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Abstract

In the advancement of large language mod-
els (LLMs), while there have been notable im-
provements in their ability to generalize across
various natural language processing tasks, ex-
isting datasets often lack the complexity re-
quired to fully reflect real-world scenarios.
These datasets predominantly focus on single-
task environments with limited constraints,
thereby failing to capture the multifaceted and
constraint-rich requirements inherent in practi-
cal applications. To bridge this gap, we present
the extremely complex instruction following
benchmark (EIFBENCH), meticulously crafted
to facilitate a more realistic and robust evalu-
ation of LLMs. EIFBENCH offers several dis-
tinctive advantages: Firstly, it includes multi-
task scenarios that enable comprehensive as-
sessment across diverse task types concurrently.
Secondly, it is sourced from a wide array of
diverse origins to ensure both the diversity and
representativeness of its data. Lastly, it inte-
grates a variety of constraints, replicating com-
plex operational environments and providing
critical insights into the models’ capabilities
under resource, time, and environmental lim-
itations. Evaluations on EIFBENCH have un-
veiled considerable performance discrepancies
in existing LLMs when challenged with these
extremely complex instructions. This finding
underscores the necessity for ongoing optimiza-
tion and the development of more versatile
and deeply understanding models, equipped
to navigate the intricate challenges posed by
real-world applications.

1 Introduction

The advent of large-scale language models has
transformed real-world applications by enhancing
machines’ ability to comprehend a diverse range
of human instructions, from simple conversations
to complex problem-solving (Sanh et al., 2022;
Dubois et al., 2023). Thus, instructions have be-
come central to effective human-machine interac-
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Figure 1: Previous benchmarks vs. EIFBENCH

tion in this new landscape (Zhong et al., 2021;
Mishra et al., 2022; Gao et al., 2024). However,
as user demands grow more sophisticated, tradi-
tional benchmarks (Zhong et al., 2024; Chia et al.,
2023), which focus on specific tasks, are insuffi-
cient to evaluate models’ comprehensive ability to
handle multifaceted instructions. This shortfall un-
derscores the need for innovative evaluation frame-
works capable of accurately assessing how models
understand and execute complex instructions (Zhou
et al., 2023; Wang et al., 2023; Xu et al., 2024).

To evaluate the instruction following abilities of
LLMs, several benchmarks (Zhou et al., 2023; Qin
et al., 2024; Li et al., 2024) have been proposed,
which can be categorized into three main types.
Single-instruction single-constraint benchmarks,
such as IFEval (Zhou et al., 2023) and INFOBENCH
(Qin et al., 2024), focus on tasks governed by a
single constraint, providing insights into basic in-
struction following abilities. In contrast, single-
instruction multi-constraint benchmarks, like CF-
Bench (He et al., 2024b), evaluate how models han-
dle a single instruction with multiple constraints
across content, numerical, and other dimensions
simultaneously. Additionally, multi-instruction
single-constraint scenarios, such as those explored
by SIFo (Chen et al., 2024), test models’ adherence
to sequences of instructions, assessing their adapt-
ability and versatility while maintaining focus on
a single constraint. Nonetheless, there remains a



gap in research addressing multi-instruction multi-
constraint scenarios, which more accurately reflect
real-world complexities.

Nevertheless, multi-instruction multi-constraint
(MIMC) scenarios are ubiquitous in real-world ap-
plications, such as workflow automation (Zhang
et al., 2022; Taylor et al., 2023) and healthcare
scheduling (Bakhshandeh and Al-e-hashem, 2024;
Li et al., 2021). For example, in cloud-based work-
flow automation, orchestrating computational tasks
such as data preprocessing, model inference, and re-
port generation requires balancing resource alloca-
tion, execution time, and task dependencies (Xiong
et al., 2016). However, existing LLMs struggle
with such complexity, with performance dropping
by over 30% with over 5 constraints (He et al.,
2024b). Bridging this gap necessitates benchmarks
that mirror real-world MIMC dynamics, integrating
both task interdependence and constraint scalability
to foster robust and adaptable LLMs.

