
CONSIDER: Commonalities and Specialties Driven
Multilingual Code Retrieval Framework

Rui Li1, 2, Liyang He1, 2, Qi Liu1, 2*, Yuze Zhao1, 2, Zheng Zhang1, 2,
Zhenya Huang1, 2, Yu Su3, Shijin Wang2, 4

1Anhui Province Key Laboratory of Big Data Analysis and Application &
School of Computer Science and Technology, University of Science and Technology of China

2State Key Laboratory of Cognitive Intelligence
3School of Computer Science and Artificial Intelligence, Hefei Normal University

4iFLYTEK AI Research (Central China), iFLYTEK Co., Ltd.
{ruili2000, heliyang, yuzezhao, zhangzheng}@mail.ustc.edu.cn, {huangzhy, qiliuql}@ustc.edu.cn,

yusu@hfnu.edu.cn, sjwang3@iflytek.com

Abstract

Multilingual code retrieval aims to find code snippets relevant
to a user’s query from a multilingual codebase, which plays
a crucial role in software development and expands their ap-
plication scenarios compared to classical monolingual code
retrieval. Despite the performance improvements achieved by
previous studies, two crucial problems are overlooked in the
multilingual scenario. First, certain programming languages
face data scarcity in specific domains, resulting in limited
representation capabilities within those domains. Second, dif-
ferent programming languages can be used interchangeably
within the same domain, making it challenging for multi-
lingual models to accurately identify the intended program-
ming language of a user’s query. To address these issues,
we propose the CommONalities and SpecIalties Driven Mul-
tilingual CodE Retrieval Framework (CONSIDER), which
includes two modules. The first module enhances the rep-
resentation of various programming languages by modeling
pairwise and global commonalities among them. The sec-
ond module introduces a novel contrastive learning negative
sampling algorithm that leverages language confusion to au-
tomatically extract specific language features. Through our
experiments, we confirm the significant benefits of our model
in real-world multilingual code retrieval scenarios in various
aspects. Furthermore, an evaluation demonstrates the effec-
tiveness of our proposed CONSIDER framework in mono-
lingual scenarios as well. Our source code is available at
https://github.com/smsquirrel/consider.

Introduction
Code retrieval is a foundational task in code intelligence
(Mukherjee, Jermaine, and Chaudhuri 2020; Kim et al.
2010). As illustrated in Figure 1 (a), given a natural lan-
guage query and a selected programming language, the clas-
sical monolingual code retrieval model aims to find code
snippets in a large-scale codebase (Haldar et al. 2020; Wan
et al. 2019). This system can assist developers in code reuse
(Shuai et al. 2020; Nie et al. 2016) and understanding the
complex software libraries (Ling et al. 2021). With the ad-

*Corresponding Author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Python
codebase

def create_one_hot(l):
label = np.array(l) 
...

def train(dataset, E):
model.train()
...fine-tuning the pre-

trained BERT model

User Query:

use numpy to create 
a onehot vector

User Selected:

User Query:

PythonJava PHP

Multilingual

Monolingual

Monolingual

User Selected: 
None

(a)

(b)

Python
codebase

Code Retrieval System

user select 

automatic identification

Python
codebase

?

Figure 1: (a) Monolingual scenarios: the user’s query and se-
lected language guide the system’s choice of model and code
repository. (b) Multilingual scenarios: the retrieval model
autonomously searches for code snippets in a multilingual
library without user-specified language selection.

vancement of artificial intelligence technologies, many ad-
vanced monolingual code retrieval methods (Cambronero
et al. 2019; Chen and Zhou 2018; Shuai et al. 2020) have
been proposed and made tremendous progress.

As the scope of application scenarios expands, there has
been a surge in the demand for code retrieval. For example,
software projects hosted on code repositories like GitHub1

and GitLab2 are increasingly developed using multiple pro-
gramming languages. This trend has led to a growing need
for multilingual code retrieval capabilities (Li, Xu, and Chen
2022; Ma et al. 2023). Compared to monolingual code re-
trieval, multilingual code retrieval models provide signifi-
cant advantages. First, they eliminate the requirement for
deploying and maintaining multiple retrieval models for dif-
ferent languages, resulting in cost reduction. Second, as il-
lustrated in Figure 1 (b), multilingual models compare the
similarity between queries and various programming lan-
guages, thereby extending the scope of retrieval scenarios.
This capability allows them to retrieve the relevant code

1https://github.com
2https://about.gitlab.com/

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8679



from a multilingual codebase. However, existing work faces
the following two problems in the scenario of multilingual
code retrieval.

First, some programming languages often encounter the
problem of data scarcity in certain specific domains. For ex-
ample, in the domain of deep learning, the C++ language
plays a significant role due to its exceptional performance.
However, due to the complexity of C++ and its steep learn-
ing curve, there are fewer available resources in this domain.
In contrast, Python offers a plethora of libraries and frame-
works for deep learning, making it rich in application re-
sources within this domain. In such cases, we can leverage
the rich information provided by Python in deep learning
to enhance the representation of C++ code in this domain.
Therefore, it is necessary to exploit the commonalities of
programming languages in multilingual code retrieval mod-
els to enhance performance in the scenario where data is
scarce for certain programming languages.

