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Abstract

Unlabeled LiDAR logs, in autonomous driving applica-
tions, are inherently a gold mine of dense 3D geometry
hiding in plain sight - yet they are almost useless with-
out human labels, highlighting a dominant cost barrier for
autonomous-perception research. In this work we tackle
this bottleneck by leveraging temporal-geometric consis-
tency across LIDAR sweeps to lift and fuse cues from text
and 2D vision foundation models directly into 3D, with-
out any manual input. We introduce an unsupervised multi-
modal pseudo-labeling method relying on strong geometric
priors learned from temporally accumulated LiDAR maps,
alongside with a novel iterative update rule that enforces
joint geometric-semantic consistency, and vice-versa de-
tecting moving objects from inconsistencies. Our method
simultaneously produces 3D semantic labels, 3D bounding
boxes, and dense LiDAR scans, demonstrating robust gen-
eralization across three datasets. We experimentally val-
idate that our method compares favorably to existing se-
mantic segmentation and object detection pseudo-labeling
methods, which often require additional manual supervi-
sion. We confirm that even a small fraction of our geometri-
cally consistent, densified LiDAR improves depth prediction
by 51.5% and 22.0% MAE in the 80-150 and 150-250 me-
ters range, respectively.

1. Introduction

Large-scale annotated datasets and increased computing
power have enabled the succes of learned vision meth-
ods. Datasets like ImageNet[17], PASCAL VOC[20],
MSCOCO[36], Cityscapes[15], and ADE20K[67] have
driven advances in classification, detection, and segmenta-
tion. In autonomous driving, annotating large-scale data,
especially 3D LiDAR scans, is challenging and costly due
to the need for precise multi-modal alignment. Multi-
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Figure 1. Unified 3D Labeling. Given a single driving trajec-
tory, UniLiPs fuse consecutive LiDAR scans with our engine’s 2D
pseudo-labels to build a coherent 3D map. Within this consis-
tent geometry, moving actors and semantic labels are optimized to
Jjointly generate refined, temporally consistent 3D bounding boxes,
semantic labels, and occlusion-aware, densified point clouds.
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modal benchmarks such as KITTI[22], nuScenes[8], the
Waymo Open Dataset[57], and Argoverse[12] reflect this
effort. To tackle the annotation challenges for large datasets,
a body of work explores automatic labeling, using pre-
aligned 3D models to incorporate geometric and seman-
tic constraints into the annotation pipeline, effectively re-
ducing ambiguity and enhancing consistency across labels
[11, 33,39, 61, 62, 65]. Methods relying on synthetic data
can generate fully annotated video sequences, providing de-
tailed 2D and 3D multi-object tracking information, along
with pixel-level labels for categories, instances, flow, and
depth [7, 19, 51]. Other efforts aim to minimize anno-
tation workload through offline perception [9], and semi-
supervised approaches [2, 10, 24, 25, 42, 43, 52, 58, 66]
leverage unlabeled data, although depending on specialized
architectures to handle partial ground-truth labels. Specifi-
cally, we note that these existing annotation methods typi-
cally require separate methods for each task — be it depth
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estimation, object detection, or semantic segmentation —
and often rely on manually generated or pseudo labels that
are hard to reproduce. In contrast, we rethink the annotation
process in an unsupervised, unified 3D labeling framework,
as presented in Figure 1, that concurrently tackles all these
tasks by leveraging a consistent SLAM-based 3D map as
a comprehensive semantic-geometric representation, ensur-
ing frame invariance and enhanced reproducibility across
modalities, to generate labels for tasks such as 3D bound-
ing box detection, semantic segmentation, and depth esti-
mation, with minimal parameters tuning. Our approach en-
riches a 3D map with semantic, geometric, and probabilis-
tic information, and exploits sensor fusion and geometric
consistency to automatically separate the static scene from
dynamic objects. We cast the problem as a novel Itera-
tive Update Weighted Function to distinguish moving ob-
jects — which break the static world assumption and are
refined into trajectory-aware bounding boxes — from static
regions, which are then converted into densified LiDAR-
like scans via Adaptive Spherical Occlusion Culling and en-
hanced with rich semantic details. We evaluate the method
against held-out manual labels and training state-of-the-art
networks with our pseudo-labels, on semantic segmenta-
tion, object detection and depth estimation.

