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ABSTRACT

Prompt tuning vision-language models like CLIP has shown great potential in
learning transferable representations for various downstream tasks. The main is-
sue is how to mitigate the over-fitting problem on downstream tasks with limited
training samples. While knowledge-guided context optimization has been pro-
posed by constructing consistency constraints to handle catastrophic forgetting in
the pre-trained backbone, it also introduces a bias toward pre-training. This pa-
per proposes a novel and simple Divergence-enhanced Knowledge-guided Prompt
Tuning (DeKg) method to address this issue. The key insight is that the bias
toward pre-training can be alleviated by encouraging the independence between
the learnable and the crafted prompt. Specifically, DeKg employs the Hilbert-
Schmidt Independence Criterion (HSIC) to regularize the learnable prompts,
thereby reducing their dependence on prior general knowledge, and enabling di-
vergence induced by target knowledge. Comprehensive evaluations demonstrate
that DeKg serves as a plug-and-play module that can seamlessly integrate with
existing knowledge-guided context optimization methods and achieves superior
performance in three challenging benchmarks. We make our code available at
https://github.com/cnunlp/DeKg.

1 INTRODUCTION

Large-scale vision-language models (VLMs) like CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021) have demonstrated excellent capabilities in zero-shot recognition and generalization
representation. Unfortunately, the large model sizes, high computational resource requirements,
and massive trainable data restrict their deployment on real vision-language tasks. To address this
problem, a new paradigm of prompt tuning has been proposed and attracted increasing attention in
recent years (Radford et al., 2021; Zhou et al., 2022b).

Prompt tuning (Zhou et al., 2022b) aims to optimize a limited set of dynamic continuous prompt
representations with the end-to-end objective function, i.e., the cross-entropy loss, to transfer the
pre-trained knowledge of VLMs to targeted tasks. These methods are less than optimal due to
challenges in determining what should be preserved and what should be adapted for downstream
tasks. For example, in the base-to-new generalization task, as shown in Figure 1, CoOp (Zhou et al.,
2022b) can achieve a significant performance improvement over the manually prompted method
CLIP (Radford et al., 2021) on base (seen) classes, yet is inferior on new (unseen) classes in the
same dataset. This suggests that the prior general knowledge may be distorted by the limited task-
specific labeled data, causing fine-tuned models to deviate from the pre-trained VLMs and leading
to overfitting issues.

The overfitting issues can be attributed to the lack of regularization in the latent space to model
the prior general knowledge for the unseen class distribution (Yao et al., 2023). Since the frozen
CLIP (Radford et al., 2021) coupled with crafted prompts exhibits robust abilities to unseen classes,
indicating that the pre-trained backbone serves as a valuable source of prior knowledge for each
class, recent works (Yao et al., 2023; Zhu et al., 2023a;b; Yao et al., 2024) all construct a novel
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constraint term by enforcing the consistency between the learnable and crafted prompts, called
knowledge-guided context optimization (KGCO). However, despite the benefits of regularization
in preventing catastrophic forgetting, KGCO tends to be biased toward the pre-trained model, es-
pecially when the data distribution of the target task differs from that of the pre-trained data. For
example, as shown in Figure 1, KgCoOp (Yao et al., 2023) improves CoOp on new classes but de-
grades on base classes, mainly due to the bias of the learnable prompts toward the representations of
the pre-trained CLIP. Overall, an effective prompt tuning method should address the contradiction
problem between catastrophic forgetting in fine-tuning and bias in pre-training.
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Figure 1: Performance comparison of DeKg with
prompt tuning methods (CLIP/ CoOp, KgCoOp (base-
line method), and DeKg (Ours)) under base-to-new
generalization setting. We measure average accuracy
on the base classes (a) and new classes (b) over 11
datasets. The red dotted line indicates the performance
of CoOp for base classes and the zero-shot CLIP for
new classes.

In this work, we propose a novel method,
called Divergence-enhanced Knowledge-
guided Prompt tuning (DeKg). We aim
to maintain the advantage of knowledge-
guided context optimization but alleviate
the contradiction problem between catas-
trophic forgetting and bias towards general
knowledge. Specifically, we introduce a
novel constraint by employing the Hilbert-
Schmidt Independence Criterion (HSIC)
regularization (Gretton et al., 2005) to en-
sure independence between learnable and
crafted prompts. The proposed model en-
courages the learnable prompts to maintain
a consistent yet independent relation with
general knowledge, optimizing the balance
between adapting general knowledge and
fine-tuning for targeted tasks. As shown in
Figure 1, DeKg overcomes the weakness
of KgCoOp, performing best on both base
classes and new classes.

