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ABSTRACT

Multimodal Intent Recognition (MIR) plays a key role in advancing human-
computer interaction, yet its reliability is often challenged by spurious corre-
lations and missing modalities in real-world data. Existing approaches, which
mainly rely on complex fusion architectures or contrastive alignment, generally
do not account for the underlying causal structures of multimodal signals, result-
ing in limited generalization and robustness. They typically treat missing modal-
ities as a data issue addressed by passive imputation rather than an opportunity
to learn deeper, causally-informed representations. To address these limitations,
we propose the Counterfactual Adversarial Representation Enhancement (CARE)
framework, which reframes MIR as a causal learning problem. CARE implements
causal principles through two complementary modules: a counterfactual genera-
tion module that interprets modality completion as a causal intervention to capture
shared, abstract concepts across modalities, and an adversarial de-confounding
mechanism. The latter employs a Gradient Reversal Layer and a modality discrim-
inator to remove the confounding effects of the modality combination, enforcing
the learning of intervention-invariant representations. This dual approach ensures
that the learned intent features are both robust to missing data and causally con-
sistent. We evaluate CARE extensively on the MIntRec and the more challenging
MIntRec2.0 datasets. Results show that CARE achieves state-of-the-art perfor-
mance, surpassing the strongest baseline by up to 4.41% in WF1 and 12.03%
in recall, while maintaining high robustness under various missing-modality sce-
narios. This work introduces a principled paradigm for building causally robust
multimodal systems, providing a systematic way to mitigate confounding bias and
improve generalization in complex, real-world interactive environments.

1 INTRODUCTION

Integrating multimodal signals such as text, audio, and video to accurately interpret human inten-
tions is critical to advancing human-computer interaction and enabling effective human-machine
collaboration. Multimodal Intent Recognition (MIR) is central to this endeavor, directly influencing
system intelligence and the quality of user interactions in applications like dialogue systems and
assistive robots.

A core challenge in MIR is disentangling genuine causal features of intent from spurious correlations
introduced by confounders. Modalities are often entangled: text may convey fear or anger, while
an animated audio tone and a visual smirk suggest a different emotional state (Figure 1). Models
that rely solely on such correlations can easily misinterpret user intent, motivating a necessary shift
from associative information fusion toward robust causal reasoning. While prior work has focused
on sophisticated fusion architectures and contrastive alignment, these methods often fail to capture
underlying causal structures or handle missing modalities effectively beyond simple imputation.

To address these limitations, we adopt a causal perspective and propose the CARE (Counterfactual
Adversarial Representation Enhancement) framework, which consists of two interacting modules.
The first module reframes modality completion as a self-supervised counterfactual generation task.
When a modality is missing, the framework generates a plausible substitute, compelling the model
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Figure 1: Example of multimodal incongruence: text conveys fear or anger, audio has an animated
tone, and video shows a smirk without anxiety. Such conflicting cues may mislead models into
inferring incorrect intent. The image is adapted from a TV sitcom (“The Big Bang Theory”) and has
been pixelated to avoid copyright conflicts.

to learn representations that transcend simple correlations. The second module employs an adversar-
ial debiasing mechanism that treats the source of a feature—whether observed or counterfactually
generated—as a proxy confounder. By using a Gradient Reversal Layer (GRL) and a modality dis-
criminator, our feature extractor is trained to produce intent representations that are invariant to this
confounder, making them more causally robust. The contributions of this work are threefold:

i. We introduce a causal learning framework that systematically generates counterfactual rep-
resentations and integrates them into downstream training to capture robust cross-modal
causal relationships.

ii. We design an adversarial debiasing mechanism that removes the confounding influence of
the feature source (i.e., observed vs. generated), yielding representations that are invariant
to such interventions and thus more reliable for decision-making.

iii. Extensive experiments on MIntRec and MIntRec2.0 demonstrate CARE’s effectiveness.
On MIntRec, CARE achieves accuracy (ACC %), weighted F1 (WF1 %), weighted preci-
sion (WP %), and recall (R %) of 76.63, 76.56, 77.28, and 74.89, surpassing baselines by
1.91, 1.95, 2.21, and 2.95. On MIntRec2.0, CARE reaches 59.86, 59.46, 59.59, and 54.06,
outperforming state-of-the-art methods by 2.06, 4.41, 3.77, and 12.03.

2 RELATED WORK

This section reviews two research areas relevant to our study: MIR and causal inference in machine
learning. We summarize progress in these domains and identify remaining challenges that motivate
our framework.

2.1 MULTIMODAL INTENT RECOGNITION

MIR integrates text, audio, and video to infer user intentions, supporting natural human–computer
interaction (Rossiter, 2011; Rysbek et al., 2023; Zhao et al., 2024). Applications include dialog
systems (Wu et al., 2019), robotic collaboration (Dermy et al., 2017; Trick et al., 2019), autonomous
driving (Okur et al., 2019), AR-based chemistry (Xia et al., 2023), and customer service (Yu et al.,
2021). Benchmark datasets such as MIntRec (Zhang et al., 2022) and MIntRec2.0 (Zhang et al.,
2024) have standardized evaluation protocols and accelerated research.

