Under review as a conference paper at ICLR 2026

ASYNCHRONOUS DECENTRALIZED SGD FOR NON-
CONVEX OPTIMIZATION VIA A BLOCK-COORDINATE
DESCENT LENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Decentralized optimization has become vital for leveraging distributed data with-
out central control, enhancing scalability and privacy. However, practical deploy-
ments face fundamental challenges due to heterogeneous computation speeds, un-
predictable communication delays, and diverse local data distributions. This paper
introduces a refined model of Asynchronous Decentralized Stochastic Gradient
Descent (ADSGD) under practical assumptions of bounded computation and com-
munication times. To analyze its convergence for non-convex objectives, we first
study Asynchronous Stochastic Block Coordinate Descent (ASBCD) as a theoret-
ical tool, and employ a double-step-size technique to handle the interplay between
stochasticity and asynchrony. This approach allows us to establish convergence
of ADSGD under computation-delay-independent step sizes, without assuming
bounded data heterogeneity. Empirical results show that ADSGD is practically
robust even under extreme data heterogeneity and can be multiple times faster
than existing methods in wall-clock convergence. With its simplicity, efficiency in
memory and communication, and resilience to delays, ADSGD is well-suited for
real-world decentralized learning tasks.

1 INTRODUCTION

In the era of deep learning, especially with the dominance of Large Language Models, training
datasets are getting larger and sometimes are spatially distributed. Consequently, centralized training
is often not desired and even impossible due to either memory constraints or the decentralized nature
of data. Decentralized optimization (DO), therefore, becomes a perfect remedy (Tang et al., [2023).
It aims to minimize the sum of local objective functions, i.e.,

i = %) 1
min f(z) ;f (z) ()
where n is the number of agents and d is the dimension of the problem. The optimization process is
decentralized in that each agent only has access to the local objective function f;. In deep learning,
one typical form of f; is fi(x) £ Eeup, Fi(z; €), where D; represents the local data distribution of
agent ¢, and Fj is the loss function.

Most decentralized methods (Pu et al.||2020; [Nedic et al., |2017) use synchronous updates, suffering
from stragglers in heterogeneous systems. Asynchronous approaches avoid this bottleneck and often
perform better in practice (Samarakoon et al.,[2019). However, existing asynchronous methods (Lian
et al.,2018;|Niwa et al.,|2021; |Bornstein et al., [2022; |Koloskova et al., [2020) typically require either
partial synchronization or activation assumptions (e.g., independent sampling with fixed probabili-
ties). For example, ADPSGD (Lian et al., 2018) imposes strict synchronization requirements: (1)
agents must maintain identical update frequencies, and (2) neighbor synchronization is mandatory
during updates. These constraints create significant waiting times during execution.

In this work, we propose Asynchronous Decentralized SGD (ADSGD) method and perform analysis
under the assumptions that require only bounded computation/communication delays (Section [3.1).
The analysis connects ADSGD to Asynchronous Stochastic Block Coordinate Descent (ASBCD),
providing new convergence guarantees for non-convex objectives.

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

This section reviews the literature on Asynchronous Block Coordinate Descent (ABCD) and asyn-
chronous decentralized optimization algorithms. Note that most of the asynchronous algorithms
make probabilistic assumptions regarding update patterns (Lian et al., [2018; Bornstein et al.| 2022
Koloskova et al.| 2022} [Liu & Wright| 2015} [Peng et al., [2016; [Leblond et al., 2017). While these
assumptions simplify theoretical analysis, they may not accurately approximate real-world scenar-
i0s. Here, we focus exclusively on algorithms that align with the same asynchrony assumptions as
those adopted in this work.