Our contributions can be summarized as follows:

• We tackle an inherent issue of knowledge-guided context optimization in overly biasing
general knowledge in pre-training, and propose a novel HSIC-based regularization method
DeKg for encouraging independence between the learnable and the crafted prompts.

• DeKg integrates seamlessly with existing knowledge-guided methods. Compared to the
baselines, DeKg not only introduces divergence between the learnable and crafted prompts
but also enhances differentiation between learnable prompts for distinct classes.

• Extensive experiments demonstrate the superiority of the proposed method in three chal-
lenging benchmarks: base-to-new generalization, cross-dataset generalization, and few-
shot learning.

2 RELATED WORK

Vision-Language Models (VLMs) pre-trained on large-scale image-text association pairs through
self-supervised methods have exhibited impressive performance in various visual tasks (Radford
et al., 2021; Jia et al., 2021). Despite the powerful generalization capacities, the enormous size of
these models makes it challenging to fine-tune the entire models for downstream tasks, particularly
when dealing with few-shot data. Such a trend raises the essential need to study different adaptation
approaches, where prompting has been shown to be one of the simple and effective strategies.

Prompt Tuning for VLMs: Prompting was initially proposed in the domain of Natural Language
Processing (NLP) (Lester et al., 2021; Li & Liang, 2021), providing textual instructions to the task
input for distilling task-relevant knowledge. For example, CLIP (Radford et al., 2021) utilizes a col-
lection of crafted templates “a photo of a [CLASS]” as textual inputs for category-wise embeddings,
and demonstrates exceptional zero-shot image recognition capabilities. However, building a proper
predefined prompt requires domain-specific knowledge and enormous time. To circumvent this, a
series of methods that automate learning embeddings at the input tokens, known as soft prompts,
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have emerged for fast adaptation to various downstream tasks. CoOp (Zhou et al., 2022b) optimizes
the prompt content by a continuous set of learnable vectors that are used as input to the text encoder
alongside the class name. However, the prompts are learned by minimizing the classification error
on a training set within the given base classes, resulting in weak generalization on new classes. Co-
CoOp (Zhou et al., 2022a) further expands by constructing conditional prompts on specific image
instances. However, such methods have a worse generalization than CLIP on the same task to the
unseen classes. In addition to the textual prompt tuning, MaPLe (Khattak et al., 2023a) conducts the
visual-textual prompt tuning by jointly conducting the prompt tuning on the visual and text encoders.

Knowledge-guided Prompt Tuning: To ensure that learnable prompts retain essential general tex-
tual knowledge contained in frozen CLIP, ProGrad (Zhu et al., 2023a) and KgCoOp (Yao et al.,
2023) both constrain the consistency between the learnable prompt and the crafted prompt by em-
ploying a novel constraint term. Specifically, ProGrad tries to optimize the learnable prompts with
the aligned direction generated by the crafted prompts. KgCoOp adopts the Euclidean distance
to minimize the discrepancy between textual embeddings generated by learned prompts and crafted
prompts. PromptSRC (Khattak et al., 2023b) presents a self-regulating approach to prompt learning,
overcoming overfitting and improving generalization by leveraging mutual agreement, prompt self-
ensembling, and textual diversity. Later, TCP (Yao et al., 2024) constructs an embedding module
to inject the class-level textual knowledge into the learnable prompt tokens. While existing prompt
learning techniques have boosted the generalization ability by applying consistency constraints on
the textual input between learnable and crafted tokens, they exhibit limited capability to capture
specific knowledge. To mitigate this limitation, we propose a novel textual prompting method that
incorporates consistency and diversity to enhance the generalization and discriminative capabilities
of the learnable tokens.

3 METHODOLOGY

Our method is built upon the framework of knowledge-guided context optimization (Yao et al.,
2023), which enforces a consistency constraint between the learnable and crafted prompts to dis-
till knowledge from the frozen encoders, thus defying catastrophic forgetting. However, relying
too much on pre-trained knowledge may hurt downstream knowledge and degrade performance.
To mitigate this limitation, we propose a new method based on the Hilbert-Schmidt Independence
Criterion (HSIC) regularization, to empower the capabilities of capturing task-specific information
without forgetting task-agnostic general knowledge.

3.1 REVISITING KNOWLEDGE-GUIDED CONTEXT OPTIMIZATION

CLIP (Radford et al., 2021) is a fundamental Vision-Language Model, offering a zero-shot transfer
strategy by pre-training the visual backbone and textual encoder on 400M large-scale image-text
pairs through contrastive learning. Benefiting its robust generalization capabilities, the frozen textual
embeddings Wclip = {wclip

i }Nc
i=1 of the crafted prompt “a photo of a [class]” can be a valuable

source of prior general knowledge1, where “[class]” is replaced by one of the Nc class names.
However, general knowledge is less able to accurately describe downstream tasks, mainly without
considering the task-specific knowledge of each task.