Early studies explored multimodal fusion, including combining speech and gesture (Paul et al.,
2022), applying spatiotemporal GCNs for skeletal intent recognition (Shi et al., 2023), and integrat-
ing 3D CNNs with LSTMs for motion understanding (Wen & Wang, 2021). The introduction of the
Transformer brought a major advance: MulT (Tsai et al., 2019) showed the value of cross-modal
attention, inspiring research on multimodal extensions of large language models (Rahman et al.,
2020) and adaptive fusion designs (Hu et al., 2025). More recently, contrastive learning has driven
further progress. Examples include MIRCL (Wu et al., 2023), which strengthens feature discrim-
ination, CAGC (Sun et al., 2024), which captures contextual dependencies, and TCL-MAP (Zhou
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Figure 2: Overview of the CARE framework. Parallel encoders extract unimodal features, while the
Counterfactual Generation module synthesizes missing modalities. Features are fused by the DAF
module, and an Adversarial De-confounding stage enforces invariance to modality combinations
before intent classification.

et al., 2024), which improves alignment through modality-aware prompts. Despite these advances,
many methods remain sensitive to spurious correlations (Nguyen et al., 2024; Rysbek et al., 2023),
limiting robustness in unseen conditions.

2.2 CAUSAL INFERENCE IN MACHINE LEARNING

Causal inference provides tools for distinguishing true causal effects from correlations and has sup-
ported more robust, fair, and interpretable learning (Yao et al., 2021; Rawal et al., 2025; Ma, 2024;
Kosaraju, 2024). Techniques such as double/debiased ML, AIPW, and TMLE are valued for their
double robustness in high-dimensional settings (Moccia et al., 2024; Kabata & Shintani, 2025).
Classical instrumental variable methods mitigate unobserved confounding but are limited by the
challenge of identifying valid instruments (Wu et al., 2025). Causal intervention, formalized through
Pearl’s do-calculus and counterfactual reasoning, enables systematic “what-if” analyses, isolating
effects such as language versus visual input. Although its adoption in multimodal learning is still
limited, prior work demonstrates its potential for improving generalization and reducing bias (Cho,
2024).

Research on MIR has shifted from fusion strategies to contrastive learning, while causal inference
offers mechanisms for handling confounding. Their integration remains underexplored. To this end,
we propose CARE, which combines counterfactual generation with adversarial de-confounding to
learn intent representations that are both discriminative and causally robust.

3 METHOD

To address the challenges posed by confounding factors and spurious correlations in MIR, partic-
ularly under conditions of missing data, we introduce the CARE framework. The model is im-
plemented as a structured pipeline that processes multimodal inputs to derive de-confounded rep-
resentations for reliable intent prediction. The central idea is to operationalize causal intervention
by generating counterfactual features that simulate “what-if” scenarios when modalities are absent.
This mechanism encourages the model to learn modality-invariant representations.

The CARE pipeline, illustrated in Figure 2, sequentially performs: Parallel Modality Encoding with
specialized encoders; Counterfactual Generation for missing modalities; Dynamic Attention Allo-
cation Fusion (DAF) to integrate observed and generated features; and Adversarial De-confounding
to enforce causal invariance, before a final Intent Prediction. The complete end-to-end training
procedure is detailed in Algorithm 1 in Appendix A.1.
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Figure 3: Causal graph. The modality indicator M confounds both the representation Zpooled and
the label Y . The objective is to eliminate the backdoor path by enforcing invariance to M .

3.1 NOTATION

The main mathematical symbols are defined in Table 1. The modality existence indicator M ∈
{0, . . . , 6}, a discrete integer, encodes the seven possible combinations of the three modalities: text
(T ), audio (A), and video (V ). The specific mapping for this encoding is detailed in Table 6 in
Appendix A.2.

Table 1: Symbols and Definitions

Symbol Definition

Xt, Xa, Xv Raw input sequences of text, audio, and video.
Y, Ŷ Ground-truth and predicted intent labels.
M Discrete indicator of modality availability, M ∈ {0, . . . , 6}, serving as a confounder in

the causal model.
Gf Feature extractor including encoders, counterfactual generation, and Dynamic Attention

Fusion (DAF).
H0

m Initial encoded feature for modality m ∈ {t, a, v}.
fgen Counterfactual generation operator guided by a learnable tensor.
H̃m Feature after counterfactual generation; H̃m = H0

m if observed, otherwise generated.
Zpooled Unified multimodal representation from Gf , input to classifier and discriminator.
Gd Discriminator predicting modality combination M .
Gy Classifier for intent prediction.
Ltask Task loss (cross-entropy).
Ladv Adversarial loss for de-confounding.
Lconsist Consistency loss defined by KL divergence between factual and counterfactual predic-

tions.
α, β Hyperparameters balancing the loss terms.

3.2 PROBLEM FORMULATION

The task is MIR: given multimodal inputs X , the goal is to predict the intent label Y . A challenge
arises because the specific modality combination may act as a confounder, creating spurious corre-
lations. For example, visual cues may correlate with emotional labels in training data, causing the
model to associate the presence of video with intent categories rather than semantic content. This
introduces a confounding path M → Y that hinders generalization.

We therefore frame the task as a causal de-confounding problem. The modality combination M is
treated as the confounder. Figure 3 illustrates the causal graph, where M affects both the represen-
tation Zpooled and the label Y , creating the backdoor path Zpooled ← M → Y . Our objective is to
design a feature extractor Gf that blocks this path.

