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ABSTRACT

Consider a system of multiple physical agents tasked with collabo-
ratively collecting a set of spatially distributed goals while avoiding
collisions with the environment and with each other. This type
of problem, which combines Multi-Agent Path Finding (MAPF)
with task allocation, is known as Multi-Agent Combinatorial Path
Finding (MACPF). Conflict-Based Steiner Search (CBSS) is an op-
timal algorithm for MACPF, which assumes that each agent has
a fixed goal destination. It selects allocations that yield a solution
minimizing the sum of costs (SOC), which we denote as CBSSsoc.
However, this objective is problematic in domains such as search
and rescue, where timely service of all goals is more critical than
minimizing SOC. We therefore propose CBSSsst, which minimizes
the Sum of Service Times (SST) across all goals using a novel
mixed-integer linear programming allocation, thereby generalizing
MACEFF to settings without requiring fixed goal destinations. Since
CBSS assumes perfect execution, we extend it with robust planning
to handle stochastic execution delays. We propose two variants
of CBSSss7: Robust CBSSgst with Strict Verifier (RCbsstStrict),
which guarantees the desired robustness, and Robust CBSSgst
with Anytime Verifier (RCbssTAnytime), which addresses planning-
time constraints by returning the most robust solution verified
within the available time. Our experiments on MACPF benchmarks
show that RCbssT Anytime solves substantially more instances than
RCbsstStrict within the time limit, while reducing replanning ef-
fort and preserving robustness. These results demonstrate that
RCbsstAnytime provides an effective and practical approach to
MACPF under uncertainty.
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1 INTRODUCTION

Multi-Agent Path Finding (MAPF) aims to compute collision-free
paths for multiple agents from their start locations to their goal
destinations within a shared environment [20, 22]. It has practical
applications in robotics, warehouse automation, and traffic coor-
dination, which require efficient and safe movement of mobile
physical agents [3, 10]. When multiple agents are required to visit
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a set of spatially distributed goals, for example autonomous robots
that must rescue injured people located at different locations, the
problem becomes not only one of finding collision-free paths but
also of optimally assigning the goals to agents. The problem of solv-
ing this dual challenge is called Multi-Agent Combinatorial Path
Finding (MACPF), where prior work typically assumes that each
agent is pre-assigned a fixed goal destination, required to collect
its assigned goals and finish there [14-16]. In contrast, we consider
a more general setting in which all goals must be visited without

fixing destinations for agents.
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Figure 1: (a) minimizes SOC, (b) minimizes makespan, and
(c) minimizes SST. Circles - agents and squares - goals.

A key difficulty in MACPF lies in selecting an appropriate op-
timization objective. Classical measures such as the Sum of Costs
(SOC) or makespan capture the overall travel effort or the time of
the last completed goal, but they overlook when individual goals
are reached by an agent. As a result, many goals may remain un-
reached until the very end, even when SOC or makespan are small.
The Sum of Service Time (SST) objective [12] addresses this by sum-
ming the completion times of all goals, thereby promoting earlier
and more balanced service. This is particularly relevant in domains
where responsiveness and fairness across goals are more critical.
For example, in a search and rescue scenario (Figure 1), the choice of
objective critically affects when each injured person is rescued. In
panel (a), minimizing SOC causes agent 1 to rescue A before B, de-
laying B by two steps. In panel (b), minimizing makespan still leaves
B waiting until after A. In contrast, panel (c) minimizes SST: agent 2
is immediately dispatched to B, ensuring all goals are served earlier
and more evenly. This illustrates that SOC and makespan may delay
critical goals, while SST promotes timely, balanced rescue.

The first contribution of this work is a MACPF algorithm
that minimizes SST in the generalized setting where agents are
not required to end at fixed goal destinations. In contrast, Conflict-
Based Steiner Search (CBSS) [16] extends Conflict-Based Search
(CBS) [18] to solve MACPF under the assumption that each agent
has a fixed destination and minimizes the Sum of Costs (SOC), de-
noted CBSSgoc. The assignment of goals in CBSSsoc is obtained
via a reduction to the Traveling Salesman Problem (TSP) and a ded-
icated procedure [23], which enumerates TSP tours in increasing



order of cost, each corresponding to a specific goal allocation. To
adapt CBSS to minimize SST (CBSSssT), we reduce the allocation
problem to a Traveling Repairman Problem (TRP) [2] and design a
Mixed-Integer Linear Programming (MILP) formulation that enu-
merates allocations in increasing order of SST. A related MILP was
proposed in [4], but it computes only a single optimal tour, whereas
our formulation efficiently generates multiple tours (allocations).

A further limitation of CBSS is the assumption of perfect exe-
cution, which is unrealistic in real-world multi-agent systems. In
practice, agents may be delayed stochastically, leading to deviations
from the planned schedule and potential conflicts. The second con-
tribution of this work is an extension of CBSSgg7 that accounts
for such delays. One approach to address these delays is to replan
during execution when a conflict is about to occur, but this is often
costly and yields less effective solutions. Inspired by prior work
on MAPF [1], we instead consider a verification-based approach in
which CBSS estimates the robustness of a plan to delays, i.e., the
probability that agents following it will avoid conflicts. This exten-
sion, termed RCbsstStrict (Robust CBSSgst with a Strict Verifier),
accepts a desired robustness p and uses Monte Carlo simulations
to return a plan that satisfies it.

