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Abstract

In the advancement of large language mod-001
els (LLMs), while there have been notable im-002
provements in their ability to generalize across003
various natural language processing tasks, ex-004
isting datasets often lack the complexity re-005
quired to fully reflect real-world scenarios.006
These datasets predominantly focus on single-007
task environments with limited constraints,008
thereby failing to capture the multifaceted and009
constraint-rich requirements inherent in practi-010
cal applications. To bridge this gap, we present011
the extremely complex instruction following012
benchmark (EIFBENCH), meticulously crafted013
to facilitate a more realistic and robust evalu-014
ation of LLMs. EIFBENCH offers several dis-015
tinctive advantages: Firstly, it includes multi-016
task scenarios that enable comprehensive as-017
sessment across diverse task types concurrently.018
Secondly, it is sourced from a wide array of019
diverse origins to ensure both the diversity and020
representativeness of its data. Lastly, it inte-021
grates a variety of constraints, replicating com-022
plex operational environments and providing023
critical insights into the models’ capabilities024
under resource, time, and environmental lim-025
itations. Evaluations on EIFBENCH have un-026
veiled considerable performance discrepancies027
in existing LLMs when challenged with these028
extremely complex instructions. This finding029
underscores the necessity for ongoing optimiza-030
tion and the development of more versatile031
and deeply understanding models, equipped032
to navigate the intricate challenges posed by033
real-world applications.034