Second, while the commonalities among programming
languages can be beneficial in data-scarce scenarios, they
can also pose challenges for current multilingual code re-
trieval models in accurately determining the intended lan-
guage for a given query. Considering an example query in
Figure 1 (b): “fine-tuning the pre-trained BERT model.”
In this case, the retrieval model may struggle to discern
whether the intended language is C++ or Python, as both
languages have applications in the field of deep learning.
However, it is worth noting that C++ is often employed for
hardware acceleration and deployment optimization in deep
learning, whereas Python is commonly chosen for model de-
sign and training processes. Therefore, the target language is
more likely to be Python in this context. Consequently, it is
crucial to incorporate the specialties of programming lan-
guages into the modeling process to accurately identify the
language intent of a user’s query in multilingual scenarios.

To this end, we propose the CommONalities and
SpecIalties Driven Multilingual CodE Retrieval Framework
(CONSIDER) to tackle aforementioned problems, which
facilitates the seamless integration of existing pre-trained
Transformer models into multilingual scenarios. This model
consists of two modules. First, to capture the commonalities
between programming languages, we introduce the paired
commonality extraction module and the global commonal-
ity extraction module. These modules enable us to effec-
tively model the commonalities and enhance the code rep-
resentation across different languages. Second, in order to
model the specificity of programming languages, we pro-
pose a novel algorithm for sampling negative examples in
contrastive learning. We utilize confusion matrices between
different programming languages to construct negative sam-
ples, aiming to automatically capture the differences in eas-
ily confused languages. Besides, introducing a confusion
matrix during the sampling process leads to an imbalance
within and between languages. To address this issue, we fur-
ther employ a balancing distribution technique to ensure sta-
ble training. By combining these modules, CONSIDER of-
fers a comprehensive approach to address the challenges of
accurately identifying language intent and enhancing perfor-
mance in data-scarce scenarios within multilingual code re-

trieval models. In summary, our main contributions can be
summarized as follows:

• We propose a novel framework CONSIDER for multilin-
gual code retrieval that incorporates two crucial aspects
of multiple programming languages: their commonalities
and their specialties.

• We introduce a pairwise commonality extraction module
and a global commonality extraction module to model
the commonalities of programming languages, enabling
effective modeling of the shared characteristics among
programming languages.

• We propose the Confusion-Matrix-Guided Sampling Al-
gorithm, which leverages confusion matrices to capture
the specialties of programming languages, thereby en-
hancing the ability of discerning the query intend.

• We conduct experiments in real-world multilingual re-
trieval scenarios, demonstrating the unique advantages of
our proposed CONSIDER framework compared to other
multilingual code retrieval models in this scenario. The
experimental results also prove that our model can en-
hance the performance of multiple languages in mono-
lingual scenarios.

Related Work
Code Retrieval. We mainly introduce code retrieval in
two parts: monolingual code retrieval models and multilin-
gual code retrieval models. For monolingual code retrieval
models, one type of research work involves query enhance-
ment (Arakelyan et al. 2022; Lv et al. 2015; Lemos et al.
2014; Zhang et al. 2018). This method aims to supplement
the query with additional knowledge, increasing the infor-
mation of the query before matching it with the code. A sec-
ond method involves multi-perspective modeling of the code
(Chen and Zhou 2018; Kim et al. 2010; Zubkov et al. 2022),
using technologies such as AST, CFG, DFG to extract struc-
tured features of the code and thereby strengthen the rep-
resentation of the code. Another approach comes from the
perspective of multitask learning (Yao, Peddamail, and Sun
2019; Ye et al. 2020), enhancing the retrieval task through
the design of auxiliary tasks related to retrieval, including
tasks of annotation generation and code generation.

As for multilingual code retrieval models, there is
presently less related work. One method employs knowl-
edge distillation for multilingual code retrieval; the idea is
to first train a monolingual teacher model, and then use
this monolingual teacher model to guide the training of a
multilingual student model. This method effectively trains
a multilingual code retrieval model. The second approach
involves using the LLVM compiler to pre-generate a con-
sistent intermediate representation (IR) for each program-
ming language. This method can obtain a unified representa-
tion across languages. However, both of these methods over-
look modeling the commonalities among programming lan-
guages, leading to suboptimal performance in scenarios with
sparse programming language data. Additionally, they strug-
gle to identify language intent from the linguistic features
within user queries.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8680



Code Encoder

[Python] [Java] [PHP]…

…

Query Encoder

[CLS][CLS]

(a) Overall Framework Structure

Commonalities Enhancement Module

……

7 2 1
2 6 2
1 4 5

C

Python

Java

PHP

Java PHP

0.3
0.3
0.4

(c) Confusion-Matrix-Guided Sampling Algorithm

0.1
0.6
0.3

Sample

PythonBalance

Update

Train
Existing Pretrained

Model

Codebase

MLP

(b) Commonalities Enhancement Module

…

Relevance Weighting Max MI

Global Commonality ExtractionPairwise Commonality Extraction

…

Contrastive learning

Figure 2: The framework of CONSIDER.

