Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Marvin Schmitt! Desi R. Ivanova? Daniel Habermann? Ullrich Kéthe* Paul-Christian Biirkner 3
Stefan T. Radev’

Abstract

We propose a method to improve the efficiency
and accuracy of amortized Bayesian inference by
leveraging universal symmetries in the joint prob-
abilistic model p(6,Y) of parameters 6 and data
Y. In a nutshell, we invert Bayes’ theorem and
estimate the marginal likelihood based on approx-
imate representations of the joint model. Upon
perfect approximation, the marginal likelihood
is constant across all parameter values by defini-
tion. However, errors in approximate inference
lead to undesirable variance in the marginal likeli-
hood estimates across different parameter values.
We penalize violations of this symmetry with a
self-consistency loss which significantly improves
the quality of approximate inference in low data
regimes and can be used to augment the training
of popular neural density estimators. We apply
our method to a number of synthetic problems and
realistic scientific models, discovering notable ad-
vantages in the context of both neural posterior
and likelihood approximation.

1. Introduction

Computer simulations are ubiquitous in today’s world, and
their widespread application in the sciences has heralded
a new era of simulation intelligence (Lavin et al., 2021).
Typically, scientific simulators define a mapping from latent
parameters 6 to observable data Y. This forward problem is
probabilistically described by the likelihood p(Y | 8). The
inverse problem of reasoning about the unknown parame-
ters @ given observed data Y and a prior p(6) is captured
by the posterior p(0|Y) = p(0)p(Y |6)/p(Y), which
represents a coherent way to combine all available infor-
mation in a probabilistic system (Gelman et al., 2013) and
quantify epistemic uncertainty (Hiillermeier & Waegeman,

"University of Stuttgart, Germany *University of Oxford, UK
3TU Dortmund University, Germany *Heidelberg University, Ger-
many *Rensselaer Polytechnic Institute, USA. Correspondence to:
Marvin Schmitt <mail.marvinschmitt@ gmail.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2021). For complex models, the marginal likelihood p(Y)
is a high-dimensional integral, p(Y) = [p(8) p(Y | 0)d6,
rendering the posterior analytically intractable in general.

In likelihood-based inference, the likelihood is explicitly
available as a probability density function p(Y |8), giving
rise to a family of likelihood-based algorithms to approxi-
mate the posterior distribution. Markov chain Monte Carlo
(MCMC) methods sample from the unnormalized posterior
by exploring the parameter space through a Markov chain,
with state-of-the-art samplers such as Hamiltonian Monte
Carlo (Neal, 2011), as implemented in the probabilistic
programming language Stan (Carpenter et al., 2017). Vari-
ational inference approximates the posterior via tractable
analytic distributions, with consistent progress towards more
trustworthy variational methods (Blei et al., 2017).

Different from likelihood-based inference, simulation-based
inference (SBI) circumvents explicit likelihood evaluation
and relies only on random samples from a simulation pro-
gramY ~ p(Y,Z|0) with latent program states or “out-
sourced” noise Z (Cranmer et al., 2020). The execution
paths of the simulation program define an implicit likelihood
p(Y 10) = [p(Y,Z]|0)dZ, which is computationally in-
tractable for any simulation program of practical interest.
However, we have access to samples (8,Y) of parameter-
data tuples by executing the simulation program repeatedly.
In the face of analytically intractable simulators, previous
research has explored other properties of such programs
for learning surrogate likelihood functions or the likelihood
ratio (Brehmer et al., 2018; 2020b;a).

As a general perspective on simulation intelligence, amor-
tized Bayesian inference (ABI) is concerned with enabling
fully probabilistic SBI in real-time (Radev et al., 2020;
Gongalves et al., 2020; Avecilla et al., 2022). A core princi-
ple of ABI lies in tackling probabilistic problems (forward,
inverse, or both) with neural networks. By re-casting an
intractable probabilistic problem as forward passes through
a trained generative neural network, the required compu-
tational time reduces from hours (MCMC) to just a few
seconds (ABI). Yet, there is rarely a free lunch, and neural
ABI algorithms require an upfront training phase. The asso-
ciated effort is subsequently repaid with real-time inference
on new data sets, thereby amortizing the initial training time.

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Prior Likelihood

Perfect
Symmetry

-X.

True posterior

Est. marginal likelihood

- p(y) = const
Vargp(y) = 0

Prior Likelihood

-X

Posterior
Approximation

Approximate posterior Est. marginal likelihood

Figure 1: The performance of the posterior approximator is evaluated via the variance of the corresponding marginal
likelihood estimates. Top row: For the true posterior (or a perfect approximation thereof), the estimated marginal likelihood
is constant for any parameter value 6 ~ 7(8). Bottom row: For an imperfect approximate posterior, the estimated marginal
likelihood varies across different parameter values. Hence, the inherent symmetry of the joint probabilistic model p(8,Y’)
is violated by its approximate representation. Minimizing the variance of the marginal likelihood estimates pushes the
estimated marginal likelihood towards uniformity. This restores the symmetry of the unified representation, which is

equivalent to improving the approximate posterior.

In this paper, we propose a new method to improve the ac-
curacy of ABI, particularly in low data regimes. We achieve
this by leveraging universal symmetries in the joint prob-
abilistic model p(0,Y). In a nutshell, we invert Bayes’
theorem and estimate the marginal likelihood based on an
approximate likelihood and posterior. Upon perfect approxi-
mation, the estimated marginal likelihood is constant across
all parameters. An imperfect approximation, however, leads
to variance in the marginal likelihood estimates across differ-
ent underlying parameter values (see Figure 1). We penalize
violations of this symmetry in the loss function to accelerate
the training of neural density estimators that approximate
components of the probabilistic model. We apply our novel
method to a range of synthetic and real problems with both
an explicit likelihood (likelihood-based) and an implicit
likelihood (simulation-based). Our contributions are:

(i) We propose a novel self-consistency loss which exploits
symmetries of the joint probabilistic model p(8,Y) in
neural network representations of its components;

(i) We increase the training efficiency of amortized neural
posterior estimation by leveraging information from an
explicit likelihood for the self-consistency loss;

(iii)) We demonstrate how simultaneous learning of an ap-
proximate posterior and a surrogate likelihood benefits
from the self-consistency loss without requiring an
explicit likelihood.

2. Background
2.1. Notation

Simulation-based training uses a training set
{(@, YO)}N | of tuples of simulated parameters
and data. Here, NV is the total simulation budget for neural
network training, and each superscript 2 marks one training
example (i.e., tuple of latent parameter vector and observ-
able data set). In accordance with the (Bayesian) forward
model, we summarize the D-dimensional latent parameter
vector of the simulation program as 8 = (6,...,0p).
Further, Y = {y; }3‘1:1 is a data set, that is, a matrix
whose rows consist of multi-dimensional (vector-valued)
observations {y;}7_; = {y1,...,ys}. Accordingly, one
parameter vector (") yields one data set Y (®).

2.2. Neural Posterior Estimation

Past work on neural SBI has primarily focused on neural
posterior estimation (NPE) for cases where no explicit like-
lihood is available (Radev et al., 2020; Gongalves et al.,
2020; Avecilla et al., 2022; Geftner et al., 2023; Sharrock
et al., 2022; Schmitt et al., 2023a). NPE typically builds
on a conditional normalizing flow (Rezende & Mohamed,
2015) f4(0;Y) with trainable neural network weights ¢. It
implements a bijective map between the inference targets
0 € RP and a latent variable z € R” with a simple base
distribution p(z), e.g., Gaussian or Student-t. The normaliz-

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

ing flow defines a probability distribution g4 (6 | Y') through
change-of-variables,

0f(0:Y)

1(0|Y) = p(z = f(6;Y)) ’det 50

’ ;o (D
resulting in a direct surrogate for the target posterior distribu-
tion p(@ | Y). The neural network weights ¢ are trained by
minimizing the forward Kullback-Leibler (KL) divergence
between the target posterior and approximate posterior:

Lxee(¢) = Epry) [KL(p(0]Y) [| 44 (0] Y))]
= Ey0,v)[—log gy (0| Y)] 4 const

Since NPE algorithms are trained across the entire prior
predictive distribution p(Y), they naturally amortize over
multiple new data sets during inference. In Experiments 1
and 4, we apply NPE to cases where we have access to an
explicit likelihood but still want to achieve amortized infer-
ence, which is infeasible with MCMC-based algorithms.

