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ABSTRACT
Consider a system of multiple physical agents tasked with collabo-
ratively collecting a set of spatially distributed goals while avoiding
collisions with the environment and with each other. This type
of problem, which combines Multi-Agent Path Finding (MAPF)
with task allocation, is known as Multi-Agent Combinatorial Path
Finding (MACPF ). Conflict-Based Steiner Search (CBSS) is an op-
timal algorithm for MACPF , which assumes that each agent has
a fixed goal destination. It selects allocations that yield a solution
minimizing the sum of costs (SOC), which we denote as CBSS𝑆𝑂𝐶 .
However, this objective is problematic in domains such as search
and rescue, where timely service of all goals is more critical than
minimizing SOC. We therefore propose CBSS𝑆𝑆𝑇 , which minimizes
the Sum of Service Times (SST) across all goals using a novel
mixed-integer linear programming allocation, thereby generalizing
MACPF to settings without requiring fixed goal destinations. Since
CBSS assumes perfect execution, we extend it with robust planning
to handle stochastic execution delays. We propose two variants
of CBSS𝑆𝑆𝑇 : Robust CBSS𝑆𝑆𝑇 with Strict Verifier (𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 ),
which guarantees the desired robustness, and Robust CBSS𝑆𝑆𝑇
with Anytime Verifier (𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒), which addresses planning-
time constraints by returning the most robust solution verified
within the available time. Our experiments on MACPF benchmarks
show that 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 solves substantially more instances than
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 within the time limit, while reducing replanning ef-
fort and preserving robustness. These results demonstrate that
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 provides an effective and practical approach to
MACPF under uncertainty.
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1 INTRODUCTION
Multi-Agent Path Finding (MAPF) aims to compute collision-free
paths for multiple agents from their start locations to their goal
destinations within a shared environment [20, 22]. It has practical
applications in robotics, warehouse automation, and traffic coor-
dination, which require efficient and safe movement of mobile
physical agents [3, 10]. When multiple agents are required to visit
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a set of spatially distributed goals, for example autonomous robots
that must rescue injured people located at different locations, the
problem becomes not only one of finding collision-free paths but
also of optimally assigning the goals to agents. The problem of solv-
ing this dual challenge is called Multi-Agent Combinatorial Path
Finding (MACPF), where prior work typically assumes that each
agent is pre-assigned a fixed goal destination, required to collect
its assigned goals and finish there [14–16]. In contrast, we consider
a more general setting in which all goals must be visited without
fixing destinations for agents.

Figure 1: (a) minimizes SOC, (b) minimizes makespan, and
(c) minimizes SST. Circles - agents and squares - goals.

A key difficulty in MACPF lies in selecting an appropriate op-
timization objective. Classical measures such as the Sum of Costs
(SOC) or makespan capture the overall travel effort or the time of
the last completed goal, but they overlook when individual goals
are reached by an agent. As a result, many goals may remain un-
reached until the very end, even when SOC or makespan are small.
The Sum of Service Time (SST) objective [12] addresses this by sum-
ming the completion times of all goals, thereby promoting earlier
and more balanced service. This is particularly relevant in domains
where responsiveness and fairness across goals are more critical.
For example, in a search and rescue scenario (Figure 1), the choice of
objective critically affects when each injured person is rescued. In
panel (a), minimizing SOC causes agent 1 to rescue A before B, de-
laying B by two steps. In panel (b), minimizing makespan still leaves
B waiting until after A. In contrast, panel (c) minimizes SST: agent 2
is immediately dispatched to B, ensuring all goals are served earlier
and more evenly. This illustrates that SOC and makespan may delay
critical goals, while SST promotes timely, balanced rescue.

The first contribution of this work is a MACPF algorithm
that minimizes SST in the generalized setting where agents are
not required to end at fixed goal destinations. In contrast, Conflict-
Based Steiner Search (CBSS) [16] extends Conflict-Based Search
(CBS) [18] to solve MACPF under the assumption that each agent
has a fixed destination and minimizes the Sum of Costs (SOC), de-
noted CBSS𝑆𝑂𝐶 . The assignment of goals in CBSS𝑆𝑂𝐶 is obtained
via a reduction to the Traveling Salesman Problem (TSP) and a ded-
icated procedure [23], which enumerates TSP tours in increasing



order of cost, each corresponding to a specific goal allocation. To
adapt CBSS to minimize SST (CBSS𝑆𝑆𝑇 ), we reduce the allocation
problem to a Traveling Repairman Problem (TRP) [2] and design a
Mixed-Integer Linear Programming (MILP) formulation that enu-
merates allocations in increasing order of SST. A related MILP was
proposed in [4], but it computes only a single optimal tour, whereas
our formulation efficiently generates multiple tours (allocations).

A further limitation of CBSS is the assumption of perfect exe-
cution, which is unrealistic in real-world multi-agent systems. In
practice, agents may be delayed stochastically, leading to deviations
from the planned schedule and potential conflicts. The second con-
tribution of this work is an extension of CBSS𝑆𝑆𝑇 that accounts
for such delays. One approach to address these delays is to replan
during execution when a conflict is about to occur, but this is often
costly and yields less effective solutions. Inspired by prior work
on MAPF [1], we instead consider a verification-based approach in
which CBSS estimates the robustness of a plan to delays, i.e., the
probability that agents following it will avoid conflicts. This exten-
sion, termed 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 (Robust CBSS𝑆𝑆𝑇 with a Strict Verifier),
accepts a desired robustness 𝑝 and uses Monte Carlo simulations
to return a plan that satisfies it.
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 enables reasoning about execution uncertainty but

creates a trade-off: higher robustness reduces online replanning
but requires more simulations and deeper search, increasing plan-
ning time. The third contribution of this work is to introduce
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 (Robust CBSS𝑆𝑆𝑇 with an Anytime Verifier), which
balances this trade-off. Rather than requiring the desired robust-
ness (𝑝) regardless of time constraints, 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 maintains
and updates the highest robustness confirmed so far. If the desired
robustness is verified within the time limit, 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 termi-
nates successfully; otherwise, it returns the solution with the high-
est robustness validated up to that point. This approach guarantees
that a solution is always produced within the runtime, balancing
the benefits of robustness with the constraints of planning time.

We evaluate 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 and 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 on the standard
grid-based MAPF benchmark maps [22]. The results show that
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 solves a larger number of instances within the
time limit while maintaining strong robustness guarantees. In par-
ticular, it achieves a better balance between reducing the need for
replanning during execution and keeping planning times tractable,
highlighting the practical advantages of the anytime approach.

2 PROBLEM DEFINITION
MAPF involves a set of agents, each with a start and a goal location.
The task is to find non-conflicting paths that move all agents from
their starts to their goals. MACPF generalizes MAPF by allowing
different numbers of agents and goals and allocations are unknown.

Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} denote 𝑛 agents operating in an environ-
ment modeled as a directed graph 𝐺 = (𝑉 , 𝐸), where each vertex
𝑣 ∈ 𝑉 represents a unique location. Time is discretized, and at each
time step an agent occupies a single vertex in 𝐺 . At each time step,
an agent may perform one of two actions:Wait, which keeps the
agent at its current vertex, or Move, which changes the agent’s
location to an adjacent vertex. Each agent 𝑎𝑖 ∈ 𝐴 starts at an initial
vertex 𝑣0𝑖 , and 𝑉0 = {𝑣01 , . . . , 𝑣0𝑛 } ⊂ 𝑉 denotes the set of all initial

vertices. Similarly, let 𝑉𝑔 = {𝑣𝑔1 , . . . , 𝑣𝑔𝑚 } ⊂ 𝑉 denote the set of𝑚
distinct goal vertices.

A single-agent plan 𝜋𝑖 for agent 𝑎𝑖 is a sequence of actions
starting from 𝑣0𝑖 . We denote by 𝜋𝑖 (𝑡) the vertex occupied after
performing the 𝑡 th action in 𝜋𝑖 . A plan 𝜋𝑖 specifies how agent 𝑎𝑖
moves in the graph in order to collect a (possibly empty) subset
of goals. Since agents operate simultaneously, conflicts may arise
when their paths intersect. A conflict ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑥, 𝑡⟩ between a pair of
single-agent plans 𝜋𝑖 and 𝜋 𝑗 occurs if agents 𝑎𝑖 and 𝑎 𝑗 (𝑎𝑖 ≠ 𝑎 𝑗 )
occupy the same location 𝑥 at time step 𝑡 , i.e., when 𝜋𝑖 (𝑡) = 𝜋 𝑗 (𝑡) =
𝑥 , or when they traverse the same edge 𝑥 in opposite directions from
time step 𝑡 − 1 to time step 𝑡 , i.e., when 𝜋𝑖 (𝑡 − 1) = 𝜋 𝑗 (𝑡) ∧ 𝜋𝑖 (𝑡) =
𝜋 𝑗 (𝑡 − 1), where (𝜋𝑖 (𝑡 − 1), 𝜋𝑖 (𝑡)) = 𝑥 . The former is referred to as
a vertex conflict and the latter as a swapping conflict [22].

A solution 𝜋 is a set of single-agent plans {𝜋1, . . . , 𝜋𝑛}, one for
each agent. A solution is conflict-free if it does not contain a conflict
as defined above.

Definition 2.1 (Sum of Service Times (SST)). Given a solution
𝜋 = {𝜋1, . . . , 𝜋𝑛}, the service time of a goal 𝑣𝑔𝑗 ∈ 𝑉𝑔 is the earliest
time step at which some agent reaches it in 𝜋 . Formally [12],

𝑆𝑆𝑇 (𝜋) :=
∑︁

𝑣𝑔𝑗 ∈𝑉𝑔
min{ 𝑡 | 𝜋𝑖 (𝑡) = 𝑣𝑔𝑗 for some 𝑎𝑖 ∈ 𝐴 }.

Equipped with these definitions, we can now formally define the
MACPF problem.

Definition 2.2 (Multi-Agent Combinatorial Path Finding Prob-
lem). Given a set of 𝑛 agents with initial vertices 𝑉0 and a set of
goal vertices𝑉𝑔 , the multi-agent combinatorial path finding problem
(MACPF) is to find a conflict-free solution 𝜋 such that every goal
in 𝑉𝑔 is visited by at least one agent.

In this work, we aim to optimize SST and define an optimal solu-
tion accordingly, Unlike prior formulations of MACPF, which as-
sumed each agent is pre-assigned a goal destination, our definition
only requires that all goals be visited without fixing destinations
for individual agents.

3 BACKGROUND AND RELATEDWORK
We next provide background on CBS and its extension CBSS, which
form the foundation for our work.

CBS [18] is a two-level MAPF algorithm that optimizes SOC.
At the high level, it explores a Constraint Tree (CT), where each
node 𝑍 = (𝜋, 𝑐𝑜𝑠𝑡 (𝜋), C) consists of a solution 𝜋 = (𝜋1, . . . , 𝜋𝑛), its
total cost, and a set of constraints C. Each constraint (𝑎𝑖 , 𝑥, 𝑡) ∈ C
prohibits agent 𝑎𝑖 from occupying vertex or edge 𝑥 at time 𝑡 . The
root node 𝑍root uses empty constraints and paths planned inde-
pendently by a low-level single-agent planner. Nodes are stored
in OPEN — a priority queue ordered by cost. In each iteration, CBS
pops the lowest-cost node, validates its solution, and if no conflict
is found, returns it as optimal. Otherwise, for a detected conflict
(𝑎𝑖 , 𝑎 𝑗 , 𝑥, 𝑡), CBS generates two child nodes by adding to C either
(𝑎𝑖 , 𝑥, 𝑡) or (𝑎 𝑗 , 𝑥, 𝑡). For each child, the low-level planner replans
the path of the affected agent under the updated constraints, and
the new nodes are inserted into OPEN for further expansion.

CBSS [16] extends CBS to solveMACPF problems by jointly han-
dling goal allocation and path planning, assuming that each agent



is pre-assigned a fixed goal destination. It modifies the high-level
search to construct a forest of constraint trees (CTs), each corre-
sponding to a fixed goal sequence allocation. It selects allocations
that yield solutions minimizing SOC, which we denote as CBSS𝑆𝑂𝐶 .

Definition 3.1 (Goal sequence allocation). A goal sequence
allocation 𝛾 = {𝛾𝑖 }𝑛

𝑖=1 assigns each agent 𝑎𝑖 an ordered sequence
of goal vertices 𝛾𝑖 = (𝑣𝑔1 , . . . , 𝑣𝑔ℎ ). Let 𝑑 (𝑢, 𝑣) denote the shortest-
path cost between vertices 𝑢 and 𝑣 on graph 𝐺 , and let 𝑣0𝑖 be the
initial vertex of agent 𝑎𝑖 . The cost of 𝛾𝑖 , denoted 𝑐𝑜𝑠𝑡 (𝛾𝑖 ), is defined
as 𝑑 (𝑣0𝑖 , 𝑣𝑔1 ) +

∑ℎ−1
𝑝=1 𝑑 (𝑣𝑔𝑝 , 𝑣𝑔𝑝+1 ), and the cost of the full allocation

is 𝑐𝑜𝑠𝑡 (𝛾) = ∑
𝑖∈𝐴 𝑐𝑜𝑠𝑡 (𝛾𝑖 ).