Contrastive learning. Contrastive learning is a technique
that aims to make representations agree with each other un-
der proper transformations. It has attracted the attention of
researchers across all fields, including CV (He et al. 2020),
NLP (He et al. 2023; Giorgi et al. 2021; Zhao et al. 2023),
and other domains (Tong et al. 2020; Ning et al. 2023).

Recently, researchers in code retrieval have also begun
leveraging contrastive learning techniques to enhance task
performance. (Bui, Yu, and Jiang 2021) primarily employs
semantically preserving program transformations to gener-
ate functionally equivalent code snippets as positive sam-
ples for contrastive learning, aiming to identify semanti-
cally equivalent and non-equivalent code segments. (Li et al.
2022) and colleagues construct positive contrastive learn-
ing samples through representation-level data augmentation.
(Huang et al. 2021) introduced CoCLR, which uses query
rewriting techniques like random word deletion as positive
samples for query in contrastive learning.

Differing from prior researches, we have devised a novel
contrastive learning approach specifically tailored for mul-
tilingual code retrieval, aiming to model programming lan-
guage characteristics. Compared to other contrastive learn-
ing negative sample construction methods, our method es-
sentially is a heuristic approach for constructing negative
samples, which does not require additional inference over-
head for the selection of negative samples.

CONSIDER Framework
Problem Definition
Code Retrieval. Given a (query, code snippet) space
(Q,C). We denote a pair of (query, code snippet) as (q, c) ∈
(Q,C), where q = {q1, q2, ..., qn} is a query composed of n
tokens, and c = {c1, c2, ..., cm} is a sequence of code snip-

pets composed of m tokens. Our goal is to train a model f ,
we can find the code snippet c with the highest matching
score according to f :

∀q ∈ Q,max
c∈C

f(q, c), (1)

where f(q, c) represents the matching score between the
query q and the code snippet c.

This formalization can be adapted to address both mono-
lingual and multilingual code retrieval tasks. In the mono-
lingual case, the (Q,C) space is composed of one program-
ming language dataset. In contrast, multilingual code re-
trieval involves a (query, code snippet) space (Q,C) that
encompasses multiple language datasets, denoted as Q =
∪N
i=1Qi and C = ∪N

i=1Ci. Qi and Ci represent queries and
code snippets from the (query, code snippet) space of lan-
guage i, respectively.

Framework Overview
We design two structures to address the two challenges men-
tioned above. Figure 2 depicts our framework. First, we
model different attention patterns for different languages
by adding language tokens, which allows for better repre-
sentation modeling of different languages; Second, to ex-
tract language commonalities, we design paired common-
ality extraction modules and global commonality extrac-
tion modules, which are used to extract the commonalities
among all languages and between language pairs, respec-
tively; Third, for modeling language-specific features, based
on contrastive learning, we introduce a novel negative sam-
pling algorithm. By utilizing the confusion matrix of multi-
ple languages on the validation set, we sample the languages
that are easily confused with the selected base language
as negative samples, thus automatically learning language-
specific features.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8681



Feature Extraction
We begin with a bi-encoder architecture that utilizes pre-
trained Transformer models as the backbone neural network,
as depicted in Figure 2(a). To capture the representation of
the query, we prepend a [CLS] token before the original
query’s token q, resulting in q′:

q′ = [CLS] ◦ q ◦ [SEP ], (2)
where the ◦ represents concatenation operation and [SEP ]
is a special token used to denote the end of input. Subse-
quently, q′ is input into the query encoder Eϕ, yielding the
output Eϕ(q

′), where ϕ denotes the parameters of the query
encoder. The representation of the [CLS] token, denoted as
eqCLS , serves as the representation of the query q.

To effectively model programming language features, we
introduce language tokens and employ distinct attention
mechanisms to extract features from different programming
languages. For each programming language i, we introduce
a language token denoted as [Li]. We append all the lan-
guage tokens to the code snippet c and add a [CLS] token at
the beginning, resulting in a new input c′:

c′ = [CLS] ◦ [L1] . . . [Ln] ◦ c ◦ [SEP ]. (3)
To ensure seamless integration of the introduced [L] to-

kens into the model, we initialize them using the embed-
ding of the [CLS] token, because the [CLS] token tends
to capture the overall meaning of the entire sentence (Clark
et al. 2019; Kovaleva et al. 2019). Additionally, to prevent
any interference with the positional encoding of the origi-
nal input sentences, we set the position ids of all [Li] tokens
to 0, while the original code segments are marked starting
from 1. Then, we feed c′ into the code encoder Eθ to get
the output Eθ(c

′), where ϕ denotes the parameters of the
code encoder. The representations of the [CLS] tokens are
denoted as ecCLS , and the representations of the [L] tokens
are denoted as eLi

, where i = 0, 1, . . . , n.

Commonalities Enhancement Module
To alleviate the problem of data scarcity in certain domains
for a programming language, we design the pairwise com-
monality extraction module and the global commonality ex-
traction module to capture the commonalities between lan-
guage pairs and across all languages, respectively.