To obtain discriminative target task knowledge, a sequence of learnable tokens t = {t1, t2, . . . , tM}
is designed for generating task-specific textual embeddings of all classes, where M is the num-
ber of tokens. The corresponding class token ci is concatenated with the learnable tokens, i.e.,
{t1, t2, . . . , tM , ci}, for generating the encoded textual embedding wi. Then the learnable prompts
(or contexts) W = {wi}Nc

i=1 of all classes can be optimized by minimizing the contrastive loss
between the given image’s embedding x and its class embedding wy , which can be formulated as

Lce =
1

N

∑
(x,y)∈Ds

exp(sim(x,wy)/τ)∑Nc

i=1 exp(sim(x,wi)/τ)
, (1)

where Ds denotes the seen dataset, N is the number of training images, Nc is the number of classes,
sim(·) represents the cosine similarity, and τ refers to a temperature parameter frozen in CLIP.

1Following Yao et al. (2023), “general knowledge” in this work denotes the information contained in the
pre-trained CLIP model.
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Figure 2: The knowledge-guided context optimization framework of DeKg. Lce is the cross-entropy
loss, and Lkg is a consistency constraint. Lkd is a regularization term that uses the Hilbert-
Schmidt Independence Criterion (HSIC) to encourage the independence between learnable and
crafted prompts.

Despite delivering promising results, it can be observed that the learned prompt is prone to overfit-
ting to small training data and weakens the generalization capabilities to new classes (Zhou et al.,
2022a), mainly because the prompt is fixed once learned and only optimized for specific classes, i.e.,
catastrophic forgetting for pre-trained knowledge. To exploit the prior general knowledge contained
in the frozen CLIP for learnable tokens optimization, a simple yet efficient consistency constraint
is added during prompt tuning to prevent catastrophic forgetting (Yao et al., 2023), which can be
expressed as

Lkg =
1

Nc

Nc∑
i=1

∥wi −wclip
i ∥22. (2)

The consistency constraint enforces that the learnable tokens have similar distributions as the crafted
prompts, suggesting the potential bias toward pre-training. The reason lies in that data distributions
vary across different domains. Compared to the pre-trained VLMs, the training data of downstream
tasks is extremely limited, resulting in the learnable prompts inevitably towards pre-trained knowl-
edge distributions.

3.2 DIVERGENCE-ENHANCED KNOWLEDGE-GUIDED CONTEXT OPTIMIZATION

Based on the consistency constraint employed in the knowledge-guided context optimization
(KGCO) methods (Yao et al., 2023; 2024), the learnable tokens aim to preserve the task-agnostic
general knowledge, enhancing the capabilities of new class prediction. However, the classifier
generated by such textual tokens has a poor task-specific discriminative ability to describe down-
stream tasks. To alleviate the limitations of the KGCO methods, we propose a Divergence-enhanced
Knowledge-guided context optimization (DeKg) strategy by introducing an independence regular-
ization into the KGCO methods, to adapt the pre-trained CLIP to the downstream tasks. As shown
in Figure 2, DeKg designs the independence constraint to enhance the divergence between learn-
able and crafted prompts, thereby strengthening task-specific knowledge to avoid bias towards pre-
training and improving the discriminative ability of downstream tasks. Therefore, the independence
constraint can act as a complement to the consistency constraint, enhancing the overall KGCO.

Given the textual embeddings embodied general knowledge Wclip = {wclip
i }Nc

i=1 with Nc classes,
the independence constraint is proposed to enable learnable embeddings W = {wi}Nc

i=1 to capture
task-specific discriminative knowledge without interference from prior general knowledge. With the
benefit of non-parametric, easy computability, rapid convergence, and small estimation bias with
finite samples (Ma et al., 2020), the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al.,
2005) is adopted to penalize the dependency between the learnable and crafted prompts. Specifically,
it measures the degree of dependency, with lower values indicating stronger independence and higher
values suggesting a greater correlation. The proposed constraint can be formulated as

Lkd = HSIC(W,Wclip) = (Nc − 1)
−2

tr(KHKclipH), (3)
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where K ∈ RNc×Nc , Kclip ∈ RNc×Nc with entries Ki,j = k(wi,wj) and Kclip
i,j =

k(wclip
i ,wclip

j ), k(·, ·) is a kernel function; H = INc
− 1

Nc
1Nc

1T
Nc

∈ RNc×Nc is the centering
matrix, which is used to remove the bias within each representation and focus on the inter-variable
relationships; tr(·) represents the trace of the matrix.