Algorithm 1: CBSS (SOC or SST objectives)
Input: 𝐺

1 𝐾 ← 1
2 𝛾1 ← K-Best-Sequencing(𝐺,𝐾)
3 C ← ∅
4 𝜋 ← LowLevelPlan(𝛾1, C)
5 Add 𝑍𝑟𝑜𝑜𝑡 = (𝜋, 𝑐𝑜𝑠𝑡 (𝜋), C) to OPEN

6 while OPEN not empty do
7 𝑍 ← OPEN.pop()
8 if 𝑍 .𝑐𝑜𝑠𝑡 (𝜋) > 𝑐𝑜𝑠𝑡 (𝛾𝐾 ) then
9 𝐾 = 𝐾 + 1

10 𝛾𝐾 ← K-best-Sequencing(𝐺,𝐾)
11 𝜋 ← LowLevelPlan(𝛾𝐾 , ∅)
12 𝑍newRoot = (𝜋, cost(𝜋), ∅)
13 Add 𝑍newRoot and 𝑍 to OPEN

14 Continue
15 if 𝑍 .𝜋 has no conflicts then
16 return 𝑍 .𝜋
17 else
18 ResolveConflicts(𝑍 , 𝑂𝑃𝐸𝑁 )

19 return failure

CBSS enumerates goal sequence allocations 𝛾1, 𝛾2, . . . in ascend-
ing cost. For each 𝛾𝐾 , it builds a constraint tree 𝐶𝑇𝐾 whose nodes
share this allocation. To obtain each 𝛾𝐾 , CBSS employs the K-Best-
Sequencing method. This method accepts a parameter𝐾 and returns
the𝐾𝑡ℎ cheapest allocation. In CBSS𝑆𝑂𝐶 this is achieved via a reduc-
tion to a Traveling Salesman Problem (TSP). The K-Best-Sequencing
method maintains a priority queue of tours ordered by cost. It first
solves the TSP to obtain the cheapest tour. At each step, the lowest-
cost tour is extracted; if it is the 𝐾𝑡ℎ , it is returned, otherwise new
tours are generated by forbidding each edge of the extracted tour,
solving the resulting TSPs, and inserting them back into the priority
queue. In this way, CBSS𝑆𝑂𝐶 computes a sequence of allocations
ordered by increasing SOC. Once 𝛾𝐾 is determined, CBSS explores
its corresponding𝐶𝑇𝐾 using CBS: it resolves conflicts via constraint
splitting and uses the low-level planner to compute for each agent
𝑎𝑖 a plan satisfying all constraints and visiting its goals 𝛾𝑖

𝐾
.

CBSS is formally described in Algorithm 1. The search begins by
generating a node based on𝛾1, which becomes the root of𝐶𝑇1 and is

added to OPEN. During the search, a node𝑍 is popped from OPEN. Let
𝐾 denote the number of root nodes generated so far. If 𝑐𝑜𝑠𝑡 (𝑍 .𝜋) ≤
𝑐𝑜𝑠𝑡 (𝛾𝐾 ), the algorithm expands 𝑍 ; otherwise, it creates a new tree
𝐶𝑇𝑘+1 by computing 𝛾𝑘+1 via the K-Best-Sequencing method. CBSS
then computes its solution 𝜋newRoot, and initializes the root node
𝑍newRoot for𝐶𝑇𝑘+1. Both 𝑍 and 𝑍newRoot are returned to OPEN, and
the node with the lower cost will be selected for expansion in the
next iteration. If the selected node’s solution 𝜋 is conflict-free, the
search terminates and returns 𝜋 ; otherwise, two child nodes via
constraint splitting are added to OPEN.

A key limitation of CBSS is that it assumes each agent is as-
signed a fixed destination goal in advance, which restricts the abil-
ity to dynamically assign goals when such pre-assignments are
suboptimal or undesirable. In addition, CBSS optimizes only SOC
(CBSS𝑆𝑂𝐶 ). While SOC is appropriate in many MACPF settings, it
fails to capture scenarios where the relevant performance measure
is SST. These limitations motivate the development of an alternative
framework that supports flexible goal assignments and alternative
optimization objectives such as SST.

3.1 Related Work
The field of Multi-Agent Path Finding (MAPF) studies how to com-
pute conflict-free paths for multiple agents from given start to goal
locations. In the classical MAPF setting, each agent is assigned a
single fixed goal destination, and the task is to plan paths that bring
all agents to their goals without conflicts. Beyond the classical set-
ting, two lines of research are particularly relevant to this work.
The first extends MAPF by integrating goal allocation with path
planning, addressing scenarios where agents must serve multiple
or flexible goals [6, 8, 9, 14–16, 21]. The second introduces uncer-
tainty into planning, modeling imperfect execution or stochastic
delays [1, 11, 17, 19, 25].

3.1.1 Relatedwork on integratingMAPF and goal allocation.
Prior work on MAPF considered settings with an equal number of
agents and goals, where no goal was pre-assigned to a specific agent.
Instead, a one-to-one allocation had to be determined, assigning
each agent exactly one goal [8, 9, 21]. In contrast, our work removes
the restriction that the number of agents must equal the number
of goals. Agents may be assigned multiple goals (or none), and the
solution must ensure that all goals are eventually visited. Another
extension of MAPF considers settings where each agent is associ-
ated with a set of potential goals and must ultimately be assigned to
exactly one of them [6]. While in this setting each agent is assigned
from a set of possible goals, it is still limited to exactly one goal per
agent. In contrast, our formulation allows agents to be assigned
multiple goals (or none). Closer to our setting, CBSS [16], MS* [15],
and DMS* [14] directly address the MACPF problem under the stan-
dard assumption that each agent has a fixed destination goal. CBSS
builds on CBS [18] and minimizes the SOC objective, MS* builds
on M* [24] and also minimizes SOC, while DMS* focuses on opti-
mizing makespan. These works assume fixed destination goals and
optimize SOC or makespan, whereas we remove the requirement
of fixed destinations and optimize SST.

3.1.2 Related work on MAPF under uncertainty. Another
important direction extends MAPF to account for uncertainty in



execution and the environment. UM* handles state uncertainty
via belief-space planning but does not guarantee bounded collision
probabilities [25]. pR-CBS [1] extends CBSwith probabilistic robust-
ness, ensuring that collisions remain below a predefined thresh-
old even under stochastic delays. MAPF under Obstacle Uncer-
tainty (MAPFOU) addresses incomplete knowledge of traversabil-
ity, assuming deterministic actions once the environment is re-
vealed [11, 19]. MAPF with Time Uncertainty models bounded edge
traversal times [17]. However, none of these approaches consider
the combinatorial challenge of allocating multiple goals to agents.