To extract commonalities between programming lan-
guage i and other languages, we employ the pairwise com-
monality extraction module. This module utilizes the rel-
evance between language i and other languages to iden-
tify shared features. Specifically, we calculate the relevance
scores between the language i and representations of other
languages as follows:

sij = (eLiW
T
i ) · (eLjW

T
j ), (4)

where the Wi and Wj are the parameters specific to pro-
gramming language i and j, respectively, and · is the dot
product operation. we utilize the relevance scores as weights
to aggregate the commonalities from other languages for
programming language i as follows:

ẽLi
=

∑
j=1,2,...,N,j ̸=i

(
esij∑

k=1,2,...,N,k ̸=i e
sik

· eLj

)
. (5)

To extract the overall commonality across all languages,
we draw inspiration from the work presented in (Ou et al.
2021). In this approach, we aim to maximize the mutual in-
formation between the embedding of the [CLS] token and
the embedding of each language token. To estimate this mu-
tual information, we utilize the Jensen-Shannon divergence
estimator (JSDE) (Nowozin, Cseke, and Tomioka 2016),
which is a widely used method and is insensitive to the num-
ber of negative samples. We apply JSDE to estimate mutual
information and optimize it with model parameters. Specif-
ically, we estimate the mutual information among all lan-
guages by using the following function:

Ĩϕ (ecCLS) =

N∑
i=1

(EP (ec
CLS

,eLi
) [Dδ (e

c
CLS , eLi)]−

EP (ec
CLS

)P (eLi
) [Dδ (e

c
CLS , eLi)]),

(6)

where P (ecCLS , eLi
) represents the joint probability distri-

bution, P (ecCLS)P (eLi
) represents the marginal probability,

softplus function is defined as softplus(x) = log(1+ex), and
Dδ(·, ·) is a discriminator realized by a neural network with
parameter δ. By maximizing the mutual information using
this approach, we aim to capture the commonalities that ex-
ist across all languages.

Finally, we employ a fusion strategy to combine the lan-
guage token representation eLi

, pairwise commonality rep-
resentations ẽLi

, and the [CLS] token representation ecCLS
into a unified representation. This unified representation is
then fed into a Multilayer Perceptron (MLP) to generate the
final representation êc of the code snippet c:

êc = MLP(eLi
◦ ẽLi

◦ ecCLS). (7)

By explicitly modeling the commonalities between lan-
guage pairs and the overall commonalities across all lan-
guages, this method enhances the final representation of the
code snippet in the data-scarce domain.

Confusion-Matrix-Guided Sampling Algorithm
To capture the specialties features of each programming lan-
guage, we design a novel negative sampling algorithm based
on contrastive learning. As illustrated in Figure 2(c), we use
the confusion matrix between programming languages to
determine the number of samples to be included for each
type when constructing a batch. This enables us to group
together languages that are often confused with each other
in the same batch for contrastive learning, thereby automat-
ically learning the characteristic features of different lan-
guages and better distinguishing the target language of the
query.

Specifically, we initialize the confusion matrix C ∈
Rn×n by summing an identity matrix I with an all-ones
matrix 1 (i.e., C = I + 1) to achieve uniform sampling
across other programming languages. During the subsequent
training process, we employ a method similar to computing
Mean Reciprocal Rank (MRR) to calculate the confusion
matrix on the validation set. Specifically, at regular train-
ing intervals, for the calculation of Cij , we begin by con-
sidering each query of the i-th language in the validation set
Qval

i . Using the current model, we retrieve the top K code
snippets (DK = {d1, d2, . . . , dK}) that are most similar to

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8682



the query. Subsequently, we calculate the reciprocal sum of
the ranking values rankd for all code snippets d of the j-th
language among the retrieved snippets. Then we update the
confusion matrix Cij as follows:

Cij =
∑

q∈Qval
i

 ∑
d∈{d|d∈DK ,L(d)=j}

1

rankd

 , (8)

where L(d) is the programming language of code snippet d.
Next, we use the idea of stratified sampling algorithm to

guide the sampling process. Specifically, we determine the
probability of selecting each programming language as pl =
{pl1, pl2, ..., plN}, where pli is the probability to select the i-th
programming language and is defined as:

pli =
Ni∑N
j=0 Nj

, (9)

Here, Ni is the number of the i-th programming language in
the training set. Then, we calculate the confusion vector of
language i using the confusion matrix:

vi = C⊤
i· +C·i, (10)

where Ci· represents the scenario where queries with the tar-
get language being i are confused with each language which
can be considered as precision and C·i represents the sit-
uation where queries with each language as the target lan-
guage are confused with language i which can be consid-
ered as recall. By considering both the precision and recall
of language i, we can comprehensively measure the confu-
sion level between languages. Then, we use sun normaliza-
tion norm(·) to normalize the vi to obtain the sampling
probability pi = norm(vi), pi = {pi1, pi2, ..., pin} for
language i, where pij is the probability of a query with the
target language being the i-th one being confused with the
j-th language. Besides, considering only the confusion level
may result in fewer samples being sampled for some easily
confused base languages. Thus we further use the base lan-
guage probability boost to increase the probability of base
language i being sampled as follows:

p′ii = pii + (α− pii)
β , (11)

where α is the threshold and β represents the final sam-
pling probability. When the probability of base language i
is lower than the threshold α, its probability is increased.
Due to the sample probability pii is changed to p′ii, we per-
form normalization on {pi1, ..., pii, ...pin} to get the final
probability {p̂i1, ..., p̂′ii, ...p̂in} and construct next batch set
Dsel ⊆ (Q,C) according to each language’s probability p̂ij .