We make the following contributions:

* We introduce a novel method to obtain jointly pseudo-
labels for 3 different downstream tasks (semantic seg-
mentation, object detection and depth estimation), at
scale, with no manual annotations needed and not tied to
any specific dataset or sensor suite.

* We devise a method for static and dynamic object separa-
tion, exploiting points and labels temporal accumulation
and an Iterative Update Weighted Function.

e We find that our semantic labels and bounding boxes
achieve SOTA performances compared to standalone
pseudo labeling methods and confirm they can grant close
to Oracle performance on three different datasets.

 For depth estimation, we devise how a lightweight fine-
tuning on a subset of our consistent pseudo ground-truth
achieves improvements of 51.5% in MAE between 80 and
150 meters and 22.0% between 150 and 250 meters.

2. Related Work

Pseudo Depth. High-density LiDAR depth maps are tra-
ditionally produced using LiDAR Inertial Odometry al-
gorithms [1, 14, 18, 55, 56, 59] that aggregate infor-
mation across multiple frames. Conversely image-based
depth foundation models [4-06, 34, 45, 46, 48, 49, 63, 64]
have demonstrated significant potential for generating dense
depth predictions from single images but still lack behind
when delivering metric depth accuracy.

Pseudo Segmentation for LiDAR data. Recent advances

Det. From Pseudo Depth Ours
Motion Seg. Pred.

Outputs PL [2,37,54] [21,28] [59, 64]
Bounding Boxes 4 X X 4
Semantic Labels X v X v
Dense Depth X X v v
Moving Objects 4 X v
Requirements and Specifications

Long-Range X v 4
Dataset Invariant X X v
Time Consistent X v
Unsupervised X v

Table 1. Unified Labeling. Our approach jointly generates (v')
all Pseudo Labels (PL) types, at long range, without any ground-
truth supervision. By contrast, state-of-the-art methods often rely
on ground-truth data, only partially ((v)) satisfy consistency and
invariance requirements and not deliver (X) all the outputs.

in LiDAR pseudo-labeling leverage motion and appearance
cues to generate robust labels, such as unsupervised in-
stance segmentation methods to exploits these cues [53] and
methods extending 2D vision proposals into 3D space using
grouping and voxelization techniques [21, 44]. Addition-
ally flow estimation through motion segmentation [37] can
achieve real-time accuracy, but faces challenges with pose
estimation in longer sequences.

3D Pseudo Bounding Boxes for LiDAR Data. Pseudo
labeling has emerged as a pivotal technique in LiDAR
object detection, addressing the reliance on extensive la-
beled datasets by generating pseudo labels for point clouds.
3DIoUMatch [60] employed a semi-supervised framework
to filter high-quality pseudo labels object detection. More
recently, [54] leveraged motion cues to group coherently
moving points into objects, though tracking across numer-
ous frames remains computationally demanding. Similarly,
[2] exploited self-supervised flow estimation and trajectory
consistency to mine 3D bounding boxes.

Proposed Unified Labeling. While addressing the same
tasks tackled in isolation in prior work, we introduce a uni-
fied 3D labeling framework to concurrently deliver consis-
tent depth estimation, object detection, and semantic seg-
mentation pseudo labels, at longer range and without any
form of supervision, as detailed in Table 1. Despite han-
dling three tasks together, our method still matches and sur-
passes dedicated models on each task.

3. Geometry-Grounded Pseudo-Labeling

We introduce a pseudo-labeling method for LiDAR point
clouds, agnostic to datasets and sensor setups, combin-
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Figure 2. Overview of Geometry-Grounded Dynamic Scene Decomposition. Starting from a set of raw images, a set of LIDAR scan
and IMU measurements, we first produce 3D semantic labels. Therefore, the 2D semantic masks produced by fce are integrated into a map
generated by the SLAM method finap, by projecting them through Pe,m, while simultaneously removing moving points identified by finos
from the map. To obtain a refined static scene map M. fineq We first propagate the labels through geometric and temporal constraints and
later on exploit them to remove remaining floaters and outliers (in red) through a our Iterative Weighted Update Function frwu .
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Figure 3. Overview of Pseudo Labeling Function. Our proposed pseudo labeling method fsey robustly segments each 2D image I;
by combining the predictions from an ensamble of three OneFormer [27] models with weights from three different datasets (COCO [36],
ADE20K [68, 69] and Cityscapes [16]) and a SAM?2 [50] instance prediction set M ask:. For each mask m;, BLIP [31] enriches the class

proposals and through modal alignment with CLIP [47] and CLIPSeg [38], we ensure high quality domain-specific annotations.

