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ABSTRACT

Olfaction—how molecules are perceived as odors to humans—remains poorly un-
derstood. Recently, the principal odor map (POM) was introduced to digitize
the olfactory properties of single compounds. However, smells in real life are
not pure single molecules, but complex mixtures of molecules, whose represen-
tations remain relatively under-explored. In this work, we introduce POMMIX,
an extension of the POM to represent mixtures. Our representation builds upon
the symmetries of the problem space in a hierarchical manner: (1) graph neural
networks for building molecular embeddings, (2) attention mechanisms for ag-
gregating molecular representations into mixture representations, and (3) cosine
prediction heads to encode olfactory perceptual distance in the mixture embedding
space. POMMIX achieves state-of-the-art predictive performance across multiple
datasets. We also evaluate the generalizability of the representation on multiple
splits when applied to unseen molecules and mixture sizes. Our work advances
the effort to digitize olfaction, and highlights the synergy of domain expertise and
deep learning in crafting expressive representations in low-data regimes.

1 INTRODUCTION

A central challenge in neuroscience is deciphering the link between the physical properties of a stim-
ulus and its perceptual characteristics. While this relationship is well-defined for senses like vision
(wavelength to color) and audition (frequency to pitch), it remains elusive for olfaction, a chemical
sense, where the mapping from chemical structure to odor perception is complex and not fully un-
derstood (Sell, 2006; Barwich & Lloyd, 2022; Barwich, 2022). A recent advance towards digitizing
olfaction came with the introduction of the Principal Odor Map (POM) by Lee et al. (2023), a high-
dimensional, data-driven representation of odor perceptual space learned from molecular structures.
This model demonstrated human-level performance in predicting odor qualities of single molecules
and generalized well to other olfactory tasks. However, naturally occurring olfactory stimuli are not
comprised of single molecules, but rather complex mixtures of molecules, whose representations
remain relatively unexplored within the existing literature. This work introduces POMMIX—a
mixture and distance-aware extension of the POM representation.

A searchable, rankable, and optimizable digital representation of olfactory space has potential ap-
plications in diverse areas (Spence et al., 2017). Such a representation could be used to develop
mosquito repellents (Wei et al., 2024), inform agricultural practices by enabling targeted manipu-
lation of insect behavior (Conchou et al., 2019), improve food quality and reduce waste through
enhanced spoilage detection (Jung et al., 2023), and accelerate the design of novel fragrance and
flavor compounds, which is particularly valuable given increasing regulatory constraints on existing
ingredients (Demyttenaere, 2012; IFRA, 2024).

Deep learning models enable the construction of task-optimized data representations, learning com-
plex relationships directly from data (Bengio et al., 2012). However, in low-data regimes, the success
of deep learning hinges on incorporating appropriate inductive biases, effectively injecting domain-
specific knowledge to guide the learning process and improve generalization (Tom et al., 2023).
Olfactory data is currently in this regime—gathering olfactory data is expensive and labor-intensive
as it requires training human panelists, filtering potentially toxic molecules, and navigating ethi-
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cal review boards. Furthermore, probing human perception is inherently complex, necessitating
rigorous data collection protocols and large sample sizes to mitigate individual biases. Existing
work on olfactory mixture modeling remains limited, employing a small pool of compounds with
low coverage of chemical space (Ravia et al., 2020; Snitz et al., 2019; Sisson et al., 2023; Snitz
et al., 2013). While the perfume industry reportedly utilizes 10,000–20,000 compounds routinely,
the largest publicly available dataset GoodScents–Leffingwell (GS-LF) contains only around 5,000
molecules (Sanchez-Lengeling et al., 2019; Lee et al., 2023). Significantly larger repositories of
mixture characterizations (blends and perfumes) exist within the industry, but remain inaccessible
behind private doors.

Figure 1: Task schematic. Data collection process for olfactory mixture similarities (left), and our
approach to predicting olfactory mixture similarities (right).

POMMIX is built by training a neural network to tackle the mixture similarity problem by jointly
training a POM with an attention-based mixture model to predict the perceptual similarity of mix-
tures. This approach also allows us to combine mono-molecular datasets (up to 5,000 data points)
and more limited mixture data sources (up to 1,000 data points).

At each stage of our work, we take care to respect the natural symmetries of the problem space—
namely, the permutation invariance of molecular descriptions (introduced by the graph representa-
tion of a molecule), the permutation invariance of mixture compositions (the model should not care
what order the mixture ingredients are presented), and the symmetry of mixture similarities (the
model should predict that the similarity of mixture 1 and mixture 2 is the same as the similarity for
mixture 2 and mixture 1). The end result is an extension of the POM to mixtures, and a new model
building block, dubbed CHEMIX, for encoding mixtures of molecules.

1.1 LIST OF CONTRIBUTIONS

• We introduce POMMIX, the first extension of the POM to predict the olfactory similarities
between mixtures of molecules.

• We compiled and comprehensively analyzed the limited publicly available olfactory mix-
ture perception data.

• Our model takes into account the inductive biases of the problem and achieves state-of-the-
art predictive performance.

• We test our representation in several olfactory settings: the olfactory white-noise hypoth-
esis, generalization to unseen molecules and mixture sizes, and a qualitative study of the
interpretability of components within mixtures.

• We make our data and code available for future extensions of our work and for reproducibil-
ity: https://anonymous.4open.science/r/anon-iclr2025-DE62.

1.2 RELATED WORKS

The modeling of molecular structure-property relationships has a rich history. Within the olfactory
domain, previous contributions have utilized hand-picked expert descriptors with classical machine
learning algorithms (e.g. tree-based models, support vector machine, and linear models), and/or
similarity measures (e.g., cosine, angle) (Snitz et al., 2013; Keller et al., 2017; Kowalewski & Ray,
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2020; Vigneau et al., 2018). More recently, deep learning based models have been actively explored
to create a more expressive molecular representation of olfactory space (Lee et al., 2023; Tran et al.,
2018; Zhang et al., 2024; Sisson, 2022; Maziarka et al., 2020).