Furthermore, the aforementioned sampling process may
introduce language imbalance and intra-language imbal-
ance. First, the inconsistent sampling quantity for each lan-
guage compared to the actual language data distribution in
the subsequent sampling process leads to language imbal-
ance. To address this, we balance the probability of selecting
the language pl using the actual sampling probability:

p̂l = norm(pl · norm(
pl

pr
)), (12)

Language Training Validation Test Codebase

Ruby 2.5K 1.4K 1.2K 4.4K
JavaScipt 5.8K 3.9K 3.3K 13.9K
Go 16.7K 7.3K 8.1K 28.1K
Python 25.2K 13.9K 14.9K 43.8K
Java 16.4K 5.2K 10.9K 40.3K
PHP 24.1K 13.0K 14.0K 52.7K

Table 1: CodeSearchNet dataset statistics.

Here, pr denotes the actual sampling probability for each
language, which is determined during the sampling pro-
cess and subsequently calculated. Besides, the repeated sam-
pling of already sampled samples based on p̂l causes intra-
language imbalance. To mitigate this, we apply exponential
decay to the sampling probability of the already sampled
samples to reduce the probability of resampling them.

Finally, we conduct contrastive learning based on the con-
structed batch Dsel:

L =
∑

(q,c)∈(Q,C)

log
exp(φ(eqCLS , êc))∑

(q′,c′)∈Dsel
exp(φ(eq

′
CLS , êc′))

, (13)

where φ(·, ·) is used to measure the cosine similarity be-
tween the query and code representations. For negative sam-
ples of the same language, the primary objective of con-
trastive learning is to amplify the semantic gap between the
query and code. For negative samples of different languages,
contrastive learning not only increases the semantic gap be-
tween the query and code in terms of meaning but also ac-
centuates the differences in language-specific features. As a
result, contrastive learning facilitates more effective model-
ing of linguistic characteristics.

The advantage of this algorithm is that it can construct
negative samples according to the confusion matrix, thus au-
tomatically learning the differences between easily confused
languages. Furthermore, it can automatically construct the
confusion matrix during the evaluation period, without con-
suming additional computational costs for model inference.

Experiment
In this section, we conduct experiments on monolingual and
multilingual tasks with a real-world code retrieval dataset, to
verify the effectiveness of our proposed approach.

Experimental Setup
Dataset. Since we need to evaluate model performance in
a multilingual environment, we have chosen CodeSearch-
Net (Husain et al. 2019) as our dataset. This dataset collects
code snippets and queries related to six programming lan-
guages (Go, Python, Java, JavaScript, Ruby, and PHP) from
GitHub, and it is the largest and most widely used dataset
for assessing code retrieval performance. Table 1 contains
the statistics for the dataset.

Evaluation Tasks. We conduct model performance evalu-
ation in both monolingual and multilingual scenarios. In the
monolingual scenario, we evaluate the model on test sets for

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8683



Framework Model Ruby JavaScript Go Python Java PHP Overall

Multilingual

RoBERTa(code) 46.0 46.3 82.1 54.7 56.1 52.3 56.2
CodeBERT 50.2 50.1 83.8 59.2 59.9 55.6 59.8

GraphCodeBERT 51.7 51.4 84.6 62.6 61.4 58.6 61.7
UniXCoder 57.1 56.8 86.4 65.3 65.6 60.3 65.3

Distill

RoBERTa(code) 45.3 46.5 81.6 56.0 57.7 53.5 56.8
CodeBERT 49.8 49.1 82.2 60.9 61.8 57.1 60.2

GraphCodeBERT 51.3 50.3 84.0 64.2 63.6 60.3 62.3
UniXCoder 58.2 58.9 88.2 67.0 67.3 61.9 65.4

CONSIDER

RoBERTa(code) 52.6(+6.6) 53.4(+7.1) 87.4(+5.3) 60.2(+5.5) 62.7(+6.6) 59.1(+6.8) 62.6(+5.8)
CodeBERT 56.2(+6.0) 57.0(+6.9) 89.0(+5.2) 64.6(+5.4) 66.5(+6.6) 62.3(+6.7) 65.9(+6.1)

GraphCodeBERT 57.8(+6.1) 57.6(+6.2) 89.5(+4.9) 66.1(+3.5) 67.3(+5.9) 63.1(+4.5) 66.9(+5.2)
UniXCoder 61.6(+3.4) 60.9(+2.0) 90.2(+2.0) 69.7(+4.4) 69.9(+4.3) 65.0(+4.7) 69.6(+4.3)

Table 2: Comparison of the overall performance between our framework and the baseline in a multilingual scenario, measured
by the MRR metric. Bold means state of the art on this metric.

each individual language. To simulate the multilingual con-
text of the real world, we have merged the test sets of each
language to serve as the test set in a multilingual scenario.
We use mean reciprocal rank(MRR) (Hull 1999) as evalua-
tion metrics for all models.