2.3. Neural Posterior and Likelihood Estimation

Recently, simulation-based inference and surrogate model-
ing have been tackled jointly by learning an approximate
posterior g4 (6| Y) and a surrogate likelihood ¢, (Y | €) in
tandem. This approach is called neural posterior and likeli-
hood estimation (NPLE; Wiqvist et al., 2021; Glockler et al.,
2022; Radev et al., 2023). Amortized NPLE (e.g., Radev
et al., 2023) combines the maximum likelihood objectives
for posterior and likelihood into a joint loss:

Lnpie(@,n) = — log gy (Y| 9)]
3

NPLE enables the joint estimation of both amortized pos-
terior predictive and marginal likelihood. This expands the
utility of Bayesian workflows to downstream tasks that have
historically been deemed computationally impractical, such
as cross-validation with likelihood-based predictive metrics
(Radev et al., 2023; Vehtari et al., 2022).

Ep0,v)[—logge(01Y)

2.4. Limitations of NPE and NPLE

Whilst NPE and NPLE have shown promise in complex ap-
plications, they often require large simulation budgets and
do not explicitly encourage accurate marginal likelihood
estimation. In this paper, we propose a straightforward yet
powerful approach to improve amortized Bayesian infer-
ence, integrating a self-consistency mechanism that allevi-
ates these issues and enhances the accuracy of posterior and
likelihood estimation with small simulation budgets.

3. Leveraging Self-Consistency for ABI

The joint model p(6,Y) implies a symmetry between
marginal likelihood p(Y), prior p(0), likelihood p(Y | 0),

and posterior p(€ | Y). Inverting Bayes’ theorem yields

p(0)p(Y |6)

Y= ey

“

which must still hold if any component of the joint model
is represented through a perfect approximator ¢(-). How-
ever, we cannot directly use Eq. 4 as a loss function for
learning the posterior because the marginal likelihood on
the LHS is notoriously difficult to approximate with high
precision (Meng & Wong, 1996). Instead, we exploit the
fact that p(Y) is constant across all parameters 6 (LHS),
even though its computation (RHS) hinges on an arbitrary
but fixed parameter value 6. In other words, if we choose K
parameter values 01, ..., O, all computed marginal like-
lihood values must be equal, regardless of the individual
parameter 8;,. We call this the self-consistency criterion,

ZW = const VA€ ©® —
pOyP(Y]0) _ _pOx)p(Y|0k)
p(61]Y) POxIY)

where © denotes the admissable parameter space and
01, ...,0K¢c O are arbitrary but fixed parameter values. In
this paper, the self-consistency criterion shall be applied
to neural posterior and likelihood estimation. We will first
demonstrate that direct constrained optimization is computa-
tionally infeasible. Then, we will propose a straightforward
and robust way to integrate the self-consistency criterion
into existing neural density estimators.

3.1. Naive Approach: Direct Constrained Optimization

We could optimize the NPE (2) or NPLE (3) objective, sub-
ject to the self-consistency constraint (5), through Lagrange
multipliers. For (2), this would involve optimizing

L(¢, M.x) = Lnpe(@) + L(d, M1.x), where
HOY100) 0
L(p, \.k) Z)\k(2(0r 1Y) c

with respect to ¢ and A;.x. The inconvenience of the un-
known constant ¢ could be resolved by formulating a relative
constraint, that is, choosing

L(p, \.k) =

o ("

)p(Y [6k)
4 9k|Y)

P(Or11)p(Y | 0k+1)>)
Q¢>(9k+1 |Y) .

While this approach is conceptually appealing, such rela-
tive constraints are notoriously hard to optimize in practice,
which calls for an alternative solution that is more scalable.

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Algorithm 1 Self-consistency loss for finite training.
{I}: likelihood-based with analytic likelihood
{II}: simulation-based with approximate likelihood

Input: N training data tuples {(8?), YY)}V
Input: Number of self-consistency samples K
1: fori=1,...,Ndo
2 < compute other losses such as NPE/NPLE loss >
3: fork=1,...,Kdo
4

6 ~ m(0) {sample from proposal 7(8)}
0,) p(Y |6,
g PEDPYC6,)
, 4o (01 | Y1)
5: log P, (Y(z)) =
2 (Y |0,
10gp<9k)q7< :]»,) {II}
10 (0 | Y))
6: end for 4
7. L = Var({log (Y O)H)
8: end for

3.2. Variance Penalty and Self-Consistency Loss

To overcome the problems of the naive approach, we re-
frame the constraint as a variance penalty, which simplifies
the optimization process and enhances both computational
feasibility and robustness compared to direct second order
optimization. First, Kothe (2023) observes that a second-
order Taylor expansion of Eq. 2 yields

KL(p(0]Y) || 45(8] Y)) ~

L p(6)p(Y |6)
(V)2 ”“"”(16(0]Y) >
®)

This approximation implies that the KL divergence between
the true and the approximate posterior becomes negligible
as the variance of Eq. 4 with respect to the true posterior
p(0 1Y) shrinks to zero. Moreover, it is clear that minimiz-
ing the variance of the marginal likelihood estimator indi-
rectly achieves the effect of the constraint implied by Eq. 7.
However, directly targeting the variance introduces two new
challenges: (i) The true posterior p(@ |Y) is unknown; and
(ii) the argument of Var, g 1Y) [] may cause numerical in-
stabilities due to the danger of vanishingly small values in
the denominator.

As a remedy, we propose a two-step solution during the
simulation-based training: (i) Sample parameters 8 from a
proposal distribution 7 (8); and (ii) quantify the expected vi-
olation of the self-consistency criterion via the variance
of the estimated log marginal likelihood (LML) across
these parameter samples. This results in the following self-
consistency loss function:

Lsc(Y, @) = Vary(g) <log lm) ©

The analytic likelihood p(Y |) may be replaced with an
approximate likelihood ¢, (Y | 8), as demonstrated in Ex-
periments 2, 4, and 5. If the variance in Eq. 9 is zero,
the estimated marginal likelihood is constant across the
parameter space ©. In other words, the approximation is
self-consistent (cf. Figure 1). The following proposition
warrants the functional equivalence between using the vari-
ance in Eq. 8 and a tractable version of the more stable
formulation in Eq. 9. The proof of the proposition is given
in Appendix B.

Proposition 1. Ler w(0) be any proposal distribution with
the same support as p(0 | Y), Y be a fixed data set, and f
be any monotonic function, then

p(Y [0)p(6)
v (4 (M) =0 =
Y |0)p(@

v (M) =
This proposition states that (i) minimizing the variance of the
log marginal likelihood is equivalent to targeting the correct
quantity in Eq. 8; and (ii) we can take a different proposal
than the unknown posterior p(0 | Y) and still minimize the
correct variance term in Eq. 8. For example, taking the
logarithm of the marginal likelihood is akin to using the
Gibbs loss in favor of the marginal likelihood for measuring

predictive performance (Watanabe, 2009).

However, using a different proposal distribution may signif-
icantly change the empirical behavior of the Monte Carlo
estimate and exhibit poor pre-asymptotic properties, espe-
cially if the proposal 7(0) has much larger variance than
the true posterior p(0|Y). Thus, Section 3.3 discusses
techniques for mitigating such behavior by using optimiza-
tion schedules. Finally, the same proposition can be shown
to hold when both the posterior and the likelihood in the
marginal likelihood computation are replaced with neural
surrogates. As a consequence, we would expect that the
(reducible) variance in the doubly approximate marginal
likelihood will be larger; still our experiments show measur-
able benefits even when using an approximate likelihood for
estimating self-consistency (see Experiments 2, 3, and 5).

3.3. Monte Carlo Estimation

The self-consistency loss Lgc can be seamlessly added to
NPE or NPLE losses. For instance, using the maximum
likelihood loss for NPE with normalizing flows, we obtain:

Lscnvee(P) =Epiy) | Epo|v) [~ 108 45(0Y)]

NPE loss (on fixed Y)

p(0)p(Y |6)

+ AVar, (g <10g —_
@ 94(0]Y)

self-consistency loss Lgc with weight A>0

(10)

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

The variance in Eq. 9 must be empirically estimated based
on finite samples {6}/, from some proposal distribution
m(0), as detailed in Algorithm 1. Due to the probabilistic
symmetry of the joint distribution, high-density regions in
the approximate posterior have the potential to cause large
deviations in the estimated marginal likelihood landscape
(cf. Figure 1). Consequently, we choose the approximate
posterior as the proposal, 7(6) := g4(0|Y), to render the
Monte Carlo estimate efficient.

Using the approximate posterior as a proposal has one
caveat: It is spectacularly bad at very early stages of train-
ing. To mitigate this, we use a schedule p(-) that anneals
the weight A\ during training. The use of progressive anneal-
ing has been established as a successful means to control
the influence of a potentially unstable approximation loop
(e.g., for consistency models, Song et al., 2023; Song &
Dhariwal, 2023; Schmitt et al., 2023a). Based on our ex-
periments, we recommend choosing the schedule so that
the self-consistency loss is inactive at the start of training,
1(0) = 0, and its weight X increases as training progresses.