Deep learning techniques have been explored in modeling molecular structure-property relation-
ships, including variational autoencoders (Gómez-Bombarelli et al., 2018; Oliveira et al., 2022),
large language models (Chithrananda et al., 2020; Ross et al., 2022), and graph neural networks
(GNNs) (Yang et al., 2019; Wang et al., 2021). Graph neural networks and graph attention networks
(GANs) (Heid et al., 2024; Wu et al., 2023; Buterez et al., 2024) in particular have shown state-
of-the-art performance in many molecular property prediction tasks including modeling olfactory
space.

Olfactory mixture property prediction is a much more difficult task with fewer effective attempts
(Lapid et al., 2008; Khan et al., 2007; Olsson, 1998; Dhurandhar et al., 2023; Ravia et al., 2020).
Molecular mixtures have been studied before for battery electrolytes by Zhang et al. (2023). The
work, however, uses a large dataset (10,000 mixtures), and focuses on property prediction, rather
than mixture representation learning. To work in the low-data regime of our olfactory mixture
dataset, POMMIX uses pre-training techniques (Honda et al., 2019; Shoghi et al., 2023; Goh et al.,
2018) and designed inductive biases to improve the expressivity of the molecular representation and
attention mechanisms (Wang et al., 2019; Xiong et al., 2020; Maziarka et al., 2020).

2 METHODS

2.1 DATA

We combine mono-molecular datasets and multi-molecular (mixture) datasets. Mono-molecular
datasets list a set of odor labels ("grassy", "fishy", etc.) for a single molecule, and the most ex-
haustive compilation is found in the GoodScents/Leffingwell (GS-LF) dataset (Barsainyan et al.,
2024). We further clean the GS-LF dataset by canonicalizing SMILES (Weininger, 1988) strings
with RDKIT (Landrum et al., 2022), removing duplicate entries, removing inorganic, charged or
multi-molecular (e.g. salts) entries, removing molecules with molecular weight < 20 and > 600,
and small inorganic molecules. We further removed infrequently applied odor labels that appeared
for fewer than 20 molecules and subsequently removed molecules with no remaining labels (see
Appendix A.1 for details on dataset cleaning).

Multi-molecular datasets were compiled from previous publications, hereby referred to as Snitz
(Snitz et al., 2013) (containing data from Weiss et al. (2012)), Ravia (Ravia et al., 2020), and Bush-
did (Bushdid et al., 2014). Data for each of these publications was obtained from pyrfume (Castro
et al., 2022). In aggregate, we have 743 unique mixtures, containing between 1 to 43 unique molec-
ular components (Figure 2a).

These mixtures are described by 865 pairwise mixture comparisons (Figure 2b) corresponding to
labels from two types of experiments:

• Explicit similarity (Snitz, Ravia): Participants are asked to explicitly rate the perceptual
similarity of two mixtures from 0 (completely similar) to 1 (completely different). The
final similarity for a mixture pair is averaged across all participants.

• Triangle discrimination (Bushdid): Participants are provided three mixtures, of which
two are identical, and asked to identify which mixture was different. These results are
aggregated for each mixture triplet, and the percentage of correct identifications is treated
as the label for the two unique mixtures in the triplet.

We note that the interpretation of the triangle discrimination task is congruent with the explicit
similarity task, as a score of "1.0" in a triangle discrimination task shows that all tested participants
could identify the mixture that was different, which meant that the two unique mixtures in the triplet
were very perceptually distinct. Thus, in an explicit similarity test, this pair of mixtures would
also have a score of "1.0". While these two tests are theoretically equivalent in their extremes (0 =
perfect discrimination, 1 = equal to chance), calibration of intermediate scores may differ. We did
not attempt to correct for this effect.
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Figure 2: Snitz, Ravia, and Bushdid mixture datasets at a glance. a) Most mixtures contain 4-30
molecules, with a handful of single-molecule data as a measurement baseline. b) Most mixtures are
somewhat different (0.4-0.8 averaged human response), with a smaller number of outright dissimilar
measurements. c) Standard RDKIT cheminformatics molecule features, aggregated across the mix-
ture with mean, standard deviation, minimum, and maximum (as described in Soelch et al. (2019);
Corso et al. (2020)) correlate poorly with perceptual similarity, while d) POMMIX embeddings are
carefully tuned for the task of discriminating mixture percepts. Pearson ρ correlation constants are
annotated in inset. Across all four subplots, color labels indicate the dataset source.

Intensity-balancing is a subtle part of mixture preparation. The naïve approach to preparing mixtures
would be to use an equimolar or equivolume blend of components, but this approach tends to produce
mixtures that are dominated by their most potent component. Snitz, Ravia, and Bushdid are instead
intensity balanced, meaning that their components are first diluted to equal odor intensities using an
odorless solvent (often, water or propylene glycol), and then mixed in equivolume proportions.
POMMIX does not explicitly account for intensity or concentration of odorant mixtures, and would
likely underperform in predicting mixture similarity if presented with mixtures that are not intensity-
balanced.

2.2 MODELING

A schematic of the POMMIX model is provided in Figure 3. The POMMIX model can be divided
into three hierarchical components: (1) a mono-molecular GNN POM embedding model, (2) a
multi-molecular CHEMIX mixture attention model, and (3) a similarity scoring function.