MRR =
1

N

N∑
i=1

1

ranki
. (14)

Comparison Methods. We compared our framework with
other multilingual retrieval model training methods: 1).
Multilingual: Mixing training datasets from various pro-
gramming languages, followed by applying contrastive
learning algorithms for training. 2). Distill: Utilizing the
multilingual retrieval model training framework proposed
by (Li, Xu, and Chen 2022): first, training monolingual
teacher models for each programming language, and then
training multilingual student models in a multilingual en-
vironment. Moreover, to demonstrate that our multilingual
retrieval framework is model-agnostic and can be applied
to different pre-trained Transformers to achieve better per-
formance, we fine-tuned four popular pre-trained code re-
trieval Transformers—RoBERTa(code) (Husain et al. 2019),
CodeBERT (Feng et al. 2020), GraphCodeBERT (Guo et al.
2021), and UniXCoder (Guo et al. 2022)—on the Code-
SearchNet dataset in our study.

Implementation Details

Our CONSIDER framework is implemented in PyTorch. For
all models, we map the final output dimensions to 768, uti-
lizing the AdamW optimizer (Loshchilov and Hutter 2017).
Batch size, learning rate, and training steps are set to 256,
2e-5, and 50K respectively. The maximum sequence lengths
for text and code are set to 128 and 320 respectively. All ex-
periments are conducted using two Tesla A100 GPUs. We
consider hyperparameters α within {0.5, 0.6, 0.7} and β
within {1.5, 1.75, 2.0}. We conduct a grid search across var-
ious scenarios to identify their optimal combinations.

Ruby JavaScript Go Python Java PHP
60

65

70

75

80

85

90

95

M
R

R

Monolingual
Multilingual
Distill
CONSIDER

Figure 3: Comparison of the overall performance between
our framework and the baseline in a monolingual scenario.

Overall Results
First, we test all multilingual frameworks in a multilingual
scenario, as shown in Table 2. We find that, compared to
the monolingual scenario, both directly applying a multi-
lingual training set and adopting the knowledge distillation
learning method result in a more significant performance
decline. However, the performance degradation of our pro-
posed CONSIDER framework in a multilingual scenario
is relatively smaller. This indicates that our method better
identifies users’ language intent in multilingual scenarios by
modeling language specialties.

Next, we conduct experiments in a monolingual scenario,
as shown in Figure 3. We find that although we directly ap-
ply a multilingual training set to improve the overall perfor-
mance of the model, especially for low-resource languages,
it affects the performance of some high-resource languages.
Although the knowledge distillation learning method en-
hances the overall performance, the improvement is rela-
tively small due to the limitations of the teacher model.
In contrast, our proposed CONSIDER framework demon-
strates a stable improvement in performance across all lan-
guages compared to the monolingual model, suggesting that
our CONSIDER framework leverages the similarities be-
tween programming languages to enhance the performance
of multiple languages.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8684



CONSIDER

Multilingual

(a) Pairwise commonality module visualizations. (b) Confusion matrices visualizations. (c) t-SNE visualizations.
Multilingual CONSIDER

- 0.8

- 0.0

Go

Java

JS

PHP

Python

Ruby
Go Java

JS PHP
Python

Ruby

- 0.5

- 0.0

Go

Java

JS

PHP

Python

Ruby
Go Java JS PHP Python

Ruby

Go

Java

JS

PHP

Python

Ruby
Go Java JS PHP Python

Ruby

Figure 4: Visualization of commonalities and specialties modeling effectiveness in CONSIDER.

Monolingual scenario Multilingual scenario

w Commonalities enhancement
CONSIDER

w/o All
w CMGS algorithm

65

71

74

77

54

57

60

63

66

68

M
R

R

Figure 5: Ablation experiments.

Model Analysis
Ablation Study. To investigate the impact of each mod-
ule, we conducted an ablation study. We use the CodeBERT
model to initialize our framework and conduct experiments
in monolingual versus multilingual scenarios. The results
are shown in Figure 5. We observed that removing a mod-
ule leads to a decrease in model performance, indicating
the effectiveness of our design. Furthermore, we noticed
that the commonalities enhancement module enhances the
overall performance. Modeling language-specific features
produces more significant improvements in performance in
multilingual scenarios. Moreover, we found that employing
the CMGS algorithm also improves the model performance
in monolingual scenarios. We speculate that this is because
the update of the confusion matrix has led to a more diversi-
fied sample distribution in contrastive learning.

Visualization. Firstly, to examine the effectiveness of our
framework in modeling language features, we statistically
analyze and visualize the correlation scores for each pair
of languages in the pairwise commonality extraction mod-
ule, as depicted in Figure 4(a). We observe that the language
pairs Javascript and PHP, and Python and Ruby have strong
correlations (Javascript and PHP are commonly used in web
development). This result confirms the commonalities en-
hancement module can exploit the commonalities between
languages to improve their performance.