Define A = HKclipH, then Eq.(3) can be rewritten as follows

Lkd = (Nc − 1)−2tr(KA) (4)

= (Nc − 1)−2
∑
i,j

Ki,jAi,j .

Notice that the elements Ai,j indicate the inter-class relationships among the crafted prompts Wclip

and are fixed, since they solely relate to the representations of the crafted prompts. Consequently,
Lkd is influenced only by {Ki,j} which describes the relationships within the set of learnable
prompts W. Therefore, we can identify two advantages of Lkd.

First, the computation is only related to W without introducing any extra parameters. In our imple-
mentation, we use the inner product kernel function, i.e., Ki,j = wT

iwj , and promising performance
is achieved.

Second, leveraging HSIC regularization, Lkd fosters the independence between the learnable and
crafted prompts by enhancing the divergence among the learnable prompts across various classes,
which is influenced by the inter-class relationships inherent in the crafted prompts. So Lkd helps
capture task-specific unique knowledge, to enhance the model’s discriminative capability.

Remind that the consistency constraint Lkg aims to maximize the agreement between learnable and
crafted prompts, to enhance the model’s generalization capability. Therefore, Lkd and Lkg focus on
optimizing different aspects and complement each other.

As a result, we constrain the learnable prompts with both consistency and independence. The final
objective function can be expressed as

L = Lce + λLkg + µLkd, (5)

where λ and µ are trade-off hyperparameters encoding the belief degrees for consistency and inde-
pendence constraints, respectively.

4 EXPERIMENTS

In this section, we conduct extensive experiments on three widely-used benchmarks to evaluate the
ability of base-to-new generalization, cross-data generalization, and few-shot learning, and demon-
strate the effectiveness of the proposed method by comparing with strong vision-language prompt
tuning baselines.

4.1 EXPERIMENTAL SETUP

Datasets: For downstream tasks, we follow previous work (Radford et al., 2021; Zhou et al.,
2022a;b), to conduct experiments on 11 representative image classification datasets, including Ima-
geNet (Deng et al., 2009) and Caltech (Fei-Fei et al., 2004) for generic object classification; Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), and FGVCAircraft (Maji et al., 2013) for fine-grained visual cate-
gorization, EuroSAT (Helber et al., 2019) for satellite image classification, UCF101 (Soomro et al.,
2012) for action recognition, DTD (Cimpoi et al., 2014) for texture classification, and SUN397 (Xiao
et al., 2010) for scene recognition.

Baselines: First, to demonstrate that DeKg can embody the advantage of preserving both the general
knowledge frozen in CLIP and task-specific knowledge, we compare the results of CLIP (Radford
et al., 2021), CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), and MaPLe (Khattak et al.,
2023a), which exploits only general or task-specific knowledge, i.e., only uses cross-entropy for
prediction. Second, to show the significant advantage of enhancing task-specific knowledge, we
compared with two baselines, KgCoOp (Yao et al., 2023) and ProGrad (Zhu et al., 2023a), which
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preserve the general knowledge by enforcing the consistency between the learnable tokens and
crafted prompts. Besides, to highlight the importance of divergence guided by general knowledge
and task-specific knowledge, we compared with PromptSRC (Khattak et al., 2023b) and TCP (Yao
et al., 2024), which incorporate other strategies to consistency constraint, i.e., PromptSRC adds
self-ensembling and textual diversity regularization, while TCP inserts class-specific knowledge
into embeddings.

For the DeKg method which unifies the general knowledge preservation and divergence upon
general-specific knowledge into one framework, four baselines, i.e., KgCoOp, ProGrad, TCP, and
PromptSRC, can be expanded by adding the HSIC regularization to produce the divergence by target
knowledge with general knowledge preservation. In our experiments, only KgCoOp and TCP are
adopted and expanded to generate the final learnable tokens, denoted as DeKgKgCoOp and DeKgTCP
respectively. The main reason for this is that, on one hand, ProGrad aligns prompts with general
knowledge of the gradient, while the others are directly aligned with the embeddings. On the other
hand, PromptSRC includes visual prompts and textual prompts, while other baselines only include
textual prompts.

Training Details: Our implementation is based on KgCoOp’s (Yao et al., 2023) and TCP’s (Yao
et al., 2024) codes. To ensure a fair comparison, all experiments were conducted using the ViT-
B/16 (Dosovitskiy et al., 2021) as the vision backbone and the context length set as 4. Additionally,
we maintained consistency with the corresponding baselines in DeKgKgCoOp and DeKgTCP for ran-
dom prompt initialization, training epoch, training schedule, and data augmentation settings. In our
experiments, we set the ratio of λ/µ to 3/1 by grid search, which translates to λ being 6 and µ being
2. All experiments were carried out using the HYGON DCU-Z100L server.