RCbsstStrict enables reasoning about execution uncertainty but
creates a trade-off: higher robustness reduces online replanning
but requires more simulations and deeper search, increasing plan-
ning time. The third contribution of this work is to introduce
RCbsstAnytime (Robust CBSSgst with an Anytime Verifier), which
balances this trade-off. Rather than requiring the desired robust-
ness (p) regardless of time constraints, RCbssT Anytime maintains
and updates the highest robustness confirmed so far. If the desired
robustness is verified within the time limit, RCbssTAnytime termi-
nates successfully; otherwise, it returns the solution with the high-
est robustness validated up to that point. This approach guarantees
that a solution is always produced within the runtime, balancing
the benefits of robustness with the constraints of planning time.

We evaluate RCbsstStrict and RCbsstAnytime on the standard
grid-based MAPF benchmark maps [22]. The results show that
RCbsstAnytime solves a larger number of instances within the
time limit while maintaining strong robustness guarantees. In par-
ticular, it achieves a better balance between reducing the need for
replanning during execution and keeping planning times tractable,
highlighting the practical advantages of the anytime approach.

2 PROBLEM DEFINITION

MAPF involves a set of agents, each with a start and a goal location.
The task is to find non-conflicting paths that move all agents from
their starts to their goals. MACPF generalizes MAPF by allowing
different numbers of agents and goals and allocations are unknown.

Let A = {ai,...,an} denote n agents operating in an environ-
ment modeled as a directed graph G = (V, E), where each vertex
v € V represents a unique location. Time is discretized, and at each
time step an agent occupies a single vertex in G. At each time step,
an agent may perform one of two actions: Wait, which keeps the
agent at its current vertex, or Move, which changes the agent’s
location to an adjacent vertex. Each agent a; € A starts at an initial
vertex vg,, and Vo = {vg,,...,09,} C V denotes the set of all initial

vertices. Similarly, let Vg = {ng el vgm} C V denote the set of m
distinct goal vertices.

A single-agent plan 7' for agent a; is a sequence of actions
starting from og,. We denote by 7'(t) the vertex occupied after
performing the th action in 7. A plan 7’ specifies how agent a;
moves in the graph in order to collect a (possibly empty) subset
of goals. Since agents operate simultaneously, conflicts may arise
when their paths intersect. A conflict {a;, aj, x, t) between a pair of
single-agent plans 7’ and 7/ occurs if agents a; and a; (a; # a;)
occupy the same location x at time step ¢, i.e., when 7' (t) = 7/ (t) =
x, or when they traverse the same edge x in opposite directions from
time step ¢ — 1 to time step ¢, i.e., when 7% (t — 1) = 7/ (t) A 7' (t) =
7/ (t — 1), where (7' (¢ — 1), 7' (t)) = x. The former is referred to as
a vertex conflict and the latter as a swapping conflict [22].

A solution 7 is a set of single-agent plans {x!, ..., 2"}, one for
each agent. A solution is conflict-free if it does not contain a conflict
as defined above.

Definition 2.1 (Sum of Service Times (SST)). Given a solution
7 ={x!,..., 7"}, the service time of a goal vg; € Vg is the earliest
time step at which some agent reaches it in 7. Formally [12],

SST(r) := Z min{ ¢ | 7' (¢) = vy, for some a; € A}

UngVg

Equipped with these definitions, we can now formally define the
MACPF problem.

Definition 2.2 (Multi-Agent Combinatorial Path Finding Prob-
lem). Given a set of n agents with initial vertices V and a set of
goal vertices Vg, the multi-agent combinatorial path finding problem
(MACEPF) is to find a conflict-free solution 7 such that every goal
in Vj is visited by at least one agent.

In this work, we aim to optimize SST and define an optimal solu-
tion accordingly, Unlike prior formulations of MACPF, which as-
sumed each agent is pre-assigned a goal destination, our definition
only requires that all goals be visited without fixing destinations
for individual agents.

3 BACKGROUND AND RELATED WORK

We next provide background on CBS and its extension CBSS, which
form the foundation for our work.

CBS [18] is a two-level MAPF algorithm that optimizes SOC.
At the high level, it explores a Constraint Tree (CT), where each
node Z = (, cost(r), C) consists of a solution 7 = (!, ..., z"), its
total cost, and a set of constraints C. Each constraint (a;, x,t) € C
prohibits agent a; from occupying vertex or edge x at time t. The
root node Zyoot uses empty constraints and paths planned inde-
pendently by a low-level single-agent planner. Nodes are stored
in OPEN — a priority queue ordered by cost. In each iteration, CBS
pops the lowest-cost node, validates its solution, and if no conflict
is found, returns it as optimal. Otherwise, for a detected conflict
(ai, aj, x,t), CBS generates two child nodes by adding to C either
(ai, x,t) or (aj, x,t). For each child, the low-level planner replans
the path of the affected agent under the updated constraints, and
the new nodes are inserted into OPEN for further expansion.

CBSS [16] extends CBS to solve MACPF problems by jointly han-
dling goal allocation and path planning, assuming that each agent



is pre-assigned a fixed goal destination. It modifies the high-level
search to construct a forest of constraint trees (CTs), each corre-
sponding to a fixed goal sequence allocation. It selects allocations
that yield solutions minimizing SOC, which we denote as CBSSsoc.

Definition 3.1 (Goal sequence allocation). A goal sequence
allocation y = {y’v};’=1 assigns each agent a; an ordered sequence
of goal vertices y* = (vgl, el vgh). Let d(u, v) denote the shortest-
path cost between vertices u and v on graph G, and let vg, be the
initial vertex of agent a;. The cost of y*, denoted cost(y"), is defined
as d(vo;, Ugl) + Zz;ll d(vgp, Vg ), and the cost of the full allocation

is cost(y) = X jeq cost(yh).