In response to these challenges, we intro-
duce the extremely complex instruction follow-
ing benchmark (EIFBENCH), specifically designed
to address the shortcomings of current evaluation
datasets by providing a comprehensive framework
that mirrors the complexities of real-world task en-
vironments. EIFBENCH is unique in its inclusion
of multi-task scenarios, drawn from diverse sources
and integrated with multifaceted constraints, as
shown in Fig. 1'. This design allows for an in-
depth assessment of a model’s ability to manage
complex demands and adapt dynamically to various
operational parameters. The main contributions of
this paper are summarized as follows:

* We first present the extremely complex in-
struction following benchmark (EIFBENCH),
which addresses the current gap in NLP re-
search for evaluating model generalization in
complex multi-task environments.

* EIFBENCH comprises 1,000 crafted data sam-
ples across three scenarios, simulating real-
world applications with multiple instructions
and constraints.

* We perform a categorized analysis of 13
LLMs, including open-source, closed-source,
and reasoning models (e.g., DeepSeek-R1), re-
vealing their limitations in handling complex

"In this work, plain text datasets refer to non-
conversational plain text datasets.
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Figure 2: Task type distribution in EIFBENCH.

instructions and identifying directions for im-
provement in adapting to real-world complex
contexts.

2 EIFBENCH Framework

2.1 Overview

To thoroughly assess the capability of large lan-
guage models (LLMs) in adhering to complex in-
structions, we introduce an exceptionally challeng-
ing instruction following benchmark. Specifically,
we categorize both tasks and constraints to structure
the evaluation. For tasks, we identify and compile
8 types of tasks based on traditional NLP tasks.
Regarding constraints, we establish a two-level hi-
erarchical taxonomy for the organization.

2.2 Task Categories

In line with existing works instruction following
(Zhang et al., 2024a; Li et al., 2024), we categorize
the tasks in EIFBENCH into eight primary types.
These categories provide a comprehensive frame-
work for systematically evaluating model perfor-
mance across diverse task settings. The distribution
of these task categories within EIFBENCH allows
for a thorough analysis, as shown in Fig. 2.

Classification Tasks encompass a variety of
classification needs. Basic tasks include sentiment
analysis, text classification based on themes or
types, and toxic content detection. Advanced clas-
sification tasks extend to empathy detection, argu-
ment mining, gender/personality trait classification,
stereotype detection, and social norm judgment.

Information Extraction Tasks involve extract-
ing and organizing key information from text. Rep-
resentative tasks include named entity recognition
(NER), keyword annotation, coreference resolution,
and entity relationship classification.

Text Generation Tasks cover both creative
and practical applications, which include story
and poetry generation, recipe creation, text ex-



pansion/compression, headline generation, data de-
scription generation and so on.

Dialogue System Tasks are designed for de-
veloping interactive dialogue agents like dialogue
generation, intent recognition, question genera-
tion/rewriting, dialogue state tracking, and role-
playing dialogues.

Reasoning and Logic Tasks require models to
demonstrate logical inference and critical thinking.
Tasks include commonsense question answering,
multi-hop question answering, critical thinking as-
sessment, mathematical reasoning, and theory of
mind reasoning.

Language Style Tasks focus on the manipula-
tion and analysis of language styles. Tasks in this
category include style transfer, language feature
analysis, sarcasm detection, and the identification
of spelling and punctuation errors.

Evaluation and Verification Tasks involve the
verification of information and assessment of text
quality such as text quality assessment, fact verifi-
cation and answer validation.

Programming-Related Tasks are designed to
evaluate the model’s understanding and synthesis
of programming languages. Tasks include code
generation, debugging, and code explanation.

Furthermore, tasks are organized into distinct
structural modes: parallel task mode for simulta-
neous consideration of multiple dimensions, serial
task mode for chain-dependent tasks, conditional
selection mode which adapts based on varying con-
ditions, and nested task mode for tasks embedded
within hierarchical structures. These categoriza-
tions enable a systematic and comprehensive eval-
uation of model capabilities within the benchmark.

2.3 Constraint Categories

Following established research on instruction fol-
lowing (Zhang et al., 2024b), we have developed a
comprehensive constraint system for EIFBENCH.
This system categorizes constraints into four pri-
mary types: Content Constraints, Situation Con-
straints, Style Constraints, and Format Constraints.
These categories provide a structured framework to
systematically evaluate the capabilities of language
models across a wide range of instructional scenar-
1i0s. The distribution is shown in Fig. 3. Detailed
descriptions of the specific constraint dimensions
within each category are provided in Appendix A.