ABCD methods. Readers might refer to (Sun et al., [2017) for a slightly outdated review. More
recently, several works (Kazemi & Wang, |2019; [Ubl & Hale| [2022; Zhou et al.| 2018)) investigated
the proximal block coordinate descent method. The work in (Ubl & Hale| 2022)) considers the
convex setting. While (Zhou et al., 2018) extends to the non-convex case, additional assumptions
such as the Luo-Tseng error bound condition (Tseng), |1991) are required. Note that these studies do

not provide a convergence rate. In (Sun et al., 2017)), a convergence rate of o(ﬁ) is established for

non-convex problems. The paper (Kazemi & Wangl [2019) proposes an accelerated algorithm and
achieves similar results as in (Sun et al., |2017). However, they have not considered the stochastic
gradient setting.

Asynchronous decentralized optimization methods. Most asynchronous decentralized optimiza-
tion methods study deterministic gradients, primarily using tracking-based approaches. For ex-
ample, the works in (Cannelli et al.l 2020) and (Zhang & You, 2019) both achieve linear conver-
gence, where APPG (Zhang & You, 2019) assumed PL-condition and (Cannelli et al., 2020) used
the Luo-Tseng error bound condition (Tseng,|1991). The work in (Tian et al.l [2020) achieves sub-
linear convergence for general non-convex functions, but suffers from: (1) step sizes scaling as
O(wr=1B+nDYI| B D are the bounds of computation and communication delays, respectively.
(2) heavy memory/communication overhead due to gradient tracking.

While the paper (Wu et al., 2023) proves delay-agnostic convergence for asynchronous DGD with
exact gradients under strongly convex objectives, extending the result to non-convex problems with
stochastic gradients is non-trivial. Specifically, the max-block pseudo-contractive analysis fails for
stochastic gradients due to non-commutativity of max and expectation operations.

Under the adopted asynchrony assumptions of bounded computation/communication delays, exist-
ing methods using stochastic gradients either focus on strongly convex objectives (Spiridonoff et al.,
2020) or impose strong constraints for non-convex cases. For example, under a simple case - a
3-agent fully-connected network with no delays and 1-smooth loss - the tracking-based methods
in (Zhu et al.,[2023) and (Kungurtsev et al.,[2023)) theoretically require step sizes below 2.2 x 1027
and 3.5 x 10™°%. In contrast, the theoretical step size for ADSGD has a clear and simple dependency
on D and K (total iteration number) only. Moreover, tracking-based methods require over three
times as much memory in practice and double the communication budget compared with ADSGD.
Readers can refer to Appendix [A.T|for a detailed comparison.

1.2 MAIN CONTRIBUTIONS

* We introduce ADSGD, an asynchronous algorithm that provably converges for non-convex
objectives with stochastic gradients under bounded computation and communication de-
lays, using step sizes that are independent of computation delays. Compared to existing
methods, ADSGD reduces per-iteration communication overhead by 50% and memory us-
age by 70%. Notably, its convergence guarantee does not rely on the commonly assumed
bounded data heterogeneity condition.

* We analyze ADSGD through the lens of block-coordinate descent. As a first step, we gen-
eralize asynchronous block coordinate descent (ABCD) to the stochastic setting, obtaining
ASBCD, and establish its convergence under non-convex objectives. However, this con-
vergence analysis does not directly extend to ADSGD: a naive attempt to treat ADSGD
within the ASBCD framework yields a step-size—dependent Lipschitz constant, which in
turn leads to divergence. To overcome this obstacle, we develop a double-step-size tech-

'w is the lower bound of the weights in the weight matrix

Under review as a conference paper at ICLR 2026

nique, which decouples the Lipschitz dependency and enables us to establish the conver-
gence of ADSGD.

* We demonstrate empirically that ADSGD converges faster than all baselines (including
synchronous and asynchronous methods) regardless of stragglers, showing that the method
is delay-resilient, communication/memory-efficient, and simple to implement, making it
well-suited for practical deployment.

2 THE ALGORITHMS
This section details the ASBCD and ADSGD algorithms.

2.1 ASBCD

Consider the optimization problem
min f(x), (2)

x€R’
where x = (27, ..., 20)T, 2; e R4, and 37 d; = d.