ing foundational vision models with geometry-aware prob-
abilistic constraints on an accumulated scene map. As il-
lustrated in Figure 2, images, LIDAR point clouds and IMU
data are fused to initialize low-confidence semantic and mo-
tion labels. Iterating over the map we update labels prob-
abilities, refining static structures and removing outliers
through our Iterative Weighted Update, yielding a dense 3D
point map with reliable semantic labels and a sparse set of
high-confidence moving objects.

3.1. LiDAR Branch Processing

We process a set of LIDAR scans S = {s; |t =1,...,N}
and I MU to obtain an accumulated map M (Sstqtic) free of
the identified, low-confidence moving objects in MOSjy.

Pose Estimation and Motion Cues. We first apply a
LiDAR-odometry method fyose to estimate frame trans-
formations 7 = T; € SE(3), that a motion-segmentation
network finos exploits to identify an initial set of
low-confidence moving objects MOSjy¢.

SLAM Mapping. All points marked static are fused by

a LiDAR-inertial SLAM module f,, to obtain the initial
map (M7 T,) = fmap(SstatiCa IMU) Here Sgiatic = {Sitatlc I
sfC = g\ mosy, s¢ € S, mos; € MOSyy ;. This early
pruning of moving objects mitigates ghost artifacts and al-
lows for better geometric optimization in the SLAM.

3.2. Image Branch Processing

We process a set of images Z = {I; |t = 1,..., M}, to
generate and lift 2D semantic pseudo labels in 3D.

Our pseudo labeling function is presented in details in
Figure 3: given the set Z of RGB images, for each
I, € RHEXWX3 it predicts a per-pixel label image L, =
feea(It) € LHXW  Bach frame is down-sampled and
processed with SAM2 [50], producing a set of object
masks Mask;. The input image is segmented by three
separate OneFormer [27] models, individually trained on
COCO [36], ADE20K [68, 69], and Cityscapes [16]. For
each m; € Mask,, the initial proposal list is generated
by stacking the most recurrent (Argmax) class from each
OneFormer model per-pixel logit maps. We then ex-



tract three image crops centered on the mask’s bounding
box: original size (1.0x), large (1.5x), and huge (2.0x).
Subsequently, open-vocabulary classification is performed
by non-prompted BLIP [31] on the large patch, propos-
ing class candidates that augment the OneFormer proposal
list. CLIP [47] re-ranks the candidates list on a tighter
crop, producing a shortlist of the top-k keywords: we se-
lect specifically & = 3. CLIPSeg [38] processes the
full-resolution crop together with this shortlist and outputs
per-pixel scores. A majority vote assigns the final class
to all pixels of m;, reducing boundary noise. If multi-
ple classes remain, we keep the one with the highest pixel
count. Iterating through every m; € Mask; we obtain a
refined label map L; which serves as initial guess.

Occlusion Aware Semantic Lifting. Each LiDAR point-
cloud s; is projected into the correspondent label map
L (u,v) with calibration matrix P,.q,,. Let D(u,v) be the
depth at pixel (u,v), the visibility mask M (u,v) is deter-
mined by comparing the depth with the minimum depth in
its neighborhood A (u, v). A point is marked as visible if

D(u,v) < min(D(N (u,v))) + 0.5. (1)

Only visible points inherit the semantic label I;(u,v) of
L¢(u,v), ensuring noisy labels are reduced in sparser re-
gion or in common penetration cases.

3.3. Geometry-Consistent Fusion Branch

After differentiating the world into static world (M) and dy-
namic objects (MOSj,;) we propose a geometry-grounded
method to iteratively refine the static world representation.

Semantic Multimodal Propagation. By sequentially as-
sociating each point label of a LiDAR scan to the cor-
respondent point in the map, we project the semantics
from each camera into the world map. As a result,
each point in the map then is be represented as p; =
(xi, Yis Ziy {(ln, 71111) s (17:2, niQ) yeee (limia nvml)})7 where
Z;, Ys, % are the spatial coordinates and {(I;;,n;;)} is a set
of label-count pairs associated with point ¢, and

* l;; is the j-th label assigned to point p;.