1. Content Constraints: These constraints fo-
cus on the thematic and informative content
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Figure 3: Constraint type distribution in EIFBENCH.

requirements, ensuring that the generated text
adheres to specific topics, inclusion/exclusion
criteria, values, privacy considerations, and
numerical precision.

2. Situation Constraints: These constraints em-
phasize the context and role-playing aspects
of content generation, targeting audience spec-
ifications, preconditions, and the integration
of various background information formats.

3. Style Constraints: These constraints govern
the stylistic and emotional aspects of the gen-
erated text, including tone, emotion, linguistic
characteristics, and multilingual capabilities.

4. Format Constraints: These constraints en-
sure that the output adheres to specific struc-
tural and formatting requirements, including
output formats, text patterns, grammatical
structures, citations, numbering, hierarchical
organization, and template adherence.

3 EI1rBENCH Construction

This section describes the construction pipeline of
EIFBENCH and the evaluation protocol.

3.1 Data Collection

The overall construction process includes several
key stages: 1) Taxonomy of Constraints and Tasks,
2) Multi-scenario Data Collection, 3) Task Expan-
sion, 4) Constraint Expansion, 5) Quality Control,
and 6) Response Generation & Evaluation.

Taxonomy of Constraints and Tasks. We es-
tablish two taxonomies for constraints and tasks,
as presented in Section 2.
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Figure 4: Pipeline of constructing the benchmark.

Multi-scenario Data Collection. Our data col-
lection process encompasses three distinct types
of seed instruction datasets: plain text, dyadic dia-
logue, and multi-party dialogue. For the plain text
dataset, we directly source examples from exist-
ing literature (Wen et al., 2024; Li et al., 2024).
The dyadic dialogue dataset is compiled from real-
life interactions, followed by data cleaning and
noise reduction processes. Given that dialogues
are often lengthy, we utilize large language mod-
els (LLMs) to condense these conversations while
preserving core information. For the multi-party
dialogue dataset, we generate data using LLMs
by setting diverse scene scenarios and varying the
number of participants. We craft specific prompts
to have the LLM produce diverse and representa-
tive multi-party dialogue data.

Task Expansion. In the plain text scenario, in-
dividual tasks are expanded into a series of tasks
(detailed in Section 2.2). During task generation,
we leverage LLMs to create task sets with complex
structures, such as dependent relationships and par-
allelism among tasks. Concurrently, we conduct
rigorous task quality assessments, removing redun-
dant tasks, those beyond model capabilities, and
contradictory tasks, thus ensuring the generated
data’s quality and consistency. In dyadic dialogue
and multi-party dialogue scenarios, we directly gen-
erate multiple new tasks, ensuring each task reflects
the complexity of real-world interactions.

Constraint Expansion. In the constraint ex-
pansion process, we refine and complexify simple
instructions based on a predefined constraint taxon-
omy (refer to Section 2.3). By utilizing LLMs, we
incrementally add complexity to the instructions,
ensuring that each task spans a broad spectrum of
operational requirements and constraints. Through-

out this process, we iteratively review and revise
the constraints, specifically targeting and clarify-
ing those with ambiguous semantics, to ensure that
all constraints could be objectively evaluated and
quantified. This approach not only increases the
tasks’ complexity and challenge but also enhances
the realism and comprehensiveness of the gener-
ated data.

Quality Assessment. Our quality assessment
involves instruction-level validation and constraint-
level validation. For instruction-level validation,
we analyze relationships between instructions, en-
suring logical consistency and feasibility for LLM
models, removing contradictory, redundant, or in-
feasible tasks while maintaining a diverse and mod-
erate difficulty task set of 6 to 12 instructions.
For constraint-level validation, we iteratively re-
fine constraints based on predefined taxonomies,
ensuring they can be objectively quantified and
are within model capabilities, modifying any con-
straints that are ambiguous or beyond the model’s
capability to complete.

Response Generation & Evaluation. First, us-
ing the instruction data, we employ various lan-
guage models to generate the corresponding out-
puts. To verify their compliance, we then prompt
large language models to assess each constraint
satisfaction for the outputs, generating a binary out-
come (0/1) that indicates whether the generated
output satisfies the respective constraints.

