
−2.72

45.25
+2.74
−2.72

medmcqa 40.14
+1.49
−1.48

40.40
+1.50
−1.48

40.40
+1.50
−1.48

Average 63.49
+1.23
−1.23

62.44
+1.23
−1.24

63.48
+1.23
−1.23

Table 21: Ablation on EMFuse for the finance suite (FPB, Headline, LendingClub). Higher is better;
95% CIs shown.

Task EM-Fuse
(baseline)

+ Laplace
Smoothing

+ Entropy-based
Weighting

FPB 95.94
+0.73
−0.90

95.94
+0.73
−0.90

98.19
+0.47
−0.64

Headline 75.40
+1.79
−1.88

75.40
+1.79
−1.88

74.83
+1.81
−1.89

LendingClub 96.28
+0.66
−0.78

96.25
+0.65
−0.79

97.88
+0.48
−0.61

Average 89.21
+1.40
−0.01

89.20
+0.71
−0.71

90.30
+0.67
−0.67
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