* n,;; is the number of times label /;; was assigned p;.
Here, m; is the total number of unique labels assigned to
point i. We propagate labels probabilistically in order to
enhance segmented areas and fill gaps in the map following
Algorithm 1. Here, w;; = exp(—|p; — p;11?/(20?)), and
d(l; = 1) equal to 1 if I; = [, and O otherwise.

Map Refinement. To refine the map from remaining
floaters we propose our Iterative Weighted Update Func-
tion frywy: by iteratively comparing the sparse LiDAR with
the map, points belonging to moving objects but mistakenly
registered in the map are likely to be observed only once
or twice by subsequent scans. Consequently, we update
the probability that each map point is static by consider-

Algorithm 1 Probabilistic Label Propagation

Require: Point cloud {(p;,;)} ;, neighborhood radius r
Ensure: Refined labels {/;}} ;
1: Build a KD-Tree from points {p; }

2: Seto = g
3: for all points p; do

4 Ni={p;. ) | lIpi —pill <7, 1 £ {0, —1}}
5 if \; # () then

6: Si= Z(pj,lj)e/\/i wij -6l =1)

7: l; = argmax S

8: end if

9: end for

ing the frequency of its observations, incorporating a dis-
tance based influence factor. For each point p; € s4,s; €
S,t = 1,...,N, we calculate the Euclidean distance d;;
to all map points m; € M and from the sensor origin 7;,
dij = |lp; —mill, 7; = |lp;ll. We locate the nearest map
point 772; for each scan point p; and compute

* . T'max ~ max; N
r*; =min | 1, , Omy) = —=——, @
! ( T ) () > Nij
with n;; counting how often m; was labeled as class
I € {movable, non-movable} and 7,,,, defining a full-
credibility radius of 200 meters. The static probability up-
date rule, if m; is found in a 30 centimeters radius, is:

P'(;) = a- P me) + (1—a) -5 - (14 Cn)), @)
otherwise
P'(mi) = a P (i) +(1—a) - (1—75) - (1-C(1hs)). 4)

Points with probabilities exceeding a predefined threshold
7, are classified as static, while those below 7, are marked
as moving and discarded from the map.

3.4. Pseudo Label Outputs

After the refinement stage, our pipeline can generate differ-
ent pseudo ground-truth supervision signals like densified
LiDAR scans, 360° semantic labels and 3D bounding boxes
from moving-object segmentation masks, as in Figure 4.
3D Semantics. We extract semantic labels for each LIDAR
scan from the semantically propagated map, preserving the
initial guess l;; for points without correspondence.
Moving Objects. We detect moving objects by aligning
each LiDAR scans in S to the refined consistent static map
Mefined, and segment as moving those points without cor-
respondence in the map, requiring the existence of at least
2 other moving candidates in a neighborhood of 1 meter.

3D Bounding Boxes. To transform the moving object de-
tections into bounding boxes, we first exploit the pose 7" to
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Figure 4. UniLiPs Unified Labeling Outputs. Coupling geometric point-cloud aggregation with image segmentation cues from our fseg,
UniLiPs rivals standalone methods by jointly producing temporally consistent semantic labels, trajectory-smoothed bounding boxes, and
densified LiDAR sweeps that are denser and offer finer angular resolution, especially at long range. In the Figure, densified LiDARs are
z-colored between —2 (blue) and +5 (red) meters, while semantics are class-coloured based on SemanticKITTI mapping.

align three consecutive scans, considering only the points
labeled as moving, and then use HDBSCAN [41] to cluster
them. We fit the minimum enclosing cuboid to each cluster
and assign a minimum size; we use PCA to get an initial
estimate of the yaw and use a Kalman Filter based tracker,
with constant velocity model including yaw dynamics. We
then refine each object trajectory using a spline optimization
method. We represent the yaw v as a combination of ba-
sis functions, modeling both the sine f,(¢) and cosine f.(t)
components, and minimize the following cost function,

v = 5 3 (Felty) —costy) 2+ (£(t;) —sin1))?) )

We then employ the x and y positions and minimize

€position — %Z ((fw(tj) - xj>2 + (fy(t]) - yj)2) (6)

J
where z; and y; represent the measured positions at time
t;.