3.2 Dataset Statistics

As shown in Table 1, EIFBENCH consists of 1,000
instances for evaluation. Across the three datasets,
the minimum and maximum numbers of constraints
per instance are provided, with average numbers
outlined as well. Fig. 5 and Table 2 illustrate the
distribution of constraint numbers and the distri-



Category #N Min. Max. Avg.
Plain Text 450 41 107 73.27
Dyadic Dialogue 450 47 107 73.38
Multi-party Dialogue 100 63 116 80.26

Table 1: Statistics for Plain Text, Dyadic Dialogue, and
Multi-party Dialogue. #N is the number of data in-
stances; Min., Max., and Avg. mean the minimum,
maximum, and average number of constraints per in-
stance.
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Figure 5: Distributions of total constraints for different
text categories.

Scenario 6 7 8 9 1011 12
Plain Text 15 76 136 139 76 7 1
Dyadic Dialogue 42 113 152 108 33 2 0

Multi-party Dialogue 0 11 47 27 13 1 1

Table 2: Distributions of instructions with different num-
ber of constraints.

bution of instruction numbers within EIFBENCH,
respectively.

3.3 Evaluation Protocol

We employ Qwen2.5-72B-Instruct as the evalu-
ation model to assess constraint adherence in gen-
erated responses. Following established practices
(Wen et al., 2024), each constraint is assigned a
binary compliance score S; j, € {0,1}, where 1
indicates full adherence.

Global Accuracy (GAcc) evaluates strict end-
to-end task success, requiring all constraints across
all instructions to be satisfied simultaneously. This
metric reflects real-world scenarios where partial
compliance is insufficient (e.g., legal document
generation requiring 100% constraint adherence):

n m; Ci,j

GAcc = ~ ZHHSM (1)

zljlkl

where n denotes the number of total instances, m;
is the number of instructions in the instance ¢, and

ci,j is the number of constraints in the instruction j
of instance .

Instruction-Level Accuracy (ILAcc) quantifies
the per-instruction success rate by averaging com-
pliance across instructions for a single instance. It
identifies fragile components in multi-step work-
flows (e.g., failed data parsing steps in analytics
pipelines):

1 n 1 m; Ci,j
ILAcc = — —
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Constraint-Level Accuracy (CLAcc) assesses
atomic constraint fulfillment, crucial for debug-
ging specific requirement violations (e.g., detect-
ing which safety constraints fail in robot control
commands):

m; Ci,j

SCLAcc = Z Z Z Sijk (3)
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These metrics progressively assess compli-
ance at different granularities: from strict task-
level requirements (GAcc) through intermedi-
ate instruction-level compliance (ILAcc) to fine-
grained constraint-level analysis (CLAcc).

3.4 Evaluation Set Quality

To generate high-quality evaluation data, we
implement a post-inspection protocol follow-
ing the initial generation. First, we employ
Qwen2.5-72B-Instruct to systematically vali-
date instruction-clarity alignment, constraint log-
ical consistency, and task feasibility, while auto-
matically identifying and rectifying detectable er-
rors through iterative self-correction. Subsequently,
three certified labeling specialists conduct manual
inspection to eliminate redundant constraints and
instructions, revise infeasible tasks, and resolve
ambiguous formulations, ensuring both technical
rigor and practical executability.

4 Experiments

4.1 Baselines

We compare the performance of both proprietary
and open-source LLMs trained on diverse corpora.
In the proprietary category, we evaluate models
such as GPT-40 (OpenAl, 2023), GPT-40-mini
(OpenAl, 2023), Claude3.5-Sonnect (Anthropic,



Model GAcc ILAcc CLAcc
Closed-Source Models

GPT-40 0.0156 0.3366 0.7501

Claude-3.5-Sonnect 0.0022 0.2542 0.7004

GPT-40-mini 0.0067 0.3244 0.7573

Claude-3.5-Haiku 0.0000 0.1125 0.4560

Open-Source Models

LlaMA3.1-8B-Instruct  0.0000 0.0994 0.5522
LlaMA3.1-70B-Instruct 0.0000 0.2125 0.7377
Qwen2-7B-Instruct 0.0000 0.2179 0.6333
Qwen2-72B-Instruct ~ 0.0044 0.4071 0.8443
gemini-1.5-Pro 0.0133 0.4400 0.8083
Qwen2.5-7B-Instruct ~ 0.0044 0.3574 0.8440
Qwen2.5-72B-Instruct  0.0200 0.5514 0.8996

Reasoning Models

0.0444 0.5725 0.8989
0.0111 0.3102 0.6102

DeepSeek-R1
QwQ-32B-Preview

Table 3: Performance metrics for plain text tasks.