Next, to investigate the effectiveness of our framework

in modeling language features, we apply the Multilingual
and CONSIDER frameworks to perform multilingual fine-
tuning of the CodeBERT model. We visualize the confusion
matrix of the model on the test set. As shown in Figure 4(b),
we notice that applying this algorithm leads to a confusion
matrix closer to a diagonal matrix. Additionally, to visually
demonstrate CONSIDER’s ability to model language fea-
tures, we randomly select 500 code snippets from the test
set of each language and project their representations onto a
2D space using t-SNE (Van der Maaten and Hinton 2008).
In Figure 4(c), we differentiate code representations of dif-
ferent programming languages using distinct colors, and we
compare our framework with the multilingual method. Upon
observation, we find that the visualization plot using the
CONSIDER framework shows clearly separated clusters of
different languages, while the plots using other frameworks
depict larger areas of overlap among code representations of
various programming languages. This indicates that CON-
SIDER can effectively model the characteristics of program-
ming languages, whereas other multilingual retrieval frame-
works struggle to accurately capture the specialties features
of different programming languages.

Conclusion

In this paper, we investigated the task of multilingual code
retrieval. We proposed a novel multilingual code retrieval
framework CONSIDER to enhance the capability of the
retrieval model in multilingual scenarios. Specifically, we
first modeled the commonalities between programming lan-
guages and enhanced the representation of each language
based on this. Then, we introduced a novel confusion-
matrix-guided sampling algorithm to model the specialties
of languages. Through extensive experiments on both mono-
lingual and multilingual retrieval scenarios, we demon-
strated that CONSIDER could leverage the commonalities
between programming languages to boost overall perfor-
mance, and it could effectively model the specialties of lan-
guages, thereby enabling a better understanding of the target
language of user queries. We also conducted additional anal-
ysis experiments to substantiate the effectiveness and ratio-
nality of CONSIDER.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8685



Acknowledgements
This research was partially supported by grants from the Na-
tional Key Research and Development Program of China
(No. 2021YFF0901003), and the National Natural Science
Foundation of China (No.62106244), the University Syn-
ergy Innovation Program of Anhui Province (No. GXXT-
2022-042)

References
Arakelyan, S.; Hakhverdyan, A.; Allamanis, M.; Garcia, L.;
Hauser, C.; and Ren, X. 2022. NS3: Neuro-symbolic Se-
mantic Code Search. In NeurIPS.
Bui, N. D. Q.; Yu, Y.; and Jiang, L. 2021. Self-Supervised
Contrastive Learning for Code Retrieval and Summarization
via Semantic-Preserving Transformations. In SIGIR ’21:
The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event,
Canada, July 11-15, 2021, 511–521.
Cambronero, J.; Li, H.; Kim, S.; Sen, K.; and Chandra, S.
2019. When deep learning met code search. In Proceed-
ings of the ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019, 964–974.
Chen, Q.; and Zhou, M. 2018. A neural framework for
retrieval and summarization of source code. In Proceed-
ings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, 826–831.
Clark, K.; Khandelwal, U.; Levy, O.; and Manning, C. D.
2019. What Does BERT Look At? An Analysis of BERT’s
Attention. In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for
NLP.
Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.;
Shou, L.; Qin, B.; Liu, T.; Jiang, D.; and Zhou, M. 2020.
CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020, volume EMNLP 2020 of Findings of ACL,
1536–1547.
Giorgi, J.; Nitski, O.; Wang, B.; and Bader, G. 2021. De-
CLUTR: Deep Contrastive Learning for Unsupervised Tex-
tual Representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers).
Guo, D.; Lu, S.; Duan, N.; Wang, Y.; Zhou, M.; and Yin,
J. 2022. UniXcoder: Unified Cross-Modal Pre-training for
Code Representation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, 7212–7225.
Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou,
L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; Tufano, M.; Deng,
S. K.; Clement, C. B.; Drain, D.; Sundaresan, N.; Yin, J.;

Jiang, D.; and Zhou, M. 2021. GraphCodeBERT: Pre-
training Code Representations with Data Flow. In 9th In-
ternational Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021.
Haldar, R.; Wu, L.; Xiong, J.; and Hockenmaier, J. 2020. A
Multi-Perspective Architecture for Semantic Code Search.
In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, 8563–8568.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum Contrast for Unsupervised Visual Representa-
tion Learning. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
He, L.; Huang, Z.; Chen, E.; Liu, Q.; Tong, S.; Wang, H.;
Lian, D.; and Wang, S. 2023. An Efficient and Robust Se-
mantic Hashing Framework for Similar Text Search. ACM
Trans. Inf. Syst., 41(4).
Huang, J.; Tang, D.; Shou, L.; Gong, M.; Xu, K.; Jiang,
D.; Zhou, M.; and Duan, N. 2021. CoSQA: 20, 000+ Web
Queries for Code Search and Question Answering. In Pro-
ceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, 5690–5700.
Hull, D. 1999. Xerox TREC-8 Question Answering Track
Report.
Husain, H.; Wu, H.; Gazit, T.; Allamanis, M.; and
Brockschmidt, M. 2019. CodeSearchNet Challenge: Eval-
uating the State of Semantic Code Search. CoRR,
abs/1909.09436.
Kim, J.; Lee, S.; Hwang, S.; and Kim, S. 2010. Towards
an Intelligent Code Search Engine. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.
Kovaleva, O.; Romanov, A.; Rogers, A.; and Rumshisky,
A. 2019. Revealing the Dark Secrets of BERT. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).
Lemos, O. A. L.; de Paula, A. C.; Zanichelli, F. C.; and
Lopes, C. V. 2014. Thesaurus-based automatic query expan-
sion for interface-driven code search. In 11th Working Con-
ference on Mining Software Repositories, MSR 2014, Pro-
ceedings, May 31 - June 1, 2014, Hyderabad, India, 212–
221.
Li, H.; Miao, C.; Leung, C.; Huang, Y.; Huang, Y.; Zhang,
H.; and Wang, Y. 2022. Exploring Representation-level
Augmentation for Code Search. In Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, 4924–4936.
Li, W.; Xu, J.; and Chen, Q. 2022. Knowledge Distillation-
Based Multilingual Code Retrieval. Algorithms, 15(1): 25.
Ling, X.; Wu, L.; Wang, S.; Pan, G.; Ma, T.; Xu, F.; Liu,
A. X.; Wu, C.; and Ji, S. 2021. Deep Graph Matching and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8686