The POM is a GNN which takes in molecular graphs derived from the SMILES representations of
molecules. Each graph, written as G = (U, V,E), consists of a special global vertex U connected
to all other vertices V , and a set of edges E. The global vertex U encodes overall properties of
the molecule and is initialized with 200 normalized RDKIT cheminformatics molecular descriptors
(Landrum et al., 2022) obtained from DESCRIPTASTORUS (Kelley et al., 2024). The atoms of the
molecules are the vertices (nodes), with node vectors V = {vi}Nv

i=1 for a molecule with Nv atoms,
where vi are 85-dimensional feature vectors encoding atomic properties. Covalent bonds between
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Figure 3: The POMMIX model combines POM with mixture modeling. (Top) The POM model
with a generalized linear model (GLM) is pre-trained with mono-molecular olfactory data, and mix-
ture modeling is performed through the CHEMIX attention model. (Middle) The two modules are
joined to produce mixture embeddings which are trained to encode the olfactory perceptual distance
of two mixtures using a scaled cosine distance predictor head. (Bottom) A multi-step model fitting
procedure is used, where certain model weights are updated (flame) and other pre-trained model
weights are frozen (snowflake).

atoms are represented as edges E = {(ek, rk, sk)}Ne

k=1 for a molecule with Ne bonds, where ek
stores a 14-dimensional feature vector of edge properties, and rk, sk ∈ [1, . . . , Nv] are indices that
indicate the two atoms that the bond joins together. Note rk ̸= sk, since bonds must be between two
different atoms (see Appendix A.2 for detailed descriptions of node and edge properties).

The POM GNN uses the GRAPHNETS architecture (Battaglia et al., 2018), with message-passing
blocks for the edge, node and global properties of the molecular graphs. The architecture is designed
to be lightweight in order to avoid overfitting on the limited amounts of olfactory mixture data. Edge
updates use feature-wise linear modulation (FiLM) layers (Perez et al., 2017; Brockschmidt, 2019),
while node updates use graph attention layers (Veličković et al., 2017; Brody et al., 2021) with self-
attention. The global embeddings are updated through principal neighborhood aggregation (PNA)
(Corso et al., 2020; Zaheer et al., 2017). The GNN is composed of four of these GRAPHNET layers,
and the final global embedding serves as the POM embedding.

The CHEMIX model processes a set of molecular POM embeddings, and generates an embedding
representing the entire mixture. Mixtures are first represented by concatenating POM embeddings
of constituent molecules, and mixtures with fewer molecules are padded to the length of the largest
mixture. CHEMIX uses molecule-wise self-attention, where each molecule attends to all other
molecules, followed by PNA. This ensures invariance of the mixture embeddings in the permu-
tation of molecules within a given mixture. This model can be viewed as isomorphic to a GAN on
a fully-connected graph (Joshi, 2020), with each molecule as a node, and the mixture embedding is
the global embedding.

Finally, the distances between the mixture embeddings are obtained through a similarity score. For
this, we use a predictive head based on cosine distance (Koch et al., 2015), commonly used for
distance-aware high-dimensional learned representations. A final two-parameter linear layer is used
to encode for human bias and experimental noise present in the dataset (see section 3), followed by
a HardTanh activation to enforce output in the [0,1] range, while maintaining linearity. We note that
this scaled cosine prediction head is invariant to the order of the mixtures due to the symmetry of
the cosine distance operation.
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2.3 TRAINING AND OPTIMIZATION

In order to effectively train a deep learning model in a low-data regime, we adopt a transfer learning
strategy (Figure 3). The POM GNN is first pre-trained to predict the olfactory binary multi-labels
of molecules with binary cross-entropy loss on the GS-LF dataset, using a 80/20 training/validation
random split. All training is performed using the Adam optimizer (Kingma & Ba, 2014). To deter-
mine the architecture, we perform a Bayesian optimization hyperparameter search to maximize the
area under receiver operator curve (AUROC) metric. Early stopping is used to prevent overfitting.
The best model achieves a validation AUROC 0.884, in line with previous work (Sanchez-Lengeling
et al., 2019). We explore other graph models such as GRAPHORMER (Shi et al., 2022; Ying et al.,
2021) and GPS (Rampášek et al., 2022), but we find the GRAPHNETS architecture to be competitive
with the modern state-of-the-art graph models for our dataset (Table A2).

The frozen POM embeddings from the pre-trained GNN form the vector representation of mixtures
for the CHEMIX model. Again, the architecture is determined through hyperparameter tuning. The
training is performed with mean absolute error (MAE) loss on a 80/20 training/validation split of the
combined mixture dataset, stratified across Snitz, Ravia, and Bushdid. The stratification process
fixes the proportion of each dataset across the splits, ensuring equal representation of any experi-
mental differences. To avoid vanishing gradients due to the HardTanh activation, the linear model in
the scaled cosine distance prediction head is initialized with bias b = 0.5, and the slope is clamped
to ensure m > 0 and maintain the directionality of the cosine distance. Additionally, we ablate
the CHEMIX prediction head, and find that the scaled cosine prediction head is optimal for learn-
ing mixture embedding similarities (Table A3). Early stopping terminates on maximal validation
Pearson correlation coefficient (ρ) between the ground truth labels and the prediction. The optimal
model found in the search achieved a maximal ρ = 0.794 on the validation set. Further details about
the hyperparameter tuning for both models are provided in Appendix A.3.

In the final stage of training POMMIX, the POM GNN is directly joined to the CHEMIX model,
and all model weights are allowed to vary. A lower learning rate is used for the POM GNN model
weights, as they are already well-conditioned from pre-training on the larger mono-molecular odor
dataset. The results following this section are based on the final POMMIX model. Models were
built with PYTORCH (Paszke et al., 2019) and PYTORCH GEOMETRIC (Fey & Lenssen, 2019).

3 RESULTS

We evaluate our approach on the mixture dataset by training and testing on 5-fold cross-validation
(CV) splits, stratified across the Snitz, Ravia, and Bushdid datasets. For early stopping, a validation
split is randomly split from the training set, producing a final split of 70/10/20 training/validation/test
sets. The performances of the models are then evaluated on the test sets.

We evaluate POMMIX on a progressive ladder of modeling components. For the simplest base-
line, we follow the methods of Snitz et al. (2013), who performed extensive feature selection on
molecular descriptors, which are then averaged together for the mixtures (see Appendix A.4). The
angle distance between the vector descriptors are then correlated with the experimental results. We
perform the same analysis using normalized RDKIT molecular features on our aggregated mixture
dataset. We ensure that the feature selection is only performed on the training set.