Algorithm 1: CBSS (SOC or SST objectives)
Input: G

1 K1

2 y1 < K-Best-Sequencing(G, K)

3C«0

4 7 « LowLevelPlan(y;,C)

5 Add Z,p0; = (71, cost(rr), C) to OPEN

6 while OPEN not empty do

7 Z « OPEN.pop()

8 if Z.cost(x) > cost(yk) then

9 K=K+1

10 vk < K-best-Sequencing(G, K)
1 7 « LowLevelPlan(yg, 0)
12 ZnewRoot = (71, cost(x), 0)

13 Add Z,ewRoot and Z to OPEN
14 Continue

15 if Z.z has no conflicts then

16 L return Z.w

17 else

18 L ResolveConflicts(Z, OPEN)

19 return failure

CBSS enumerates goal sequence allocations y1, y2, . .. in ascend-
ing cost. For each y, it builds a constraint tree CTg whose nodes
share this allocation. To obtain each yx, CBSS employs the K-Best-
Sequencing method. This method accepts a parameter K and returns
the Kth cheapest allocation. In CBSSgo this is achieved via a reduc-
tion to a Traveling Salesman Problem (TSP). The K-Best-Sequencing
method maintains a priority queue of tours ordered by cost. It first
solves the TSP to obtain the cheapest tour. At each step, the lowest-
cost tour is extracted; if it is the K* h, it is returned, otherwise new
tours are generated by forbidding each edge of the extracted tour,
solving the resulting TSPs, and inserting them back into the priority
queue. In this way, CBSSsoc computes a sequence of allocations
ordered by increasing SOC. Once yk is determined, CBSS explores
its corresponding CTk using CBS: it resolves conflicts via constraint
splitting and uses the low-level planner to compute for each agent
a; a plan satisfying all constraints and visiting its goals y;<.

CBSS is formally described in Algorithm 1. The search begins by
generating a node based on y;, which becomes the root of CT; and is

added to OPEN. During the search, a node Z is popped from OPEN. Let
K denote the number of root nodes generated so far. If cost (Z.7) <
cost(yx), the algorithm expands Z; otherwise, it creates a new tree
CTp41 by computing yg, via the K-Best-Sequencing method. CBSS
then computes its solution 7pewRoot, and initializes the root node
ZnewRoot 101 CTiy 1. Both Z and Z,ewRoot are returned to OPEN, and
the node with the lower cost will be selected for expansion in the
next iteration. If the selected node’s solution r is conflict-free, the
search terminates and returns ; otherwise, two child nodes via
constraint splitting are added to OPEN.

A key limitation of CBSS is that it assumes each agent is as-
signed a fixed destination goal in advance, which restricts the abil-
ity to dynamically assign goals when such pre-assignments are
suboptimal or undesirable. In addition, CBSS optimizes only SOC
(CBSSsoc). While SOC is appropriate in many MACPF settings, it
fails to capture scenarios where the relevant performance measure
is SST. These limitations motivate the development of an alternative
framework that supports flexible goal assignments and alternative
optimization objectives such as SST.

3.1 Related Work

The field of Multi-Agent Path Finding (MAPF) studies how to com-
pute conflict-free paths for multiple agents from given start to goal
locations. In the classical MAPF setting, each agent is assigned a
single fixed goal destination, and the task is to plan paths that bring
all agents to their goals without conflicts. Beyond the classical set-
ting, two lines of research are particularly relevant to this work.
The first extends MAPF by integrating goal allocation with path
planning, addressing scenarios where agents must serve multiple
or flexible goals [6, 8, 9, 14-16, 21]. The second introduces uncer-
tainty into planning, modeling imperfect execution or stochastic
delays [1, 11, 17, 19, 25].

3.1.1 Related work on integrating MAPF and goal allocation.
Prior work on MAPF considered settings with an equal number of
agents and goals, where no goal was pre-assigned to a specific agent.
Instead, a one-to-one allocation had to be determined, assigning
each agent exactly one goal [8, 9, 21]. In contrast, our work removes
the restriction that the number of agents must equal the number
of goals. Agents may be assigned multiple goals (or none), and the
solution must ensure that all goals are eventually visited. Another
extension of MAPF considers settings where each agent is associ-
ated with a set of potential goals and must ultimately be assigned to
exactly one of them [6]. While in this setting each agent is assigned
from a set of possible goals, it is still limited to exactly one goal per
agent. In contrast, our formulation allows agents to be assigned
multiple goals (or none). Closer to our setting, CBSS [16], MS* [15],
and DMS* [14] directly address the MACPF problem under the stan-
dard assumption that each agent has a fixed destination goal. CBSS
builds on CBS [18] and minimizes the SOC objective, MS* builds
on M* [24] and also minimizes SOC, while DMS* focuses on opti-
mizing makespan. These works assume fixed destination goals and
optimize SOC or makespan, whereas we remove the requirement
of fixed destinations and optimize SST.

3.1.2 Related work on MAPF under uncertainty. Another
important direction extends MAPF to account for uncertainty in



execution and the environment. UM* handles state uncertainty
via belief-space planning but does not guarantee bounded collision
probabilities [25]. pR-CBS [1] extends CBS with probabilistic robust-
ness, ensuring that collisions remain below a predefined thresh-
old even under stochastic delays. MAPF under Obstacle Uncer-
tainty (MAPFOU) addresses incomplete knowledge of traversabil-
ity, assuming deterministic actions once the environment is re-
vealed [11, 19]. MAPF with Time Uncertainty models bounded edge
traversal times [17]. However, none of these approaches consider
the combinatorial challenge of allocating multiple goals to agents.