1 Introduction035

The advent of large-scale language models has036

transformed real-world applications by enhancing037

machines’ ability to comprehend a diverse range038

of human instructions, from simple conversations039

to complex problem-solving (Sanh et al., 2022;040

Dubois et al., 2023). Thus, instructions have be-041

come central to effective human-machine interac-042

Figure 1: Previous benchmarks vs. EIFBENCH

tion in this new landscape (Zhong et al., 2021; 043

Mishra et al., 2022; Gao et al., 2024). However, 044

as user demands grow more sophisticated, tradi- 045

tional benchmarks (Zhong et al., 2024; Chia et al., 046

2023), which focus on specific tasks, are insuffi- 047

cient to evaluate models’ comprehensive ability to 048

handle multifaceted instructions. This shortfall un- 049

derscores the need for innovative evaluation frame- 050

works capable of accurately assessing how models 051

understand and execute complex instructions (Zhou 052

et al., 2023; Wang et al., 2023; Xu et al., 2024). 053

To evaluate the instruction following abilities of 054

LLMs, several benchmarks (Zhou et al., 2023; Qin 055

et al., 2024; Li et al., 2024) have been proposed, 056

which can be categorized into three main types. 057

Single-instruction single-constraint benchmarks, 058

such as IFEval (Zhou et al., 2023) and INFOBENCH 059

(Qin et al., 2024), focus on tasks governed by a 060

single constraint, providing insights into basic in- 061

struction following abilities. In contrast, single- 062

instruction multi-constraint benchmarks, like CF- 063

Bench (He et al., 2024b), evaluate how models han- 064

dle a single instruction with multiple constraints 065

across content, numerical, and other dimensions 066

simultaneously. Additionally, multi-instruction 067

single-constraint scenarios, such as those explored 068

by SIFo (Chen et al., 2024), test models’ adherence 069

to sequences of instructions, assessing their adapt- 070

ability and versatility while maintaining focus on 071

a single constraint. Nonetheless, there remains a 072

1



gap in research addressing multi-instruction multi-073

constraint scenarios, which more accurately reflect074

real-world complexities.075

Nevertheless, multi-instruction multi-constraint076

(MIMC) scenarios are ubiquitous in real-world ap-077

plications, such as workflow automation (Zhang078

et al., 2022; Taylor et al., 2023) and healthcare079

scheduling (Bakhshandeh and Al-e-hashem, 2024;080

Li et al., 2021). For example, in cloud-based work-081

flow automation, orchestrating computational tasks082

such as data preprocessing, model inference, and re-083

port generation requires balancing resource alloca-084

tion, execution time, and task dependencies (Xiong085

et al., 2016). However, existing LLMs struggle086

with such complexity, with performance dropping087

by over 30% with over 5 constraints (He et al.,088

2024b). Bridging this gap necessitates benchmarks089

that mirror real-world MIMC dynamics, integrating090

both task interdependence and constraint scalability091

to foster robust and adaptable LLMs.092

In response to these challenges, we intro-093

duce the extremely complex instruction follow-094

ing benchmark (EIFBENCH), specifically designed095

to address the shortcomings of current evaluation096

datasets by providing a comprehensive framework097

that mirrors the complexities of real-world task en-098

vironments. EIFBENCH is unique in its inclusion099

of multi-task scenarios, drawn from diverse sources100

and integrated with multifaceted constraints, as101

shown in Fig. 11. This design allows for an in-102

depth assessment of a model’s ability to manage103

complex demands and adapt dynamically to various104

operational parameters. The main contributions of105

this paper are summarized as follows:106

• We first present the extremely complex in-107

struction following benchmark (EIFBENCH),108

which addresses the current gap in NLP re-109

search for evaluating model generalization in110

complex multi-task environments.111

• EIFBENCH comprises 1,000 crafted data sam-112

ples across three scenarios, simulating real-113

world applications with multiple instructions114

and constraints.115

• We perform a categorized analysis of 13116

LLMs, including open-source, closed-source,117

and reasoning models (e.g., DeepSeek-R1), re-118

vealing their limitations in handling complex119

1In this work, plain text datasets refer to non-
conversational plain text datasets.

Figure 2: Task type distribution in EIFBENCH.

instructions and identifying directions for im- 120

provement in adapting to real-world complex 121

contexts. 122

2 EIFBENCH Framework 123

2.1 Overview 124

To thoroughly assess the capability of large lan- 125

guage models (LLMs) in adhering to complex in- 126

structions, we introduce an exceptionally challeng- 127

ing instruction following benchmark. Specifically, 128

we categorize both tasks and constraints to structure 129

the evaluation. For tasks, we identify and compile 130

8 types of tasks based on traditional NLP tasks. 131

Regarding constraints, we establish a two-level hi- 132

erarchical taxonomy for the organization. 133

2.2 Task Categories 134

In line with existing works instruction following 135

(Zhang et al., 2024a; Li et al., 2024), we categorize 136

the tasks in EIFBENCH into eight primary types. 137

These categories provide a comprehensive frame- 138

work for systematically evaluating model perfor- 139

mance across diverse task settings. The distribution 140

of these task categories within EIFBENCH allows 141

for a thorough analysis, as shown in Fig. 2. 142

Classification Tasks encompass a variety of 143

classification needs. Basic tasks include sentiment 144

analysis, text classification based on themes or 145

types, and toxic content detection. Advanced clas- 146

sification tasks extend to empathy detection, argu- 147

ment mining, gender/personality trait classification, 148

stereotype detection, and social norm judgment. 149

Information Extraction Tasks involve extract- 150

ing and organizing key information from text. Rep- 151

resentative tasks include named entity recognition 152

(NER), keyword annotation, coreference resolution, 153

and entity relationship classification. 154

Text Generation Tasks cover both creative 155

and practical applications, which include story 156

and poetry generation, recipe creation, text ex- 157
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pansion/compression, headline generation, data de-158