EEPR oy

In ASBCD, each block stores part of the global model x; and a buffer B;, containing all blocks of
the global model {;;};c[n). Specifically, x; is the current local iterate of block 4 and x;; records
the most recent z; it received from block j € A;. As in Algorithm each block keeps estimating
V,f(-) with the global model in the buffer. Once the gradient estimation is available, block ¢ updates
as follows:

T+ T — agh (x;), 3
where x; = (x4, ...,)T and gf(-) is a stochastic estimator of V;f(-). Then block i sends the
updated block to all other blocks and repeats.

For a clear mathematical representation, we introduce the virtual iteration index k& € Ny, which is
only for analysis and need not be known by any block. The index k is increased by 1 whenever some
block is updated. The updating rule can be written as

i zk, otherwise,

where iy, is the active block at step k and X* is the global model held by block iy, at iteration k. Note
that the read of the global model is done prior to gradient calculation, hence % is the available global
model to i, when it begins the gradient estimation before iteration k. For instance, suppose a block
starts gradient estimation at iteration 2 and takes 3 iterations to finish. Then % is the global model
sk sk
available to i5 at iteration 2. Specifically, X" = ((z,*")7, ..., (z,*")")T and s}, < k is the largest
iteration index (but smaller than or equal to k) of the most recent version of x; available to block 4
when it starts its last gradient estimation prior to iteration k. In other words, s?j is the minimal value
of the current iteration index k and the iteration when block j conducts its next update. Note that sfj

degenerates to a simpler term under certain circumstances, e.g. st = k.

Fig. and |1b| provide examples of sfj. In both figures, block ig starts calculating gradient at
iteration 2 and 4 and finishes at iteration 4 and 9. We first focus on 5?91, which is the largest iteration
index of the most recent x; available when ig starts its last gradient estimation at iteration 4. It is
shown in both figures that x; is available at iteration 2. However, block 1 updates at iteration 5
and 3 in Fig. and 1b| respectively. Thus s? ; = 5 for Fig. [lajand s ; = 3 for Fig. Next,
consider s} ;, which is the largest iteration index of the most recent z; available at iteration 2. Now,

5?41 = min{5,4} = 4 for Fig. |la|because block 1 remains unchanged until iteration 5. Similarly,

s§,1 = min{3,4} = 3 for Fig.

Remark 2.1. s¥: here captures both computation delay and communication delay. The term k — sfj
will be large when either ¢ is slow at computing (while j is fast) or the communication link from j to
i1s slow. If {i;,} = [n] (all blocks update together) and s;; = k for all ¢, 7, k, equationdegenerates
to standard stochastic gradient descent.

Under review as a conference paper at ICLR 2026

Computation Communication
2 unchanged @1 unchanged
Block 1 Block 1 Agent 1 Agent 1
= = ¢ o =

Block i I Block i I Agent g [Agent g [
ter. 1 2 45 910 It 1 2345 910 It 12 45 910 Ite. 1 345 8 910

(a) ASBCD: sj,; =5 (b) ASBCD: s}, =3 (c) ADSGD: s}, =9 (d) ADSGD: s, =8

Figure 1: Schematics of sf‘j for ASBCD (left) and ADSGD (right), with the computation and com-
munication of primary focus highlighted in a darker shade.

Algorithm 1 ASBCD

1: Initialization: All blocks agree on @ > 0.
2: Each block chooses x;, creates a local buffer 3;, shares x;, and calculates gf(xl)
3: All Blocks Do In Parallel:

4: while termination criterion not met do

5: repeat
6.
7
8

Keep receiving x; from other blocks.
Let x;; = x; and store x;; in B;
: until gf (x;) is available.
9: Update z; according to equation [3]
10: Send x; to every other block.
11: Calculate gf (x;).
12: end while

2.2 ADSGD

ADSGD aims to solve equation[I]over a network of n agents described by an undirected, connected
graph G = (V, &), where V = {1,...,n} is the vertex set and £ C V x V is the edge set. In the
network, each agent i observes a local cost function f; : R? — R and can only interact with its
neighbors in V; = {j : {i,7} € £}.