3.4. Intuition for Benefits of Self-Consistency

So far, we presented the theoretical foundation of our self-
consistency loss, and Section 5 will empirically demonstrate
its effectiveness. However, one pivotal question remains:
Why does the self-consistency loss improve inference?

In a nutshell, the self-consistency loss leverages more in-
formation for correctly amortizing p(€|Y) than isolated
NPE or NLE with the same number of simulated data sets
in the training phase through two strategies. First, the self-
consistency loss informs the learned posterior and likelihood
about their relation to each other, and explicitly rewards
correct marginal likelihood estimates in addition to the max-
imum likelihood training objectives of NPE and NLE. This
substantially reduces the space of admissible solutions in
the training objective, upon which the correct solution is
found via the maximum likelihood loss. Second, the self-
consistency loss uses analytical density information from
the Bayesian joint model (i.e., likelihood and prior). Since
the maximum likelihood losses in NPE and NLE already
optimize the networks towards correct sampling based on
simulator outputs, the self-consistency loss further enhances
the effect by penalizing deviations in the approximate pos-
terior density (and approximate likelihood, if learned) in
regions not immediately covered by the simulator.

4. Related Work

The self-consistency property in Eq. 4 can be used to com-
pute importance sampling weights during inference to re-
weigh the approximate posterior samples (Dax et al., 2023;
Glockler et al., 2022). Importance sampling has been shown

to improve the quality of the approximate posteriors when
high accuracy is desired. However, it also increases the
necessary amount of computations during inference, which
in turn impedes low-latency tasks. In contrast, our self-
consistent approximators do not have an increased sampling
time during inference. Similarly, Glockler et al. (2022) pro-
pose a variational approach to sequential (non-amortized)
SBI which entails self-normalized importance sampling
based on the marginal likelihood.

Radev et al. (2023) use a tandem of two normalizing flows
for posterior and likelihood estimation that enables amor-
tized marginal likelihood estimation during inference. Our
self-consistency loss additionally applies the principle of
amortized marginal likelihood estimation to the neural net-
work training phase: By evaluating the self-consistency of
the networks’ (log) marginal likelihood estimates, we supply
an additional training signal and thereby use the available
data more efficiently. From a different perspective, our
self-consistent method with learned likelihoods (SC-NPLE)
can be seen as an improvement to jointly amortized neural
approximation, which trains the neural approximators in
isolation. In contrast, our self-consistency loss connects the
networks during training and explicitly rewards accurate
marginal likelihood estimation by the neural network tan-
dem. As such, our work is among only a few approaches
that explicitly consider the connection between different
quantities in SBI and ABI (for other examples, see Brehmer
et al., 2020b; Chen et al., 2023; Schmitt et al., 2023b).

A recent review of change-of-variable formulas in gener-
ative modeling discusses a multitude of self-consistency
properties in (Bayesian) generative models (Ké&the, 2023).
Our self-consistency property of the marginal likelihood
in Eq. 4 is one out of multiple possible self-consistency
requirements. The work by Kothe (2023) complements the
theoretical foundation of our proposed self-consistency loss,
which aims to transform their theoretical remarks into a set
of actionable methods for amortized Bayesian inference.

5. Empirical Evaluation

We evaluate our self-consistent estimator across a range of
synthetic tasks and real-world problems. Our main baseline
is NPE for tasks with an explicit likelihood, and NPLE for
tasks with an implicit likelihood that is learned in tandem.

The key evaluation metric is the maximum mean discrep-
ancy (MMD; Gretton et al., 2012) between true and approx-
imate posterior samples. In addition, we use simulation-
based calibration (SBC; Talts et al., 2018; Siilynoja et al.,
2022) to assess the approximators’ uncertainty quantifica-
tion. Given a true posterior distribution p(0|Y), all inter-

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

A True N = 2048 N = 4096 C

~~

g] [MMD=0.06] | [MMD=0.05 .

5 a ° EE \PE

§ "l]] 2.0 ° @M SCNPE
e * @& W .

E -2 0 2 -2 0 2 7‘2 0 2 -2 0 2 -2 0 2 -2 [‘i 2 Q 15 1 ° ° ° ;

V4 = § e ° :

B =1075° .

e True N =256 N =512 N = 1024 N = 2048 N = 4096 S22

% | [MMD=036] | [[MMD=0.17] | [[MMD=0.04]| [[MMD=0.04] | [[MMD=0.03 05{ '

& I N A | A 0ol 4 44 28
% N *] "-‘\ I)] - w] » 956 512 1024 2048 4096
CI) 0 i 7 - i B - i B - 0 : s 0 B - 0 ; Snnulatlon Budget
195}

Figure 2: Experiment 1 (Gaussian Mixture Model). Performance comparison between the NPE baseline (A) and our self-
consistent SC-NPE method (B). Pink star x marks the ground-truth parameter 8*. Both qualitative assessments (sampling)
and quantitative measures (MMD; lower is better) indicate that the our SC-NPE method yields significantly better results
given the same neural architecture and training budget. Across all simulation budgets, our self-consistent approximator
outperforms the NPE baseline, as indexed by improved posterior fidelity (lower MMD) on 100 unseen test instances (C).

vals U, (6 | Y) are calibrated for every quantile ¢ € (0,1),

= //1[9* € U,(0]Y)]p(Y|6.) p(6.)d6.dY, (11)

with indicator function I[-] (Biirkner et al., 2023). An ap-
proximate posterior may violate this equation, resulting in
insufficient calibration.

5.1. Experiment 1: Gaussian Mixture Model

We first illustrate our method on a 2-dimensional Gaus-
sian mixture model as described in Geffner et al. (2023).
The model consists of two symmetrical, equally weighted
components with a shared, known covariance matrix. A
simulated dataset contains ten independent and identically
distributed observations Y = {y;};2,, generated by first
sampling a parameter @ ~ N (6|0,I), and then condition-
ally sampling each observation as

vil0~05N(y|0,1/2)+ 05N (y|—-6,1/2). (12)
We investigate the effect of simulation budget variations on
performance, maintaining a fixed self-consistency sample
size of K = 10 and scaling the simulation budget between
N = 256 and N = 4096, each time doubling the previous
budget. Both NPE (baseline) and SC-NPE (ours) train an
identical neural spline flow architecture (Durkan et al., 2019)
for 35 epochs. We choose a stepwise constant annealing
schedule for the self-consistency weight A such that A = 0
for the first 5 epochs, and A = 1 for the remaining 30 epochs.
Appendix C contains further training details.

Results. Our method demonstrates clear superiority over
the baseline, particularly at lower budget levels, as detailed

in the following. Figure 2A and 2B give a visual illustration
of the posterior distributions for a single dataset. Figure 2C
shows the distribution of MMDs, computed over 100 test
datasets for our self-consistent method against the NPE
baseline. Qualitatively, the samples generated by SC-NPE
(ours) are visually closer to the target distribution. Quanti-
tatively, our self-consistent method achieves substantially
lower MMD scores than the NPE baseline, indicating a more
accurate approximation. This underscores the efficiency of
integrating self-consistency when learning amortized pos-
teriors, highlighting how our approach improves inference
performance with limited computational resources. All ap-
proximators are well-calibrated (see Appendix C.1).

Ablation: Number of Monte Carlo Samples. We vary
the number K € {10, 100,500} of Monte Carlo samples
to estimate the variance in the self-consistency loss with
NPE (2) in Appendix C.2. While we observe satisfactory
calibration for all self-consistent architectures, increasing
the number of consistency samples beyond K = 10 does
not noticeably improve performance in this experiment.

Variation: Approximate Neural Likelihood. We parallel
Experiment 1 with an approximate likelihood and a simula-
tion budget of N = 1024 in Appendix C.3. Once again, our
self-consistent approximator shows superior performance
with respect to density estimation and sampling.

Extension: Sequential NPE with Self-Consistency. We
observe that sequential neural posterior estimation (SNPE;
Greenberg et al., 2019) also benefits from adding our self-
consistency loss during training, as evidenced by more ac-
curate posterior samples (see Appendix C.4). This result
further underscores the modularity and flexibility of our
proposed self-consistency loss.

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

(@)
=, —e— NPLE (baseline)
- —e— SC-NPLE (ours)
—
RS —
o — o
L
73 ° 4
O e
™ 00 oD O % ©
Simulation budget
Figure 3: Experiment 2 (Two Moons). Our self-

consistency loss yields a lower posterior error (MMD) than
the baseline NPLE algorithm on the test set with equal ar-
chitecture. We repeat the experiment 5 times on the same
training set; plots show the median, best, and worst run.