4 OPTIMIZING SST WITH CBSS

CBSS solves MACPF under the assumption that each agent is as-
signed its own fixed destination goal, i.e., a specific goal vertex at
which the agent must end its plan after collecting all goals assigned
to it. To solve MACPF problems without fixed destinations and to
minimize SST, we adapt CBSS as follows. First, the cost associated
with each CT node in the high-level CBSS search is the SST of the
set of single-agent plans it represents, instead of its SOC. Second,
we modified the cost associated with a goal sequence allocation y
to be aligned with optimizing SST. This change also requires modi-
fying the K-Best-Sequencing method used in CBSS. The change to
the goal sequence allocation and corresponding K-Best-Sequencing
method are not trivial, and we discuss them in details below.

Changing the cost of a goal sequence allocation. We define
the service time of a goal vertex v, in a goal allocation y, denoted
sst(vg, Y), as the sum of distances the agent allocated to vy must
traverse according to y before reaching v4. More formally, if a goal
vertex vy is assigned to agent a; in y, ie, vy € y%, and vy is the
hth goal vertex in the sequence y' = (vgy5 - -+ vgw) with vg, = vy,

then sst(vg,y) = d(vo;,vq,) + Zj.l:_ll d(vg;,0g,,,)- The SST of goal
sequence allocation y, denoted sst(y), is the sum of the service
times of all goals across agents, i.e., ngey sst(vg, y). Observe that
sst(y) is a lower bound on the SST of any solution to the respective
MACPF problem that is consistent with y.

Next, we define a Mixed Integer Linear Program (MILP) whose
solution corresponds to a goal sequence allocation that minimizes
its SST. We assign each vertex v € Vo UV C V of the underlying
graph G = (V, E) a unique index from 1 to n + m: indices 1,...,n
correspond to the n agents’ initial vertices in Vp, and indices n +
1,...,n+ m correspond to the m goal vertices in V. This indexing
enables a uniform definition of the decision variables.

Decision variables. To encode the structure of a goal sequence
allocation, we introduce binary variables x;; € {0,1}, where i €
{1,...,n+ m} denotes either an initial vertex in Vj or a goal vertex
inVy,and j € {n+1,...,n+m} denotes a goal vertex in V. Setting
xijj = 1 indicates that j is the immediate successor of i in the
allocation sequence (visited directly after i), and x;; = 0 otherwise.

We define an integer variable t; € Zx( representing the service
time for each j € {1,...,m}, where each j denotes a goal vertex
in Vj. Since the service times quantify the quality of a plan, the
objective is to minimize the sum of service time across all goals:

m
man tj.
J=1

Constraints. The formulation includes the following feasibility
constraints:
(1) Each goal must have exactly one incoming edge, ensuring
that it is collected exactly once:
n+m
inj =1, Vje{n+1,...,n+m}.
=1
1#]
(2) Each goal can have at most one outgoing edge, ensuring that

it leads to at most one successor:
n+m
Z xij <1, Vie{n+1,...,n+m}.
j=n+1
j#i

(3) Each agent can connect to at most one goal, ensuring that

every agent can start at most one sequence of assigned goals:
n+m
Z xij<1, Vie{l,...n}.
Jj=n+1

(4) Service times must be consistent with the paths:

(4.1) If a goal j is the first to be collected by agent i, its service
time equals the travel cost c;; from the agent’s start to j:
fhon 2 ety = (1= 1)) - M, ie{l,...,n}, je{n+1,....,n+m}.
ti-n < cij+ (1—xi5) - M,

(4.2) If a goal j is collected after goal i, its service time equals
the service time of i plus the travel cost c;;:
tji-n = ti—n+cij — (1= x35) - M,
Lje{n+1,....,n+m}, i #j.
tji—n < ti—n +cij + (1 —xij) - M,

Here, c;; denotes the shortest travel cost between the vertices
whose MILP indices are i and j in G, and M is a sufficiently large
constant. These inequalities are enforced only when x;; = 1, i.e,
when the corresponding edge is part of the allocation. If x;; = 0, the
edge is inactive and the large constant M relaxes the inequalities,
making them trivially satisfied. In other words, M serves purely
as a switch that activates or deactivates constraints depending on
xij. This is the standard Big-M technique for encoding conditional
constraints in MILP [13].

The K'" cheapest allocation. To obtain the K’ h cheapest al-
location, we run an iterative procedure for p = 1,..., K, where at
each iteration solving the MILP yields Sol, components (Eq. a), and
we then add the exclusion constraint (Eq. b) to prevent Sol,, from
reappearing in later iterations:

m

Solp = {(i,j) | xij =1}, Cost(Solp) = Y tr, ()
k=1

Z xij < |Solp| 1. (b)

(i.j)€Sol,

At p = K, Solk defines yx with sst(yx) = Cost(Solgk). To recon-
struct yg, we interpret each index i, j € {1,...,n + m} according
to the mapping defined earlier, where 1,. .., n correspond to initial
vertices in Vp and n+ 1,...,n + m to goal vertices in Vg of the un-
derlying graph G = (V,E). For each k € {1,...,n}, we initialize
¥¥. We then follow the unique active pair (i, j) € Solg with i = k,



append the goal vertex represented by j to y¥, and continue iter-
atively from j with the next pair (j, £) € Solk, until no outgoing
pair is found. Applying this procedure for all k = 1,...,n yields
vk = {y%. ..., y"} as the collection of ordered goal sequences.