In asynchronous DSGD, each node behaves similarly as in ASBCD. Every node ¢ € V holds the
model of itself z; and a buffer B;, which contains the models of its neighbors {x;;},cn;,. Like
before, z; is the current local iterate of node ¢, and x;; records the most recent x; it received from
node j € N;. Bach agent keeps estimating V f;(z;) and updates as follows once finished,

Tj < Wi T + Z wijij — agl (), (&)
JEN;

where g/i (x;) is a stochastic estimator of V f;(z;), and w;; is the (i, j)-th entry of the weight matrix
W. Similar to ASBCD, node 7 broadcasts x; to all neighbors, and its neighbor j overwrites x; in
its buffer B;. A detailed implementation is given in Algorithm 2}

Likewise, the iterates are indexed by k& € Ny, which increases by 1 whenever an update is performed
on a local variable x; of some nodes i € V. Again, k is only for analysis and need not be known by
agents. Denote N; = A; U {i} for all i € V. Then, the asynchronous DSGD can be described as
s¥; ; .
ZL’?+1 = ZjGJ_fi wijxj ! _agfL(m§)7 =1k, (6)
x otherwise,

709

where sfj € [0,k] for j € N is the largest iteration index (smaller than or equal to k) of the most
recent version of x; available to node 7 at iteration k (instead of “when 7 begins its final gradient
estimation prior to iteration k” as in ASBCD). Still, sfj is the minimal value of the current iteration
index k and the time agent j updates next as previously defined in ASBCD.

Similar schematics of sfj are shown in Fig. |lcland El} The behaviors of both agents in Fig. |1c|are
identical to that of Fig. and so is Fig. to Fig. Now 5?91 is the largest iteration index
of available z; when agent ¢y finishes gradient estimation at iteration 9. Note that, in Fig. the
1 updated at iteration 5 is available to agent ¢g prior to iteration 9, and x; remains identical until

Under review as a conference paper at ICLR 2026

Algorithm 2 ADSGD
1: Initialization: All the nodes agree on v > 0, and cooperatively set w;;, V{i,j} € €.
2: Each node chooses x;, creates a buffer ;, shares z; with neighbors, and calculates gf i(x4).
3: All Nodes Do In Parallel:
4: while termination criterion not met do
5: repeat
6: Keep receiving x; from neighbors.
7: Let x;; = x; and store x;; in B;
8: until g/i(z;) is available.

9: Update z; according to equation 5]
10: Send z; to all neighbors j € N;.
11: Calculate gfi (z;).

12: end while

iteration 10. Therefore, 5?91 = min{10,9} = 9 for Fig. Likewise, in Fig. the z; updated at
iteration 3 is available to agent ig before iteration 9. Thus, s? ; = min{8,9} = 8 for Fig.

Remark 2.2. Unlike in ASBCD, sfj here captures only the communication delay. The difference

originates from the time the global model is used. The global model is used before gradient estima-
tion in ASBCD and after gradient estimation in ADSGD. When ¢, = [n] and sfj =k, for all ¢, 5, k,
equation [6]reduces to the synchronous DSGD.

Notation. With a slight abuse of notation, [x]; refers to taking the i-th block of a vector . For

instance, if x £ [z1,...,2,], then [x]; = x;, where x; can either be a scalar or a vector. For a
matrix W with n eigenvalues, A;(W) denotes the i-th largest eigenvalue. Additionally, we define

W =W ® I; and (k)" £ max{0, k}.

3 CONVERGENCE ANALYSIS

3.1 ASSUMPTIONS

All assumptions are summarized below. Assumption [3.1] - [3.2] are for ASBCD, while their coun-
terparts Assumption [3.5]- 3.6 are for ADSGD. The assumption on partial asynchrony (Assumption

[3:3) is shared.

Assumption 3.1. f is L-smooth and lower bounded by f*.