5.2. Experiment 2: Two Moons

The two moons benchmark is characterized by a bimodal
posterior with two crescents, which a posterior approximator
needs to recover (Greenberg et al., 2019; Lueckmann et al.,
2021; Wigqvist et al., 2021; Radev et al., 2023; Schmitt et al.,
2023a). We simultaneously learn an approximate posterior
and a surrogate likelihood (i.e., NPLE). Hence, the self-
consistency loss will be completely simulation-based and
use the learned surrogate instead of an explicit likelihood
(cf. Algorithm 1, case II). We repeat the experiment for dif-
ferent training budgets M € {256,512, 1024, 2048, 4096}
to assess the performance under varying data availability.
While M = 256 is a very small budget for the two moons
benchmark, M = 4192 is generally considered sufficient
for this experiment. We fix the number of Monte Carlo sam-
ples to estimate the variance in Eq. 9 to K = 10 and repeat
the training loop five times for each architecture to gauge the
stochasticity of the training. We evaluate the approximators’
ability to estimate (i) the posterior; (ii) the likelihood; and
(iii) the marginal likelihood. The Appendix contains all
neural network training details.

Results. Our self-consistent approximator SC-NPLE con-
sistently outperforms the baseline NPLE algorithm with
respect to posterior estimation across all simulation budgets,
as indexed by a better (lower) average posterior MMD on
100 unseen test instances across 5 training repetitions (see
Figure 3). In this experiment, SC-NPLE (ours) only needs
a simulation budget of M = 512 to perform on-par with
the NPLE baseline that was trained on 8x the simulation
budget (i.e., M = 4096). Further, we observe a more stable
training for SC-NPLE: The best and worst training runs in
Figure 3 have almost equal performance, while the poste-
rior accuracy of NPLE varies between repetitions. Table 1
shows the estimated likelihood density of an observed data

Table 1: Experiment 2 (Two Moons). Log likelihood den-
sity of the observed data Y., under the true data-generating
parameter 6* (higher is better). We report the mean+SE
across 1000 unseen test instances.

Method | N=512 N=1024 N=2048 N=4096

NPLE 3.15+0.03 3.18+0.03 2.88+0.04 2.91+0.05
SC-NPLE | 3.14£0.02 3.45£0.02 3.71+0.02 3.90£0.02

set Yieq given the ground-truth parameter 8* which was
used to simulate the data set. While the credible intervals
of NPLE (baseline) and SC-NPLE (ours) across the test set
have substantial overlap and perform on-par for small sim-
ulation budgets, our self-consistent approximator assigns
higher (better) likelihood densities to the ground-truth at
large simulation budgets. It is worth noting that the width of
the CI is smaller for SC-NPLE, which is a desirable property
indicating a reduced approximation error. Finally, we esti-
mate the marginal likelihood of 500 unseen test instances
and observe that the estimates from our self-consistent ap-
proximator are significantly sharper (smaller width of the
95% for fixed data sets), which is an indicator for a reduced
approximation error (see Table 2).

5.3. Experiment 3: Oscillatory Hes1 Expression Model

As a scientific real-world example, we apply our method
to an experimental data set in biology (Silk et al., 2011).
Upon serum stimulation of certain cell lines, the transcrip-
tion factor Hes1 exhibits sustained oscillatory transcription
patterns (Momiji & Monk, 2008). The measured concen-
tration of Hes1 mRNA is modeled with a set of three dif-
ferential equations which are governed by four parameters
0 = (po, h, k1, v) with fixed initial conditions according to
Filippi et al. (2011), see Appendix E for details.

We use a fixed simulation budget of N = 512 data sets for
neural network training. This simulation budget enables
amortized inference, yet it is orders of magnitude smaller
than the required budget for approximate Bayesian compu-
tation algorithms (e.g., ABC-SMC; Sisson et al., 2007) for

Table 2: Experiment 2 (Two Moons). Approximation error
of the log marginal likelihood (LML) estimate (lower is
better). Our self-consistent estimator yields a significantly
smaller approximation error, as indicated by sharper LML
estimates. For a data set Y,,, the approximation error is
quantified as the width of the LML estimate’s 95% CI. We
report its mean+SE across 1000 unseen test instances.

Method N=512 N=1024 N=2048 N=4096

NPLE 6.51+0.11 7.28£0.10 9.07+0.06 10.2140.08
SC-NPLE 1.70+0.02 1.37£0.02 1.21+0.01 1.1440.01

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Fractional rank statistic

A) Do h kq v B
ob}
@ g
o 5 005 0.05 0.05 0.05 <
o
_— .
@ &= ~
g E o 0.0 WW 0.00 0.00 =
2 —
= 3 -005 - 7
=N ~0.05 ~0.05 —005 =
- =
& 0.0 05 10 0.0 05 10 0.0 05 10 0.0 05 10
4 . - .
Fractional rank statistic At (minutes)
E © Po h ky v D
wn g
= 5 005 0.05 0.05 0.05 <
g g AW/\\‘\ é N
; =0.00 W 0.00 W 0.00 0.00 = 10
= E % 5 PN Y
% o 0.0 —0.05 —0.05 —0.05 = .
= 04 ; | ‘ |
&) 00 05 10 0.0 05 10 0.0 05 10 0.0 05 10 0 60 120 180 240
»n

At (minutes)

Figure 4: Experiment 3 (Hes1 Expression). The baseline NPLE approximator shows deficient simulation-based calibration,
as indexed by ECDF lines outside the gray 95% confidence bands (A). In contrast, our self-consistent approximator is
well-calibrated (C). Samples from the posterior predictive distribution on real experimental data (black dots; Silk et al.,

2011) are comparable between NPLE (B) and SC (D).

a single observed data set (Silk et al., 2011). We train a neu-
ral surrogate likelihood in tandem with the neural posterior
(NPLE) to use an approximate likelihood ¢, (Y | @) in the
self-consistency loss. The self-consistent approximator uses
K = 500 Monte Carlo samples. The annealing schedule
yields A = 0 for the first 10 epochs, and A = 1 for the
remaining 60 epochs. See Appendix E for details.

Results. Our self-consistent approximator with approximate
likelihood shows superior simulation-based calibration com-
pared to the NPLE baseline, particularly with respect to the
parameters po and v (see Figure 4A and C). The posterior
predictive distributions of both methods have a similar fit
to the real experimental time series Y, from Silk et al.
(2011), see Figure 4B and 4D.

Ablation: Underexpressive likelihood network. For mod-
els where the likelihood is only implicitly defined, an auxil-
iary likelihood surrogate must be learned. One possible con-
cern is that enforcing self-consistency between the surrogate
likelihood and the posterior might actually hurt posterior
inference if the likelihood is much more challenging to ap-
proximate than the posterior. We repeat Experiment 3 with
an underexpressive likelihood network that only features
linear units. By ensuring that the likelihood surrogate is in-
sufficient by design, we can emulate situations in which the
approximation of the likelihood is unreliable and observe
its impact on posterior inference. We observe no substantial
drop in posterior performance compared to the reference
posterior (see Appendix E for details).

5.4. Experiment 4: Source Location Finding

We adapt the source finding experiment from Foster et al.
(2021), which involves finding the location @ of a hidden
source in 2D. The source emits a signal whose intensity
decays inversely with the square of distance. We observe a
noise corrupted version Y of that signal through N = 30
fixed measurement points. We systematically vary the num-
ber of Monte Carlo samples to estimate the variance in
Eq. 9 as K € {5,10,20,50,100,500}. Both NPE (base-
line) and SC-NPE (ours) use identical neural networks and
are trained for 35 epochs on identical settings to ensure
a fair comparison. The annealing schedule for the self-
consistency loss weight A is piecewise constant: It yields
A for the first 20% of the training loop, then switching to

Table 3: Experiment 4 (Source Location Finding). MMD
as a function of the simulation budget N and the number
K of Monte Carlo samples in Eq. 9. We report mean+SE
across 1000 unseen test instances (lower is better). Our
self-consistent approximators outperform the NPE baseline
throughout all simulation budgets, and the advantage is
particularly attenuated at low budgets.

N =512 N =1024

0.54 £ 0.02 0.39 £+ 0.02
0.47 £0.03 0.29 £ 0.02
0.53 £0.04 0.27 £0.02
0.51 £0.03 0.32 £ 0.02
=50 0.52+£0.04 0.30 £0.02
=100 0.42 £ 0.03 0.29 £0.02
=500 0.40 = 0.03 0.32 +0.02

N =2048 N = 4096

0.25 £0.02 0.22 £ 0.01
0.24 +0.02 0.20 £ 0.02
0.24 £ 0.02 0.22 £0.02
0.24 +£0.02 0.23 £ 0.02
0.26 £ 0.02 0.21 £ 0.02
0.25 £0.02 0.21 £ 0.02
0.25 +£0.02 0.21 £ 0.02

SC-NPE (Ours) Z
RO

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Table 4: Experiment 5 (High-dimensional time series
model). MMD as a function of the number K of self-
consistency Monte Carlo samples and a simulation budget
N = 2048. We report mean+SE across 50 test instances.