scription generation and so on.159

Dialogue System Tasks are designed for de-160

veloping interactive dialogue agents like dialogue161

generation, intent recognition, question genera-162

tion/rewriting, dialogue state tracking, and role-163

playing dialogues.164

Reasoning and Logic Tasks require models to165

demonstrate logical inference and critical thinking.166

Tasks include commonsense question answering,167

multi-hop question answering, critical thinking as-168

sessment, mathematical reasoning, and theory of169

mind reasoning.170

Language Style Tasks focus on the manipula-171

tion and analysis of language styles. Tasks in this172

category include style transfer, language feature173

analysis, sarcasm detection, and the identification174

of spelling and punctuation errors.175

Evaluation and Verification Tasks involve the176

verification of information and assessment of text177

quality such as text quality assessment, fact verifi-178

cation and answer validation.179

Programming-Related Tasks are designed to180

evaluate the model’s understanding and synthesis181

of programming languages. Tasks include code182

generation, debugging, and code explanation.183

Furthermore, tasks are organized into distinct184

structural modes: parallel task mode for simulta-185

neous consideration of multiple dimensions, serial186

task mode for chain-dependent tasks, conditional187

selection mode which adapts based on varying con-188

ditions, and nested task mode for tasks embedded189

within hierarchical structures. These categoriza-190

tions enable a systematic and comprehensive eval-191

uation of model capabilities within the benchmark.192

2.3 Constraint Categories193

Following established research on instruction fol-194

lowing (Zhang et al., 2024b), we have developed a195

comprehensive constraint system for EIFBENCH.196

This system categorizes constraints into four pri-197

mary types: Content Constraints, Situation Con-198

straints, Style Constraints, and Format Constraints.199

These categories provide a structured framework to200

systematically evaluate the capabilities of language201

models across a wide range of instructional scenar-202

ios. The distribution is shown in Fig. 3. Detailed203

descriptions of the specific constraint dimensions204

within each category are provided in Appendix A.205

1. Content Constraints: These constraints fo-206

cus on the thematic and informative content207

Figure 3: Constraint type distribution in EIFBENCH.

requirements, ensuring that the generated text 208

adheres to specific topics, inclusion/exclusion 209

criteria, values, privacy considerations, and 210

numerical precision. 211

2. Situation Constraints: These constraints em- 212

phasize the context and role-playing aspects 213

of content generation, targeting audience spec- 214

ifications, preconditions, and the integration 215

of various background information formats. 216

3. Style Constraints: These constraints govern 217

the stylistic and emotional aspects of the gen- 218

erated text, including tone, emotion, linguistic 219

characteristics, and multilingual capabilities. 220

4. Format Constraints: These constraints en- 221

sure that the output adheres to specific struc- 222

tural and formatting requirements, including 223

output formats, text patterns, grammatical 224

structures, citations, numbering, hierarchical 225

organization, and template adherence. 226

3 EIFBENCH Construction 227

This section describes the construction pipeline of 228

EIFBENCH and the evaluation protocol. 229

3.1 Data Collection 230

The overall construction process includes several 231

key stages: 1) Taxonomy of Constraints and Tasks, 232

2) Multi-scenario Data Collection, 3) Task Expan- 233

sion, 4) Constraint Expansion, 5) Quality Control, 234

and 6) Response Generation & Evaluation. 235

Taxonomy of Constraints and Tasks. We es- 236

tablish two taxonomies for constraints and tasks, 237

as presented in Section 2. 238
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Figure 4: Pipeline of constructing the benchmark.