4 OPTIMIZING SST WITH CBSS
CBSS solves MACPF under the assumption that each agent is as-
signed its own fixed destination goal, i.e., a specific goal vertex at
which the agent must end its plan after collecting all goals assigned
to it. To solve MACPF problems without fixed destinations and to
minimize SST, we adapt CBSS as follows. First, the cost associated
with each CT node in the high-level CBSS search is the SST of the
set of single-agent plans it represents, instead of its SOC. Second,
we modified the cost associated with a goal sequence allocation 𝛾
to be aligned with optimizing SST. This change also requires modi-
fying the K-Best-Sequencing method used in CBSS. The change to
the goal sequence allocation and corresponding K-Best-Sequencing
method are not trivial, and we discuss them in details below.

Changing the cost of a goal sequence allocation. We define
the service time of a goal vertex 𝑣𝑔 in a goal allocation 𝛾 , denoted
𝑠𝑠𝑡 (𝑣𝑔, 𝛾), as the sum of distances the agent allocated to 𝑣𝑔 must
traverse according to 𝛾 before reaching 𝑣𝑔 . More formally, if a goal
vertex 𝑣𝑔 is assigned to agent 𝑎𝑖 in 𝛾 , i.e., 𝑣𝑔 ∈ 𝛾𝑖 , and 𝑣𝑔 is the
ℎ𝑡ℎ goal vertex in the sequence 𝛾𝑖 = (𝑣𝑔1 , . . . , 𝑣𝑔|𝛾𝑖 | ) with 𝑣𝑔ℎ = 𝑣𝑔 ,
then 𝑠𝑠𝑡 (𝑣𝑔, 𝛾) = 𝑑 (𝑣0𝑖 , 𝑣𝑔1 ) +

∑ℎ−1
𝑗=1 𝑑 (𝑣𝑔𝑗 , 𝑣𝑔𝑗+1 ). The SST of goal

sequence allocation 𝛾 , denoted 𝑠𝑠𝑡 (𝛾), is the sum of the service
times of all goals across agents, i.e.,

∑
𝑣𝑔∈𝛾 𝑠𝑠𝑡 (𝑣𝑔, 𝛾). Observe that

𝑠𝑠𝑡 (𝛾) is a lower bound on the SST of any solution to the respective
MACPF problem that is consistent with 𝛾 .

Next, we define a Mixed Integer Linear Program (MILP) whose
solution corresponds to a goal sequence allocation that minimizes
its SST. We assign each vertex 𝑣 ∈ 𝑉0 ∪𝑉𝑔 ⊆ 𝑉 of the underlying
graph 𝐺 = (𝑉 , 𝐸) a unique index from 1 to 𝑛 +𝑚: indices 1, . . . , 𝑛
correspond to the 𝑛 agents’ initial vertices in 𝑉0, and indices 𝑛 +
1, . . . , 𝑛 +𝑚 correspond to the𝑚 goal vertices in 𝑉𝑔 . This indexing
enables a uniform definition of the decision variables.

Decision variables. To encode the structure of a goal sequence
allocation, we introduce binary variables 𝑥𝑖 𝑗 ∈ {0, 1}, where 𝑖 ∈
{1, . . . , 𝑛 +𝑚} denotes either an initial vertex in 𝑉0 or a goal vertex
in𝑉𝑔 , and 𝑗 ∈ {𝑛 + 1, . . . , 𝑛 +𝑚} denotes a goal vertex in𝑉𝑔 . Setting
𝑥𝑖 𝑗 = 1 indicates that 𝑗 is the immediate successor of 𝑖 in the
allocation sequence (visited directly after 𝑖), and 𝑥𝑖 𝑗 = 0 otherwise.

We define an integer variable 𝑡 𝑗 ∈ Z≥0 representing the service
time for each 𝑗 ∈ {1, . . . ,𝑚}, where each 𝑗 denotes a goal vertex
in 𝑉𝑔 . Since the service times quantify the quality of a plan, the
objective is to minimize the sum of service time across all goals:

min
𝑚∑︁
𝑗=1

𝑡 𝑗 .

Constraints. The formulation includes the following feasibility
constraints:

(1) Each goal must have exactly one incoming edge, ensuring
that it is collected exactly once:

𝑛+𝑚∑︁
𝑖=1
𝑖≠𝑗

𝑥𝑖 𝑗 = 1, ∀𝑗 ∈ {𝑛 + 1, . . . , 𝑛 +𝑚}.

(2) Each goal can have at most one outgoing edge, ensuring that
it leads to at most one successor:

𝑛+𝑚∑︁
𝑗=𝑛+1
𝑗≠𝑖

𝑥𝑖 𝑗 ≤ 1, ∀𝑖 ∈ {𝑛 + 1, . . . , 𝑛 +𝑚}.

(3) Each agent can connect to at most one goal, ensuring that
every agent can start at most one sequence of assigned goals:

𝑛+𝑚∑︁
𝑗=𝑛+1

𝑥𝑖 𝑗 ≤ 1, ∀𝑖 ∈ {1, . . . , 𝑛}.

(4) Service times must be consistent with the paths:
(4.1) If a goal 𝑗 is the first to be collected by agent 𝑖 , its service

time equals the travel cost 𝑐𝑖 𝑗 from the agent’s start to 𝑗 :
𝑡 𝑗−𝑛 ≥ 𝑐𝑖 𝑗 − (1 − 𝑥𝑖 𝑗 ) ·𝑀,
𝑡 𝑗−𝑛 ≤ 𝑐𝑖 𝑗 + (1 − 𝑥𝑖 𝑗 ) ·𝑀,

𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {𝑛 + 1, . . . , 𝑛 +𝑚}.

(4.2) If a goal 𝑗 is collected after goal 𝑖 , its service time equals
the service time of 𝑖 plus the travel cost 𝑐𝑖 𝑗 :
𝑡 𝑗−𝑛 ≥ 𝑡𝑖−𝑛 + 𝑐𝑖 𝑗 − (1 − 𝑥𝑖 𝑗 ) ·𝑀,
𝑡 𝑗−𝑛 ≤ 𝑡𝑖−𝑛 + 𝑐𝑖 𝑗 + (1 − 𝑥𝑖 𝑗 ) ·𝑀,

𝑖, 𝑗 ∈ {𝑛 + 1, . . . , 𝑛 +𝑚}, 𝑖 ≠ 𝑗 .

Here, 𝑐𝑖 𝑗 denotes the shortest travel cost between the vertices
whose MILP indices are 𝑖 and 𝑗 in 𝐺 , and𝑀 is a sufficiently large
constant. These inequalities are enforced only when 𝑥𝑖 𝑗 = 1, i.e.,
when the corresponding edge is part of the allocation. If 𝑥𝑖 𝑗 = 0, the
edge is inactive and the large constant𝑀 relaxes the inequalities,
making them trivially satisfied. In other words, 𝑀 serves purely
as a switch that activates or deactivates constraints depending on
𝑥𝑖 𝑗 . This is the standard Big-M technique for encoding conditional
constraints in MILP [13].