Formally, we aim to ensure:

Y ⊥M | Zpooled. (1)

To satisfy this, we adopt adversarial training (Section 3.6), where Gd predicts M while Gf learns to
produce Zpooled that conceals this information.
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3.3 PARALLEL MODALITY ENCODERS

Each modality is encoded independently to produce unimodal features. The text input Xt is pro-
cessed by BERT (bert-large-uncased), a 24-layer Transformer with hidden size 1024, fine-tuned for
intent recognition, producing the representation

H0
t = BERT(Xt). (2)

For audio, the input Xa is passed through a Bidirectional Peephole LSTM (Gers & Schmidhuber,
2000), which leverages cell-state connections to capture long-range temporal dependencies, yielding

H0
a = BiPeepholeLSTM(Xa). (3)

The video sequence Xv is encoded using a 6-layer Transformer encoder with 8 attention heads to
model inter-frame relations, resulting in

H0
v = TransformerEncoder(Xv). (4)

These unimodal features {H0
t , H

0
a , H

0
v} are then used as inputs for subsequent feature completion

and fusion.

3.4 COUNTERFACTUAL GENERATION MODULE

To handle missing modalities, we frame feature synthesis as a causal intervention. The counterfac-
tual generation operator, fgen, produces a plausible substitute feature H̃m′ for any missing modality
m′. This operator consists of modality-specific projection networks followed by a final generation
network, each implemented as lightweight modules with a 1D convolution of kernel size 1 and a
LeakyReLU activation, functionally equivalent to a linear transformation at each sequence position.
Synthesis begins by forming an aggregated representation, Hagg, created by concatenating a learn-
able, modality-specific generative seed tensor, Tensorm′ , with the outputs of projection networks
that map the available modality features {H0

m,m ∈ Mavail} to a shared dimension. In our work,
the seed tensor has dimension 1024 × 16, providing a distinct initialization for each modality. For
example, when text is missing, the aggregated representation is constructed as

Hagg = concat[Tensort, Proja→t(H
0
a), Projv→t(H

0
v )] (5)

where Proja→t and Projv→t denote the audio-to-text and video-to-text projection networks, respec-
tively. The aggregated representation is then processed by the generation network to produce the
counterfactual feature H̃m′ , aligning with the target modality’s sequence length and feature dimen-
sion. This design enables the model to dynamically synthesize contextually relevant features from
the available modalities.

3.5 DYNAMIC ATTENTION ALLOCATION FUSION

The DAF module integrates {H̃t, H̃a, H̃v} into a unified representation. We condition the fusion on
H̃t since text often provides explicit semantic cues.

For non-text modalities:

Wv = σ(DynLayerv(concat(H̃v, H̃t))) (6)

Wa = σ(DynLayera(concat(H̃a, H̃t))) (7)

H ′
v = Wv ⊙ Linearv(H̃v) (8)

H ′
a = Wa ⊙ Lineara(H̃a). (9)

Attention vectors reweight these features:

av = Softmax(Linear(BiLSTM(H ′
v))) (10)

aa = Softmax(Linear(BiLSTM(H ′
a))). (11)

The fused output is:
Zfused = (av ⊙H ′

v) + (aa ⊙H ′
a) + H̃t, (12)

followed by mean pooling to obtain Zpooled.
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The pooled representation Zpooled is fed into the intent classifier Gy , implemented as a linear layer
followed by a softmax function. This classifier outputs a probability distribution over the intent
classes. To train the model, we minimize the cross-entropy loss between the predicted distribution
Ŷ and the ground-truth one-hot label Y , which defines the task loss:

Ltask = CrossEntropy(Ŷ , Y ) (13)

3.6 ADVERSARIAL DE-CONFOUNDING

The adversarial de-confounding mechanism is realized through a GRL, following the framework of
Domain-Adversarial Training of Neural Networks (Ganin et al., 2016). The GRL is placed between
the feature extractor Gf and the discriminator Gd. In the forward pass, it behaves as an identity
mapping, while during backpropagation it multiplies the gradient by −λ before passing it to Gf ,
thereby enforcing the adversarial objective. The discriminator Gd attempts to infer the modality
indicator M from the pooled representation Zpooled, and the adversarial loss is given by the cross-
entropy between its prediction and the ground-truth indicator:

Ladv = CrossEntropy
(
Gd(GRLλ(Zpooled)),M

)
(14)

To avoid instability in training, we adopt a two-stage protocol in which adversarial learning is intro-
duced gradually, ensuring that the optimization of the main task is not compromised.

3.7 COUNTERFACTUAL CONSISTENCY REGULARIZATION

To improve the model’s predictive stability under various causal interventions, we incorporate a
counterfactual consistency regularization applied to samples with all modalities present, denoted as
Xfull. For each complete input, the model’s output logits are computed as lfull = Gy(Gf (Xfull)). We
then construct three counterfactual inputs, {Xcf,t, Xcf,a, Xcf,v}, each simulating the absence of one
modality (text, audio, or video), which are processed by the model—including the counterfactual
generation step—to yield corresponding logits {lcf,t, lcf,a, lcf,v}. The consistency loss is defined as
the average Kullback-Leibler (KL) divergence between the probability distributions of the complete
and counterfactual logits, softened by a temperature parameter τ :

Lconsist =
1

3

∑
m∈{t,a,v}

DKL

(
Softmax(lfull/τ) ∥ Softmax(lcf,m/τ)

)
. (15)

This loss encourages the model to produce consistent predictions regardless of whether modality
features are observed or generated, akin to consistency regularization in semi-supervised learning,
thereby enhancing robustness against input perturbations (Bachman et al., 2014). In our experi-
ments, the temperature is set to τ = 0.07.