2024b), and Claude3.5-Haiku (Anthropic, 2024a).
These models are designed to demonstrate ad-
vanced language processing capabilities. Among
open-source models, we assess LIaMA3.1 (Dubey
et al., 2024), Qwen?2 (Yang et al., 2024a), gemini-
1.5-Pro (Reid et al., 2024), and Qwen2.5 (Yang
et al., 2024b), which have been trained extensively
on multilingual data. Additionally, we include rea-
soning models like DeepSeek-R1 (Reid et al., 2024)
and QwQ-32B-Preview? to explore their efficiency.

4.2 Settings

For inference, we handle proprietary models by
accessing their APIs, ensuring efficient processing.
For open-source models, we utilize a setup of four
Nvidia A100 GPUs, each with 80GB of VRAM,
leveraging the vLLM framework on EIFBENCH
where applicable. This configuration allows the
completion of all tasks in approximately 30 min-
utes. During the evaluation phase, which spans 4 to
18 hours depending on task complexity, we deploy
the same four Nvidia A100 GPUs setup across
all models. The Qwen2.5-72B-Instruct model
serves as the evaluator, providing comprehensive
assessment capabilities for model performance.

4.3 Results Analysis

4.3.1 Is EIFBENCH Challenging?
The EIFBENCH evaluation, as reflected in Tables
3, 4, and 5, presents multifaceted challenges to

2https ://modelscope.cn/models/Qwen/QwQ-32B-
Preview

Model GAcc ILAcc CLAcc
Closed-Source Models

GPT-40 0.0178 0.3809 0.6904

Claude-3.5-Sonnect 0.0022 0.2511 0.5896

GPT-40-mini 0.0022 0.2767 0.7266

Claude-3.5-Haiku 0.0000 0.1203 0.3849

Open-Source Models

LlaMA3.1-8B-Instruct  0.0000 0.1008 0.5618
L1aMA3.1-70B-Instruct 0.0000 0.1747 0.6941
Qwen2-7B-Instruct 0.0000 0.2020 0.6222
Qwen2-72B-Instruct 0.0022 0.3908 0.8296
gemini-1.5-Pro 0.0178 0.4334 0.8424
Qwen2.5-7B-Instruct ~ 0.0022 0.2520 0.7808
Qwen2.5-72B-Instruct  0.0180 0.5189 0.9014

Reasoning Models

0.0622 0.5537 0.8411
0.0133 0.3489 0.6475

DeepSeek-R1
QwQ-32B-Preview

Table 4: Performance metrics for dyadic dialogue tasks.

language models by mirroring real-life scenarios
through three distinct datasets: plain text tasks, dia-
logue tasks, and multi-party dialogue tasks. These
datasets each embody unique aspects of real-world
applications. These datasets capture distinct as-
pects of practical applications, with plain text tasks
focusing on straightforward information process-
ing, dyadic dialogue tasks reflecting the dynamics
of conversational interactions, and multi-party dia-
logues simulating collaborative discussions.

Our evaluation uses three key metrics: Global
Accuracy (GAcc), Instruction-Level Accuracy
(ILAcc), and Constraint-Level Accuracy (CLAcc).
Constraint-level evaluation, widely emphasized in
recent studies (Zhang et al., 2024a,b; Li et al.,
2024), focuses on individual constraint execution.
This metric typically yields the highest accuracy,
demonstrating models’ capability to handle isolated
constraints effectively. However, instruction-level
performance shows a significant decline. ILAcc
evaluates the accuracy of completing individual
instructions and reveals models’ difficulty in ful-
filling all constraints per instruction. Despite high
CLAcc scores, models struggle to satisfy all con-
straints required for an instruction. Consequently,
the probability of successfully executing all instruc-
tions within an instance remains low, highlighting
the need for improved model capabilities in com-
plex multi-task scenarios. In real-world contexts,
LLMs need to enhance their ability to fully ad-
here to all instructions in comprehensive task exe-
cution, highlighting the challenging nature of the