The 𝐾𝑡ℎ cheapest allocation. To obtain the 𝐾𝑡ℎ cheapest al-
location, we run an iterative procedure for 𝑝 = 1, . . . , 𝐾 , where at
each iteration solving the MILP yields 𝑆𝑜𝑙𝑝 components (Eq. a), and
we then add the exclusion constraint (Eq. b) to prevent 𝑆𝑜𝑙𝑝 from
reappearing in later iterations:

𝑆𝑜𝑙𝑝 = {(𝑖, 𝑗) | 𝑥𝑖 𝑗 = 1}, 𝐶𝑜𝑠𝑡 (𝑆𝑜𝑙𝑝 ) =
𝑚∑︁
𝑘=1

𝑡𝑘 , (a)∑︁
(𝑖, 𝑗 ) ∈𝑆𝑜𝑙𝑝

𝑥𝑖 𝑗 ≤ |𝑆𝑜𝑙𝑝 | − 1. (b)

At 𝑝 = 𝐾 , 𝑆𝑜𝑙𝐾 defines 𝛾𝐾 with 𝑠𝑠𝑡 (𝛾𝐾 ) = 𝐶𝑜𝑠𝑡 (𝑆𝑜𝑙𝐾 ). To recon-
struct 𝛾𝐾 , we interpret each index 𝑖, 𝑗 ∈ {1, . . . , 𝑛 +𝑚} according
to the mapping defined earlier, where 1, . . . , 𝑛 correspond to initial
vertices in 𝑉0 and 𝑛 + 1, . . . , 𝑛 +𝑚 to goal vertices in 𝑉𝑔 of the un-
derlying graph 𝐺 = (𝑉 , 𝐸). For each 𝑘 ∈ {1, . . . , 𝑛}, we initialize
𝛾𝑘 . We then follow the unique active pair (𝑖, 𝑗) ∈ 𝑆𝑜𝑙𝐾 with 𝑖 = 𝑘 ,



append the goal vertex represented by 𝑗 to 𝛾𝑘 , and continue iter-
atively from 𝑗 with the next pair ( 𝑗, ℓ) ∈ 𝑆𝑜𝑙𝐾 , until no outgoing
pair is found. Applying this procedure for all 𝑘 = 1, . . . , 𝑛 yields
𝛾𝐾 = {𝛾1, . . . , 𝛾𝑛} as the collection of ordered goal sequences.

In summary, the MILP formulation replaces the K-best sequenc-
ing step in CBSS, enabling optimization under the SST objective
without requiring fixed destinations, and returns the 𝐾𝑡ℎ cheapest
allocation. We call the resulting algorithm CBSS𝑆𝑆𝑇 .

5 ROBUSTNESS TO DELAYS
In real-world multi-agent systems, agents rarely execute their plans
in perfectly synchronized steps. We consider next the case where
each agent may experience a delay with some fixed probability
before each step it executes. Let 𝑝delay = (𝑝1delay, . . . , 𝑝

𝑛
delay) denote

the vector of delay probabilities per agent, where at each time
step agent 𝑖 may fail to execute a move action and remain at its
current location with probability 𝑝𝑖delay (and otherwise proceeds
along its planned path). Delays are sampled independently across
agents and time steps. This simple model captures a wide range
of realistic sources of uncertainty, including communication lags,
computational overhead, and physical dynamics such as actuator
or sensor latency. Importantly, even if a solution is conflict-free
under ideal execution, such delays may lead to new conflicts during
execution, which motivates the need for robustness guarantees.

To address this uncertainty, we adopt the notion of 𝑝-robustness
introduced in p-Robust CBS [1]. This concept reflects the intuition
that absolute safety under stochastic delays is rarely attainable
(unless agents are forced onto vertex-disjoint paths, which is often
impractical). Instead, 𝑝-robustness provides a principled trade-off:
it ensures that the probability of a conflict-free execution is at least
a specified threshold, while still permitting efficient plans where
agents may traverse partially overlapping paths.

Definition 5.1 (𝑝-Robust Solution). The robustness of a solution
𝜋 with respect to a given vector of delays 𝑝delay is the probabil-
ity that agents executing 𝜋 will not conflict. A solution 𝜋 with a
robustness 𝑝 is called a 𝑝-robust solution.

Computing the exact robustness of a solution is challenging.
Instead, we aim to find a solution that is 𝑝-robust with statistical
confidence 1 − 𝛼 for a given value of 𝛼 ∈ (0, 1). Next, we describe
how to extend our CBSS algorithm such that it optimizes SST and
returns 𝑝-robust solutions with confidence 1 − 𝛼 .

5.1 Robust CBSS - Strict Verifier (𝑅𝐶𝑏𝑠𝑠𝑇𝑆𝑡𝑟𝑖𝑐𝑡 )
One way to handle stochastic delays is to replan online during exe-
cution, shortly before an imminent conflict. However, such online
replanning is inherently myopic, as it reacts only to local, near-term
conflicts, and may therefore yield high SST solutions. It also incurs
communication and computational overhead, since agents must
synchronize with the planner during execution. As an alternative,
we aim to produce robust plans offline that anticipate delays and
reduce the need for online replanning.

To extend CBSS (Algorithm 1) to stochastic environments, we
integrate the robustness mechanisms used by p-Robust CBS [1]
for MAPF. A solution 𝜋 is returned only if it can be statistically
verified to satisfy the required robustness threshold 𝑝; otherwise,

it is rejected. This requires two modifications to Algorithm 1: (i)
replacing the deterministic conflict check on line 15 with a proba-
bilistic verification step, and (ii) extending the conflict resolution
step in line 18.

Monte Carlo verification in CBSS. CBSS deterministically
checks whether the candidate solution contains conflicts (Algo-
rithm 1, line 15). In our robust extension, this check is replaced by
the Monte Carlo verifier (Algorithm 2) used in p-Robust CBS [1],
which estimates a solution’s robustness by repeatedly simulating
randomized executions of 𝜋 with the per-agent delay probabilities
𝒑delay defined above. Then, it applies a standard statistical test to de-
termine if the given solution indeed reached a robustness of 𝑝 with
confidence level 1 − 𝛼 . The procedure is described in Algorithm 2.