4.2 PERFORMANCE COMPARISON AND ANALYSIS

4.2.1 BASE-TO-NEW GENERALIZATION

The base-to-new generalization setting aims to evaluate whether the models learned on base tasks
can generalize to new tasks without unseen classes, i.e., a category shift exists between base and
new tasks. Following the baselines, on each dataset, we first construct a base and new task by
equally dividing the dataset into two groups, then perform prompt tuning on the base classes and
test the learned model on both the base and new tasks. Table 1 presents the performance of different
methods across 11 datasets with 16-shot samples, where the best and second results are marked in
bold and underlined, respectively. For convenience, we refer to the classification accuracy of base
tasks and new tasks as base accuracy and new accuracy, respectively. The harmonic mean (H) of
base accuracy and new accuracy is also computed to demonstrate the generalization trade-off.

Compared with zero-shot CLIP, the baselines optimized with only cross-entropy loss, i.e., CoOp,
CoCoOp, and MaPLe, achieve improvement on base classes but show inferior performance on new
classes except MaPLe. This suggests that they overall tend to overfit the task-specific data distribu-
tions, losing the original generalization capability of the frozen CLIP model towards new tasks. Al-
though KgCoOp alleviates the poor generalization problem in CoOp by preserving the prior general
knowledge, it hardly outperforms CoOp in base accuracy in almost all benchmarks, i.e., KgCoOp
has an average drop from 82.64% to 80.73% compared with CoOp, while ProGrad has a similar
trend. This suggests that the learnable prompts may be skewed towards the general knowledge
frozen in the CLIP, due to the limited task-specific knowledge. In contrast, DeKg improves on both
base and new classes over CLIP and CoOp. Specifically, DeKgTCP obtains an average gain of 2.32%
(i.e., 84.96% vs. 82.64%) over CoOp in base accuracy, and 2.16% (i.e., 74.22% vs. 76.38%) over
CLIP in new accuracy, respectively. Additionally, DeKgKgCoOp has a similar trend. This shows the
benefits of DeKg by optimizing context explicit guidance by general and target knowledge, which
aids base and new classes respectively.

PromptSRC and TCP are two strong competitors because they both leverage task-specific knowledge
and general knowledge together to improve generalization. Fortunately, DeKgTCP demonstrates
improved performance in recognizing both base and new classes. Specifically, DeKgTCP outperforms
PromptSRC on 8 out of 11 datasets in terms of base accuracy and almost half of the datasets in new
accuracy. Additionally, DeKgTCP shows improvement over TCP in almost all 11 datasets. The main
reason is that PromptSRC and TCP guide the prompt with the token alignment strategy, limited by
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Table 1: Comparison with existing methods in the base-to-new generalization setting with ViT-B/16
as the backbone. The context length M is 4 for prompt-based methods with the 16-shot samples
from the base classes. H: Harmonic mean.

Datasets CLIP CoOp CoCoOp MaPLe KgCoOp ProGrad PromptSRC TCP DeKgKgCoOp DeKgTCP

Regularization: consistency consistency and
textual diversity

consistency and
class-specific

consistency and
independence

Average
Base 69.34 82.64 80.47 82.28 80.73 82.48 84.26 84.13 82.59 84.96
New 74.22 68.00 71.69 75.14 73.60 70.75 76.10 75.36 74.93 76.38

H 71.70 74.61 75.83 78.55 77.00 76.16 79.97 79.51 78.57 80.44

ImageNet
Base 72.43 76.46 75.98 76.66 75.83 77.02 77.60 77.27 76.65 77.40
New 68.14 66.31 70.43 70.54 69.96 66.66 70.73 69.87 69.66 69.20

H 70.22 71.02 73.10 73.47 72.78 71.46 74.01 73.38 72.99 73.07

Caltech
Base 96.84 98.11 97.96 97.74 97.72 98.02 98.10 98.23 98.13 98.64
New 94.00 93.52 93.81 94.36 94.39 93.89 94.03 94.67 95.09 95.20

H 95.40 95.76 95.84 96.02 96.03 95.91 96.02 96.42 96.59 96.89

Pets
Base 91.17 94.24 95.20 95.43 94.65 95.07 95.33 94.67 95.00 94.47
New 97.26 96.66 97.69 97.76 97.76 97.63 97.30 97.20 97.71 97.76