We also provide comparisons with the gradient-boosted random forest XGBOOST model (Chen &
Guestrin, 2016), and use features with varying levels of inductive biases (further details in section
A.5). Mixture representations are created with PNA-style aggregation of molecular descriptors,
including RDKIT features, or the frozen POM embeddings. Additionally, we augment the training
data by permuting the mixture pairs, as the symmetry of the mixture similarity is not encoded in
XGBOOST.

3.1 PREDICTIVE PERFORMANCE

We report results across three metrics: Pearson correlation coefficient ρ, root-mean-squared error
(RMSE), and the Kendall ranking coefficient τ , each reflecting different strengths of the model.
The test results compiled from the CV splits for all models evaluated are shown in Figure 4, with
metrics tabulated in Table 1. We show that incorporating more inductive biases into the model leads
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Figure 4: Model performances on mixture dataset. Pearson ρ, RMSE, and Kendall τ for all base-
lines and models evaluated. Model complexity increases from top to bottom. Parity plots available
in Appendix A.6.

to a dramatic increase in model performance. The Snitz baseline of angle distances calculated from
empirically selected features produces a weak positive correlation with the ground truth distances,
but has high RMSE when treated as a regression problem. The XGBOOST model improves upon
these predictions, and explicitly models the experimental distances, achieving significantly lower
RMSE than the Snitz baseline. However, the correlation and ranking of the mixture similarity is
only slightly increased through the use of the boosted RF model. When applying the XGBOOST
model to the POM embeddings, we find that the performance is only slightly improved compared
to the RDKIT descriptors, signaling that deep learning architectures are needed to extract useful
information out of the POM embeddings.

For our approaches, CHEMIX shows excellent test performance for predicting olfactory mixture
similarities, even when trained with frozen POM embeddings, demonstrating the efficacy of incorpo-
rating domain knowledge and inductive biases into model architectures. For POMMIX, we observe
further increases in model performance when the POM and CHEMIX are trained end-to-end, further
fine-tuning the POM embeddings for use in mixture representations. We note that the end-to-end
training results in larger improvements in Kendall τ than in ρ. We hypothesize that inherent human
noise in the experimental results create a performance ceiling for the model’s real-valued predictive
capabilities. However, the ranking correlation still improves as it is more robust to experimental
noise and outliers (Tom et al., 2024). We further explore this human bias in Section 3.3. Finally, we
note that our attempts to augment the dataset with pairs of mono-molecules labeled by their GS-LF
odor label Jaccard distances led to modest improvements for the CHEMIX model, but showed no
improvements for POMMIX (see Appendix A.8 and Table A5 for details on data augmentation).

Table 1: Model performances on mixture dataset. 5-fold cross validation metrics for baseline
models, CHEMIX and POMMIX. The mean and standard deviation are reported. Other ablated
models are provided in Table A4.

Test predictive performance

Model Pearson ρ (↑) RMSE (↓) Kendall τ (↑)

Snitz Baseline 0.399 ± 0.050 0.334 ± 0.010 0.292 ± 0.042
XGBOOST + RDKIT 0.485 ± 0.048 0.166 ± 0.012 0.373 ± 0.040
XGBOOST + POM 0.497 ± 0.041 0.165 ± 0.012 0.388 ± 0.033
CHEMIX + POM 0.746 ± 0.030 0.130 ± 0.007 0.545 ± 0.032
POMMIX 0.779 ± 0.028 0.118 ± 0.004 0.596 ± 0.022

3.2 GENERALIZATION TO NEW MIXTURE SIZES AND MOLECULES

We further study the effects of the inductive biases of the model, and the capabilities of POMMIX
in explaining physical olfactory phenomena. In particular, we study the generalization of POMMIX
to different splits based on the number of mixture components, and the molecular identities within
the mixtures.
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Figure 5: Generalization to new mixture sizes and molecules. a) Ablation study with training data
only containing mixtures with geometric average number of molecules less than a threshold. The
thresholds are indicated for each split. b) Boxplot of POMMIX test Pearson correlation on random
CV splits, and the LMO splits.

In Figure 5a, we show the test results of an ablation study, in which the training data is ablated
based on thresholds on the geometric average number of components found in a mixture. In other
words, for a given threshold, the training set only contains mixtures with components that have
a geometric mean number of components less than the threshold, and the test set contains only
mixtures that are above the threshold. We observe sufficient generalization capabilities of the model
to larger mixtures, achieving performances similar to the RDKIT baselines, even when the training
sets are thresholded at ten mixture components, and only about two-thirds of the available training
data. We also observe a general increase in test performance, measured by ρ, as the training set
grows, indicating that more high quality experimental olfactory mixture data can greatly improve
the modeling performance.

We observe a significant decrease in performance when considering new chemistries. For Figure 5b,
we study POMMIX performance on leave-molecules-out (LMO) splits, in which the test sets are
split from the dataset such that certain molecules will not appear in the training set. Note that, unlike
the random CV splits, the training sets are not mutually exclusive, since there is significant overlap
in the molecular identities across different mixtures. This additional challenge in studying new
molecules is an important consideration when validating models, and also planning future mixture
similarity experiments. More olfactory mixture data with diverse arrays of molecules can help build
better and more generalizable POMMIX representations.

3.3 EXPLORING OLFACTORY PHENOMENA WITH POMMIX EMBEDDINGS

The white noise hypothesis states that intensity-balanced mixtures with an increasingly large num-
ber of components become increasingly indistinguishable, even if they share no common molecular
components, and approach a scent characterized as an "olfactory white" (Weiss et al., 2012). Using
the POMMIX embedding, we reproduce the "olfactory white" phenomena (Figure 6a). In our inves-
tigation, we observe this decrease in POMMIX embedding distances as a function of the geometric
mean of components in mixture pairs for our larger dataset, which includes Bushdid and Ravia.
This demonstrates the ability of POMMIX in capturing and explaining physiological olfaction phe-
nomena, allowing it to build toward an expressive odor perceptual space.