3.8 OVERALL TRAINING OBJECTIVE

The total loss is:
Ltotal = Ltask + αLadv + βLconsist. (16)

Our training methodology is organized in two sequential phases to achieve a balance between robust-
ness and discriminative performance. In the first phase, robustness-oriented pre-training, the model
learns generalizable representations that are resilient to missing modalities, facilitated by techniques
such as modality dropout. Following this, the performance fine-tuning phase refines the model us-
ing a reduced learning rate, enabling improved task-specific discriminative capability. The complete
details of this two-stage protocol are provided in Appendix A.3. AdamW is used for optimization,
with α = 0.5 and β = 1.0 selected by grid search. A detailed sensitivity analysis of these key
hyperparameters is presented in Appendix B.1.

4 EXPERIMENTS

Details of the experimental setup, including hyperparameters and implementation choices, are pro-
vided in Appendix A.4.
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4.1 DATASETS

We evaluate our framework on two MIR benchmarks: MIntRec (Zhang et al., 2022) and
MIntRec2.0 (Zhang et al., 2024). Core statistics are listed in Table 2. MIntRec contains 2,224
samples from 43 dialogues with text, video, and audio modalities across 20 intent classes, serving
as a standard reference for single-turn MIR.

MIntRec2.0 extends both scale and diversity, comprising 15,040 samples from 1,245 dialogues.
It supports multi-turn, multi-party interactions and introduces 30 fine-grained intent classes. In
addition, it includes more than 5,700 out-of-scope (OOS) samples, which pose a stronger challenge
for intent recognition under unseen conditions.

These datasets enable evaluation not only of baseline MIR accuracy but also of robustness to com-
plex dialogue structures and OOS cases. They further inform model development and provide evi-
dence of generalization across varied conversational settings.

Table 2: Comparison of datasets used for MIR. Only key statistics relevant to model evaluation are
shown.

Dataset Samples Dialogues Intent Classes Modalities / OOS
MIntRec (Zhang et al., 2022) 2,224 43 20 Text, Video, Audio / No
MIntRec2.0 (Zhang et al., 2024) 15,040 1,245 30 Text, Video, Audio / Yes

4.2 BASELINE METHODS

We compare CARE with four representative baselines in MIR.

MulT (Tsai et al., 2019) employs directional cross-modal attention to model interactions across
unaligned sequences, addressing variable sampling rates and long-range dependencies. MAG-
BERT (Rahman et al., 2020) incorporates nonverbal cues into pretrained transformers through a
Multimodal Adaptation Gate, enhancing multimodal fine-tuning. TCL-MAP (Zhou et al., 2024)
leverages token-level contrastive learning with modality-aware prompts to obtain discriminative in-
tent representations. MVCL-DAF (Hu et al., 2025) integrates variational contrastive learning with
dynamic attention allocation, weighting modalities adaptively by informativeness.

These baselines represent advances in cross-modal attention, pretrained adaptation, contrastive
learning, and adaptive fusion, and together provide a solid reference for comparison.

4.3 MAIN RESULT

Table 3: Comparison of CARE against baseline models on the MIntRec and MIntRec2.0 datasets.
Bold values denote the best performance, and underlined values denote the second-best performance.
∆ indicates the absolute improvement of CARE over the strongest baseline.

Method
MIntRec MIntRec2.0

ACC WF1 WP R ACC WF1 WP R
MulT (Tsai et al., 2019) 72.52 71.80 72.60 67.44 56.95 54.26 54.49 40.65

MAG-BERT (Rahman et al., 2020) 72.16 71.30 72.03 67.61 55.87 52.58 53.71 39.93
TCL-MAP (Zhou et al., 2024) 73.69 73.38 73.90 71.59 56.99 54.33 55.07 41.87
MVCL-DAF (Hu et al., 2025) 74.72 74.61 75.07 71.94 57.80 55.05 55.82 42.03

our CARE 76.63 76.56 77.28 74.89 59.86 59.46 59.59 54.06
∆ 1.91↑ 1.95↑ 2.21↑ 2.95↑ 2.06↑ 4.41↑ 3.77↑ 12.03↑

To assess the effectiveness of CARE, we compare it against four widely used multimodal baselines
(MulT, MAG-BERT, TCL-MAP, and MVCL-DAF) on both MIntRec and MIntRec2.0. Quantitative
results are presented in Table 3, and overall performance profiles are summarized in Figure 4.

Table 3 shows that CARE consistently surpasses all baselines. On MIntRec, it achieves the high-
est scores across all metrics, with absolute gains of up to 2.95% over the strongest competitor. On
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Figure 4: Radar visualization of model performance across four evaluation metrics (ACC, WF1,
WP, and R) on the MIntRec (left) and MIntRec2.0 (right) datasets. CARE shows consistent im-
provements over all baselines across both benchmarks.

the more challenging MIntRec2.0 benchmark, CARE delivers a 12.03% increase in recall, together
with notable improvements in accuracy, precision, and F1, indicating strong robustness and gen-
eralization. To complement these quantitative results, Appendix B.2 provides t-SNE visualizations
demonstrating that CARE learns representations that separate intents clearly while remaining invari-
ant to modality-specific noise.