Assumption 3.2. For each block i, the gradient estimator is unbiased with bounded variance, that
is, E[¢f (x) — Vif(x)] = 0 and E|||¢f (x) — V£ (x)|]?] < 02, Vi, x.
Assumption 3.3 (Asynchrony). There exist positive integers B and D such that

1. Foreveryi € V and for every k > 0, there exists m € {k, ..., k+ B—1} suchthat i,, = i.

2. There holds k — D < sfj <kforallieV, je N, andk € K;.

Remark 3.4. Assumption [3.3]1 requires each agent to update at least once every B steps. There-
fore, B resembles the computation delay. Assumption[3.3]2 implies different conditions for ADSGD
and ASBCD. For ADSGD, D represents the maximum communication delay, as the agents mix the
neighboring models after the gradient is available. Whereas for ASBCD, D encompasses both com-
putation and communication delay, as each block takes the whole model before gradient estimation.
Therefore, when there is no communication delay, D for ADSGD degenerates to 0 while D for
ASBCD degenerates to B. In practice, the assumption holds as long as the computation and com-
munication times of each agent are lower and upper bounded.

Assumption 3.5. For each agent, the objective function f; is L;-smooth and lower bounded by f;.
Assumption 3.6. For each agent, the gradient estimator is unbiased with bounded variance; that
is, E[g/i(z) = V fi(z)] = 0 and E[||g” () = V f;(2)|I’] < 0®, Vi, .

Assumption 3.7. The mixing matrix W is stochastic and symmetric, with the corresponding com-
munication graph being undirected and connected.

Under review as a conference paper at ICLR 2026

3.2 CONVERGENCE OF ASBCD

The following lemma generalizes [Theorem 1,Sun et al.|(2017)] to stochastic gradients, forming the
basis for ADSGD’s analysis:

Lemma 3.8. For problem |2} given Assumptton ﬁ H and @ < (BFAL +1 7T the sequence {x"}
generated by () satisfies the following relation:
~LE||VE 2 3n(B + CoL2a?) f — L(D+1
SBIVECNIP sn(B + Col?a?) () 6 (oo LD)
K a(l - (5 +DL)a) K 2(1-(5+DL)a)
where Co = D? + 3B?(D + 2D3).

Lemma-1nd1cates ASBCD converges to the O(«) neighborhood of its stationary points with a rate
of (’)(), matching the standard rate for non-convex SGD. Note that the step size here depends on
D, encompassing computation and communication delays. A corollary is provided in the appendix.

3.3 CONVERGENCE OF ADSGD

We now turn to the convergence analysis of ADSGD, which builds on the ASBCD framework but
introduces additional challenges due to stochastic gradients and asynchrony.

Define F(x) £ 3, fi(z:), andL (x) = F(X)+:¢(127W)x Note that F'(x) and L, (x) are both

Lipschitz smooth with Lr £ max L; and L, & Lp+ =22 respectively (note that L, is a function
of the step size).

ADSGD on F(x) can be viewed as ASBCD on L, (x). The updating rule equation[6|can be rewritten
as
mk+1 _ szagfa(kk)v i:ika
¢ xk, otherwise,
sk sk

where gZ*(-) is a stochastic estimate of V;L,(-) and x* = ((xl”‘l)T, - (z,*")T)T. Note that
even though the above is expressed under the framework of ASBCD, s¥. should follow the one
defined for ADSGD (Section[2.2). ThlS is because, in ADSGD, the nelghbors models are only used
after gradient estimation. Therefore, X* should be the global model available to iy, at iteration k.

ADSGD can be viewed within the ASBCD framework, where the effective Lipschitz constant de-
pends on the step size. This dependency complicates convergence analysis, since step size alone
cannot control noise accumulation. To address this limitation, we propose a double-step-size tech-
nique, introducing an auxiliary step size B such that

aftt = af — Bgle (%)
B B
— (- &>x + 2 WK, - B9l (%)
= [Wx"];, ,Bgf%(") (7
where W 2 W ® 1,, and Wii =(1- a) 5Wn, W” = ZWi;j,1 # j. The double-step size

ADSGD algorithm is effectivel Algorithmlw1th a different welght matrix T and the step size 3,
since W satisfies Assumption Via the ASBCD-ADSGD correspondence, we transfer ASBCD’s
convergence to Algorithm [2} Theorem [3.9) ﬂ shows convergence under proper {a, B}.