SC-NPLE (Ours)

NPLE | 5 K=10 K=50 K=100

0.88 £ 0.06 0.78 £ 0.04 0.75 £ 0.05 0.69 £ 0.04 0.54 £+ 0.03

A = 0.01. Appendix F contains details on the neural net-
work architectures and training scheme.

Results. Table 3 reports the MMD between amortized poste-
rior approximation and a reference posterior from Hamilto-
nian Monte Carlo (HMC; as implemented in Stan, Carpenter
et al., 2017). Our self-consistent method demonstrates supe-
rior performance to the baseline NPE across all simulation
budgets and number of SC samples K. The performance
advantage is particularly pronounced at lower simulation
budgets. Increasing the number of SC samples does not
generally result in significantly improved performance.

5.5. Experiment 5: High-Dimensional Time Series
Model

We demonstrate the effectiveness of the self-consistency
loss for high-dimensional data without assuming an explicit
likelihood. To this end, we implement an autoregressive
compartmental time series model where the data Y is a
160-dimensional vector. We simultaneously learn the pos-
terior and likelihood (NPLE) based on N = 2048 training
examples. The task of learning the likelihood is directly
affected by the high data dimensionality since we learn the
likelihood in the uncompressed 160-dimensional data space.
We benchmark standard NPLE against NPLE including our
self-consistency loss (SC-NPLE) with K € {5, 10, 50, 100}
Monte Carlo samples to estimate the variance in Eq. 9.

Results. We report the maximum mean discrepancy (MMD)
to a HMC reference posterior across 50 unseen test instances.
Table 4 shows the results, demonstrating a clear trend of
monotonic performance improvement with an increasing
number K of self-consistency Monte Carlo samples. This
demonstrates the effectiveness of our self-consistency loss,
even when dealing with high-dimensional data where the
likelihood estimation can be notably more challenging.

6. Conclusion

We proposed a new method to exploit inherent symmetry
in a joint probabilistic model p(0,Y) to improve amor-
tized Bayesian inference. Across four experiments, we
illustrated that the combination of simulation-based infer-
ence and (approximate) likelihood-based learning increases
the efficiency of neural posterior and likelihood estima-

tion. Concretely, we demonstrated that an additional self-
consistency loss leads to (i) better posterior densities; (ii)
better posterior samples; (iii) better likelihood densities; and
(iv) sharper marginal likelihood estimates. The advantage of
our self-consistent estimator is particularly evident for low
data scenarios, which is a frequent bottleneck in real-world
applications of simulation-based inference (e.g., Zhang &
Mikelsons, 2023; Zeng et al., 2023; Bharti et al., 2022)

Limitations. As always, there is no free lunch: The im-
proved performance though our self-consistency loss comes
with an increased computational cost. However, the self-
consistency loss is designed to pre-pay the cost during the
training stage. As a consequence, the inference algorithm
remains unaltered and we maintain rapid amortized infer-
ence. Hence, the trade-off is ideal for applied scenarios
where the upfront training time is not a bottleneck, but train-
ing data is scarce and fast inference is desired. Further, our
method relies on the ability to evaluate the prior density
p(0). This currently limits its applicability to scenarios
where the prior density is available in analytic form (most
probabilistic modeling applications) or can be learned.

Outlook. While this paper focused on amortized Bayesian
inference with normalizing flows, our self-consistency loss
can readily be applied to sequential simulation-based in-
ference (Papamakarios et al., 2019; Greenberg et al., 2019;
Glockler et al., 2022; Wiqvist et al., 2021). Likewise, other
conditional density estimators like score modeling (Geffner
etal., 2023; Sharrock et al., 2022; Pacchiardi & Dutta, 2022),
flow-matching (Lipman et al., 2023), or consistency mod-
els (Schmitt et al., 2023a) may benefit from our additional
loss function as well. Finally, future research could explore
variations and extensions of our proposed method, such
as different proposal distributions 7(€) for more efficient
Monte Carlo estimates, prior density learning, likelihood
learning on summaries instead of the raw data, or improved
loss functions altogether that build on the principle of self-
consistency. Appendix A contains a selection of Frequently
Asked Questions (FAQ) that a reader might have.

Code Availability

We provide reproducible code in the open reposi-
tory at https://github.com/marvinschmitt/
self-consistency—-abi

Impact Statement

This paper presents work that advances the field of amor-
tized Bayesian inference (ABI) by rendering analyses more
data-efficient. As such, our method can be used to improve
the results in malign applications as well, and its societal
implications need to be evaluated on an individual basis.

https://github.com/marvinschmitt/self-consistency-abi
https://github.com/marvinschmitt/self-consistency-abi

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Acknowledgments

MS was supported by the Cyber Valley Research Fund
(grant number: CyVy-RF-2021-16) and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy EXC-2075 -
390740016 (the Stuttgart Cluster of Excellence SimTech).
DRI is supported by EPSRC through the Modern Statis-
tics and Statistical Machine Learning (StatML) CDT pro-
gramme, grant no. EP/S023151/1. DH was supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under project 508399956. UK was supported
by the Informatics for Life initiative funded by the Klaus
Tschira Foundation.

References

Alexanderson, S. and Henter, G. E. Robust model training
and generalisation with studentising flows, 2020. 14, 15,
17

Avecilla, G., Chuong, J. N., Li, F., Sherlock, G., Gresham,
D., and Ram, Y. Neural networks enable efficient and
accurate simulation-based inference of evolutionary pa-
rameters from adaptation dynamics. PLoS Biology, 20
(5):¢3001633, 2022. 1,2

Bharti, A., Filstroff, L., and Kaski, S. Approximate
Bayesian computation with domain expert in the loop.
In International Conference on Machine Learning, pp.

1893-1905. PMLR, 2022. 9

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859-877,
2017. 1

Brehmer, J., Cranmer, K., Louppe, G., and Pavez, J. A
guide to constraining effective field theories with machine
learning. Physical Review D, 98(5):052004, 2018. 1

Brehmer, J., Kling, F., Espejo, 1., and Cranmer, K. Mad-
miner: Machine learning-based inference for particle
physics. Computing and Software for Big Science, 4:
1-25,2020a. 1

Brehmer, J., Louppe, G., Pavez, J., and Cranmer, K. Min-
ing gold from implicit models to improve likelihood-free
inference. Proceedings of the National Academy of Sci-
ences, 117(10):5242-5249, 2020b. 1, 5

Biirkner, P.-C., Scholz, M., and Radev, S. T. Some models
are useful, but how do we know which ones? towards a
unified bayesian model taxonomy. Statistics Surveys, 17
(none), 2023. ISSN 1935-7516. doi: 10.1214/23-ss145.
6

10

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M., Guo, J.,
Li, P,, and Riddell, A. Stan: A probabilistic programming
language. Journal of statistical software, 76(1), 2017. 1,
9

Chen, Y., Gutmann, M. U., and Weller, A. Is learning sum-
mary statistics necessary for likelihood-free inference?
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
4529-4544. PMLR, 2023. 5

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of
simulation-based inference. Proceedings of the National
Academy of Sciences, 2020. 1

Dax, M., Green, S. R., Gair, J., Piirrer, M., Wildberger, J.,
Macke, J. H., Buonanno, A., and Scholkopf, B. Neural
importance sampling for rapid and reliable gravitational-
wave inference. Physical Review Letters, 130(17), April
2023. ISSN 1079-7114. doi: 10.1103/physrevlett.130.
171403. 5

Durkan, C., Bekasov, A., Murray, 1., and Papamakarios,
G. Neural spline flows. Advances in neural information
processing systems, 32,2019. 6, 17, 18, 19

Filippi, S., Barnes, C., Cornebise, J., and Stumpf, M. P. H.
On optimality of kernels for approximate bayesian com-
putation using sequential monte carlo, June 2011. 7, 17

Foster, A., Ivanova, D. R., Malik, I., and Rainforth, T. Deep
adaptive design: Amortizing sequential bayesian experi-
mental design. In International Conference on Machine
Learning, 2021. 8

Geffner, T., Papamakarios, G., and Mnih, A. Composi-
tional score modeling for simulation-based inference. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 11098—
11116. PMLR, 23-29 Jul 2023. 2,6, 9

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B.,
Vehtari, A., and Rubin, D. B. Bayesian Data Analysis
(3rd Edition). Chapman and Hall/CRC, 2013. 1