The radar plots in Figure 4 reinforce this observation: CARE expands evenly across evaluation met-
rics, whereas baselines exhibit unbalanced profiles, particularly in recall and transfer to MIntRec2.0.
Overall, the results indicate that CARE attains state-of-the-art performance while maintaining stable
behavior across datasets.

4.4 ABLATION STUDY

We examine the contribution of CARE’s main components by ablating the Counterfactual Gener-
ation, Adversarial De-confounding, and DAF modules. Results on MIntRec and MIntRec2.0 are
reported in Table 4.

Each module plays an important role, though their effects vary in scale. The Counterfactual Gener-
ation module has the largest impact: removing it reduces accuracy by 7.52 points and weighted F1
by 9.00 points on MIntRec2.0, showing its effectiveness in handling scarce or missing modalities.
The Adversarial De-confounding mechanism produces the next largest decline, with accuracy de-
creasing by 3.74 points and weighted F1 by 5.50 points, indicating that limiting spurious modality
correlations improves robustness. Replacing DAF with simple pooling leads to smaller but con-
sistent drops, reducing accuracy by 2.31 points and weighted F1 by 4.60 points, which supports
the benefit of adaptive fusion. The sharper performance losses on MIntRec2.0 suggest that these
components are especially valuable in more demanding conversational settings.

Table 4: Ablation study of the core components of our CARE framework on the MIntRec and
MIntRec2.0 datasets. We report the performance (ACC, WF1, WP, R in %) of the full model and its
variants. The values in parentheses indicate the performance drop (∆ ↓) relative to the full CARE
model, highlighting the contribution of each component.

Model Variant
MIntRec MIntRec2.0

ACC WF1 WP R ACC WF1 WP R
Full CARE 76.63 76.56 77.28 74.89 59.86 59.46 59.59 54.06

w/o Counterfactual Generation 72.51 (4.12↓) 72.06 (4.50↓) 72.85 (4.43↓) 70.12 (4.77↓) 52.34 (7.52↓) 50.46 (9.00↓) 51.98 (7.61↓) 42.11 (11.95↓)
w/o Dynamic Attention Allocation Fusion 74.65 (1.98↓) 74.36 (2.20↓) 75.01 (2.27↓) 72.95 (1.94↓) 57.55 (2.31↓) 54.86 (4.60↓) 55.43 (4.16↓) 48.92 (5.14↓)

w/o Adversarial De-confounding 74.18 (2.45↓) 73.76 (2.80↓) 74.53 (2.75↓) 71.87 (3.02↓) 56.12 (3.74↓) 53.96 (5.50↓) 54.88 (4.71↓) 46.57 (7.49↓)
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4.5 CROSS-SCENARIO ROBUSTNESS UNDER INCOMPLETE MODALITIES

We assess whether combining causal intervention with adversarial learning enhances robustness
under incomplete data by conducting cross-scenario evaluations against MVCL-DAF across seven
modality configurations, as summarized in Table 5.

With full inputs (V+A+T), CARE consistently outperforms the baseline. On MIntRec2.0, it reaches
59.86% accuracy, a 2.06-point improvement over MVCL-DAF, showing that the proposed causal
deconfounding yields cleaner and more discriminative representations when information is com-
plete.

The advantage becomes more evident under missing-modality conditions. When text is absent
(V+A), CARE raises accuracy on MIntRec2.0 from 46.91% to 48.33%. These results suggest that
treating modality completion as causal intervention is effective: instead of simple imputation, the
counterfactual generator produces semantically consistent substitutes.

In single-modality settings, CARE exhibits the strongest robustness. On MIntRec2.0, it achieves
38.72% accuracy with vision alone (vs. 36.96% for MVCL-DAF) and 39.12% with audio alone
(vs. 37.06%). When only text is available, recall improves by more than 13 points. These out-
comes indicate that CARE enables intervention-invariant and generalizable intent recognition even
under severe information loss. To further examine resilience, we performed a stress test by injecting
Gaussian noise into the features (see Appendix B.3).

Table 5: Robustness evaluation under different modality-missing scenarios on the MIntRec and
MIntRec2.0 datasets. CARE is compared against the strong baseline MVCL-DAF across various
modality combinations. The values in parentheses (∆ ↑) indicate the absolute performance gain of
CARE over MVCL-DAF under the corresponding setting.

modality combination
MIntRec MIntRec2.0

ACC WF1 WP R ACC WF1 WP R

MVCL-DAF

V+A+T 74.72 74.61 75.07 71.94 57.80 55.05 55.82 42.03
V+A 43.25 42.90 43.65 40.82 46.91 46.37 46.75 42.38
V+T 74.85 74.50 75.12 72.44 58.12 57.85 58.06 52.41
A+T 71.42 71.05 72.01 70.11 57.93 57.52 57.74 51.86