Theorem 3.9. For Problem gtvenAsmmptwnﬁ Hand B < m the sequence {x*}
generated by equatzon [?]satzs es:
ko EIVS (@) < 6n2(B+CoL%52) i (fia®) —)
K ~ B~ (D+3)LLh) K

2 n(D+1) 2
+ LLﬂ <6n CQLLﬁ + w) g

n\max; L 20& -
o 1(_ AQ(];V)) (Z(fi(aso) 5+ - e 2)

Under review as a conference paper at ICLR 2026

where z%F = L3S 2k and Cy is defined in Lemma

Remark 3.10. Unlike (Zhu et al 2023} |[Kungurtsev et al., [2023)), the proposed step size [is inde-
pendent of computation delay B and permits much larger values than prior asynchronous decentral-
ized non-convex SGD methods. This independence arises because each agent i computes gradients
solely using its local model z¢, which isn’t affected by communication delays.

Remark 3.11. In contrast to previous convergence analyses of DSGD |Koloskova et al.| (2020),
current analysis does not rely on bounded data heterogeneity assumption. It only requires each
individual loss to be bounded below, which is almost always satisfied in practice.

Corollary 3.12. For Problem , given Assumption - and let @ = ﬁ,ﬁ =

W, the sequence {x*} generated by equation i satisfies:
K-1 — n
o EIIVF@E)I? 8n > i (fi(a®) = £7)
k=0 < (1 2 L i=1\J? i
K ~ 6n Cl + 1— AQ(W) F K1/3

n n +om o? n 3n2C, o2
D(1 — X (W)) K3 = 2D K2/%’
where Cy is defined in Lemma[3.8land Cy = 6B2D? + 3B + 3BD + 3B + D.

Corollary [3.12] establishes that ADSGD converges to stationary points with proper step sizes, albeit
at a rate slightly slower than standard non-convex SGD due to consensus error (O(«)). While con-
vergence to L,’s stationary points achieves the faster O(1/+/K) rate with a proper step size, the
gap between L, and F' limits the overall rate. The key challenge lies in controlling consensus error
while maintaining full asynchrony. ADSGD’s self-only update rule (Eq. [5)) breaks double stochas-
ticity, invalidating prior analyses. Partial neighbor synchronization Lian et al.|(2018) preserves this
property but introduces stalls and performance degradation (Section [4).

2.50 —e— ADSGD-Case 1 —— ADSGD-Case 2 2.50 —s— ADSGD-Case 3 —— ADSGD-Case 4
\ —e— SGD-Case 1 —— SGD-Case 2 —=— SGD-Case 3 —— SGD-Case 4
2.25 DSGD-Case 1 DSGD-Case 2 2.25 DSGD-Case 3 DSGD-Case 4
—e— ADPSGD-Case 1 —— ADPSGD-Case 2 | —=— ADPSGD-Case 3 —+— ADPSGD-Case 4
2.00 —e— RFAST-Case 1 —— RFAST-Case 2 2.00 i —=— RFAST-Case 3 —+— RFAST-Case 4

—~——

Time led Time 1ed

(a) No Straggler (b) One Straggler

Figure 2: Loss plot of Logistic Regression on MNIST. Case 5 is deferred to Appendix for clarity.