It is important to note that the perceptual similarity metrics obtained across the datasets are inher-
ently subjective and biased as they are gathered from humans. We show a subset of the data where
the panelists are asked to rate the similarities of two identical mixtures, and show that a significant
portion of identical mixture pairs (60 out of 63) are labeled as having non-zero similarities (Figure
6b). While the observed bias could be descriptive of average human olfactory inaccuracies, because
the number of panelists sampled was low (∼300), the bias could be local to the panelists. This
human bias is modeled by the learned bias term of the scaled cosine similarity prediction head. In
general, we observe that the learned bias is slightly higher than the dataset bias. When we physi-
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Figure 6: Investigating inductive biases in perceptual olfactory data. a) The white noise hy-
pothesis (Weiss et al., 2012), where larger mixtures become less distinguishable from one another.
b) Inherent human inaccuracies in the identification of two identical mixtures (data from Snitz).
The mean (dashed line) and standard deviation (shaded region) of perceptual similarity for identical
mixtures within the dataset is in red, while the learned bias of the similarity prediction head is in
orange. The learned biases are averaged across the five CV splits.

cally ground the model by enforcing that the learned similarity of identical mixtures should be zero
(i.e., b = 0), we observe poorer model performance (see Appendix A.6). This could be a result of
having a small dataset (< 1,000 points); enforcing this inductive bias may be more relevant when
considering larger data regimes and experiments with more human panelists, where the perceptual
distance of identical mixtures approach zero, making the model more generalizable and not subject
to the bias of a specific dataset.

3.4 BUILDING INTERPRETATIONS OF MIXTURES

An unanswered question relevant to mixture modeling is how the mixture components interact with
each other and contribute to the prediction of mixture similarities. To probe at this question and
generate hypotheses for future investigation, we modified CHEMIX to be more interpretable as an
additive model (Agarwal et al., 2021). Specifically we express the self-attention-based mixing com-
ponent as a one-layer additive model by using sigmoid normalization (Ramapuram et al., 2024)
rather than softmax, allowing the model to attend to all components, and forcing the value vectors to
be positive via a ReLU activation. In a simplified way, this is a pairwise interaction model. Although
this modified model is simpler and more constrained, it achieves performance comparable to that of
our best model.

In Figure 7, we showcase how such sigmoidal self-attention maps can be used to analyze the in-
formation passing between representations of molecules within a mixture. More complex examples
can be found in Appendix A.9. In this simple example, when comparing the GS-LF labels asso-
ciated to each molecule (Figure 7a) to the attention weights attributed to each query (Figure 7b),
we notice that the strongest "interaction"—namely, the highest attributed attention weight—is found
between query molecule 1 and key molecule 3. In general, we observe that molecules that are most
different from the rest, either by chemical structure (e.g., presence of N or S atom) or by olfactory
perception (e.g., presence of rare or numerous labels), tend to have stronger interactions. To further
our analysis, we derive label-guided structural heuristics about molecules across the set of unique
mixtures in Appendix A.10. We find that higher attention is attributed to chemical structures with
strong, pungent, and unique smells. These include compounds with sulfur, nitrogen, and aromatic
structures. However, it is important to keep in mind that the attention map showcased here is intrin-
sically linked to the task of differentiating between mixtures and is therefore likely biased towards
attributing higher attention weights to molecular embeddings that carry discriminative power only
relative to this task. Careful experimentation with synthetic mixture tasks and dataset, where the
number of data points is not as limited, might provide guidance on the strengths and failure modes
of these approaches to interpretability (Sanchez-Lengeling et al., 2020). Prospective validation from
new experimentation would also strengthen these hypotheses.
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A multi-headed (k) softmax attention mechanism can be interpreted as attending to k tokens (Joshi,
2020; Sanchez-Lengeling et al., 2021). In understanding interpretability, a natural question for mix-
tures might be: how many compounds do we need to attend to on average? Figure 7c attempts to
answer this by looking at the average number of interactions per compounds across the dataset. We
consider three attention weight cutoffs (0.3, 0.4 and 0.5) to define a significant interaction and ob-
serve that the number of interactions grows approximately linearly with the number of components
in the mixtures. For the 0.5 cutoff, this is approximately two interactions per compound for mix-
tures of less than 30 components. We observe an increase in average number of interactions after 30
components; however, we also note that data is quite sparse here, precluding the formation of firm
conclusions about the data (Figure 2a).

Figure 7: Mixture attention maps. a) Example mixture with molecules and their odor labels.
b) Sigmoidal self-attention heatmap, with compound 1 and 3 highlighted. Strongest interaction is
indicated with an asterisk. c) Number of average interactions per compound as function of mixture
size across all datasets. Each color represents a different threshold for a meaningful interaction.

4 CONCLUSION AND DISCUSSION

We introduce POMMIX, an extension of the POM for predicting olfactory similarities between
mixtures of molecules. Our approach combines graph neural networks for molecular representation,
with attention mechanisms for mixture modeling, and incorporates inductive biases by considering
cosine similarities between mixture embeddings to predict olfactory similarity. POMMIX demon-
strates state-of-the-art performance, creating meaningful representations of olfactory mixtures, and
we show how each component of inductive bias contributes to this performance.

Our work highlights the value of incorporating domain knowledge and inductive biases, particularly
in low-data regimes. By respecting problem-space symmetries, we create a flexible and expres-
sive representation for olfactory mixtures, offering a potential solution for modeling other multi-
component systems. Furthermore, we provide a method towards interpretable modeling of mixture
components interactions studying the attention weights of mixture components in CHEMIX and
studying how molecular information attends to itself within a mixture.

While POMMIX shows promising results, we acknowledge several limitations. The small size of
the available mixture dataset (< 1,000 samples) raises concerns about overfitting, despite our reg-
ularization efforts. Additionally, the limited coverage of chemical odorant space in current public
datasets (only ∼200 unique odorant compounds) constrains the model’s ability to generalize to a
wider range of chemical compounds. We also observed challenges in generalizing to new datasets
due to potential distribution shifts from varying experimental setups and human biases. Despite
making conscious design choices on the modeling side, the interpretability of mixture components
interactions in CHEMIX remains qualitative; further experimental investigations are required to val-
idate our conjectures.