Algorithm 2:Monte Carlo Verifier
Input: 𝜋 , 𝑝 , 𝛼 , 𝑝delay

1 Initialize 𝑠0 // Equation (1);
2 Run 𝑠0 simulations under 𝒑delay;
3 while TRUE do
4 𝑃0 ← ratio of simulations without a conflict;
5 Calculate 𝑐1 // Equation (2);
6 Calculate 𝑐2 // Equation (3);
7 if 𝑃0 ≥ 𝑐1 then
8 return TRUE;
9 if 𝑃0 < 𝑐2 then
10 return FALSE;
11 𝑠0 ← 𝑠0 + 1;
12 Run one more simulation;

Algorithm 2 begins by determining the initial number of simula-
tions 𝑠0 (line 1). This value must be sufficiently large to ensure the
validity of the statistical test. The initial number of simulations 𝑠0
is given by

𝑠0 = max

(
30,

⌈
𝑧21−𝛼 · 𝑝
1 − 𝑝

⌉)
, (1)

where 𝑧1−𝛼 denotes the critical value of the standard normal distri-
bution for confidence level 1−𝛼 . The constant 30 in Eq. (1) ensures
that the binomial distribution of 𝑠0 Bernoulli trials (each simulation)
is well approximated by a normal distribution, as guaranteed by
the Central Limit Theorem. The second term in Eq. (1) follows from
the requirement that line 7 in Algorithm 2 can be satisfied. This
holds only if 𝑐1 in Eq. (2) is smaller than 1, which implies

𝑠0 > 𝑧21−𝛼 ·
𝑝

1 − 𝑝 .

Next, 𝑠0 randomized simulations of the solution 𝜋 are performed
(line 2). The fraction of conflict-free simulations, referred to as the
empirical robustness, is denoted by 𝑃0 (line 4). This value is then
evaluated against two statistical thresholds. The first threshold 𝑐1
(line 5) is the minimal value of 𝑃0 required to accept the hypothesis
that the solution 𝜋 is 𝑝-robust with confidence level 1 − 𝛼 :

𝑐1 = 𝑝 + 𝑧1−𝛼 ·

√︄
𝑝 (1 − 𝑝)

𝑠0
. (2)



The second threshold 𝑐2 (line 6) is the maximal value of 𝑃0 re-
quired to reject the hypothesis that 𝜋 is 𝑝-robust with confidence
level 1 − 𝛼 :

𝑐2 = 𝑝 − 𝑧1−𝛼 ·

√︄
𝑝 (1 − 𝑝)

𝑠0
. (3)

If the observed probability 𝑃0 is greater than or equal to 𝑐1, the
verifier concludes that the solution is 𝑝-robust and returns TRUE
(line 8). Conversely, if 𝑃0 < 𝑐2, it concludes that the solution does
not meet the robustness requirement and returns FALSE (line 10).
In cases where 𝑃0 lies between these thresholds, the algorithm
increases 𝑠0 by one (line 11), performs an additional simulation
(line 12), and repeats until a decision is reached.

Three-way split conflict resolution in CBSS. In Algorithm 1,
in line 18, CBSS applies the CBS two-way split: given a conflict
⟨𝑎𝑖 , 𝑎 𝑗 , 𝑥, 𝑡⟩, it generates two children, each forbidding one agent
from occupying vertex 𝑥 or traversing edge 𝑥 at time 𝑡 . In the ro-
bust extension, this is insufficient: in CBS, the case where both
agents are planned to occupy 𝑥 at time 𝑡 is treated as illegal and
discarded. However, under stochastic delays this potential conflict
may occur only with a small probability, and discarding it could
prune solutions that still satisfy the requirement 𝑝 . Therefore, fol-
lowing p-Robust CBS, we adopt a three-way split: in addition to
the two standard children, we generate a third child with a positive
constraint that enforces the occurrence of the conflict. This allows
the search to retain and evaluate solutions where the conflict is
tolerated probabilistically, preserving potentially optimal 𝑝-robust
solutions that would otherwise be pruned.

We refer to the robust extension of CBSS𝑆𝑆𝑇 , which uses the
Monte Carlo verifier to identify conflicts and the three-way split
described above to resolve them, as 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 .

5.2 Balancing Robustness and Efficiency
Although 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 provides principled robustness guarantees
under stochastic delays, it also raises important questions about the
balance between robustness and efficiency. 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 reduces
the likelihood of execution-time conflicts as higher values of 𝑝
lower the need for online replanning. However, achieving higher
robustness comes at a significant cost: the verifier must run more
simulations and the search must explore larger parts of the con-
straint tree, which increases runtime and reduces scalability. This
creates a clear trade-off: increasing 𝑝 reduces the amount of replan-
ning required during execution but makes planning considerably
slower and may yield longer plans (increasing SST).

Rather than committing solely to robust planning or to online
replanning, a promising direction is to combine both: designing
solutions that incorporate a sufficient degree of robustness while
retaining the flexibility to resolve conflicts dynamically during ex-
ecution. Next, we propose 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 , an anytime variant of
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 that searches for a solution that satisfies the desired
robustness 𝑝 , but if no such solution is confirmed within the avail-
able runtime, it returns the solution with the highest empirically
verified robustness found thus far.

5.2.1 Robust CBSS - Anytime Verifier (𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒). In p-
Robust CBS [1] and 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 , the Monte Carlo verifier checks
if we can accept or reject the hypothesis that the given solution is

𝑝-robust (Algorithm 2, lines 5 and 6). In 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 we invert
the perspective and asks for which values of 𝑝 would we have been
able to accept the solution at hand given the empirical robustness
of the performed simulations? Concretely, when 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒
computes two values 𝑝𝑐1 and 𝑝𝑐2 for a given solution 𝜋 and 𝑠0
simulation with an empirical robustness 𝑃0. 𝑝𝑐1 is a lower bound
on the robustness we can verify and 𝑝𝑐2 is an upper bound on
it. We refer to 𝑝𝑐1 as the empirically verified robustness. If 𝑝𝑐1 is
equal to or greater than 𝑝 , the solution 𝜋 is accepted as 𝑝-robust. If
𝑝𝑐2 is smaller than 𝑝 , the solution is declared to not be 𝑝-robust. If
neither condition holds, additional simulations are performed. Most
importantly, during execution 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 keeps track of the
highest empirically verified robustness value observed so far and
the corresponding solution, which is returned if 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒
is halted before finding a solution that is empirically verified to be
𝑝-robust.

Computing 𝑝𝑐1 and 𝑝𝑐2. Starting from the boundary equations
𝑃0 = 𝑐1 and 𝑃0 = 𝑐2, we substitute the definitions of 𝑐1 and 𝑐2
(Equations 2 and 3):

𝑃0 = 𝑝 ± 𝑧1−𝛼
√︃
𝑝 (1−𝑝 )
𝑠0

.