Multi-scenario Data Collection. Our data col-239

lection process encompasses three distinct types240

of seed instruction datasets: plain text, dyadic dia-241

logue, and multi-party dialogue. For the plain text242

dataset, we directly source examples from exist-243

ing literature (Wen et al., 2024; Li et al., 2024).244

The dyadic dialogue dataset is compiled from real-245

life interactions, followed by data cleaning and246

noise reduction processes. Given that dialogues247

are often lengthy, we utilize large language mod-248

els (LLMs) to condense these conversations while249

preserving core information. For the multi-party250

dialogue dataset, we generate data using LLMs251

by setting diverse scene scenarios and varying the252

number of participants. We craft specific prompts253

to have the LLM produce diverse and representa-254

tive multi-party dialogue data.255

Task Expansion. In the plain text scenario, in-256

dividual tasks are expanded into a series of tasks257

(detailed in Section 2.2). During task generation,258

we leverage LLMs to create task sets with complex259

structures, such as dependent relationships and par-260

allelism among tasks. Concurrently, we conduct261

rigorous task quality assessments, removing redun-262

dant tasks, those beyond model capabilities, and263

contradictory tasks, thus ensuring the generated264

data’s quality and consistency. In dyadic dialogue265

and multi-party dialogue scenarios, we directly gen-266

erate multiple new tasks, ensuring each task reflects267

the complexity of real-world interactions.268

Constraint Expansion. In the constraint ex-269

pansion process, we refine and complexify simple270

instructions based on a predefined constraint taxon-271

omy (refer to Section 2.3). By utilizing LLMs, we272

incrementally add complexity to the instructions,273

ensuring that each task spans a broad spectrum of274

operational requirements and constraints. Through-275

out this process, we iteratively review and revise 276

the constraints, specifically targeting and clarify- 277

ing those with ambiguous semantics, to ensure that 278

all constraints could be objectively evaluated and 279

quantified. This approach not only increases the 280

tasks’ complexity and challenge but also enhances 281

the realism and comprehensiveness of the gener- 282

ated data. 283

Quality Assessment. Our quality assessment 284

involves instruction-level validation and constraint- 285

level validation. For instruction-level validation, 286

we analyze relationships between instructions, en- 287

suring logical consistency and feasibility for LLM 288

models, removing contradictory, redundant, or in- 289

feasible tasks while maintaining a diverse and mod- 290

erate difficulty task set of 6 to 12 instructions. 291

For constraint-level validation, we iteratively re- 292

fine constraints based on predefined taxonomies, 293

ensuring they can be objectively quantified and 294

are within model capabilities, modifying any con- 295

straints that are ambiguous or beyond the model’s 296

capability to complete. 297

Response Generation & Evaluation. First, us- 298

ing the instruction data, we employ various lan- 299

guage models to generate the corresponding out- 300

puts. To verify their compliance, we then prompt 301

large language models to assess each constraint 302

satisfaction for the outputs, generating a binary out- 303

come (0/1) that indicates whether the generated 304

output satisfies the respective constraints. 305

3.2 Dataset Statistics 306

As shown in Table 1, EIFBENCH consists of 1,000 307

instances for evaluation. Across the three datasets, 308

the minimum and maximum numbers of constraints 309

per instance are provided, with average numbers 310

outlined as well. Fig. 5 and Table 2 illustrate the 311

distribution of constraint numbers and the distri- 312
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Category #N Min. Max. Avg.

Plain Text 450 41 107 73.27
Dyadic Dialogue 450 47 107 73.38
Multi-party Dialogue 100 63 116 80.26

Table 1: Statistics for Plain Text, Dyadic Dialogue, and
Multi-party Dialogue. #N is the number of data in-
stances; Min., Max., and Avg. mean the minimum,
maximum, and average number of constraints per in-
stance.

Figure 5: Distributions of total constraints for different
text categories.

Scenario 6 7 8 9 10 11 12

Plain Text 15 76 136 139 76 7 1
Dyadic Dialogue 42 113 152 108 33 2 0
Multi-party Dialogue 0 11 47 27 13 1 1

Table 2: Distributions of instructions with different num-
ber of constraints.