We believe that the primary bottleneck in advancing olfactory modeling is the generation of high-
quality, diverse, and representative datasets. Future work should focus on expanding the coverage of
chemical space, incorporating various experimental conditions (e.g., dilution, intensity), and collect-
ing rich textual descriptions of odors. Such comprehensive datasets will be crucial for developing
more robust, interpretable and generalizable models of olfactory perception.
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5 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure our methodology can be replicated by other researchers.
All data and code used are provided in https://anonymous.4open.science/r/anon-iclr2025-DE62.
We use open-source software, including PYTORCH, PYTORCH GEOMETRIC, and RDKIT. Our
manuscript details the model architecture, training procedures, and evaluation metrics. We outlined
our data sources and preprocessing steps, including specific criteria for removing molecules and
odor labels. Details on dataset cleaning are provided in Appendix A.1, model details are provided
in Section 2.2 and Appendix A.2, and the training process and hyperparameter tuning are provided
in Section 2.3 and Appendix A.3, respectively. Additionally, the splits used for all experiments are
provided as well. We are committed to ensuring other researchers can build upon our findings and
verify our results.
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A APPENDIX

A.1 GS-LF DATASET FILTERING

The open-source version of the GoodScents/Leffingwell (GS-LF) dataset by Barsainyan et al. (2024)
initially contains 4983 molecules with 138 odor descriptors. These filters were applied in the fol-
lowing order:

• Inorganic atom filter. 110 molecules containing these atoms were removed: ["He", "Na",
"Mg", "Al", "Si", "K", "Ca", "Ti", "V", "Cr", "Fe", "Co", "Cu", "Zn", "Bi"].

• Duplicate SMILES filter. 0 duplicate molecules were removed.
• Salts and charged molecule filter. 10 molecules containing charges (including salts) were

removed.
• Multimolecular filter. 36 SMILES strings containing multiple molecules were removed

(characterized by SMILES strings containing the "." character).
• Molecular weight filter. 1 molecule with MW < 20 was removed. 11 molecules with MW

> 600 were removed.
• Non-carbon molecule filter. 1 molecule containing only non-carbon atoms was removed.

This filtering process results in a dataset of 4814 molecules, which was then used to train the POM.

A.2 DETAILS OF MOLECULAR GRAPH REPRESENTATION

The node features used in the molecular graph representation as input to the POM GNN are 85-
dimensional one-hot encoding vectors, encoding categorical information about the atoms. The edge
features encode the categorical information about the bonds as 14-dimensional one-hot encoding
vectors. The molecular information for the features are shown in Table A1.

Table A1: Features for node and edge features of molecular graphs. All categories are one-hot
encoded and stacked to give a singular bit vector. UNK stands for "unknown", and is a catch-all
category.

Node features Categories

Atomic number 1 (hydrogen) to 54 (iodine), UNK
Atom degree 0, 1, 2, 3, 4, 5, UNK
Formal charge -2, -1, 0, 1, 2, UNK
Chirality unspecified, CW, CCW, other, UNK
Number of hydrogens 0, 1, 2, 3, 4, 5, 6, 7, 8, UNK
Hybridization sp, sp2, sp3, sp3d, sp3d2, UNK
Aromatic True/False

Edge features Categories

Bond type single, double, triple, aromatic, UNK
Is conjugated True/False
In ring True/False
Stereo-configuration none, Z, E, cis, trans, any, UNK
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A.3 HYPERPARAMETER SEARCH

We perform hyperparameter searches for the pre-training of both the POM GNN and the CHEMIX
models. For the POM GNN, we use Optuna (Akiba et al., 2019), with the Tree-structured Parzen
Estimator algorithm (Bergstra et al., 2011), with a budget of 200 runs. The final embedding space
is fixed to 196 dimensions. The node GAT model and edge FiLM model is fixed to a single layer,
while the global PNA model has 2 layers. The search space is defined as follows (bolded values are
the optimal):

• Number of GRAPHNETS layers: [2, 3, 4]
• Hidden dimensions for all models: [64, 128, 192, 256, 320]
• Dropout rate: [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
• Learning rate: [1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5]

For CHEMIX, the search was performed using Weights & Biases (Biewald, 2020) with BOHB
(Falkner et al., 2018) algorithm and a budget of 200 runs. Early stopping was implemented with
patience set to 100 epochs The search space was defined as follows (bolded values are the optimal):

• Embedding dimension: [32, 64, 96, 128]
• Number of MolecularAttention (self attention) layers: values: [0, 1, 2, 3]
• Number of attention heads: values: [1, 4, 8, 16]
• Addition of an MLP head on top of MolecularAttention: ["True", "False"]
• Type of molecular aggregation: ["mean", "pna", "attention"]
• Scaled cosine activation function: ["sigmoid", "hardtanh"]
• Attention type: ["standard", "sigmoidal"]
• Dropout rate: [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
• Learning rate: [8e-5, 1e-4, 5e-4, 8e-4, 1e-3]
• Loss type: ["mae", "mse", "huber"]

A.4 PROCEDURE FOR SNITZ BASELINE

The Snitz baselines are reproduced following the procedure outlined in Snitz et al. (2013). There
are three steps involved in optimizing the angle similarity model for the best descriptors. Prior to the
optimization campaign, we normalize the 200 RDKIT features obtained from DESCRIPTASTORUS
(Kelley et al., 2024) and average across all the molecules in the mixture.

In step 1, we determine the appropriate number of descriptors by randomly sampling 20,000 times,
without replacement, n ∈ [2, 200] descriptors, resulting in 199 sets of 20,000 samples each of
predictions. We then evaluate the RMSE from the predictions of the similarity model for each value
of n. The optimal number of descriptors was scored by minimizing µRMSE − σRMSE across all
20,000 samples for a given n. The appropriate number of descriptors was between n = 5 and n = 7,
depending on the CV split.