H 94.12 95.43 96.43 96.58 96.18 96.33 96.30 95.92 96.34 96.09

Cars
Base 63.37 76.20 70.49 72.94 71.76 77.68 78.27 80.80 76.31 81.18
New 74.89 69.14 73.59 74.00 75.04 68.63 74.97 74.13 75.27 74.75

H 68.65 72.50 72.01 73.47 73.36 72.88 76.58 77.32 75.79 77.83

Flowers
Base 72.08 97.63 94.87 95.92 95.00 95.54 98.07 97.73 97.72 98.58
New 77.80 69.55 71.75 72.46 74.73 71.87 76.50 75.57 74.04 75.18

H 74.83 81.23 81.71 82.56 83.65 82.03 85.95 85.23 84.25 85.30

Food
Base 90.10 89.44 90.70 90.71 90.50 90.37 90.67 90.57 90.57 90.73
New 91.22 87.50 91.29 92.05 91.70 89.59 91.53 91.37 91.95 91.55

H 90.66 88.46 90.99 91.38 91.09 89.98 91.10 90.97 91.25 91.14

Aircraft
Base 27.19 39.24 33.41 37.44 36.21 40.54 42.73 41.97 39.08 45.20
New 36.29 30.49 23.71 35.61 33.55 27.57 37.87 34.43 34.97 35.09

H 31.09 34.32 27.74 36.50 34.83 32.82 40.15 37.83 36.91 39.51

SUN397
Base 69.36 80.85 79.74 80.82 80.29 81.26 82.67 82.63 81.19 82.52
New 75.35 68.34 76.86 78.70 76.53 74.17 78.47 78.20 76.57 78.30

H 72.23 74.07 78.27 79.75 78.36 77.55 80.52 80.35 78.81 80.35

DTD
Base 53.24 80.17 77.01 80.36 77.55 77.35 83.37 82.77 80.90 83.80
New 59.90 47.54 56.00 59.18 54.99 52.35 62.97 58.07 58.21 59.66

H 56.37 59.69 64.85 68.16 64.35 62.45 71.75 68.25 67.70 69.70

EuroSAT
Base 56.48 91.54 87.49 94.07 85.64 90.11 92.90 91.63 88.29 94.02
New 64.05 54.44 60.04 73.23 64.34 60.89 73.90 74.73 72.69 81.69

H 60.03 68.28 71.21 82.3 73.48 72.67 82.32 82.32 79.73 87.42

UCF101
Base 70.53 85.14 82.33 83.00 82.89 84.33 87.10 87.13 84.64 88.06
New 77.50 64.47 73.45 78.66 76.67 74.94 78.80 80.77 78.04 81.77

H 73.85 73.38 77.67 80.77 79.65 79.35 82.74 83.83 81.21 84.80

handling domain shift in the test set. This demonstrates that DeKgTCP gains advantages by taking
into account the textual embedding distribution with an independence constraint.

4.2.2 CROSS-DATASET GENERALIZATION

To further demonstrate that the proposed model can bridge the distribution gap between the pre-
training dataset and the downstream evaluation set for zero-shot generalization, we compare DeKg
with baselines under the cross-dataset generalization. In this experiment, we follow the baselines
to regard ImageNet as the source dataset and the other 10 datasets as target datasets, i.e., there is a
distribution shift between the base and new tasks.

From the comparison results in Table 2, we can see that our DeKgTCP obtains the highest average
performance among all baselines (66.64% vs. 66.29% of TCP). By comparison, the performance
on other datasets with distant and more fine-grained or specialized categories is much lower, such
as Aircraft where the accuracy number is well below 30%. Nonetheless, DeKgTCP exhibits much
stronger transferability than TCP with an average gain of 1.60% (i.e., 25.05% vs. 23.45%) on
Aircraft, as well as on most other fine-grained or specialized datasets. Additionally, DeKgKgCoOp
achieves inferior performance to PromptSRC and TCP, mainly due to the inability to explicitly
model the downstream class distribution.

4.2.3 FEW-SHOT CLASSIFICATION

To verify the model’s ability to develop robust representations with a severely limited amount of
downstream data, we follow the previous work (Yao et al., 2024) to train the model using K-shot
labeled source images from each class and evaluate the testing domain with the same spaces as the
training classes. A summary comparison of the 4-shot setting between the proposed DeKg and ex-
isting baselines appears in Table 3, from which we can observe that: the proposed DeKgTCP achieves
the best average performance than all baselines. In addition, the baselines KgCoOp and TCP have
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Table 2: Comparison in the cross-dataset generalization. The model is trained on the entire class of
ImageNet (16 shots) and evaluated on the other 10 datasets.