bution of instruction numbers within EIFBENCH,313

respectively.314

3.3 Evaluation Protocol315

We employ Qwen2.5-72B-Instruct as the evalu-316

ation model to assess constraint adherence in gen-317

erated responses. Following established practices318

(Wen et al., 2024), each constraint is assigned a319

binary compliance score Si,j,k ∈ {0, 1}, where 1320

indicates full adherence.321

Global Accuracy (GAcc) evaluates strict end-322

to-end task success, requiring all constraints across323

all instructions to be satisfied simultaneously. This324

metric reflects real-world scenarios where partial325

compliance is insufficient (e.g., legal document326

generation requiring 100% constraint adherence):327

GAcc =
1

n

n∑
i=1

mi∏
j=1

ci,j∏
k=1

Si,j,k (1)328

where n denotes the number of total instances, mi329

is the number of instructions in the instance i, and330

ci,j is the number of constraints in the instruction j 331

of instance i. 332

Instruction-Level Accuracy (ILAcc) quantifies 333

the per-instruction success rate by averaging com- 334

pliance across instructions for a single instance. It 335

identifies fragile components in multi-step work- 336

flows (e.g., failed data parsing steps in analytics 337

pipelines): 338

ILAcc =
1

n

n∑
i=1

1

mi

mi∑
j=1

(
1

ci,j

ci,j∏
k=1

Si,j,k

)
(2) 339

Constraint-Level Accuracy (CLAcc) assesses 340

atomic constraint fulfillment, crucial for debug- 341

ging specific requirement violations (e.g., detect- 342

ing which safety constraints fail in robot control 343

commands): 344

SCLAcc =
1∑mi

j=1 ci,j

mi∑
j=1

ci,j∑
k=1

Si,j,k (3) 345

CLAcc =
1

n

n∑
i=1

SCLAcc (4) 346

These metrics progressively assess compli- 347

ance at different granularities: from strict task- 348

level requirements (GAcc) through intermedi- 349

ate instruction-level compliance (ILAcc) to fine- 350

grained constraint-level analysis (CLAcc). 351

3.4 Evaluation Set Quality 352

To generate high-quality evaluation data, we 353

implement a post-inspection protocol follow- 354

ing the initial generation. First, we employ 355

Qwen2.5-72B-Instruct to systematically vali- 356

date instruction-clarity alignment, constraint log- 357

ical consistency, and task feasibility, while auto- 358

matically identifying and rectifying detectable er- 359

rors through iterative self-correction. Subsequently, 360

three certified labeling specialists conduct manual 361

inspection to eliminate redundant constraints and 362

instructions, revise infeasible tasks, and resolve 363

ambiguous formulations, ensuring both technical 364

rigor and practical executability. 365

4 Experiments 366

4.1 Baselines 367

We compare the performance of both proprietary 368

and open-source LLMs trained on diverse corpora. 369

In the proprietary category, we evaluate models 370

such as GPT-4o (OpenAI, 2023), GPT-4o-mini 371

(OpenAI, 2023), Claude3.5-Sonnect (Anthropic, 372
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Model GAcc ILAcc CLAcc

Closed-Source Models

GPT-4o 0.0156 0.3366 0.7501
Claude-3.5-Sonnect 0.0022 0.2542 0.7004
GPT-4o-mini 0.0067 0.3244 0.7573
Claude-3.5-Haiku 0.0000 0.1125 0.4560

Open-Source Models

LlaMA3.1-8B-Instruct 0.0000 0.0994 0.5522
LlaMA3.1-70B-Instruct 0.0000 0.2125 0.7377
Qwen2-7B-Instruct 0.0000 0.2179 0.6333
Qwen2-72B-Instruct 0.0044 0.4071 0.8443
gemini-1.5-Pro 0.0133 0.4400 0.8083
Qwen2.5-7B-Instruct 0.0044 0.3574 0.8440
Qwen2.5-72B-Instruct 0.0200 0.5514 0.8996

Reasoning Models

DeepSeek-R1 0.0444 0.5725 0.8989
QwQ-32B-Preview 0.0111 0.3102 0.6102

Table 3: Performance metrics for plain text tasks.