Model GAcc ILAcc CLAcc

Closed-Source Models

GPT-40 0.0000 0.3021 0.6569
Claude-Sonnect 0.0000 0.2236 0.5728
GPT-40-mini 0.0000 0.3187 0.7667

Claude-Haiku 0.0000 0.0728 0.2589

Open-Source Models

L1aMA3.1-8B-Instruct  0.0000 0.0856 0.5527
L1aMA3.1-70B-Instruct 0.0000 0.1360 0.7139
Qwen2-7B-Instruct 0.0000 0.1326 0.6288
Qwen2-72B-Instruct 0.0000 0.3266 0.8234
gemini-1.5-Pro 0.0100 0.3959 0.8538
Qwen2.5-7B-Instruct ~ 0.0000 0.2596 0.8315
Qwen2.5-72B-Instruct  0.0000 0.5546 0.9270

Reasoning Models

0.0100 0.4883 0.8712
0.0200 0.3075 0.6892

DeepSeek-R1
QwQ-32B-Preview

Table 5: Performance metrics for multi-party dialogues.

EIFBENCH dataset.

Model performance varies significantly across
categories, with task-type dependency observed.
Among closed-source models, GPT-40 shows sit-
uational superiority: it leads in dyadic dialogues
but fails completely in multi-party scenarios. For
open-source models, gemini-1.5-Pro demonstrates
competitive constraint-level accuracy, outperform-
ing most open-source models except Qwen2.5-
72B-Instruct. Qwen2.5-72B-Instruct dominates
in three scenarios since we generate data with it.
The poor performance of LlaMA3.1 models may
be attributed to architectural incompatibility with
constraint-chained scenarios. Contrary to the rea-
soning models, DeepSeek-R1 outperforms others
in plain text tasks and dyadic dialogue tasks on
ILAcc. These patterns emphasize that model ef-
fectiveness depends on both base capability and
structural alignment with task hierarchies.

4.3.2 Factors Influencing Instruction
Following

Our investigation identifies two critical dimensions
influencing instruction adherence in language mod-
els: (1) the number of instructions per instance and
(2) the number of constraints per instruction. As
illustrated in Fig. 6, performance degrades pro-
gressively as these variables increase, though with
minor patterns. This decline is particularly pro-
nounced with an increase in constraints, likely be-
cause each additional constraint raises the complex-
ity of completing a task, making it more challeng-

Model Step GAcc ILAcec CLAcc

LlaMA3.1-8B 1 0.0000 0.0856 0.5527
2 0.0000 0.0634 0.5593 1

Qwen2-7B 0.0000 0.1326 0.6288

1
2 0.0000 0.1484 1 0.6611 T

Qwen2.5-7B 1 0.0000 0.2596 0.8315
2 0.0000 0.2748 T 0.8087

Table 6: Performance of different generation times on
multi-party dialogues. Model is its Instruction version.

ing for the model to meet all requirements. Con-
versely, the interdependence between instructions
is generally low, meaning that an increase in the
number of instructions does not lead to as steep a
performance decline. This is primarily because the
difficulty lies in managing multiple tasks simultane-
ously, rather than the instructions themselves being
interrelated. In some instances, especially where
there are larger numbers of instructions and con-
straints, performance may inexplicably improve.
This can be attributed to the smaller sample sizes
in these scenarios, leading to greater variability in
performance outcomes. Overall, this analysis un-
derscores the intricacies of maintaining consistent
instruction adherence across diverse scenarios.

4.3.3 Analysis of Further Thinking

The results presented in Table 6 demonstrate the im-
pact of a two-step generation approach on the per-
formance of smaller open-source models in multi-
party dialogue tasks. By generating an initial out-
put and then refining it through further reflection,
these models show consistent improvements across
most scenarios. These findings suggest that iter-
ative reasoning allows smaller models to identify
and correct errors, enhancing their problem-solving
capabilities without requiring larger architectures.
It underscores the value of fostering deeper reason-
ing strategies in smaller models, enabling them to
achieve higher accuracy in complex tasks.