High-quality Accumulated Depth. Further we provide
high resolution LiDAR frames from the accumulated map,

exploiting the pose 7" to reintroduce moving objects cor-
responding to that specific pose and time, and to transform
the coordinate system. To compensate for occlusions our
Adaptive Spherical Occlusion Culling converts each point
to spherical coordinates (r, 8, ¢), define angular resolutions
A0 and A¢, and create bins

abins - {eminy emin + AG, emin + QAG, RN gmax} (7)
(bbins = {qsminv ¢min + A¢7 ¢min + 2A¢7 CE) (bmax} (8)

In contrast to existing methods, for each bin (i, j), we find
the minimum range ") | that is

rlD) = min {ry | k € bin (i, )} . ©
and define a threshold function 7'(r) that increases with
range T'(r) = 1 + ar, where « is a small positive con-
stant. A point k in bin (4, j) is considered visible if ry <
rr(;}fl) + T'(ry) and otherwise, the point is considered oc-
cluded. These high-resolution LiDAR frames, with three to
five times the density across all ranges, serve as reference
data (ground truth) for depth learning from images.



4. Experiments

To validate our approach, which is unique in its ability
to generate pseudo-labels simultaneously for 3 tasks, we
benchmark it against state-of-the-art methods that tackle
each task in isolation. We conduct experiments on the short-
range datasets KITTI [22] and nuScenes [8], and an experi-
mental long-range highway dataset that captures beyond the
80m LiDAR range limit of public datasets. Adhering to the
common protocol adopted in recent works [21, 28, 37, 54],
we first compare our pseudo-labels with human annotations
and then train task-specific models on a mix of ground-truth
and pseudo-labels. This evaluation highlights both the ac-
curacy of our pseudo annotations and the extent to which
models can absorb the noise introduced by pseudo-labeling.

4.1. Common Settings

Across all datasets used, we kept the parameters necessary
for our method constant: we set the label propagation radius
r = 0.2m, the probability threshold for moving points de-
tection to 7, = 0.5 and for the probability update oo = 0.7.

4.2. Accumulated Pseudo-Depth Evaluation

We evaluate pseudo-depth generation by finetuning an
NMRF [23] model, using both the short-range-LiDAR,
small-baseline stereo pairs on KITTI [22] and our long-
range-LiDAR, and wide-baseline cameras. We supervise
NMREF with projected pseudo LiDAR and reverse Huber
loss [29, 71], and validate the improvements computing
Mean Absolute Error (MAE) and Root Mean Squared Er-
ror (RMSE) on the pixels where ground truth is available.

Baselines. To compare our pseudo depth generation with
existing methods, we produce pseudo ground-truth depth
using three distinct baselines. First, a LIDAR-based, dense
pseudo depth obtained through LIO-SAM [56], to show the
importance of our Adaptive Spherical Occlusion Culling
and floaters refinement. Second, a monocular foundation
model [64] to predict metric depth from single images.
Third, a robust stereo prediction network [32] to generate
depth maps. The resulting pseudo-labeled frames are used
for depth supervision following a consistent train-test split.

Short Range Dataset (KITTI). We randomly sample the
sequences from the KITTI training dataset to obtain training
and evaluation sets. Then, we evaluate the NMRF model, by
using the weights pretrained on synthetic data [40] and fine-
tuned on a subset of the naively sparse LiDAR (denoted as
Oracle). For all other methods we sub select a set of 400
stereo pairs and train for 30, 000 steps on our accumulated
depth as well as on the introduced alternative sources of gt-
depth data. The performance is evaluated against the pseudo
ground truth generated from our accumulated LiDAR data
as this allows us to evaluate ranges up to 250m. Final results
are reported in Table 2, where we observe an improvement

Pseudo | MAE | [m] RMSE | [m]
|0-80 80-150 150-250| 0-80 80-150 150-250

Oracle |4.48 22.03 30.76 | 7.62 25.66 35.83

£ LIO-SAM 471 13.00 18.16 | 825 16.67 22.55
& CREStereo|8.19 17.72  23.90 |10.99 21.62 27.05
M DA-V2 [638 1573 22.17 |8.00 21.61 29.98
Proposed |3.28 9.57 1743 | 5.66 1349 21.89

g Oracle |544 20.79 3183 | 798 2570 38.96
S LIO-SAM |5.53 11.89 3233 |10.51 20.11 46.22
f‘) CREStereo | 8.33 2234 37.04 |10.90 27.13 45.86
£ DA-V2 |831 2355 3267 |11.83 2875 39.96
=~ Proposed |2.27 6.4 21.07 | 421 981 25.16