2024b), and Claude3.5-Haiku (Anthropic, 2024a).373

These models are designed to demonstrate ad-374

vanced language processing capabilities. Among375

open-source models, we assess LlaMA3.1 (Dubey376

et al., 2024), Qwen2 (Yang et al., 2024a), gemini-377

1.5-Pro (Reid et al., 2024), and Qwen2.5 (Yang378

et al., 2024b), which have been trained extensively379

on multilingual data. Additionally, we include rea-380

soning models like DeepSeek-R1 (Reid et al., 2024)381

and QwQ-32B-Preview2 to explore their efficiency.382

4.2 Settings383

For inference, we handle proprietary models by384

accessing their APIs, ensuring efficient processing.385

For open-source models, we utilize a setup of four386

Nvidia A100 GPUs, each with 80GB of VRAM,387

leveraging the vLLM framework on EIFBENCH388

where applicable. This configuration allows the389

completion of all tasks in approximately 30 min-390

utes. During the evaluation phase, which spans 4 to391

18 hours depending on task complexity, we deploy392

the same four Nvidia A100 GPUs setup across393

all models. The Qwen2.5-72B-Instruct model394

serves as the evaluator, providing comprehensive395

assessment capabilities for model performance.396

4.3 Results Analysis397

4.3.1 Is EIFBENCH Challenging?398

The EIFBENCH evaluation, as reflected in Tables399

3, 4, and 5, presents multifaceted challenges to400

2https://modelscope.cn/models/Qwen/QwQ-32B-
Preview

Model GAcc ILAcc CLAcc

Closed-Source Models

GPT-4o 0.0178 0.3809 0.6904
Claude-3.5-Sonnect 0.0022 0.2511 0.5896
GPT-4o-mini 0.0022 0.2767 0.7266
Claude-3.5-Haiku 0.0000 0.1203 0.3849

Open-Source Models

LlaMA3.1-8B-Instruct 0.0000 0.1008 0.5618
LlaMA3.1-70B-Instruct 0.0000 0.1747 0.6941
Qwen2-7B-Instruct 0.0000 0.2020 0.6222
Qwen2-72B-Instruct 0.0022 0.3908 0.8296
gemini-1.5-Pro 0.0178 0.4334 0.8424
Qwen2.5-7B-Instruct 0.0022 0.2520 0.7808
Qwen2.5-72B-Instruct 0.0180 0.5189 0.9014

Reasoning Models

DeepSeek-R1 0.0622 0.5537 0.8411
QwQ-32B-Preview 0.0133 0.3489 0.6475

Table 4: Performance metrics for dyadic dialogue tasks.

language models by mirroring real-life scenarios 401

through three distinct datasets: plain text tasks, dia- 402

logue tasks, and multi-party dialogue tasks. These 403

datasets each embody unique aspects of real-world 404

applications. These datasets capture distinct as- 405

pects of practical applications, with plain text tasks 406

focusing on straightforward information process- 407

ing, dyadic dialogue tasks reflecting the dynamics 408

of conversational interactions, and multi-party dia- 409

logues simulating collaborative discussions. 410

Our evaluation uses three key metrics: Global 411

Accuracy (GAcc), Instruction-Level Accuracy 412

(ILAcc), and Constraint-Level Accuracy (CLAcc). 413

Constraint-level evaluation, widely emphasized in 414

recent studies (Zhang et al., 2024a,b; Li et al., 415

2024), focuses on individual constraint execution. 416

This metric typically yields the highest accuracy, 417

demonstrating models’ capability to handle isolated 418

constraints effectively. However, instruction-level 419

performance shows a significant decline. ILAcc 420

evaluates the accuracy of completing individual 421

instructions and reveals models’ difficulty in ful- 422

filling all constraints per instruction. Despite high 423

CLAcc scores, models struggle to satisfy all con- 424

straints required for an instruction. Consequently, 425

the probability of successfully executing all instruc- 426

tions within an instance remains low, highlighting 427

the need for improved model capabilities in com- 428

plex multi-task scenarios. In real-world contexts, 429

LLMs need to enhance their ability to fully ad- 430

here to all instructions in comprehensive task exe- 431

cution, highlighting the challenging nature of the 432
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Model GAcc ILAcc CLAcc

Closed-Source Models

GPT-4o 0.0000 0.3021 0.6569
Claude-Sonnect 0.0000 0.2236 0.5728
GPT-4o-mini 0.0000 0.3187 0.7667
Claude-Haiku 0.0000 0.0728 0.2589

Open-Source Models

LlaMA3.1-8B-Instruct 0.0000 0.0856 0.5527
LlaMA3.1-70B-Instruct 0.0000 0.1360 0.7139
Qwen2-7B-Instruct 0.0000 0.1326 0.6288
Qwen2-72B-Instruct 0.0000 0.3266 0.8234
gemini-1.5-Pro 0.0100 0.3959 0.8538
Qwen2.5-7B-Instruct 0.0000 0.2596 0.8315
Qwen2.5-72B-Instruct 0.0000 0.5546 0.9270

Reasoning Models

DeepSeek-R1 0.0100 0.4883 0.8712
QwQ-32B-Preview 0.0200 0.3075 0.6892

Table 5: Performance metrics for multi-party dialogues.