Searching for Semantic Code Retrieval. ACM Trans. Knowl.
Discov. Data, 15(5): 88:1–88:21.
Loshchilov, I.; and Hutter, F. 2017. Fixing Weight Decay
Regularization in Adam. CoRR, abs/1711.05101.
Lv, F.; Zhang, H.; Lou, J.-g.; Wang, S.; Zhang, D.; and
Zhao, J. 2015. CodeHow: Effective Code Search Based
on API Understanding and Extended Boolean Model (E).
In 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE).
Ma, Y.; Yu, Y.; Li, S.; Jia, Z.; Ma, J.; Xu, R.; Dong, W.;
and Liao, X. 2023. MulCS: Towards a Unified Deep Rep-
resentation for Multilingual Code Search. In IEEE Inter-
national Conference on Software Analysis, Evolution and
Reengineering, SANER 2023, Taipa, Macao, March 21-24,
2023, 120–131.
Mukherjee, R.; Jermaine, C.; and Chaudhuri, S. 2020.
Searching a Database of Source Codes Using Contextual-
ized Code Search. Proc. VLDB Endow., 13(10): 1765–1778.
Nie, L.; Jiang, H.; Ren, Z.; Sun, Z.; and Li, X. 2016. Query
Expansion Based on Crowd Knowledge for Code Search.
IEEE Trans. Serv. Comput., 9(5): 771–783.
Ning, Y.; Huang, Z.; Lin, X.; Chen, E.; Tong, S.; Gong, Z.;
and Wang, S. 2023. Towards a Holistic Understanding of
Mathematical Questions with Contrastive Pre-training. In
Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2023, Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2023, Thirteenth Sym-
posium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023,
13409–13418.
Nowozin, S.; Cseke, B.; and Tomioka, R. 2016. f-GAN:
Training Generative Neural Samplers using Variational Di-
vergence Minimization. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, 271–279.
Ou, Z.; Su, Q.; Yu, J.; Zhao, R.; Zheng, Y.; and Liu, B. 2021.
Refining BERT Embeddings for Document Hashing via Mu-
tual Information Maximization. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021, Virtual
Event / Punta Cana, Dominican Republic, 16-20 November,
2021, 2360–2369.
Shuai, J.; Xu, L.; Liu, C.; Yan, M.; Xia, X.; and Lei, Y. 2020.
Improving Code Search with Co-Attentive Representation
Learning. In ICPC ’20: 28th International Conference on
Program Comprehension, Seoul, Republic of Korea, July 13-
15, 2020, 196–207.
Tong, W.; Tong, S.; Hunag, W.; He, L.; Ma, J.; Liu, Q.; and
Chen, E. 2020. Exploiting knowledge hierarchy for finding
similar exercises in online education systems. In 2020 IEEE
International Conference on Data Mining (ICDM), 1298–
1303. IEEE.
Wan, Y.; Shu, J.; Sui, Y.; Xu, G.; Zhao, Z.; Wu, J.; and Yu,
P. S. 2019. Multi-modal Attention Network Learning for Se-
mantic Source Code Retrieval. In 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019, 13–25.

Yao, Z.; Peddamail, J. R.; and Sun, H. 2019. CoaCor: Code
Annotation for Code Retrieval with Reinforcement Learn-
ing. In The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, May 13-17, 2019, 2203–2214.
Ye, W.; Xie, R.; Zhang, J.; Hu, T.; Wang, X.; and Zhang, S.
2020. Leveraging Code Generation to Improve Code Re-
trieval and Summarization via Dual Learning. In WWW
’20: The Web Conference 2020, Taipei, Taiwan, April 20-24,
2020, 2309–2319.
Zhang, F.; Niu, H.; Keivanloo, I.; and Zou, Y. 2018. Ex-
panding Queries for Code Search Using Semantically Re-
lated API Class-names. IEEE Transactions on Software En-
gineering, 44(11): 1070–1082.
Zhao, C.; Zhao, H.; He, M.; Zhang, J.; and Fan, J. 2023.
Cross-domain recommendation via user interest alignment.
In Proceedings of the ACM Web Conference 2023, WWW
2023, Austin, TX, USA, 30 April 2023 - 4 May 2023, 887–
896.
Zubkov, M.; Spirin, E.; Bogomolov, E.; and Bryksin, T.
2022. Evaluation of Contrastive Learning with Various
Code Representations for Code Clone Detection. CoRR,
abs/2206.08726.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8687