Each of these equations expresses a condition on 𝑝 under which the
empirical robustness 𝑃0 lies exactly on the acceptance or rejection
boundary. By standard algebraic manipulation, this leads to the
quadratic equation(

𝑠0 + 𝑧21−𝛼
)︸       ︷︷       ︸

𝐴

𝑝2 +
(
−(2𝑠0𝑃0 + 𝑧21−𝛼 )

)︸                 ︷︷                 ︸
𝐵

𝑝 + 𝑠0𝑃20︸︷︷︸
𝐶

= 0, (4)

where 𝐴, 𝐵, and 𝐶 are the coefficients defined above. Since the
equation is quadratic in 𝑝 , its solutions can be obtained using the
quadratic formula, yielding the lower and upper bounds on the
robustness, 𝑝𝑐1 and 𝑝𝑐2.

Algorithm 3: Anytime Verifier
Input: 𝜋 , 𝑝 , 𝛼 , 𝑝delay

1 Initialize 𝑠0 // Equation (1);
2 Run 𝑠0 simulations under 𝒑delay;
3 while TRUE do
4 𝑃0 ← ratio of simulations without a conflict;
5 Calculate 𝑝𝑐1, 𝑝𝑐2 // based on Equation (4) ;
6 if 𝑝𝑐1 > 𝑝A then
7 𝜋best ← 𝜋 ;𝑝A ← 𝑝𝑐1;
8 if 𝑝𝑐1 ≥ 𝑝 then
9 return TRUE;

10 if 𝑝𝑐2 < 𝑝 then
11 return FALSE;
12 𝑠0 ← 𝑠0 + 1;
13 Run one more simulation;



Using 𝑝𝑐1 and 𝑝𝑐2 in 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 . The main difference be-
tween 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 and 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 is in the Monte Carlo
verifier they use. Algorithm 3 lists the pseudo code for the veri-
fier used by 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 . It follows the same initialization and
simulation steps as the plan verifier of 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 (Algorithm 2,
lines 1–4). The difference arises after computing the boundary val-
ues 𝑝𝑐1 and 𝑝𝑐2 (line 5). If the computed 𝑝𝑐1 exceeds the highest
empirically verified robustness level found so far (line 6), denoted
by 𝑝A, then it updates it (line 7) and records the corresponding
solution as the incumbent solution, denoted 𝜋best. If at this point
𝑝𝑐1 ≥ 𝑝 (line 8), the verifier terminates successfully (line 9). Con-
versely, if 𝑝𝑐2 < 𝑝 (line 10), the verifier concludes that the solution
cannot achieve robustness 𝑝 and terminates with FALSE (line 11).
If neither condition holds, the verifier continues as in Algorithm 2,
incrementing 𝑠0 (line 12), running one more simulation (line 13),
and repeating the loop (line 3).
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 guarantees that a solution is always produced

within the time budget, returning the incumbent solution 𝜋best
whether the desired robustness 𝑝 has been verified or not.

6 EXPERIMENTAL RESULTS
We compare experimentally two proposed variants of Robust CBSS
— 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 and 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒— with several natural base-
lines on four diverse grids of varying sizes and structures from the
standard grid-based MAPF benchmark [22] (illustrated in Figure 2).

Figure 2: Evaluation maps: Random, Maze, Room, and Ware-
house, with different obstacle densities and structures.

Planner Configurations and Baselines. We use the term plan-
ner configuration to denote a specific planner variant together
with a desired safety level, when applicable. We consider four
planner configurations, where (1) and (2) are the baselines: (1)
𝐶𝐵𝑆𝑆𝑆𝑆𝑇 - deterministic CBSS that ignores delays during planning.
(2) 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 with 𝑝 = 0 - delays are modeled, but robustness
is not enforced; all plans pass verification and delay-induced con-
flicts are tolerated during planning. (3) 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 with a desired
𝑝 . (4) 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 with a desired 𝑝 . The desired levels 𝑝 are
𝑝safe ∈ {0.05, 0.25, 0.5, 0.8, 0.95, 0.99, 0.999, 0.9999}.

Experimental Design. We varied the number of agents, setting
𝑛 ∈ {15, 20, 25, 30, 35, 40, 45, 50}, and fixed the number of goals to
𝑚 = 50. The delay vectors 𝑝delay used in our experiments are uni-
form, setting entries to be equal to the same value, chosen from
{0.1, 0.3, 0.5}. For each planner configuration, for every combina-
tion of agent count𝑛 and delay level 𝑝delay, we generate 300 random
instances by uniformly sampling agent and goal locations. The con-
fidence level used in our experiments was 1 − 𝛼 = 0.95 , following
p-Robust CBS [1]. Each instance is solved under a total time bud-
get of 600 seconds. Within this budget, each planning iteration is
capped at 60 seconds.

We considered the following metrics in our experiments.
• Failures. Percentage of instances that were not be solved.
• ≥1 Replan. Percentage of instances that required at least
one online replanning.
• Avg Online Runtime. Average online (replanning) time
per instance, in seconds.
• Avg Online SST. Average sum of service time during exe-
cution per instance.
• Avg Nodes Expanded. Average number of nodes expanded
per instance during the high-level search.

Online Execution and Replanning Triggers. Given a solution
𝜋 produced by a chosen planner configuration, execution proceeds
in an online environment where stochastic delays may occur at
every step. At each time step, before applying the next planned
moves, we perform a one-step look-ahead to detect if there is any
chance that some pair of agents will collide at the next step, either
because they are planned to occupy the same location at that step
or because a one-step delay of one agent could place them at the
same location. If this occurs, we immediately invoke the planner
to perform replanning from the agents’ current locations using the
same planner configuration. To avoid a deadlock in which execution
would repeatedly trigger replanning on the first step for the same
potential conflict, we augment the solution-verifier of every planner
configuration to reject any solution where there is a chance to have
conflicts in the first step.

Implementation. Planner configurations and the online execu-
tion environmentwere implemented in Python 3.10 onUbuntu 24.04.
TheMILP-based allocation subproblemswere solvedwith the Gurobi
Optimizer (v11.0.3) via gurobipy [5]. Experiments were run on a
16 -core virtual machine (AMD EPYC 7702P). Only representative
results are reported here; full results and code are available at
https://github.com/anonymousDD112233/RCbssTAnytime.

6.1 Results
Table 1 reports the performance of 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 , 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 ,
and the baselines on the Maze map across different desired ro-
bustness levels 𝑝 . The values in the columns Failures and Avg
Expanded Nodes are computed over all instances. For the other
metrics (≥1 Replan,Avg Online Runtime, andAvg Online SST),
averages are taken separately: in the top and middle parts of the
table over the common subset of instances solved by all baselines
and 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 configurations, and in the bottom part over the
subset of instances solved by all 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 configurations.