Glockler, M., Deistler, M., and Macke, J. H. Variational
methods for simulation-based inference. In International
Conference on Learning Representations, 2022. 3,5, 9

Gongalves, P. J., Lueckmann, J.-M., Deistler, M., et al.
Training deep neural density estimators to identify mech-
anistic models of neural dynamics. Elife, 2020. 1, 2

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Greenberg, D., Nonnenmacher, M., and Macke, J. Auto-
matic posterior transformation for likelihood-free infer-
ence. In International Conference on Machine Learning,
2019. 6,7,9,13, 16

Gretton, A., Borgwardt, K., Rasch, M., Scholkopf, B., and
Smola, A. A Kernel Two-Sample Test. The Journal of
Machine Learning Research, 13:723-773, 2012. 5

Hiillermeier, E. and Waegeman, W. Aleatoric and Epistemic
Uncertainty in Machine Learning: An Introduction to
Concepts and Methods. Machine Learning, 110(3):457—
506, March 2021. ISSN 0885-6125, 1573-0565. doi:
10.1007/s10994-021-05946-3. 1, 13

Kothe, U. A review of change of variable formulas for
generative modeling, 2023. 4, 5

Lavin, A., Zenil, H., Paige, B., et al. Simulation intelligence:
Towards a new generation of scientific methods. arXiv
preprint, 2021. 1

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In Chaudhuri, K.
and Salakhutdinov, R. (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 3744—
3753. PMLR, 2019. 13, 18

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
11th International Conference on Learning Representa-
tions, 2023. 9

Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P.,
and Macke, J. Benchmarking simulation-based inference.
In Banerjee, A. and Fukumizu, K. (eds.), Proceedings
of The 24th International Conference on Artificial In-
telligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pp. 343-351. PMLR, 13-15
Apr2021. 7,17, 19

Meng, X.-L. and Wong, W. H. Simulating ratios of nor-
malizing constants via a simple identity: a theoretical
exploration. Statistica Sinica, 1996. 3

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018. 17

Momiji, H. and Monk, N. A. Dissecting the dynamics of the
hes1 genetic oscillator. Journal of Theoretical Biology,
254(4):784-798, oct 2008. doi: 10.1016/].jtbi.2008.07.
013. 7,17

11

Neal, R. M. MCMC using Hamiltonian dynamics. May
2011. doi: 10.1201/b10905. 1

Pacchiardi, L. and Dutta, R. Score matched neural exponen-
tial families for likelihood-free inference. J. Mach. Learn.
Res., 23:38-1, 2022. 9

Papamakarios, G., Sterratt, D., and Murray, I. Sequen-
tial neural likelihood: Fast likelihood-free inference with
autoregressive flows. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 837-848.
PMLR, 2019. 9

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and
Kothe, U. BayesFlow: Learning complex stochastic mod-
els with invertible neural networks. IEEE transactions on
neural networks and learning systems, 2020. 1, 2, 13, 14,
18

Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Kothe,
U., and Biirkner, P.-C. JANA: Jointly Amortized Neural
Approximation of Complex Bayesian Models. In Evans,
R. J. and Shpitser, 1. (eds.), Proceedings of the 39th Con-
ference on Uncertainty in Artificial Intelligence, volume
216 of Proceedings of Machine Learning Research, pp.
1695-1706. PMLR, 2023. 3, 5,7, 13

Rezende, D. J. and Mohamed, S. Variational inference
with normalizing flows. In Proceedings of the 32nd In-
ternational Conference on International Conference on
Machine Learning - Volume 37,ICML’ 15, pp. 1530-1538.
JMLR.org, 2015. 2

Sdilynoja, T., Biirkner, P.-C., and Vehtari, A. Graphical test
for discrete uniformity and its applications in goodness-

of-fit evaluation and multiple sample comparison. Statis-
tics and Computing, 32(2):1-21, 2022. 5, 15

Schmitt, M., Pratz, V., Kothe, U., Biirkner, P.-C., and Radeyv,
S. T. Consistency models for scalable and fast simulation-
based inference, 2023a. 2,5,7,9

Schmitt, M., Radev, S. T., and Biirkner, P.-C. Fuse it or
lose it: Deep fusion for multimodal simulation-based
inference, 2023b. 5

Sharrock, L., Simons, J., Liu, S., and Beaumont, M. Sequen-
tial neural score estimation: Likelihood-free inference
with conditional score based diffusion models, 2022. 2, 9

Silk, D., Kirk, P. D., Barnes, C. P,, Toni, T., Rose, A., Moon,
S., Dallman, M. J., and Stumpf, M. P. Designing attrac-
tive models via automated identification of chaotic and

oscillatory dynamical regimes. Nature Communications,
2(1), 2011. doi: 10.1038/ncomms1496. 7, 8, 17

Sisson, S. A., Fan, Y., and Tanaka, M. M. Sequential monte
carlo without likelihoods. Proceedings of the National

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

Academy of Sciences, 104(6):1760-1765, February 2007.
doi: 10.1073/pnas.0607208104. 7

Song, Y. and Dhariwal, P. Improved Techniques for Training
Consistency Models, October 2023. 5

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In International Conference on Machine
Learning, 2023. 5

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., and
Gelman, A. Validating Bayesian inference algorithms
with simulation-based calibration. arXiv preprint, 2018.
5,15

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., Biirkner,
P.-C., Paananen, T., and Gelman, A. loo: Efficient leave-
one-out cross-validation and WAIC for Bayesian models,
2022. 3

Watanabe, S. Algebraic geometry and statistical learning
theory, volume 25. Cambridge university press, 2009. 4

Wigpvist, S., Frellsen, J., and Picchini, U. Sequential neural
posterior and likelihood approximation. arXiv preprint,
2021. 3,7,9

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets, 2017. 13,
14, 15

Zeng, J., Todd, M. D., and Hu, Z. Probabilistic damage
detection using a new likelihood-free Bayesian inference
method. Journal of Civil Structural Health Monitoring,
13(2-3):319-341, 2023. 9

Zhang, Y. and Mikelsons, L. Sensitivity-guided itera-
tive parameter identification and data generation with
BayesFlow and PELS-VAE for model calibration. Ad-
vanced Modeling and Simulation in Engineering Sci-
ences, 10(1):1-28, 2023. 9

12

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

APPENDIX

A. Frequently Asked Questions (FAQ)

Q: How can I reproduce the results?

The code is hosted in a repository at https://github.com/marvinschmitt/self-consistency—-abi

Q: How does the self-consistency loss change my current amortized Bayesian workflow?

If you have access to an explicit likelihood, you need to implement a 1ikelihood. log_prob method to evaluate
p(Y | 6). This is straightforward with common frameworks such as tensorflow_probability or scipy.stats.
If your likelihood is implicit (fully simulation-based), your neural likelihood approximator needs to yield a tractable density
(e.g., through a normalizing flow). Further, you need to implement a prior.log_prob method for your prior distribution,
regardless of whether you use NPE (explicit likelihood) or NPLE (implicit likelihood). Alternatively, you may try to learn
the prior density with an unconditional density estimator on-the-fly (see Section 6).

Q: When is it useful to add the self-consistency loss?

When the simulation program is computationally costly or the simulation budget is fixed, our experiments suggest that
adding the self-consistency loss to an optimization objective might help get more out of the available training data.

Q: What about learned summary statistics?

Our method is fully compatible with end-to-end learning of summary statistics alongside the neural approximator (Radev
et al., 2020; 2023). In fact, Experiment 1 uses a DeepSet (Zaheer et al., 2017) and Experiment 4 uses a SetTransformer
(Lee et al., 2019) to learn fixed-length summary statistics ~(Y) from the observables Y, which are then passed to the
posterior approximator. As mentioned in Section 6, the likelihood

Q: When do I activate the self-consistency loss during training?

This depends on the complexity of the problem. Your approximate posterior (and approximate likelihood, if applicable)
should be sufficiently good so that (i) the proposals for 6 cover relevant regions; and (ii) the log density estimates for the
posterior (and likelihood, if applicable) have an acceptable quality for the Monte Carlo estimate in Eq. 9. Further, you have
freedom in designing an annealing schedule A = p(-) for the weight of the self-consistency term in the loss function. For
instance, you might opt for a smooth schedule which gradually increases the self-consistency weight.

Q: Why aren’t the posterior samples in Experiment 1 perfectly aligned with the true parameter?

The simulated data sets in the Gaussian mixture model only consist of ten observations from the Gaussian mixture model
with locations 8 and —@. Due to aleatoric uncertainty in the data-generating process (Hiillermeier & Waegeman, 2021),
the empirical information in the sample does not even suffice to inform the true posterior to concentrate on the true
data-generating parameter 0. Instead, the goal of an approximate posterior is to match the true posterior including the
uncertainty it encodes.