Table 2. Depth Estimation Evaluation of NMRF [23], super-
vised with pseudo depth frames from LiDAR and Image methods,
on KITTI and our Long Range Dataset. Excluding the Oracle (in
gray), best results are bold; second bests are underlined.

of 26.8%, 56.6% and 43.3% in MAE and 25.7%, 47.4%,
38.9% in RMSE for 0-80m, 80-150m, 150-250m ranges re-
spectively. Moreover, we achieve an average improvement
over all baselines of 46.3%, 37.2%, and 17.5%in MAE and
36.4%, 31.4%, and 16.3% in RMSE for 0-80m, 80-150m,
150-250m ranges, respectively.

Long-Range Dataset. We generate 400 ground truth sam-
ples for training extracted from diverse highway scenes. For
a fair comparison, we first fine-tune the pre-trained model
on our sparse LiDAR recordings, as our sensor can capture
points at longer ranges compared to the Velodyne HDL-64E
deployed in KITTI [22], with the same number of iterations
used later for the dense ground truths. Then, we fine-tune
on each of the aforementioned pseudo-ground truths. The
results are reported in Table 2, where we observe an im-
provement of 58.7%, 70.2% and 33.2% in MAE and 47.6%,
61.3%, 35.7% in RMSE for 0-80m, 80-150m, 150-250m
ranges respectively. Moreover, we achieve an average im-
provement against all baselines of 68.1%, 64.9% and 37.8%
in MAE and 61.9%, 60.3%, and 42.6% in RMSE for 0-80m,
80-150m, 150-250m ranges respectively. Especially on our
dataset, rich in highway scenarios, reference SLAM system
often encounter numerous dynamic objects that leave resid-
ual traces, or "floaters” (showed qualitatively in the Supple-
ment), which degrade the accuracy of depth predictions and
confirm that our refinement method significantly enhances
performance by effectively reducing these inaccuracies.

4.3. Semantic Pseudo-Labels Evaluation

We evaluate our semantic pseudo-labels on SemanticKITTI
[3] val sequence 08 and on more than 40k samples of
NuScenes [8], generating them using only the front-left
camera for the former and all six cameras for the latter.

Semantic Pseudo Labels Comparison. We evaluate and
compare our pseudo labels against LeAP [21] and Seman-
tic SAM [13]: for a fair comparison we as well consider



KITTI nuScenes
Method mloU cat.mloU ‘ mloU cat.mloU
= SSAM 10.7 19.7 134 23.2
Z LeAP (points) 46.8 68.6 - -
2 Our fi, 59.4 69.6 54.9 62.6

Our (Propagated) 64.9 76.2 58.0 65.2

d SSAM (Propagated) 11.5 239 25.3 29.2
é LeAP +3D-CN (2) 58.1 81.6 - -
> Our (Propagated) 68.3 86.6 59.1 76.3

Table 3. Pseudo Labels SOTA Comparison. We evaluate pseudo
labels generated by our fs, and the refined ones on Semantic
KITTI and NuScenes, on the [35] benchmark reduced sets of
classes, per-point and voxelizing, according to LeAP [21]. Best
results are bold; second bests are underlined.

only labeled points and reduce the number of classes to a
set of 11 classes (car, bicycle, motorcycle, other-vehicle,
person,road, sidewalk, other-ground, manmade, vegetation,
terrain) as well as to the 6 coarse category classes (flat, con-
struction, object, nature, human, vehicle), both well defined
in the benchmark paper of KITTI 360 [35]. Results shown
in Table 3 highlight how our pseudo labeling function fy,
(§ 3.2) is the most accurate in labeling LiDAR data. To
further compare with LeAP, which propagates its initial la-
bels on a 0.2m voxel grid, we voxelize our propagated la-
bels at the same 0.2m resolution and compare with the re-
ported best result. Thanks to the higher point-level accu-
racy of our propagation technique (in Table 3 point propa-
gated), our voxelized predictions outperform all competing
methods without the need for additional voxel refinement,
achieving state of the art in semantic pseudo-labeling.