Datasets CLIP CoOp CoCoOp MaPLe ProGrad PromptSRC KgCoOp TCP DeKgKgCoOp DeKgTCP
ImageNet 66.70 71.51 71.02 70.72 72.24 71.27 70.66 71.40 71.34 72.33
Caltech101 93.30 93.70 94.43 93.53 91.52 93.60 93.92 93.97 93.87 94.73
Pets 89.10 89.14 90.14 90.49 89.64 90.25 89.83 91.25 90.16 90.02
Cars 65.70 64.51 65.32 65.57 62.39 65.70 65.41 64.69 65.91 65.49
Flowers 70.70 68.71 71.88 72.20 67.87 70.25 70.01 71.21 70.60 72.39
Food101 85.90 85.30 86.06 86.20 85.40 86.15 86.36 86.69 86.37 86.59
Aircraft 24.90 18.47 22.94 24.74 20.16 23.90 22.51 23.45 23.37 25.05
SUN397 62.60 64.15 67.36 67.01 62.47 67.10 66.16 67.15 66.11 67.19
DTD 44.30 41.92 45.73 46.49 39.42 46.87 46.35 44.35 46.16 44.47
EuroSAT 48.30 46.39 45.37 48.06 43.46 45.50 46.04 51.45 43.15 51.37
UCF101 67.60 66.55 68.21 68.69 64.29 68.75 68.50 68.73 68.17 68.78
Avg. 65.24 63.88 65.74 66.30 62.71 65.81 65.51 66.29 65.33 66.64

Table 3: Comparison of few-shot learning with 4-shot samples.

Datasets CLIP CoOp CoCoOp MaPLe ProGrad PromptSRC KgCoOp TCP DeKgKgCoOp DeKgTCP
ImageNet 66.70 69.37 70.55 70.67 70.21 70.80 70.19 70.48 70.24 70.19
Caltech101 93.30 94.44 94.98 94.30 94.93 94.77 94.65 95.00 94.97 95.21
Pets 89.10 91.30 93.01 92.05 93.21 93.23 93.20 91.90 93.10 92.15
Cars 65.70 72.73 69.10 68.70 71.75 71.83 71.98 76.30 72.24 74.90
Flowers 70.70 91.14 82.56 80.80 89.98 91.31 90.69 94.40 90.50 95.21
Food101 85.90 82.58 86.64 86.90 85.77 86.06 86.59 85.30 86.88 85.72
FGVC 24.90 33.18 30.87 29.03 32.93 32.80 32.47 36.20 32.88 37.02
SUN397 62.60 70.13 70.50 71.47 71.17 72.80 71.79 72.11 72.33 72.85
DTD 44.30 58.57 54.79 54.73 57.72 60.64 58.31 63.97 61.05 64.24
EuroSAT 48.30 68.62 63.83 54.87 70.84 75.02 71.06 77.43 72.65 79.16
UCF101 67.60 77.41 74.99 73.70 77.82 79.35 78.40 80.83 79.43 81.05
Avg. 65.37 73.59 71.98 70.66 74.21 75.33 74.48 76.72 75.12 77.06

shown respective improvements with independence constraint (i.e., DeKgKgCoOp and DeKgTCP) of
the average gains of 0.64% (i.e., 75.12% vs. 74.48%) and 0.44% (i.e., 77.06% vs. 76.12%) across
11 datasets. This demonstrates that optimizing the learnable prompts with independence and con-
sistency constraints together is indeed beneficial.

Next, we will conduct more detailed investigations for DeKg. If there is no special statement, all
reported results represent average performance across over 11 datasets.

4.2.4 ABLATION STUDY AND ANALYSIS

To investigate the learning process of DeKg, we conduct ablative analysis including as follows:

Effect of the Constraints Employed in DeKg: DeKg contains two key constraints, including the
consistency constraint Lkg and the independence constraint Lkd. We conduct a constraint-wise
analysis by adding one or two of them to the baseline method CoOp. Table 4 shows the results.
We can see that the baseline CoOp provides high base class performance but suffers from poor
generalization. By incorporating Lkg alone, the performance of new classes increases significantly
by 5.62% (i.e., 73.61% vs. 67.99%), but the base classes degrades from 82.63% to 80.73%. This
suggests that Lkg explicitly enforces the intra-class consistency between the learnable and crafted
prompts to capture generalizable features from frozen CLIP. In contrast, incorporating Lkd alone
leads improvements in both base and new classes compared with CoOp, indicating its ability in
balancing model adaptation and generalization. It achieves the best performance in base classes but
still lags behind KgCoOp in new classes. The main reason lies in that Lkd aims to capture the task-
specific knowledge by enhancing the divergence among learnable prompts across various classes
with prior inter-class relationships inherent in the crafted prompts. Finally, combining Lkd and Lkg ,
DeKg achieves improvements in both base and new classes, leading to the average new class and
harmonic mean gains of 6.94% (i.e., 74.93% vs. 67.99%) and 3.97% (i.e., 78.57% vs. 74.60%). It
is reasonable because Lkg and Lkd are complementary, one for intra-class consistency and the other
for inter-class divergence.