Q: Why do the NPE posterior samples look so bad in Experiment 1 at N = 1024? Other papers show better sampling
for NPE at this budget.

We observed that NPE shows very inconsistent performance across the parameter space at low simulation budgets. In
other words, NPE performs reasonably well for some parameter regions, and atrociously bad for others. In Figure 2C, this
phenomenon manifests as a large range in the corresponding boxplot, which shows the MMD across different test instances.
In contrast, our SC-NPE method achieves remarkably good performance across the entire parameter space at a simulation
budget of N = 1024.

Q: What about non-amortized sequential algorithms, like Sequential Neural Posterior Estimation (SNPE)?

Our method can readily be integrated with sequential SBI algorithms, such as SNPE (Greenberg et al., 2019). We observed
performance increases when SNPE is equipped with our self-consistency loss (see Appendix C.4).

13

https://github.com/marvinschmitt/self-consistency-abi

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

B. Proof of Proposition 1
In the following, we provide a proof of Proposition 1.

Proof. First, we are going to make use of the well-known fact that the variance of a constant is zero, and zero variance
implies a constant argument, that is, for any continuous random vector X, we have

f(X)=¢c = Var(f(X))=0 (13)
Var(f(X) =0 = f(X)=c (14)

For (13), we simply apply the definition of the variance
Var(c) =E [(c —-E [c])Q} (15)
=E [(c - 0)2] =0, (16)
where we used the fact that the expectation of a constant recovers the constant itself, that is, E [¢] = c.

For (14), we first note that due to the definition of the variance,
Var(f(X)) = E [(£(X) ~EI/(X)])’] a7)

the squared difference (f(X) — E[f(X)])? is strictly positive, so the only way for the variance to become zero is if
(f(X) —E[f(X)])* = 0. This, in turn, implies that f(X) = E [f(X)] for any realization of X, which can only happen if
f(X)=c

The proof of Proposition 1 is structured in two parts. First, we show that zero variance of a monotone function directly

implies zero variance for the argument. Second, we show that zero variance with respect to a distribution implies zero
variance with respect to a different distribution with the same support.

For the first part, given the assumption of zero variance,
p(Y [6)p(6)
V =0, 18
o (1 (19 o

it follows that f(p(Y | 0)p(0)/q(0]Y)) = ¢, YO € O. Since we assume that f is monotone, then the functional argument
of f(-) must be constant over ©, and so

Y |0)p(0
Varp(g‘y) <W) =0. (19)

For the second part, we again observe that the assumption
p(Y [6)p(6) >)
Var, f < =0 (20)
<”< 4(0Y)

implies that f(p(Y | 0)p(0)/q(0|Y)) = ¢, VO € O. Since, by assumption, (@) and p(8 | Y') have the same support, it
follows that

p(Y |6)p(0))>
Var s (0 @)
“““< a(0]Y)
Combining this with the previous result from the first part concludes the proof. O

C. Details about Experiment 1

The normalizing flow uses a heavy-tailed Student-¢ latent distribution with 100 degrees of freedom to provide a more robust
latent space (Alexanderson & Henter, 2020). The neural spline flow has 4 coupling layers and learnable permutation layers.
As a summary network, a DeepSet (Zaheer et al., 2017) learns 4-dimensional embeddings that lift the ¢.¢.d. structure of the
exchangeable data Y and are maximally informative for posterior inference (Radev et al., 2020). The neural networks are
trained for a total of 35 epochs with a batch size of 32 and an initial learning rate of 1073,

14

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

C.1. Calibration

All approximators (NPE and self-consistent ones) are well-calibrated according to simulation-based calibration (Talts et al.,
2018; Sidilynoja et al., 2022), as illustrated in Figure 5.

NPE SC10
0, 6 601 &)
006 006 006 006
[} (5}
[} o
5 oo 002 5 o 00
= =
g w W oo g o
L om on L om “om
A a
[_LI_]) ~0.04 ~0.04 B ~0.04 —0.04
“o0e 006 006 006
G0 02 o4 05 05 1o T 02 o4 06 o5 1o W0 02 o4 06 05 1o T 02 o0 05 o5 1o
Fractional rank statistic Fractional rank statistic Fractional rank statistic Fractional rank statistic
SC100 SC500
0, 6, 6)
o 0 006 o "% 006
Q Q
2 om 004 2 om 008
13} 133
= 0.02 0.02 = 0.02 0.02
= &
E o 000 ?‘_g 000 000
E “on o0 E o0 “om
Q 0.04 0.04 U —0.04 —0.04
m 0.06 0.06- m 0.06 0.06
G0 02 0i 05 05 10 D A) G0 o2 s 06 05 1o G0 02 0i 05 05 1o
Fractional rank statistic Fractional rank statistic Fractional rank statistic Fractional rank statistic

Figure 5: Experiment 1 (Gaussian mixture model). All approximators are well-calibrated.

C.2. Ablation: Number of Monte Carlo Samples for the Self-Consistency Loss

In this ablation, we investigate the effect of the number of Monte Carlo samples K € {10, 100, 500} to estimate the variance
in Eq. 2. All self-consistent approximators outperform the NPE baseline with respect via (i) visually better posterior samples
and density as well as (ii) a better (lower) MMD on 50 unseen test instances.

C.3. Variation: Implicit Likelihood (NPLE)

We repeat Experiment 1 with a fully simulation-based approach which does not need an explicit likelihood to estimate
the self-consistency loss. To this end, we replace the explicit likelihood p(Y | 8) in Eq. 9 with the approximate likelihood
¢, (Y | 8), which is represented by a neural network and learned simultaneously with the neural posterior approximator. The
full loss follows as

Lscneie = Ep,y) [— log qy(0]Y) —log g, (Y |6)

NPLE loss

+ AVarg.n(o) (10gp(6) + log 4, (Y | 8) ~ log 4s(6]Y)) |,

(22)

self-consistency loss Lgc with approximate likelihood

which is a combination of the NPLE loss and the self-consistency loss with approximate likelihood.

The simulation budget is fixed to N = 1024 data sets. Both NPLE and our self-consistent approximator with X = 100
Monte Carlo samples are trained for 35 epochs, have an identical neural spline flow architecture, have a heavy-tailed
Student-t1gg latent space (Alexanderson & Henter, 2020), and use an identical DeepSet (Zaheer et al., 2017) to learn
summary statistics of the data Y for the posterior approximator. Since the Monte Carlo approximation in the self-consistency
loss now depends on both an approximate posterior and an approximate likelihood, we only activate the self-consistency
loss after 20 epochs (as opposed to 5 epochs in Experiment 1 with an explicit likelihood).

We can benchmark the methods’ performance against the true posterior since the explicit likelihood of this simulator is
known (albeit inaccessible for the approximators). We confirm the results of Experiment 1 in the fully simulation-based

15

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

setting with only an implicit likelihood: Our self-consistent approximator consistently outperforms the baseline NPLE
approximator with respect to posterior density and sampling (see Figure 7).

D
A . True . NPLE SCI100 2 6,
> C -
0 0 A . g o o
- 2 0.2 oo s
. o ave
-2 0 2 2 0 2 S ° Fractional rank statistic Fractional rank statistic
L]
NPLE SC100 o . E
2 2 4;; 91 62
r el o ot w06
* m ™. a
o o Wil od N 0.0 T T 5o 0o
}w e NPLE SC100 £ ..
B *‘ & om o
’ . 244 a
; Q o oo
-2 -2 - -2 [l 006
-2 0 2 -2 0 2 -2 0 2 R S s i E § ® S S e S
“Fractional rank statistic Fractional rank statistic

Figure 7: Experiment 1 (Gaussian mixture model). Our self-consistent posterior estimator (SC100) outperforms the
NPLE baseline using the same neural architecture trained on an identical simulation budget. Adding the self-consistency
loss leads to improved density estimation (A) and sampling (B), judged both visually and via MMD between approximate
and true posteriors (C). Both approximators are well-calibrated (D, E). Pink star x marks the true parameter 6.

C.4. Extension: Sequential Neural Posterior Estimation with Self-Consistency Loss

We repeat Experiment 1 with sequential neural posterior es- SNPE (baseline) SNPE-SC (ours)
timation (SNPE; Greenberg et al., 2019) and observe similar : :

. o True | e True
improvements in the quality of posterior samples by adding . supe . i | o swEsC
our self-consistency loss (see Figure 8). This underscores the . *
modular nature of the self-consistency loss, which renders it , . §

applicable to a variety of inference algorithms. We leave an
in-depth analysis of the interplay of self-consistency losses and
sequential SBI algorithms to future work, as the focus of this
paper lies on amortized Bayesian inference.