In summary, the MILP formulation replaces the K-best sequenc-
ing step in CBSS, enabling optimization under the SST objective
without requiring fixed destinations, and returns the K cheapest
allocation. We call the resulting algorithm CBSSgst.

5 ROBUSTNESS TO DELAYS

In real-world multi-agent systems, agents rarely execute their plans
in perfectly synchronized steps. We consider next the case where
each agent may experience a delay with some fixed probability
before each step it executes. Let pgelay = (péelay, A pgelay) denote
the vector of delay probabilities per agent, where at each time
step agent i may fail to execute a move action and remain at its
current location with probability péela (and otherwise proceeds

along its planned path). Delays are sampled independently across
agents and time steps. This simple model captures a wide range
of realistic sources of uncertainty, including communication lags,
computational overhead, and physical dynamics such as actuator
or sensor latency. Importantly, even if a solution is conflict-free
under ideal execution, such delays may lead to new conflicts during
execution, which motivates the need for robustness guarantees.

To address this uncertainty, we adopt the notion of p-robustness
introduced in p-Robust CBS [1]. This concept reflects the intuition
that absolute safety under stochastic delays is rarely attainable
(unless agents are forced onto vertex-disjoint paths, which is often
impractical). Instead, p-robustness provides a principled trade-off:
it ensures that the probability of a conflict-free execution is at least
a specified threshold, while still permitting efficient plans where
agents may traverse partially overlapping paths.

Definition 5.1 (p-Robust Solution). The robustness of a solution
n with respect to a given vector of delays pgelay is the probabil-
ity that agents executing 7 will not conflict. A solution 7 with a
robustness p is called a p-robust solution.

Computing the exact robustness of a solution is challenging.
Instead, we aim to find a solution that is p-robust with statistical
confidence 1 — « for a given value of @ € (0, 1). Next, we describe
how to extend our CBSS algorithm such that it optimizes SST and
returns p-robust solutions with confidence 1 — a.

5.1 Robust CBSS - Strict Verifier (RCbssrStrict)

One way to handle stochastic delays is to replan online during exe-
cution, shortly before an imminent conflict. However, such online
replanning is inherently myopic, as it reacts only to local, near-term
conflicts, and may therefore yield high SST solutions. It also incurs
communication and computational overhead, since agents must
synchronize with the planner during execution. As an alternative,
we aim to produce robust plans offline that anticipate delays and
reduce the need for online replanning.

To extend CBSS (Algorithm 1) to stochastic environments, we
integrate the robustness mechanisms used by p-Robust CBS [1]
for MAPF. A solution 7 is returned only if it can be statistically
verified to satisfy the required robustness threshold p; otherwise,

it is rejected. This requires two modifications to Algorithm 1: (i)
replacing the deterministic conflict check on line 15 with a proba-
bilistic verification step, and (ii) extending the conflict resolution
step in line 18.

Monte Carlo verification in CBSS. CBSS deterministically
checks whether the candidate solution contains conflicts (Algo-
rithm 1, line 15). In our robust extension, this check is replaced by
the Monte Carlo verifier (Algorithm 2) used in p-Robust CBS [1],
which estimates a solution’s robustness by repeatedly simulating
randomized executions of 7 with the per-agent delay probabilities
Pdelay defined above. Then, it applies a standard statistical test to de-
termine if the given solution indeed reached a robustness of p with
confidence level 1 — a. The procedure is described in Algorithm 2.

Algorithm 2: Monte Carlo Verifier

Input: 7, p, a, PDdelay
1 Initialize so // Equation (1);

2 Run s simulations under Pdelay’
3 while TRUE do

4 Py « ratio of simulations without a conflict;
5 Calculate c; // Equation (2);
6 Calculate ¢ // Equation (3);
7 if Py > c; then

8 L return TRUE;

9 if Py < ¢y then

10 L return FALSE;

1 Sp «— S0+ 1;

12 Run one more simulation;

Algorithm 2 begins by determining the initial number of simula-
tions so (line 1). This value must be sufficiently large to ensure the
validity of the statistical test. The initial number of simulations so

2
“l-a” P

is given by

where z1_, denotes the critical value of the standard normal distri-
bution for confidence level 1 — @. The constant 30 in Eq. (1) ensures
that the binomial distribution of sy Bernoulli trials (each simulation)
is well approximated by a normal distribution, as guaranteed by
the Central Limit Theorem. The second term in Eq. (1) follows from
the requirement that line 7 in Algorithm 2 can be satisfied. This
holds only if ¢ in Eq. (2) is smaller than 1, which implies

So > Z%_ a” %

Next, sp randomized simulations of the solution 7 are performed
(line 2). The fraction of conflict-free simulations, referred to as the
empirical robustness, is denoted by Py (line 4). This value is then
evaluated against two statistical thresholds. The first threshold c1
(line 5) is the minimal value of Py required to accept the hypothesis

that the solution 7 is p-robust with confidence level 1 — a:

So = max (30,

p(1 —p)_ @)

C1=p+21_a‘ S
0



The second threshold ¢y (line 6) is the maximal value of Py re-
quired to reject the hypothesis that 7 is p-robust with confidence

level 1 — a:
l_
02=p—21—a'\fu~ (3)
S0

If the observed probability Py is greater than or equal to cj, the
verifier concludes that the solution is p-robust and returns TRUE
(line 8). Conversely, if Py < c3, it concludes that the solution does
not meet the robustness requirement and returns FALSE (line 10).
In cases where Py lies between these thresholds, the algorithm
increases so by one (line 11), performs an additional simulation
(line 12), and repeats until a decision is reached.