Quality vs. Oracle. We select PVKD [26] as fixed off-
the shelf model to be trained: we keep all hyper-parameters
fixed, and vary only the supervision source. In the Ora-
cle case we use 100 % Semantic KITTI ground-truth labels;
for Limited GT a randomly chosen 10% ground-truth sub-
set; for Our we feed that identical 10 % subset plus 90 %
pseudo labels generated by our pipeline. Each regime is
repeated five times with different 10 % splits, and mloU
on val sequence 08 is reported in Table 4. Our pseudo la-
bels recover near-oracle performance, with a small average
difference of 1.09% mloU and of 0.30% when classes not
predicted by our method (parking, bicyclist, motorcyclist,
other-ground, other-objects, trunk) are excluded. To com-
pare these results, we train the same PVKD network with
pseudo labels supervision from three alternative sources:
3D projections of Semantic SAM predictions with tempo-
ral propagation (SSAM) [13], the self-supervised LaserMix
training scheme [28] and inference pseudo-labels from a
Cylinder3D [70] model pre-trained on nuScenes [8] and
lightly fine-tuned for two epochs on 2000 SemanticKITTI
frames with 1/10 the learning rate. Across all the com-

GT All Classes Mapped Classes

Supervision Pseudo 1,1,U% Oracle % mloU% Oracle %
Limited GT 10-0 4341 70.3 48.25 70.3
Oracle 100-0 61.73 - 68.63 -
SSAM [13] 10-90 33.70 54.6 43.17 63.0

Pre-Trained [70] 10-90 44.87 72.7 52.07 759
Lasermix Vx [28] 10-90 59.38 96.3 67.49 98.4

UniLiPS Full (ours) 0-100 51.48 83.4 55.10 80.3
UniLiPS 95% (ours) 5-95  59.46 96.3 66.71 97.2
UniLiPS 90% (ours) 10-90  60.63 98.2 68.33  99.6

Table 4. Semantic Segmentation. We evaluate pseudo labels
quality supervising a PVKD [26] model with pseudo labels pro-
duced by different methods. Our results demonstrate that incorpo-
rating additional pseudo-labels is crucial for regaining oracle-level
performance, as evidenced by the differences between the 10 — 0
and 10 — 90 configurations. Furthermore, our approach benefits
from label re-weighting and accumulation, yielding significant im-
provements over the Semantic SAM baseline. Excluding Oracle
(in gray), best results are bold; second bests are underlined.

parisons, the PVKD model trained on our labels delivers
consistently higher mloU than when trained on baselines
pseudo labels, requiring no extra manual annotation, un-
derscoring their effectiveness for semantic oracle recov-
ery. Moreover, aside from Semantic SAM, which achieves
rather weak performance, our approach is the only one that
can function (0-100), entirely without ground-truth super-
vision. The strongest competing baseline, LaserMix, can
work with small proportions of ground-truth in the GT-
pseudo mix, yet it still needs some labeled data and cannot
handle the 0% ground-truth regime that our method suc-
cessfully addresses.

4.4. Object Detection Evaluation

We evaluate our pseudo bounding boxes performance on
our highway long range dataset.

Pseudo Bounding Boxes are evaluated in Table 5 using
mAP and ND-Score, with 6 meters threshold, on a max-
imum range of 250 meters. We compare with LISO [2],
due to the similar detection-trajectory-refinement method-
ology. We train their model on our data and produce in-
ference bounding box on the same validation split. Addi-
tionally, we compare against pseudo bounding boxes from
ICP-Flow [37], an effective annotation-free pseudo-labeling
method: we threshold its flow estimates at 1 m/s to segment
movers, then derive boxes using our procedure.

Quality Vs Oracle. Secondly, we train an off-the-shelf
3D detector following the architecture of PointPillars[30]
on full ground truth (Oracle) and on 20% ground truth and
80% pseudo labels, generated by our method (Proposed)
and by using ICP-Flow, as described before. We report
the results in Table 6, where we find our pseudo labels can
achieve near-oracle performances compared to other effec-



ICP-Flow [37] LISO [2] Ours
mAP [%] 72 21.1 31.0
NDS [%] 114 40.9 452

Table 5. Pseudo Bounding Boxes evaluation on the highway-
We achieve state-of-the-art compared to other
pseudo-labeling and detection-from-motion approaches.

driving dataset.