In step 2, we evaluate the efficacy of each descriptor. We set the number of descriptors n for each CV
split based on step 1, and randomly sampled n − 1 descriptors 2,000 times. Then, cycling through
each individual descriptor, we appended it to each set of sampled n − 1 descriptors, producing a
vector of n features, and again evaluated RMSE from the predictions of the similarity model. We
take the mean RMSE from the 2,000 samples and the most relevant descriptors are determined by
minimizing the mean RMSE.

In step 3, we first calculate the score of each descriptor from step 2. The 2,000 samples of n − 1
features with a specially appended feature i ∈ [1, 200] provides a score for the i-th descriptor in the
representation. This score for the i-th descriptor is given by

score(i) = max

(
0,−RMSEi − µRMSE

σRMSE

)
, (1)

which only provides a positive score if the feature achieves lower RMSE than the average RMSE
achieved over all features. Only positive scored features are kept. We then randomly sample, 4,000
times, n = 5 to n = 7 descriptors depending on the appropriate CV split out of the set of descriptors
that performed better than the average RMSE value (i.e. positive score). Out of the 4,000 samples,
we pick the best-performing set of descriptors (lowest RMSE) on the training set and perform a final
evaluation on the test set. This procedure produces the values found in Section 3.
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A.5 XGBOOST MODELING

The XGBOOST model was given a maximum of 1,000 estimators and tree depth of 1,000. To ensure
the model does not overfit, we use the validation set for early stopping, with a patience of 25 epochs.
The model is trained with mean squared error, with a learning rate of 0.01.

A.6 PARITY PLOTS FOR ALL BASELINE MODELS, CHEMIX, POMMIX, AND ZERO-BIAS
POMMIX

Figure A1: Parity plots for all models evaluated. Ground truth labels versus predicted values
across all five cross-validation splits, with Pearson ρ, RMSE and Kendall τ reported.

A.7 ADDITIONAL ABLATION STUDIES

In addition to the ablation studies in Section 3, we perform additional ablations of the POM graph
model, the molecular featurization, and the CHEMIX prediction head.

In Table A2, we compare the chosen GRAPHNETS GNN with graph transformer models
GRAPHORMER (Shi et al., 2022; Ying et al., 2021) and GPS (Rampášek et al., 2022). These models
have shown state-of-the-art performance on large molecular datasets, such as Open Graph Bench-
mark (OGB) (Hu et al., 2020; 2021), the Open Catalyst Challenge (Chanussot et al., 2021), and the
ZINC 250k dataset (Gómez-Bombarelli et al., 2018).

Table A2: Other GNN models. Validation results on GS-LF model for Graphormer and GPS
models. While both graph transformers achieve state-of-the-art performances on larger molecular
datasets, the lightweight and tuned POM performs as well as or better than the models.

Model Validation AUROC (↑)

GRAPHORMER (slim) 0.8564
GPS 0.8647
GRAPHNETS POM 0.8843

In Table A3, we provide the cross validation test performance results for CHEMIX with frozen
POM embeddings and different prediction heads. We train four additional models of CHEMIX with
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different prediction heads: Mean + Linear, Concatenate + Linear, PNA-like + Linear, and unscaled
cosine distance. The unscaled cosine distance prediction head achieves poor RMSE, but better
correlation metrics (ρ and τ ) when compared to the regressive prediction heads. Of the aggregation
methods, we find that the PNA-like aggregation produces the best results with the linear regression
head. The scaled cosine prediction head combines the strengths of both, achieving the best test
performance across all three metrics. Additionally, we want to imbue the mixture embedding space
with a notion of distance and similarity. The scaled cosine similarity was finally chosen, based on
our experiments, as the best POMMIX prediction head.

Table A3: Ablation of CHEMIX prediction head. 5-fold cross validation metrics for CHEMIX
with various prediction heads. The mean and standard deviation are reported. The scaled cosine
distance is what was finally chosen for POMMIX, and is reproduced here for comparison.

Test predictive performance

CHEMIX prediction head Pearson ρ (↑) RMSE (↓) Kendall τ (↑)

Mean + Linear 0.085 ± 0.123 0.204 ± 0.018 0.097 ± 0.057
Concatenate + Linear 0.266 ± 0.089 0.201 ± 0.009 0.190 ± 0.063
PNA-like + Linear 0.477 ± 0.066 0.174 ± 0.005 0.295 ± 0.048
Cosine distance 0.676 ± 0.049 0.208 ± 0.009 0.436 ± 0.028
Scaled cosine distance 0.746 ± 0.030 0.130 ± 0.007 0.545 ± 0.032

In addition to RDKIT and POM embeddings, we also use the MOLT5 (Edwards et al., 2022) chemi-
cal language model embeddings. MOLT5 uses self-supervised training to build a transformer model
trained on unlabeled natural language and molecular strings, and is then fine-tuned on annotated
chemical data. We use these embeddings with the XGBOOST baseline, and also the CHEMIX
model. These models give test performance metrics (Table A4) that are worse than the RDKIT
molecular descriptors for the respective models. Across all models, we find the best performance
with the POM embeddings, which were fine-tuned for our final POMMIX model. Recent work by
Shin et al. (2018) studying the use of transformer-based language models and in combination with
graph models show that GNN methods are still optimal for this modeling problem.

Table A4: Model performances on mixture data with additional ablation of features. 5-fold
cross validation metrics for all baseline models, CHEMIX and POMMIX. The mean and standard
deviation are reported. We include additional results (underlined) with MOLT5 chemical language
model embeddings and RDKIT features. Results from Table 1 are reproduced here for comparison.