EIFBENCH dataset.433

Model performance varies significantly across434

categories, with task-type dependency observed.435

Among closed-source models, GPT-4o shows sit-436

uational superiority: it leads in dyadic dialogues437

but fails completely in multi-party scenarios. For438

open-source models, gemini-1.5-Pro demonstrates439

competitive constraint-level accuracy, outperform-440

ing most open-source models except Qwen2.5-441

72B-Instruct. Qwen2.5-72B-Instruct dominates442

in three scenarios since we generate data with it.443

The poor performance of LlaMA3.1 models may444

be attributed to architectural incompatibility with445

constraint-chained scenarios. Contrary to the rea-446

soning models, DeepSeek-R1 outperforms others447

in plain text tasks and dyadic dialogue tasks on448

ILAcc. These patterns emphasize that model ef-449

fectiveness depends on both base capability and450

structural alignment with task hierarchies.451

4.3.2 Factors Influencing Instruction452

Following453

Our investigation identifies two critical dimensions454

influencing instruction adherence in language mod-455

els: (1) the number of instructions per instance and456

(2) the number of constraints per instruction. As457

illustrated in Fig. 6, performance degrades pro-458

gressively as these variables increase, though with459

minor patterns. This decline is particularly pro-460

nounced with an increase in constraints, likely be-461

cause each additional constraint raises the complex-462

ity of completing a task, making it more challeng-463

Model Step GAcc ILAcc CLAcc

LlaMA3.1-8B 1 0.0000 0.0856 0.5527
2 0.0000 0.0634 0.5593 ↑

Qwen2-7B 1 0.0000 0.1326 0.6288
2 0.0000 0.1484 ↑ 0.6611 ↑

Qwen2.5-7B 1 0.0000 0.2596 0.8315
2 0.0000 0.2748 ↑ 0.8087

Table 6: Performance of different generation times on
multi-party dialogues. Model is its Instruction version.

ing for the model to meet all requirements. Con- 464

versely, the interdependence between instructions 465

is generally low, meaning that an increase in the 466

number of instructions does not lead to as steep a 467

performance decline. This is primarily because the 468

difficulty lies in managing multiple tasks simultane- 469

ously, rather than the instructions themselves being 470

interrelated. In some instances, especially where 471

there are larger numbers of instructions and con- 472

straints, performance may inexplicably improve. 473

This can be attributed to the smaller sample sizes 474

in these scenarios, leading to greater variability in 475

performance outcomes. Overall, this analysis un- 476

derscores the intricacies of maintaining consistent 477

instruction adherence across diverse scenarios. 478

4.3.3 Analysis of Further Thinking 479

The results presented in Table 6 demonstrate the im- 480

pact of a two-step generation approach on the per- 481

formance of smaller open-source models in multi- 482

party dialogue tasks. By generating an initial out- 483

put and then refining it through further reflection, 484

these models show consistent improvements across 485

most scenarios. These findings suggest that iter- 486

ative reasoning allows smaller models to identify 487

and correct errors, enhancing their problem-solving 488

capabilities without requiring larger architectures. 489

It underscores the value of fostering deeper reason- 490

ing strategies in smaller models, enabling them to 491

achieve higher accuracy in complex tasks. 492

5 Related work 493

5.1 Instruction Following 494

Recent advancements in the fine-tuning of large 495

language models (LLMs) have demonstrated the 496

significant impact of annotated instructional data 497

on enhancing models’ ability to understand and ex- 498

ecute a wide array of language instructions (Weller 499

et al., 2020; Ye and Ren, 2021; Mishra et al., 2022). 500

Building on this, incorporating more detailed and 501
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Figure 6: Performance on different number of instructions and constraints.