Consider first the results for 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 . These results high-
light the trade-off between robustness and efficiency that occurs
when using 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 . As 𝑝 increases, more robust plans reduce
the proportion of instances requiring at least one replan, resulting
in fewer replans and shorter average online runtimes. At the same
time, stricter robustness requirements raise the failure rate in two
ways: first, by increasing the rejection of candidate plans, which
forces the search to expand more nodes in the tree; and second, by
increasing the minimum number of simulations per verification,
which slows down the verification process itself. This is evident
from the sharp growth in required minimum simulations (Eq. 1):
about 52 at 𝑝 = 0.95, 268 at 𝑝 = 0.99, 2,704 at 𝑝 = 0.999 and over
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27,058 at 𝑝 = 0.9999. This explains the observed trend: as 𝑝 grows,
the number of expanded nodes generally increases due to more
frequent rejections, but at 𝑝 = 0.99 and above, the high minimum
simulation requirement dominates, slowing verification and result-
ing in fewer expansions overall. The average online SST remains
essentially unchanged across all configurations, indicating that the
trade-off, at least in our experiments, primarily concerns failure
rates and replanning effort rather than SST. Under our time budget,
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 with 𝑝 = 0 achieves the lowest failure rate, but at
the cost of more instances requiring replanning during execution
and a longer average online runtime compared to more robust set-
tings. Conversely, as 𝑝 increases, solutions involve fewer replanning
events and shorter average online runtimes, but this comes at the
expense of higher failure rates.

Planner
Configurations Failures ≥1 Replan Avg Online

Runtime (sec)
Avg Online

SST
Avg Expanded

Nodes

CBSS𝑆𝑆𝑇 32.31% 4.33% 0.97 487.39 9.41
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0 29.01% 6.81% 1.48 487.41 1.54

𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.05 29.38% 6.07% 1.37 487.11 22.02
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.25 30.12% 5.40% 1.24 487.12 145.65
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.5 31.99% 3.88% 0.92 487.14 393.63
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.8 39.33% 1.69% 0.44 487.16 785.21
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.95 47.62% 0.62% 0.14 487.22 806.65
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.99 55.58% 0.34% 0.08 487.22 344.52
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.999 63.57% 0.00% 0.00 487.15 61.70
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 - 𝑝 = 0.9999 74.43% 0.00% 0.00 487.16 9.08

𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.05 28.71% 27.77% 7.74 588.83 12.48
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.25 28.39% 26.74% 7.41 588.95 76.17
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.5 26.38% 23.42% 6.86 589.09 220.92
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.8 24.01% 17.18% 5.85 589.27 501.23
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.95 22.71% 14.22% 5.83 589.16 567.57
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.99 22.26% 13.44% 5.64 589.14 255.53
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.999 22.90% 14.67% 6.61 589.10 47.13
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒- 𝑝 = 0.9999 25.69% 20.57% 12.49 589.17 7.51

Table 1: Results for 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 (bottom), 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡
(middle), and the baselines (top) on the Maze 32X32 map.

The bottom part of Table 1 shows a different trend compared to
𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 . Across all tested values of 𝑝 , 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 solved
more instances within the same time limit, consistently achiev-
ing lower failure rates than 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 . Notably, while the av-
erage online SST remains essentially unchanged across different
values of 𝑝 , it is larger than in the 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 results because
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 solves more and often harder instances, which in
turn also raises the ≥1 Replan and Avg Online Runtime metrics.
Within 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 itself, three insights emerge: (1) As 𝑝 in-
creases up to 0.99, the proportion of instances requiring more than
one replan decreases, the average online runtime shortens, and the
overall failure rate drops. In other words, higher robustness not
only reduces the need for replanning, as expected, but also enables
solving more instances within the time limit. (2) Beyond 𝑝 = 0.99,
performance no longer improves. At 𝑝 = 0.999 and 0.9999, the min-
imum number of simulations required per verification (2,704 and
27,058, respectively; Eq. 1) grows sharply, slowing verification and
constraining the search. This is reflected in fewer expansions; with
fewer nodes explored, the planner tends to return lower-quality
plans. Consequently, more replanning is triggered and each replan
must first verify that the initial step is 1-robust before checking
𝑝-robustness. If no such robust initial step plan is found within
the time limit, the instance fails. (3) An interesting effect occurs at
𝑝 = 0.99. Although the minimum number of simulations per verifi-
cation increases from 52 at 0.95 to 268 at 0.99 (Eq. 1), verification

time is higher yet not prohibitive. Consequently, fewer nodes are
expanded than at 0.95, but the plans that do pass verification are
stronger, yielding more solved instances within the time limit. In
contrast, at 𝑝 > 0.99 the verification time grows steeply, dominates
runtime, and constrains search, reducing the number of solved
instances.

Figure 3 compares 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 and 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 . The x-axis
shows the success rate, i.e., the percentage of problem instances
solved successfully. The y-axis shows the online SST level. Each
point (𝑥,𝑦) on a curve means that 𝑥% of the instances are solved
with online SST ≤ 𝑦. At low robustness levels (𝑝 = 0.05, 0.5), the
two variants perform similarly, solving nearly the same fraction
of instances for comparable average Online SST. As robustness
increases, however, their behavior diverges: 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 suffers
from rising failure rates, while 𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 consistently solves
more instances for the same Online SST. This highlights the advan-
tage of the anytime verifier, which sustains reliability under high
robustness requirements without increasing service time.

Figure 3: Online SST vs. success rate (%) for 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 and
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 on the Random 32×32 map.

7 CONCLUSION
We studied Multi-Agent Combinatorial Path Finding (MACPF ) and
revised Conflict-Based Steiner Search (CBSS), which in its original
form (CBSS𝑆𝑂𝐶 ) assumes fixed goal destinations and minimizes
the sum of costs (SOC). We proposed CBSS𝑆𝑆𝑇 , which generalizes
the setting by removing fixed goal destinations and optimizing
the Sum of Service Times (SST) via a MILP-based allocation pro-
cedure. Building on this foundation, we introduced two robust
extensions: 𝑅𝐶𝑏𝑠𝑠𝑇 𝑆𝑡𝑟𝑖𝑐𝑡 , which guarantees strict robustness, and
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 , which provides an anytime approach that balances
robustness with limited planning time. Our experiments show that
𝑅𝐶𝑏𝑠𝑠𝑇𝐴𝑛𝑦𝑡𝑖𝑚𝑒 significantly improves the trade-off between ro-
bustness, replanning effort, and efficiency, making it practical for
real-world scenarios. Future work can continue to explore ways to
balance offline planning and online replanning, considering meta-
reasoning techniques to reduce the overall Goal Achievement Time,
which includes both runtime and solution cost [7].
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