Figure 8: Our self-consistency loss visually improves
posterior sampling for SNPE in Experiment 1.

16

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

D. Details about Experiment 2

The two moons model is described in detail elsewhere (Lueckmann et al., 2021). We use a uniform prior on both components
of theta: 0y, 65 ~ Uniform(—2, 2).

The neural network architectures are identical for NPLE (baseline) and SC-NPLE (ours). The posterior and likelihood
networks are identical: Both consist of a neural spline flow (Durkan et al., 2019) with 6 coupling layers of 128 units each and
weight regularization with a factor v = 10~*. Further, the latent space in the neural spline flow is a heavy-tailed Student-¢
distribution (Alexanderson & Henter, 2020) with 50 degrees of freedom. The neural networks are trained for 200 epochs
with a batch size of 32 and an initial learning rate of 5 - 10~%. For the self-consistent variations, we choose a piecewise
constant schedule y(-) on the weight A, where A = 0 for the first 100 epochs (i.e., no self-consistency term) and A = 1 for
the remaining 100 epochs.

E. Details about Experiment 3

In Experiment 3, we apply our method to an experimental data set in biology (Silk et al., 2011). Upon serum stimulation of
various cell lines, the transcription factor Hes1 exhibits sustained oscillatory transcription patterns (Momiji & Monk, 2008).
The concentration of Hes] mRNA can be modeled by a set of three differential equations,

dm 1 dp1 dp2
dt s apo)h dt degP1 TV = RPL - g

with degradation rate kq.4, Hes1 mRNA concentration m, cytosolic Hes1 protein concentration p1, and nuclear Hes1 protein
concentration py. The parameters @ = {po, h, k1, v} govern the dynamics of the differential equations, and we estimate
them in the unbounded log space to facilitate inference. py corresponds to the amount of Hes1 protein in the nucleus when
the rate of transcription of Hes] mRNA is at half of its maximum value, h is the Hill coefficient, k; is the rate of transport of
Hesl protein into the nucleus and v is the rate of translation of Hes1 mRNA (Silk et al., 2011).

= _kdegp2 + kip1 (23)

In accordance to (Filippi et al., 2011), we use fixed initial conditions m¢ = 2, p; = 5, p2 = 3 and set k., = 0.03. In our
model we regard the observed mRNA concentrations y; as noisy measurements of the true underlying mRNA concentration
my with unit Gaussian observation error, y; ~ N (my, 1).

Silk et al. (Silk et al., 2011) used quantitative real-time PCR to collect the real experimental data
Y =[1.20,5.90,4.58,2.64,5.38,6.42, 5.60, 4.48]

where the first observation y; is measured after 30 minutes, and all subsequent values are measured in 30 minute intervals
(Filippi et al., 2011). The mRNA measures y; refer to fold changes relative to a control sample. The Bayesian model uses
Gamma priors on all parameters,

po~T(2,1), h~T(10,1), ki ~T(2,50), v ~T(2,50), (24)
where I'(a, b) denotes the Gamma distribution with shape « and rate b.

Both NPLE (baseline) and our self-consistent approximator are trained for 70 epochs and use the same neural spline flow
architecture consisting of 4 coupling layers with spectral normalization (Miyato et al., 2018) and a heavy-tailed Student-5g
latent distribution (Alexanderson & Henter, 2020) for a more robust latent space. For training, we use a batch size of 16 and
an initial learning rate of 10~ 3. For the self-consistent approximator, we use K = 100 Monte-Carlo samples.

17

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

A B
, 0.751 &N
2 g
o= é 5
= 5 = 0.50
25! 5
IR o
0 oW
0.00 56 o7 5% B0 90
C
]fl 124
0.10
. 0.06 \
]
(3] - 0.04
o B . 0.05
g 00 0.05
3 . 0.02{e..... .
= S, ... o gt .
a [S ‘ R P a— P °
% 0.00 o7 ;\ 29 2.10 0.00 o7 28 29 210 0.00 97 28 2.0 9lo 0.00 o7 28 29 210
@) . .
Simulation budget
—e— NPLE (baseline) e SC-NPLE (ours) SC-NPLE (bad lik. net)

Figure 9: Experiment 3, Ablation: Underexpressive likelihood network. For the underexpressive likelihood network, we
use a neural spline flow architecture with a single coupling layer, no L2 regularization, no dropout and a linear activation
function. For low simulation budgets, posterior loss on a separate validation dataset is lower than standard NPLE (A).
However, MMD between the approximate and true posterior is larger for SC-NPLE using the underexpressive likelihood
network (B). The calibration error (C) lies between the calibration errors obtained from NPLE and SC-NPLE with a more
suited likelihood network.

F. Details about Experiment 4

The inference task in this experiment is to locate a hidden source
0 € R? from N noisy measurements Y € R™*! of its signal N
intensity, which is observed at N pre-determined measurement o

points X € RN (see Figure 11). s

Source locations
Measurements 8

[e]
o

More concretely, the sources is sampled from a standard Gaus- © o

sian: 6 "% N (60]0,I) and the likelihood of the outcome is o NNNSEENe M
Y ~ N(Y |v(0,x%),0?%), where v(0,X) = b+ X .
For convenience, we concatenate the measurements Y and mea-
surement point locations X to a matrix of observables with
(N x 3) elements. In the given context, & may be either prede- S e Lo
termined constants or random variables, b > 0 represents a fixed
background signal, and m is a constant representing the maxi- L

mum signal. In our experiment we use 0 = 0.5, = 1,0 =0.1
and m = 1074, Figure 11: Experiment 4 (Source Location Finding).

[lustration of the problem setup.

Signal Intensity

o
o

Both baseline NPE and our self-consistent approximator (SC-

NPE) use identical neural networks and hyperparameters to en-

sure a fair comparison. We use an attention-based permutation-

invariant neural network, i.e., a set transformer (Lee et al., 2019), to learn 32-dimensional embeddings that are maximally
informative for posterior inference (Radev et al., 2020). The posterior network g is a neural spline flow (Durkan et al.,
2019) with 6 coupling layers. The neural networks are trained for 35 epochs with an initial learning rate of 10~3 and a batch
size of 32.

18

Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference

True NPE, N=512 SC, N=512
MMD=1.611 MMD=0.211
21 2 2
® * * x * * x * *
x x * * x * ® " x * * ® * x x * * x *
04 . *x:g***x 0 L *x:g***x 0 o *x:g*x*x
o * " _9 > " Y .
-2 0 2 -2 ('J 2 -2 0 2

Figure 10: Experiment 4 (Source Location Finding). For one fixed data set, we show the reference posterior (HMC via
Stan), as well as NPE (baseline) and SC-NPE (ours). Compared to the NPE baseline, our self-consistent approximator
yields a noticeably sharper posterior without introducing additional bias, which is supported by a lower (better) MMD to the
reference posterior.

G. Details about Experiment 5

The experiment setup follows Lueckmann et al. (2021) (Section T.9), with a modification: we use 160 instead of 10 evenly
spaced time points. The neural network architectures are identical for NPLE (baseline) and SC-NPLE (ours). The posterior
and likelihood networks also share same architectures: we use neural spline flow (Durkan et al., 2019) with 5 coupling layers.
The latent space of the flow is a Student-¢ distribution with 30 degrees of freedom. We train for 100 epochs, batch size of 32
and initial learning rate of 10~2, simultaneously learning the amortized likelihood and posterior. For the self-consistent
variations, we apply a piecewise constant schedule to the weight \: A = 0 for the first 2 epochs (i.e., no self-consistency
term) and A = 0.1 for the remaining epochs.

19

	Introduction
	Background
	Notation
	Neural Posterior Estimation
	Neural Posterior and Likelihood Estimation
	Limitations of NPE and NPLE

	Leveraging Self-Consistency for ABI
	Naïve Approach: Direct Constrained Optimization
	Variance Penalty and Self-Consistency Loss
	Monte Carlo Estimation
	Intuition for Benefits of Self-Consistency

	Related Work
	Empirical Evaluation
	Experiment 1: Gaussian Mixture Model
	Experiment 2: Two Moons
	Experiment 3: Oscillatory Hes1 Expression Model
	Experiment 4: Source Location Finding
	Experiment 5: High-Dimensional Time Series Model

	Conclusion
	Frequently Asked Questions (FAQ)
	Proof of Proposition 1
	Details about Experiment 1
	Calibration
	Ablation: Number of Monte Carlo Samples for the Self-Consistency Loss
	Variation: Implicit Likelihood (NPLE)
	Extension: Sequential Neural Posterior Estimation with Self-Consistency Loss

	Details about Experiment 2
	Details about Experiment 3
	Details about Experiment 4
	Details about Experiment 5