Three-way split conflict resolution in CBSS. In Algorithm 1,
in line 18, CBSS applies the CBS two-way split: given a conflict
(ai,aj, x,t), it generates two children, each forbidding one agent
from occupying vertex x or traversing edge x at time ¢. In the ro-
bust extension, this is insufficient: in CBS, the case where both
agents are planned to occupy x at time ¢ is treated as illegal and
discarded. However, under stochastic delays this potential conflict
may occur only with a small probability, and discarding it could
prune solutions that still satisfy the requirement p. Therefore, fol-
lowing p-Robust CBS, we adopt a three-way split: in addition to
the two standard children, we generate a third child with a positive
constraint that enforces the occurrence of the conflict. This allows
the search to retain and evaluate solutions where the conflict is
tolerated probabilistically, preserving potentially optimal p-robust
solutions that would otherwise be pruned.

We refer to the robust extension of CBSSgg7, which uses the
Monte Carlo verifier to identify conflicts and the three-way split
described above to resolve them, as RCbsstStrict.

5.2 Balancing Robustness and Efficiency

Although RCbssTStrict provides principled robustness guarantees
under stochastic delays, it also raises important questions about the
balance between robustness and efficiency. RCbssyStrict reduces
the likelihood of execution-time conflicts as higher values of p
lower the need for online replanning. However, achieving higher
robustness comes at a significant cost: the verifier must run more
simulations and the search must explore larger parts of the con-
straint tree, which increases runtime and reduces scalability. This
creates a clear trade-off: increasing p reduces the amount of replan-
ning required during execution but makes planning considerably
slower and may yield longer plans (increasing SST).

Rather than committing solely to robust planning or to online
replanning, a promising direction is to combine both: designing
solutions that incorporate a sufficient degree of robustness while
retaining the flexibility to resolve conflicts dynamically during ex-
ecution. Next, we propose RCbsstAnytime, an anytime variant of
RCbsstStrict that searches for a solution that satisfies the desired
robustness p, but if no such solution is confirmed within the avail-
able runtime, it returns the solution with the highest empirically
verified robustness found thus far.

5.2.1 Robust CBSS - Anytime Verifier (RCbsstAnytime). In p-
Robust CBS [1] and RCbsstStrict, the Monte Carlo verifier checks
if we can accept or reject the hypothesis that the given solution is

p-robust (Algorithm 2, lines 5 and 6). In RCbssT Anytime we invert
the perspective and asks for which values of p would we have been
able to accept the solution at hand given the empirical robustness
of the performed simulations? Concretely, when RCbsstAnytime
computes two values p¢1 and pep for a given solution 7 and s
simulation with an empirical robustness Py. p.1 is a lower bound
on the robustness we can verify and p.2 is an upper bound on
it. We refer to p.1 as the empirically verified robustness. If p¢q is
equal to or greater than p, the solution 7 is accepted as p-robust. If
Pe2 is smaller than p, the solution is declared to not be p-robust. If
neither condition holds, additional simulations are performed. Most
importantly, during execution RCbssTAnytime keeps track of the
highest empirically verified robustness value observed so far and
the corresponding solution, which is returned if RCbsstAnytime
is halted before finding a solution that is empirically verified to be
p-robust.

Computing p.1 and p,. Starting from the boundary equations
Py = ¢1 and Py = cy, we substitute the definitions of ¢; and c»
(Equations 2 and 3):

Each of these equations expresses a condition on p under which the
empirical robustness Py lies exactly on the acceptance or rejection
boundary. By standard algebraic manipulation, this leads to the
quadratic equation

(so + z%_a) pz + (—(ZsoPO + zf_a)) p+ soPg =0, (4)
———— —_— ——
A B C

where A, B, and C are the coefficients defined above. Since the
equation is quadratic in p, its solutions can be obtained using the
quadratic formula, yielding the lower and upper bounds on the
robustness, p¢1 and pca.

Algorithm 3: Anytime Verifier

Input: 7, p, o, Pdelay
1 Initialize sy // Equation (1);

2 Run s simulations under pge,y;

3 while TRUE do

4 Py « ratio of simulations without a conflict;
5 Calculate pc1, pc2 // based on Equation (4) ;
6 if pc1 > py then

7 Thest €~ T3 PA < Pcis
8 if pc1 > p then
9 L return TRUE;

10 if pca < p then
11 L return FALSE;

12 S0 «— So+ 1;

13 Run one more simulation;




Using pc1 and pc in RCbhssAnytime. The main difference be-
tween RCbsstStrict and RCbsstAnytime is in the Monte Carlo
verifier they use. Algorithm 3 lists the pseudo code for the veri-
fier used by RCbssTAnytime. It follows the same initialization and
simulation steps as the plan verifier of RCbsstStrict (Algorithm 2,
lines 1-4). The difference arises after computing the boundary val-
ues pe1 and pea (line 5). If the computed pe1 exceeds the highest
empirically verified robustness level found so far (line 6), denoted
by pa, then it updates it (line 7) and records the corresponding
solution as the incumbent solution, denoted mpeg. If at this point
pe1 = p (line 8), the verifier terminates successfully (line 9). Con-
versely, if pca < p (line 10), the verifier concludes that the solution
cannot achieve robustness p and terminates with FALSE (line 11).
If neither condition holds, the verifier continues as in Algorithm 2,
incrementing so (line 12), running one more simulation (line 13),
and repeating the loop (line 3).