Comparison of Model Complexity: To better understand the benefits of the proposed DeKg, we
examined the model complexity. As shown in Table 5, it can be observed that DeKg is an efficient
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Table 4: Effect of the constraints in our model.

Method Base New H
CoOp 82.63 67.99 74.60
+Lkg 80.73 73.61 77.00
+Lkd 83.13 69.87 75.93
+Lkg + Lkd (ours) 82.59 74.93 78.57

Table 5: Comparison of model complexity with
KgCoOp.

Method Total Parameters (M) H
KgCoOp 124.325 77.00
DeKgKgCoOp +0 78.57
TCP +0.329 79.51
DeKgTCP +0.329 80.44

method that performs better with the same model complexity of corresponding baselines. For exam-
ple, DeKgKgCoOp shows an average improvement of 1.57% (i.e., 78.57% vs. 77.00%) over KgCoOp
without adding any parameters. The main reason is that DeKg simply adds an efficient regulariza-
tion for generating discriminative classifiers guided by better knowledge, i.e., optimizing the balance
between adapting general knowledge and fine-tuning for targeted tasks.

Effect of Hyperparameter λ and µ: To further investigate the impact of consistency and inde-
pendence constraints on model performance, we analyze the effect of hyperparameter λ and µ in
the proposed model DeKg, i.e., λ controls the contribution of capturing general knowledge, and µ
controls the divergence between task-specific knowledge and general knowledge. The effect of λ
and µ on DeKg with KgCoOp and TCP (i.e., DeKgKgCoOp and DeKgTCP) is shown in Figure 3a and
Figure 3b, respectively. It can be seen that the performance of new tasks becomes better as λ/µ
increases, indicating that the consistency constraint effectively captures the essential knowledge for
new classes. The results reach the best when λ/µ = 3/1 for both DeKgKgCoOp and DeKgTCP. After
that, the performance decreases because a larger ratio forces the learnable prompts to rely strongly
on general knowledge, failing to capture task-specific information. The trend for base precision is
reversed. This result is reasonable because a larger ratio of λ/µ reduces the importance of task-
specific knowledge, which is essential for base tasks.

(a) DeKgKgCoOp (b) DeKgTCP

Figure 3: Effect of hyperparameters λ and µ on DeKgKgCoOp and DeKgTCP.

Figure 4: Visualization the HSIC values between W and Wclip in DTD dataset.

Visualization: As shown in Figure 4, the HSIC values obtained from the consistency-constrained
method KgCoOp are very high. This indicates that the learnable tokens are highly correlated with
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the pre-trained general knowledge, which can lead to poor performance on target tasks. In contrast,
the HSIC values derived without knowledge-guided context optimization method CoOp are very
low. This suggests a weak reliance on general knowledge and a tendency to overfit the target task,
resulting in limited generalization ability for target tasks. The values obtained by DeKg are moderate
compared to the baselines. This suggests that the proposed HSIC regularization term Lkd effectively
maintains a balance between dependence on general knowledge and task-specific knowledge.

5 CONCLUSION

Knowledge-guided context optimization is a representative visual-language prompt tuning frame-
work. It emphasizes the consistency between the learnable and crafted prompts to alleviate catas-
trophic forgetting, which boosts the generalization ability but degrades the few-shot learning ability
in downstream tasks. In this paper, we propose a DeKg strategy by introducing an independence con-
straint, which exploits Hilbert-Schmidt Independence Criterion regularization to enhance the diver-
gence between learnable and crafted prompt for capturing task-specific unique knowledge, thereby
enhancing the model’s discriminative capability. Extensive evaluations on three challenging bench-
marks demonstrate that DeKg is an effective and efficient prompt tuning method. Specifically, one
of the main advantages of DeKg is its ability to seamlessly integrate with existing knowledge-guided
context optimization methods, such as KgCoOp and TCP, significantly enhancing their performance
without requiring additional parameters. Another key advantage of DeKg is its capability to outper-
form strong baselines on both base classes and new classes in base-to-new settings, while existing
methods often struggle to keep a balance between the generalization ability and few-shot learning
ability. Additionally, it demonstrates superior performance in cross-dataset generation and few-shot
learning scenarios. In the future, we plan to incorporate DeKg to more visual-language prompt
tuning frameworks and applications.
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