Test predictive performance

Model Pearson ρ (↑) RMSE (↓) Kendall τ (↑)

Snitz Baseline 0.399 ± 0.050 0.334 ± 0.010 0.292 ± 0.042
XGBOOST + MOLT5 0.432 ± 0.030 0.171 ± 0.012 0.347 ± 0.036
XGBOOST + RDKIT 0.485 ± 0.048 0.166 ± 0.012 0.373 ± 0.040
XGBOOST + POM 0.497 ± 0.041 0.165 ± 0.012 0.388 ± 0.033
CHEMIX + MOLT5 0.672 ± 0.021 0.144 ± 0.006 0.498 ± 0.023
CHEMIX + RDKIT 0.732 ± 0.030 0.132 ± 0.007 0.552 ± 0.040
CHEMIX + POM 0.746 ± 0.030 0.130 ± 0.007 0.545 ± 0.032
POMMIX 0.779 ± 0.028 0.118 ± 0.004 0.596 ± 0.022

A.8 PRE-TRAINING WITH AUGMENTED DATA

Due to the scarcity of mixture data, especially those with perceptual similarities between single
molecules, we sought to investigate if we could augment data using available larger mono-molecular
datasets. We investigated if the Jaccard distance between the odor descriptors of two molecules (ob-
tained from GS-LF) was a good proxy to pairwise single-molecule perceptual similarities. Based
on 75 single-molecular pairwise perceptual similarity measurements already in our dataset, we dis-
covered a modest correlation (∼0.49) between the Jaccard distance and the perceptual similarity
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(Figure A2a). Thus, we pre-trained CHEMIX with this augmentation strategy with a total of 15571
augmented datapoints, followed by fine-tune training of POMMIX , but found that it did not provide
improved structure for the embedding space for single-molecular mixtures (Figure A2b), where the
pairwise distance of the POMMIX mono-molecular mixture embeddings remained the same. Ad-
ditionally, the pre-training causes reduced model performance in all tracked metrics for CHEMIX
(Table A5).

Figure A2: Augmentation with GS-LF odor label Jaccard similarities. a) Correlation between
the Jaccard distance of the GS-LF odor labels of two single molecules, versus their perceptual sim-
ilarity. b) Boxen plot of all pairwise cosine distances between the embeddings of single molecules
for POMMIX, with and without augmentation.

Table A5: Model performances on pre-training with augmented data. 5-fold cross validation
metrics for CHEMIX pre-trained with and without augmented data. The mean and standard deviation
are reported.

Test predictive performance

Model Pearson ρ (↑) RMSE (↓) Kendall τ (↑)

CHEMIX + POM (augmented) 0.628 ± 0.048 0.163 ± 0.007 0.479 ± 0.039
CHEMIX + POM 0.746 ± 0.030 0.130 ± 0.007 0.545 ± 0.032

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.9 ATTENTION HEATMAP EXAMPLES

Figure A3: Mixture attention map example with 10 components. a) Sigmoid attention heatmap,
compounds with 3 or more significant interactions (cutoff=0.5) are highlighted. b) Example mixture
with molecules and their odor labels. Most interacting molecules are highlighted, and unique labels
have a shaded rectangle.

Figure A4: Mixture attention map example with 7 components. a) Sigmoid attention heatmap,
compounds with 3 or more significant interactions (cutoff=0.5) are highlighted. Strongest interaction
is indicated with an asterisk. b) Example mixture with molecules and their odor labels. Most
interacting molecules are highlighted and unique labels have a shaded rectangle.
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A.10 MIXTURE SET LABEL-GUIDED STRUCTURAL INSIGHTS ON KEY MOLECULES

To derive structural heuristics across the entire set of unique mixtures, we analyze the key-ed
molecules associated with extrema attention weight values for each query, focusing on queries that
interact "strongly" with a key (an interaction is considered strong if the attention weight is above
0.5). We visualize the UMAP (McInnes et al., 2018) of the POM embeddings projected by CHEMIX
through one linear layer of key-ed molecules exclusively found as maximizing/minimizing attention
weights (Figure A5, left). We observe a clear separation between the two classes, suggesting that cer-
tain types of molecules are prioritized (high interactions) or de-prioritized (low interactions) when
it comes to updating the molecular embeddings within a mixture.

We then performed hierarchical clustering (Müllner, 2011) of these key-ed molecules with SCIPY
(Virtanen et al., 2020) based on the pairwise Jaccard similarity of the binary GS-LF odor de-
scriptor labels. We selected a few representative molecules for each of the clusters and observed
strong structural differences between them (Figure A5, right). This is implicitly expected from the
structure-property relationship between scent and molecular structure. More importantly, we note
that molecules within clusters are generally either "strongly" or "weakly" interacting, suggesting
our model established a relationship between specific molecular structures and attention weight val-
ues. Through this analysis, we observe that ester/aldehydes with long alkane chains tend to have
low interaction keys (cluster 2, 3 and 7; Figure A5, right), while sulfur-containing molecules and
molecules containing aromatic rings tend to be highly interacting ones (cluster 1, 4 and 5; Figure
A5, right). These structural insights derived from label-driven clustering confirm the idea that certain
molecules receive more attention than others.

One possible explanation for why ester/aldehydes with long alkane chains are "non-interacting" keys
would be that such molecules generally have a pleasant, sweet, or fruity smell. These odor descrip-
tions are highly prevalent in the mixture dataset (119 (58.62%) "sweet" molecules and 92 (45.32%)
"fruity" molecules in 203 unique molecules across the 743 unique mixtures), and could therefore not
be informative in distinguishing mixtures. On the other hand, sulfur-containing molecules generally
have a pungent, garlicky smell and occur less in the mixture dataset dataset (10 (4.92%) "garlic"
molecules).

Figure A5: Visualizing the embeddings of maximally/minimally interacting key-ed molecules
across unique mixtures. (Left) UMAP visualization of the embeddings of key-ed molecules ex-
clusively found as maximizing/minimizing attention weights, for each query exhibiting significant
interaction (attention weight > 0.5) across all unique mixtures. The interaction strength, determined
by the attention weight, of the molecules are indicated by the markers. The molecules are colored by
cluster identity. Molecules without GS-LF labels are excluded from the visualization. (Right) Repre-
sentative molecules for each of the label-based Jaccard distance clusters. The number of strong/weak
interaction molecules for each cluster is indicated in the bottom right corner of each box.
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