RCbssTAnytime guarantees that a solution is always produced
within the time budget, returning the incumbent solution 7yegt
whether the desired robustness p has been verified or not.

6 EXPERIMENTAL RESULTS

We compare experimentally two proposed variants of Robust CBSS
— RCbsstStrict and RCbsstAnytime— with several natural base-
lines on four diverse grids of varying sizes and structures from the
standard grid-based MAPF benchmark [22] (illustrated in Figure 2).
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Figure 2: Evaluation maps: Random, Maze, Room, and Ware-
house, with different obstacle densities and structures.

Planner Configurations and Baselines. We use the term plan-
ner configuration to denote a specific planner variant together
with a desired safety level, when applicable. We consider four
planner configurations, where (1) and (2) are the baselines: (1)
CBSSsst - deterministic CBSS that ignores delays during planning.
(2) RCbsstStrict with p = 0 - delays are modeled, but robustness
is not enforced; all plans pass verification and delay-induced con-
flicts are tolerated during planning. (3) RCbsstStrict with a desired
p. (4) RCbsstAnytime with a desired p. The desired levels p are
Peate € {0.05,0.25,0.5,0.8,0.95,0.99,0.999, 0.9999}.

Experimental Design. We varied the number of agents, setting
n € {15, 20, 25, 30, 35, 40, 45, 50}, and fixed the number of goals to
m = 50. The delay vectors pgelay used in our experiments are uni-
form, setting entries to be equal to the same value, chosen from
{0.1,0.3,0.5}. For each planner configuration, for every combina-
tion of agent count n and delay level pgelay, We generate 300 random
instances by uniformly sampling agent and goal locations. The con-
fidence level used in our experiments was 1 — & = 0.95 , following
p-Robust CBS [1]. Each instance is solved under a total time bud-
get of 600 seconds. Within this budget, each planning iteration is
capped at 60 seconds.

We considered the following metrics in our experiments.

o Failures. Percentage of instances that were not be solved.

e >1 Replan. Percentage of instances that required at least
one online replanning.

e Avg Online Runtime. Average online (replanning) time
per instance, in seconds.

e Avg Online SST. Average sum of service time during exe-
cution per instance.

e Avg Nodes Expanded. Average number of nodes expanded
per instance during the high-level search.

Online Execution and Replanning Triggers. Given a solution
7 produced by a chosen planner configuration, execution proceeds
in an online environment where stochastic delays may occur at
every step. At each time step, before applying the next planned
moves, we perform a one-step look-ahead to detect if there is any
chance that some pair of agents will collide at the next step, either
because they are planned to occupy the same location at that step
or because a one-step delay of one agent could place them at the
same location. If this occurs, we immediately invoke the planner
to perform replanning from the agents’ current locations using the
same planner configuration. To avoid a deadlock in which execution
would repeatedly trigger replanning on the first step for the same
potential conflict, we augment the solution-verifier of every planner
configuration to reject any solution where there is a chance to have
conflicts in the first step.

Implementation. Planner configurations and the online execu-
tion environment were implemented in Python 3.10 on Ubuntu 24.04.
The MILP-based allocation subproblems were solved with the Gurobi
Optimizer (v11.0.3) via gurobipy [5]. Experiments were run on a
16 -core virtual machine (AMD EPYC 7702P). Only representative
results are reported here; full results and code are available at
https://github.com/anonymousDD112233/RCbssTAnytime.

6.1 Results

Table 1 reports the performance of RCbsstStrict, RCbsstAnytime,
and the baselines on the Maze map across different desired ro-
bustness levels p. The values in the columns Failures and Avg
Expanded Nodes are computed over all instances. For the other
metrics (=1 Replan, Avg Online Runtime, and Avg Online SST),
averages are taken separately: in the top and middle parts of the
table over the common subset of instances solved by all baselines
and RCbsstStrict configurations, and in the bottom part over the
subset of instances solved by all RCbhssTAnytime configurations.
Consider first the results for RCbssStrict. These results high-
light the trade-off between robustness and efficiency that occurs
when using RCbsstStrict. As p increases, more robust plans reduce
the proportion of instances requiring at least one replan, resulting
in fewer replans and shorter average online runtimes. At the same
time, stricter robustness requirements raise the failure rate in two
ways: first, by increasing the rejection of candidate plans, which
forces the search to expand more nodes in the tree; and second, by
increasing the minimum number of simulations per verification,
which slows down the verification process itself. This is evident
from the sharp growth in required minimum simulations (Eq. 1):
about 52 at p = 0.95, 268 at p = 0.99, 2,704 at p = 0.999 and over


https://github.com/anonymousDD112233/RCbssTAnytime

27,058 at p = 0.9999. This explains the observed trend: as p grows,
the number of expanded nodes generally increases due to more
frequent rejections, but at p = 0.99 and above, the high minimum
simulation requirement dominates, slowing verification and result-
ing in fewer expansions overall. The average online SST remains
essentially unchanged across all configurations, indicating that the
trade-off, at least in our experiments, primarily concerns failure
rates and replanning effort rather than SST. Under our time budget,
RCbsstStrict with p = 0 achieves the lowest failure rate, but at
the cost of more instances requiring replanning during execution
and a longer average online runtime compared to more robust set-
tings. Conversely, as p increases, solutions involve fewer replanning
events and shorter average online runtimes, but this comes at the
expense of higher failure rates.