V 18.00 16.95 16.85 12.68 36.96 20.18 14.64 3.26
A 25.39 22.80 23.47 18.15 37.06 20.04 13.73 3.23
T 72.13 71.80 72.50 68.80 56.73 53.59 54.89 40.30

our CARE

V+A+T 76.63 (1.91↑) 76.56 (1.95↑) 77.28 (2.21↑) 74.89 (2.95↑) 59.86 (2.06↑) 59.46 (4.41↑) 59.59 (3.77↑) 54.06 (12.03↑)
V+A 45.12 (1.87↑) 44.85 (1.95↑) 45.30 (1.65↑) 42.15 (1.33↑) 48.33 (1.42↑) 47.90 (1.53↑) 48.15 (1.40↑) 45.22 (2.84↑)
V+T 75.96 (1.11↑) 75.68 (1.18↑) 76.07 (0.95↑) 73.83 (1.39↑) 59.27 (1.15↑) 59.11 (1.26↑) 59.35 (1.29↑) 54.02 (1.61↑)
A+T 72.81 (1.39↑) 72.53 (1.48↑) 73.38 (1.37↑) 72.00 (1.89↑) 59.32 (1.39↑) 58.99 (1.47↑) 59.18 (1.44↑) 53.71 (1.85↑)

V 19.64 (1.64↑) 18.53 (1.58↑) 18.71 (1.86↑) 16.03 (3.35↑) 38.72 (1.76↑) 21.98 (1.80↑) 16.92 (2.28↑) 19.87 (16.61↑)
A 27.41 (2.02↑) 24.52 (1.72↑) 25.11 (1.64↑) 20.47 (2.32↑) 39.12 (2.06↑) 22.45 (2.41↑) 15.74 (2.01↑) 18.63 (15.40↑)
T 73.03 (0.90↑) 72.80 (1.00↑) 73.80 (1.30↑) 72.50 (3.70↑) 58.93 (2.20↑) 58.77 (5.18↑) 59.03 (4.14↑) 53.50 (13.20↑)

5 CONCLUSION

We presented CARE, a causal learning framework designed to improve robustness in MIR by fram-
ing modality completion as a causal intervention and applying adversarial learning to mitigate con-
founding bias. Experiments on MIntRec and MIntRec2.0 show that CARE achieves state-of-the-art
accuracy and maintains robustness under various missing-modality conditions.

The framework’s design makes it suitable for real-world applications with incomplete data streams,
such as in-car assistants and assistive robotics, where reliability and generalization are critical for
human–computer interaction.

This study has several limitations. CARE currently relies on a relatively simple synthesis network
and addresses only a single confounder (M ). Future directions include incorporating stronger gen-
erative models for counterfactual construction, expanding the causal graph to capture multiple con-
founders, and applying the framework to broader multimodal tasks to further assess its generaliz-
ability.

9
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A ALGORITHM AND MODEL DETAILS

A.1 END-TO-END TRAINING ALGORITHM

Algorithm 1 summarizes the end-to-end training procedure of CARE. For each batch, Gf performs
modality completion and fusion to produce Zpooled. This representation is then used to compute (1)
the classification loss Ltask, (2) the adversarial loss Ladv, and (3) the consistency loss Lconsist for fully
observed samples. The combined loss is used to update all model parameters.

Algorithm 1 CARE Framework: End-to-End Training

Require: Batch {Xt, Xa, Xv}, modality indicator M , label Y
Require: Models: Gf , Gd, Gy

Ensure: Updated parameters for Gf , Gd, Gy

1: Zpooled ← Gf (Xt, Xa, Xv,M)

2: Ŷ ← Gy(Zpooled)

3: Ltask ← CrossEntropy(Ŷ , Y )
4: Ladv ← CrossEntropy(Gd(GRL(Zpooled)),M)
5: if M = 6 then
6: Compute Lconsist by comparing predictions under counterfactual missingness
7: else
8: Lconsist ← 0
9: end if

10: Ltotal ← Ltask + αLadv + βLconsist
11: Update parameters of Gf , Gy, Gd using Ltotal

A.2 DETAILS OF THE MODALITY EXISTENCE INDICATOR (M )

As described in Section 3.1, the modality existence indicator M is an integer-valued variable that
denotes the presence or absence of each modality for a given sample. Table 6 presents the complete
encoding scheme used in this work to represent all possible modality combinations consistently.

Table 6: Encoding of modality existence indicator M for combinations of text (T ), audio (A), and
video (V ) modalities.

M Encoding Value Missing Modalities Present Modalities

0 Text (T ) Audio + Video (A+ V )
1 Audio (A) Text + Video (T + V )
2 Video (V ) Text + Audio (T +A)
3 Text + Audio (T +A) Video (V )
4 Text + Video (T + V ) Audio (A)
5 Audio + Video (A+ V ) Text (T )
6 None Text + Audio + Video (T +A+ V )

A.3 TWO-STAGE TRAINING PROTOCOL

Our training procedure consists of two sequential phases that together balance model robustness
and task-specific performance. The first phase, robustness-oriented pre-training, is conducted for
a substantial number of epochs (e.g., 100 epochs) using a relatively high learning rate (e.g., 2 ×
10−5). During this phase, we introduce significant input uncertainty through modality dropout,
where entire modalities are randomly nullified for fully-observed samples with a specific probability.
This approach encourages the model to develop representations that are not overly dependent on any
single modality, enhancing resilience to incomplete data scenarios and improving generalization.