Method -25-25m -50 - S0m -70 - 70m
bev AP 3d AP|bev AP 3d AP|bev AP 3d AP
Oracle 35.55 34.45| 33.54 33.08| 32.44 30.13
ICP-Flow [37]] 11.01 3.60 | 945 341 | 944 3.20
Proposed 31.02 26.53 | 29.43 25.44| 29.19 25.33

Table 6. Object Detection Evaluation Results on the challenging
experimental highway dataset: the model trained on our pseudo
labels achieves near-Oracle performances compared to baseline
methods. Excluding Oracle (greyed out), best results are bold.

Ablated None ‘ SAM2 OneF BLIP CLIP
= mloU [%] 594 | 584 103 315 593
Cat-mloU [%] 69.6 | 68.3 19.1  51.0 693
) mloU [%] 549 | 502 214 196 505
Z Cat-mloU[%] 62.6 | 590 260 287 605

Table 7. Pseudo Labeling Engine mloU and category mloU
degradation ablating each engine module, evaluating on Seman-
tic KITTI (KI) and NuScenes (NU).

tive pseudo labeling methods.

5. Ablations

Figure 5 shows qualitatively the importance of our geom-
etry grounded label propagation for temporal consistency
and reweighting of mislabeled points. Table 7 reports point-
wise mloU after ablating each f.4 sub-model, highlighting
their individual impact. Additionally, we note that increas-
ing the number of top-k CLIP proposals (k > 3) doesn "t
impact the mloU score on the evaluated datasets. In Ta-
ble 8a we analyze performance drop of our pseudo bound-
ing boxes after ablating the spline optimization, which helps
pose and orientation score, and our f;,,, which increases
detection probability. In Table 8b we complement Table 3
point-wise evaluation ablating sequentially Algorithm 1, the
accumulation and the occlusion mask in the lifting module
(§3.2): the former effectively re-weights labels, especially
in dense regions, for more accurate prediction, while the
latter removes noise from penetration and misaligned pro-
jections. More ablations are presented in the Supplement.

6. Conclusion

We propose an unsupervised pseudo-labeling method that
generates semantic labels, bounding boxes, and precise
long-range depth from LiDAR, camera and IMU datas

Initial Guess Time t

Temporal Aggregation and Voting Refined Time ¢
¢— 1 M

sseng jeniu|
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/[}:‘/ “Traffic Sign”.
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Figure 5. Effect of Semantic Multimodal Propagation. Lever-
aging our refined, geometry-grounded map as a reference, mis-
labeled points in each LiDAR scan are systematically corrected,
ensuring label consistency across all timestamps.

paulyey

£ T,
t+2

“Traffic Sign”’

Full ‘ w/o spline opt. W0 fiwu
mAP [%] 31.0 23.9 11.7
NDS [%] 45.2 33.2 30.8

(a) Pseudo Bounding Boxes Ablations.

Ablated None ‘ Agorithm 1  Accumulation Occ. Mask
E mloU [%] 64.9 60.7 59.4 57.0
cat.-mlIoU [%] 76.2 70.4 69.6 68.5
o mloU[%] 58.0 552 54.9 50.1
cat.-mloU [%] 65.2 64.9 62.6 55.3

(b) Pseudo Semantic Labels Ablations.

Table 8. Ablation Experiments. Pseudo bounding boxes results
(a) ablating the spline optimizer and f;.,., and semantic labels re-
sults (b) ablating sequentially the label propagation algorithm, the
accumulation (camera-only) and the occlusion mask in the lifting.

recorded in a single driving trajectory. Our approach is
based on a geometry-grounded dynamic scene decomposi-
tion: we first reconstruct a LIDAR map of the environment,
then propagate semantic labels from vision foundation mod-
els across each observed point. By detecting and reconcil-
ing inconsistencies, we remove moving objects and correct
label errors, enabling a truly automatic annotation pipeline
that achieves near-oracle performance compared to manual
labeling. Our method is not tailored to any specific sensor
configuration and generalizes successfully across KITTI,
NuScenes and our Long Range datasets. We validate that
the generated pseudo-labels achieve state-of-the-art in se-
mantic segmentation and object detection and consistently
enhance depth estimation up to 250m, with improvement
of 51.5% in MAE between 80 and 150 meters and 22.0%
between 150 and 250 meters.
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