Planner . Avg Online  Avg Online Avg Expanded

Configurations Failures  >1Replan Run%ime (sec) gSST gNoges
CBSSsst 32.31% 4.33% 0.97 487.39 9.41
RCbsstStrict-p =0 29.01% 6.81% 1.48 487.41 1.54
RCbssrStrict- p = 0.05 29.38% 6.07% 137 487.11 22.02
RCbssrStrict- p =0.25 30.12% 5.40% 1.24 487.12 145.65
RCbssrStrict-p =0.5 31.99% 3.88% 0.92 487.14 393.63
RCbssrStrict-p =0.8 39.33% 1.69% 0.44 487.16 785.21
RCbssrStrict- p =0.95 47.62% 0.62% 0.14 487.22 806.65
RCbssrStrict- p =0.99 55.58% 0.34% 0.08 487.22 344.52
RCbssrStrict- p = 0.999 63.57% 0.00% 0.00 487.15 61.70
RCbssrStrict- p =0.9999 74.43% 0.00% 0.00 487.16 9.08
RCbsstAnytime- p = 0.05 28.71% 27.77% 7.74 588.83 12.48
RCbsstAnytime- p = 0.25 28.39% 26.74% 7.41 588.95 76.17
RCbsstAnytime- p = 0.5 26.38% 23.42% 6.86 589.09 220.92
RCbsstAnytime- p = 0.8 24.01% 17.18% 5.85 589.27 501.23
RCbssrAnytime- p = 0.95 22.71% 14.22% 5.83 589.16 567.57
RCbssrAnytime- p = 0.99 22.26% 13.44% 5.64 589.14 255.53
RCbsstAnytime- p = 0.999 22.90% 14.67% 6.61 589.10 47.13
RCbsstAnytime- p = 0.9999  25.69% 20.57% 12.49 589.17 7.51

Table 1: Results for RCbsstAnytime (bottom), RCbhsstStrict
(middle), and the baselines (top) on the Maze 32X32 map.

The bottom part of Table 1 shows a different trend compared to
RCbsstStrict. Across all tested values of p, RCbsstAnytime solved
more instances within the same time limit, consistently achiev-
ing lower failure rates than RCbsstStrict. Notably, while the av-
erage online SST remains essentially unchanged across different
values of p, it is larger than in the RCbssStrict results because
RCbsstAnytime solves more and often harder instances, which in
turn also raises the >1 Replan and Avg Online Runtime metrics.
Within RCbsstAnytime itself, three insights emerge: (1) As p in-
creases up to 0.99, the proportion of instances requiring more than
one replan decreases, the average online runtime shortens, and the
overall failure rate drops. In other words, higher robustness not
only reduces the need for replanning, as expected, but also enables
solving more instances within the time limit. (2) Beyond p = 0.99,
performance no longer improves. At p = 0.999 and 0.9999, the min-
imum number of simulations required per verification (2,704 and
27,058, respectively; Eq. 1) grows sharply, slowing verification and
constraining the search. This is reflected in fewer expansions; with
fewer nodes explored, the planner tends to return lower-quality
plans. Consequently, more replanning is triggered and each replan
must first verify that the initial step is 1-robust before checking
p-robustness. If no such robust initial step plan is found within
the time limit, the instance fails. (3) An interesting effect occurs at
p = 0.99. Although the minimum number of simulations per verifi-
cation increases from 52 at 0.95 to 268 at 0.99 (Eq. 1), verification

time is higher yet not prohibitive. Consequently, fewer nodes are
expanded than at 0.95, but the plans that do pass verification are
stronger, yielding more solved instances within the time limit. In
contrast, at p > 0.99 the verification time grows steeply, dominates
runtime, and constrains search, reducing the number of solved
instances.

Figure 3 compares RCbssStrict and RCbsst Anytime. The x-axis
shows the success rate, i.e., the percentage of problem instances
solved successfully. The y-axis shows the online SST level. Each
point (x,y) on a curve means that x% of the instances are solved
with online SST < y. At low robustness levels (p = 0.05,0.5), the
two variants perform similarly, solving nearly the same fraction
of instances for comparable average Online SST. As robustness
increases, however, their behavior diverges: RCbsstStrict suffers
from rising failure rates, while RCbssTAnytime consistently solves
more instances for the same Online SST. This highlights the advan-
tage of the anytime verifier, which sustains reliability under high
robustness requirements without increasing service time.
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Figure 3: Online SST vs. success rate (%) for RCbsstStrict and
RCbsstAnytime on the Random 32x32 map.

7 CONCLUSION

We studied Multi-Agent Combinatorial Path Finding (MACPF) and
revised Conflict-Based Steiner Search (CBSS), which in its original
form (CBSSsoc) assumes fixed goal destinations and minimizes
the sum of costs (SOC). We proposed CBSSsst, which generalizes
the setting by removing fixed goal destinations and optimizing
the Sum of Service Times (SST) via a MILP-based allocation pro-
cedure. Building on this foundation, we introduced two robust
extensions: RCbssStrict, which guarantees strict robustness, and
RCbssT Anytime, which provides an anytime approach that balances
robustness with limited planning time. Our experiments show that
RCbsstAnytime significantly improves the trade-off between ro-
bustness, replanning effort, and efficiency, making it practical for
real-world scenarios. Future work can continue to explore ways to
balance offline planning and online replanning, considering meta-
reasoning techniques to reduce the overall Goal Achievement Time,
which includes both runtime and solution cost [7].
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