5 Related work

5.1 Instruction Following

Recent advancements in the fine-tuning of large
language models (LLMs) have demonstrated the
significant impact of annotated instructional data
on enhancing models’ ability to understand and ex-
ecute a wide array of language instructions (Weller
et al., 2020; Ye and Ren, 2021; Mishra et al., 2022).
Building on this, incorporating more detailed and
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Figure 6: Performance on different number of instructions and constraints.

sophisticated instructions has been shown to further
improve model capabilities (Lou et al., 2023). For
example, the study by (Xu et al., 2024) introduces
a method where complex instructions are incre-
mentally generated from seed instructions using
LLMs, resulting in fine-tuning that allows LLaMA
to achieve performance exceeding 90% of Chat-
GPT’s capacity across 17 out of 29 skills. Addi-
tionally, the research community is increasingly fo-
cused on constrained instructions (Sun et al., 2024;
Dong et al., 2024; He et al., 2024a), a subset of
complex instructions, which involves enhancing in-
structional complexity by increasing the number of
constraints, thereby improving the models’ ability
to handle intricate tasks.

5.2 Evaluation of Instruction Following

Instruction following is a pivotal aspect influencing
the effectiveness of large language models (LLMs)
(Liu et al., 2023). Early work focused on evaluat-
ing compliance with simple human directives, typi-
cally featuring single constraints, such as semantic
(Zheng et al., 2023; Liu et al., 2024) or formatting
(Xia et al., 2024; Tang et al., 2024) requirements.
As LLMs are increasingly applied in complex real-
world contexts, there is a growing need to assess
their ability to handle intricate instructions (Qin
et al., 2024; Jiang et al., 2024). For instance, (Sun
et al., 2024) introduced the Conifer dataset along
with a progressive learning framework to bolster
LLMSs’ abilities to process multi-level instructions
featuring complex constraints. Meanwhile, (Qin

et al., 2024) proposed a method for breaking down
a singular instruction into multiple constraints. (He
et al., 2024b) curated constraints derived from real-
world contexts to construct an advanced bench-
mark, which utilizes comprehensive task descrip-
tions and inputs to evaluate LLMs. Furthermore,
(Wen et al., 2024) developed an innovative bench-
mark by integrating and enhancing data from exist-
ing datasets, emphasizing combinations of diverse
constraint types. Nonetheless, we contend that ex-
isting datasets suffer from a limited number of con-
straints and primarily focus on single-instruction
scenarios, whereas real-world applications often
involve multi-instruction, multi-constraint instruc-
tions where the number of constraints greatly ex-
ceeds those found in current datasets.

6 Conclusion

In conclusion, the Extremely Complex Instruc-
tion Following Benchmark (ETFBENCH) addresses
the limitations of existing datasets by introducing
multi-task scenarios, diverse data sources, and com-
plex constraints, enabling a more realistic evalua-
tion of large language models (LLMs). Evaluations
on EIFBENCH reveal significant performance gaps
in current LLMs, underscoring the need for further
optimization and the development of models ca-
pable of handling real-world complexities. This
benchmark sets a new standard for future research,
driving the creation of more robust and adaptable
systems for practical applications.



7 Limitations

While EIFBENCH provides a robust evaluation
framework for plain text, dyadic dialogue, and
multi-party tasks, it has two limitations that could
be addressed in future work. First, the inter-task
relationships could be further enhanced to reflect
more complex, real-world dependencies, such as
multi-step reasoning or conditional task execution.
Second, the dataset currently focuses primarily on
Chinese instructions, which limits its applicabil-
ity to multilingual scenarios. Expanding to include
more languages would improve its global relevance
and enable evaluation of LLMs’ cross-lingual capa-
bilities. Addressing these limitations would make
EIFBENCH even more comprehensive and aligned
with practical applications.
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A Taxonomy of Constraint

Constraint Type

Constraint Dimension

Content Constraint

Theme Constraint
Exclusion Constraint
Inclusion Constraint
Value Constraint
Privacy Constraint
Numerical Constraint

Situation Constraint

Role-Playing Constraint

Target Audience Constraint

Prior Condition Constraint

Natural Language Process Background Information Constraint
Markdown Process Background Information Constraint

Table Background Information Constraint

Text Background Information Constraint

Style Constraint

Tone and Style Constraint

Emotion Constraint

Linguistic Characteristics Constraint
Multilingual Constraint

Format Constraint

Output Format Constraint

Text Pattern Constraint
Grammar Structure Constraint
Citation Constraint

Numbering and List Constraint
Hierarchical Structure Constraint
Template Constraint

Table 7: Constraints and Their Dimensions
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