After completing the pre-training phase, we restore the model parameters that yielded the best val-
idation performance and proceed to performance-oriented fine-tuning for a few additional epochs

13
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(e.g., 5 epochs). In this stage, the learning rate is drastically reduced (e.g., to 1 × 10−7) and the
modality dropout probability is decreased or disabled. This allows the model to converge more
precisely on the task-specific loss surface, refining its discriminative capabilities while retaining
the robust foundation established during pre-training. By sequentially combining these phases, the
optimization strategy effectively mediates the trade-off between generalization and task-specific per-
formance.

A.4 EXPERIMENTAL SETUP

All experiments were carried out using the PyTorch framework on a cloud server with a 32GB
GPU. For the text modality, we employed the pre-trained BERT model (bert-large-uncased) from
the Hugging Face Transformers library. To ensure reproducibility, all models were trained with a
fixed random seed.

CARE was evaluated on both the MIntRec and MIntRec2.0 datasets. Key training and optimization
hyperparameters were carefully adjusted for each dataset to ensure fair and robust comparisons.
While most settings were shared, critical parameters such as learning rate and early stopping patience
were tailored to the specific characteristics of each dataset. The detailed configurations used in our
experiments are summarized in Table 7.

Table 7: Key training and optimization hyperparameters for the MIntRec and MIntRec2.0 datasets.

Category Hyperparameter Dataset
MIntRec MIntRec2.0

Training Parameters

Number of Epochs 100 100
Train Batch Size 16 16
Evaluation Batch Size 8 8
Test Batch Size 8 8
Early Stopping Patience 10 8
Learning Rate (lr) 2e-5 1e-5

Optimization Parameters

LR Method decay decay
Warmup Proportion 0.1 0.1
Weight Decay 0.2 0.2
Gradient Clip -1.0 -1.0

B ADDITIONAL ANALYSIS AND RESULTS

B.1 HYPERPARAMETER ANALYSIS

The CARE framework’s training objective involves two primary hyperparameters: α, which controls
the weight of the adversarial de-confounding loss (Ladv), and β, which controls the weight of the
counterfactual consistency loss (Lconsist). To identify optimal values, we performed a systematic grid
search and evaluated model performance on both the MIntRec and MIntRec2.0 datasets.

Results are summarized numerically in Table 8 and visualized as 3D performance surfaces in Fig-
ure 5. These plots show the WF1 score as a function of α and β, providing an intuitive view of their
interaction.

The analysis indicates that incorporating the adversarial loss (α > 0) consistently improves perfor-
mance compared with the baseline (α = 0), which is evident as an upward slope along the α-axis
in the surface plots. The optimal value is around α = 0.5, while increasing it to 1.0 generally leads
to a minor decrease in performance. Similarly, increasing β from 0 to 1.0 generally enhances per-
formance, as reflected by the surface along the β-axis, whereas further increasing it to 1.5 tends to
slightly reduce performance, suggesting an optimal point for the consistency term. Overall, the best
results are obtained when both losses are active, with the peak at α = 0.5 and β = 1.0 clearly visible
in the performance surfaces for both datasets, highlighting the complementary contributions of the
two components.

14
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Based on these results, we selected α = 0.5 and β = 1.0 as the optimal configuration, which was
used in all main experiments reported in this work.

(a) MIntRec WF1 performance (b) MIntRec2.0 WF1 performance

Figure 5: 3D visualization of WF1 performance as a function of hyperparameters α and β. The
optimal configuration (α = 0.5, β = 1.0) is marked with a star; the hollow circle at (0, 0) indicates
the baseline without either loss.

Table 8: Hyperparameter sensitivity analysis for the loss weights α (adversarial loss) and β (consis-
tency loss). The best-performing configuration is highlighted in bold.

α β
MIntRec MIntRec2.0

ACC WF1 ACC WF1
0 0 74.25 73.98 57.10 55.90
0 0.5 74.82 74.30 57.65 56.32
0 1.0 75.01 74.65 57.92 56.70
0 1.5 74.88 74.52 57.80 56.55

0.5 0 75.62 75.33 58.45 57.32
0.5 0.5 76.05 76.02 59.05 58.60
0.5 1.0 76.63 76.56 59.86 59.46
0.5 1.5 76.10 76.00 59.22 58.90

1.0 0 75.21 74.90 58.01 56.92
1.0 0.5 75.68 75.40 58.55 57.60
1.0 1.0 76.02 75.85 59.10 58.70
1.0 1.5 75.77 75.61 58.72 58.30

B.2 CAUSAL INVARIANCE VISUALIZATION

To qualitatively assess the effectiveness of the adversarial de-confounding mechanism, we visualize
the learned intent representation space using t-SNE. Feature representations from both the MIntRec
and MIntRec 2.0 test sets are projected into a 2D space, where each point is colored according to its
ground-truth intent label and shaped by its feature source (Real vs. counterfactual features generated
from incomplete modalities such as Gen from AV, Gen from TV, and Gen from TA).