sophisticated instructions has been shown to further502

improve model capabilities (Lou et al., 2023). For503

example, the study by (Xu et al., 2024) introduces504

a method where complex instructions are incre-505

mentally generated from seed instructions using506

LLMs, resulting in fine-tuning that allows LLaMA507

to achieve performance exceeding 90% of Chat-508

GPT’s capacity across 17 out of 29 skills. Addi-509

tionally, the research community is increasingly fo-510

cused on constrained instructions (Sun et al., 2024;511

Dong et al., 2024; He et al., 2024a), a subset of512

complex instructions, which involves enhancing in-513

structional complexity by increasing the number of514

constraints, thereby improving the models’ ability515

to handle intricate tasks.516

5.2 Evaluation of Instruction Following517

Instruction following is a pivotal aspect influencing518

the effectiveness of large language models (LLMs)519

(Liu et al., 2023). Early work focused on evaluat-520

ing compliance with simple human directives, typi-521

cally featuring single constraints, such as semantic522

(Zheng et al., 2023; Liu et al., 2024) or formatting523

(Xia et al., 2024; Tang et al., 2024) requirements.524

As LLMs are increasingly applied in complex real-525

world contexts, there is a growing need to assess526

their ability to handle intricate instructions (Qin527

et al., 2024; Jiang et al., 2024). For instance, (Sun528

et al., 2024) introduced the Conifer dataset along529

with a progressive learning framework to bolster530

LLMs’ abilities to process multi-level instructions531

featuring complex constraints. Meanwhile, (Qin532

et al., 2024) proposed a method for breaking down 533

a singular instruction into multiple constraints. (He 534

et al., 2024b) curated constraints derived from real- 535

world contexts to construct an advanced bench- 536

mark, which utilizes comprehensive task descrip- 537

tions and inputs to evaluate LLMs. Furthermore, 538

(Wen et al., 2024) developed an innovative bench- 539

mark by integrating and enhancing data from exist- 540

ing datasets, emphasizing combinations of diverse 541

constraint types. Nonetheless, we contend that ex- 542

isting datasets suffer from a limited number of con- 543

straints and primarily focus on single-instruction 544

scenarios, whereas real-world applications often 545

involve multi-instruction, multi-constraint instruc- 546

tions where the number of constraints greatly ex- 547

ceeds those found in current datasets. 548

6 Conclusion 549

In conclusion, the Extremely Complex Instruc- 550

tion Following Benchmark (EIFBENCH) addresses 551

the limitations of existing datasets by introducing 552

multi-task scenarios, diverse data sources, and com- 553

plex constraints, enabling a more realistic evalua- 554

tion of large language models (LLMs). Evaluations 555

on EIFBENCH reveal significant performance gaps 556

in current LLMs, underscoring the need for further 557

optimization and the development of models ca- 558

pable of handling real-world complexities. This 559

benchmark sets a new standard for future research, 560

driving the creation of more robust and adaptable 561

systems for practical applications. 562
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7 Limitations563

While EIFBENCH provides a robust evaluation564

framework for plain text, dyadic dialogue, and565

multi-party tasks, it has two limitations that could566

be addressed in future work. First, the inter-task567

relationships could be further enhanced to reflect568

more complex, real-world dependencies, such as569

multi-step reasoning or conditional task execution.570

Second, the dataset currently focuses primarily on571

Chinese instructions, which limits its applicabil-572

ity to multilingual scenarios. Expanding to include573

more languages would improve its global relevance574

and enable evaluation of LLMs’ cross-lingual capa-575

bilities. Addressing these limitations would make576

EIFBENCH even more comprehensive and aligned577

with practical applications.578
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A Taxonomy of Constraint926

Constraint Type Constraint Dimension

Content Constraint Theme Constraint
Exclusion Constraint
Inclusion Constraint
Value Constraint
Privacy Constraint
Numerical Constraint

Situation Constraint Role-Playing Constraint
Target Audience Constraint
Prior Condition Constraint
Natural Language Process Background Information Constraint
Markdown Process Background Information Constraint
Table Background Information Constraint
Text Background Information Constraint

Style Constraint Tone and Style Constraint
Emotion Constraint
Linguistic Characteristics Constraint
Multilingual Constraint

Format Constraint Output Format Constraint
Text Pattern Constraint
Grammar Structure Constraint
Citation Constraint
Numbering and List Constraint
Hierarchical Structure Constraint
Template Constraint

Table 7: Constraints and Their Dimensions
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