The t-SNE plots reveal that points sharing the same intent label form compact, well-separated
clusters in both datasets. This effect is especially evident in MIntRec, where intent categories
are balanced, whereas MIntRec 2.0 exhibits greater variability due to long-tailed label distribu-
tions. Within each intent cluster, markers representing different feature sources (Real, Gen from AV,
Gen from TV, Gen from TA) are thoroughly intermixed, and no systematic separation is observed
between real and generated features. These observations indicate that the learned representations
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(a) MIntRec Dataset

(b) MIntRec2.0 Dataset

Figure 6: t-SNE visualization of the learned intent representation space on (a) MIntRec and (b)
MIntRec 2.0 test sets. Each point is colored by intent label and shaped by feature source. Clear
clustering by color and strong intermixing of markers demonstrate that the learned representations
are discriminative of intent while invariant to modality source.
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effectively capture intent-specific information while remaining invariant to the modality source.
Overall, the plots demonstrate that CARE produces features that are discriminative across intent
categories and robust to variations in modality availability, supporting the framework’s goal of reli-
able multimodal intent recognition under incomplete or corrupted input conditions.

B.3 ROBUSTNESS STRESS TEST

Table 9: Performance of the CARE model under different levels of Gaussian noise injected into
audio and video features. Values in parentheses indicate the performance change (∆) relative to the
no-noise baseline (σ = 0).

Noise Level
MIntRec MIntRec2.0

ACC WF1 WP R ACC WF1 WP R
0 76.63 76.56 77.28 74.89 59.86 59.46 59.59 54.06

0.1 75.73 (0.90↓) 75.48 (1.08↓) 75.91 (1.37↓) 73.53 (1.36↓) 59.27 (0.59↓) 59.13 (0.33↓) 59.29 (0.30↓) 54.57 (0.51↑)
0.2 75.51 (1.12↓) 75.25 (1.31↓) 75.62 (1.66↓) 73.32 (1.57↓) 59.32 (0.54↓) 59.15 (0.31↓) 59.28 (0.31↓) 54.57 (0.51↑)
0.3 75.73 (0.90↓) 75.44 (1.12↓) 75.78 (1.50↓) 73.61 (1.28↓) 59.37 (0.49↓) 59.22 (0.24↓) 59.38 (0.21↓) 54.78 (0.72↑)
0.4 75.51 (1.12↓) 75.28 (1.28↓) 75.65 (1.63↓) 73.32 (1.57↓) 59.37 (0.49↓) 59.24 (0.22↓) 59.41 (0.18↓) 54.61 (0.55↑)
0.5 75.51 (1.12↓) 75.25 (1.31↓) 75.62 (1.66↓) 73.32 (1.57↓) 59.37 (0.49↓) 59.22 (0.24↓) 59.39 (0.20↓) 54.72 (0.66↑)

To systematically evaluate the performance stability of the CARE framework under non-ideal con-
ditions that simulate real-world data perturbations, we conducted a controlled noise injection stress
test. The core hypothesis is that a model learning causally-informed, abstract representations should
exhibit greater resilience to noise. The test was performed as a post-training evaluation, where Ad-
ditive White Gaussian Noise, sampled fromN (0, σ2), was injected into the audio and video features
of test samples, with noise intensity σ ranging from 0.1 to 0.5.

Figure 7: Performance curves of the CARE model on MIntRec and MIntRec2.0 under varying
levels of Gaussian noise (σ). Each column represents a different evaluation metric. The nearly flat
trajectories, especially for ACC and WF1, highlight the model’s exceptional robustness to noise.

The results, visualized in Figure 7 and detailed numerically in Table 9, indicate that the CARE
framework maintains exceptional stability across all noise levels for both datasets. The ACC, WF1,
and WP metrics remain nearly constant, and the small numerical drops confirm this visual trend. For
example, on the more challenging MIntRec2.0 dataset, the ACC score decreases by at most 0.59% at
σ = 0.1, demonstrating strong resilience to feature corruption and supporting the claim that CARE’s
learning of abstract causal relations reduces dependence on low-level, noise-sensitive features. An
interesting phenomenon is observed in the Recall (R) metric for MIntRec2.0, where performance
slightly increases with the introduction of noise. This is not indicative of an error, but likely reflects
a subtle shift in the model’s precision–recall trade-off, possibly due to a test-time regularization
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effect. The injected noise may obscure certain overly confident but misleading features, leading the
model to produce slightly less precise but more inclusive predictions. This effect is supported by
the data: at σ = 0.3, Recall increases by 0.72 while Precision decreases by 0.21. Consequently, the
WF1 score remains highly stable, effectively balancing both metrics.

Overall, the stress test demonstrates that CARE not only exhibits robust performance under noisy
conditions but also maintains a stable and effective balance between precision and recall, even when
input features are significantly corrupted.

C USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized a Large Language Model (LLM) as an assistive
tool. The primary and sole role of the LLM was for language polishing and editing. Specifically, it
was used to improve grammar, enhance sentence clarity and flow, and ensure stylistic consistency
throughout the paper.

Crucially, the LLM was not used for the generation of core scientific ideas, the design of the CARE
framework, the analysis of experimental results, or the formulation of our conclusions. All authors
have carefully reviewed and edited the outputs from the LLM and take full responsibility for the
final content of this paper, ensuring its scientific accuracy and integrity.

D SUPPLEMENTARY MATERIALS: SOURCE CODE

In order to facilitate the replication of our experimental results, we have provided the source code
for our method. The code is hosted in an anonymous repository and includes the core code in this
paper. The repository can be accessed via the following link:

https://anonymous.4open.science/r/CARE-99ED-J
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