4 EMPIRICAL EVALUATION

To empirically demonstrate ADSGD’s effectiveness, we compare it with ADPSGD (Lian et al.,
2018) and RFAST (Zhu et al. 2023) (a gradient-tracking method), while using synchronous
DSGD (Yuan et all [2016) and parallel SGD (ring-Allreduce implementation) as baselines. For
all algorithms, the implementation adheres strictly to their original descriptions, without incorpo-
rating any additional acceleration techniques. These algorithms are tested on two non-convex tasks
with real-world datasets. Experiments on two non-convex tasks under diverse delay scenarios are
conducted on a server with 8 Nvidia RTX3090 GPUs. All details are included in Appendix [B.T}

Modeling delays. We simulate system delays via random sampling for better ablation (see Ap-
pendix [B.1.2). Computation delays focus on gradient estimation (the dominant time cost), ignoring
negligible model mixing/updating delays. For communication, we assume full-duplex agents with
multicast and serial sending (i.e., sequential message transmission). These conservative assumptions
hold in practice: full-duplex multicasting is supported by 4G, WiFi, Zigbee, and wired LANs. Serial
sending improves information availability under bandwidth limits.

Under review as a conference paper at ICLR 2026

Tasks description. We conduct our main experiments using 9 agents connected in a grid network,
and further evaluate scalability by extending the setup to as many as 128 agents. We first conduct
logistic regression with non-convex regularization on the MNIST dataset |LeCun et al| (1998). A
modified VGG11 [Simonyan & Zisserman| (2014) is then trained over CIFAR-10 Krizhevsky et al.
(2009). We evaluate the algorithms under varying degrees of data heterogeneity, but report only
the most challenging case in the main text: the fully label-partitioned setting. This scenario is
substantially more challenging than the commonly used Dirichlet (0.1) benchmark, which is already
regarded as highly heterogeneous. Appendix (B further shows that ADSGD’s advantage widens
as heterogeneity decreases. For each task & algorithm, there are 5 test cases as summarized in
Table [T} Note communication and computation on average takes 1 unit of time in case 1) and
communication is twice as slow in case 2) for VGG (slower communication delays convergence and
increases computational overhead, thus not investigated). We report the main results that substantiate
our claim, while a comprehensive presentation of all experiments is provided in Appendix

Table 1: Test Cases for All Algorithms

Case Description Case Description
1) Base Uniform delays 2) Slow Comm. 10x(2x) slower comm.
3) Comp. Str. 1 agent 10x slower comp. 4) Comm. Str. 1 agent 10x slower comm.

5) Comb. Str. 1 agent 10x slower both

Parameter selection. A fixed step size of 0.01 is adopted for both tasks and algorithms, except for
RFAST, which uses % to match an identical effective step size. Local batch size for non-convex
logistic regression and VGG training is set to 32 and 8, respectively.

—e— ADSGD-Case 1 —+— ADSGD-Case 2 —=— ADSGD-Case 3 —=— ADSGD-Case 4
2.0 —e— SGD-Case 1 —— SGD-Case 2 —=— SGD-Case 3 —+— SGD-Case 4
’ DSGD-Case 1 DSGD-Case 2 2.07 4\ DSGD-Case 3 DSGD-Case 4
—— ADPSGD-Case 1 —— ADPSGD-Case 2 \ —=— ADPSGD-Case 3 —— ADPSGD-Case 4

—e— RFAST-Case 1 —— RFAST-Case 2 \ —=— RFAST-Case 3 —— RFAST-Case 4
15

Loss

1.0

0.5 0.5

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) No Straggler (b) One Straggler
Figure 3: Loss plot of VGG on CIFARI10. Case 5 is deferred to Appendix for clarity.

4.1 NON-CONVEX LOGISTIC REGRESSION ON MNIST

We present the loss curves of the average model f(Z) in Fig.[2| Without stragglers (Fig., ADSGD
outperforms all other algorithms and uniquely surpasses the baselines. While asynchronous methods
typically exhibit slower iteration-wise convergence due to stale information but faster per-iteration
runtime, RFAST and ADPSGD fail to benefit from this trade-off. ADPSGD suffers from partial
synchronization requirements that slow its runtime, whereas RFAST’s neighbor-specific communi-
cations and doubled gradient tracking overhead make it particularly delay-sensitive.

Under the straggler scenarios (Fig. [2b), ADSGD maintains its lead. With communication stragglers,
DSGD beats ADPSGD and RFAST, while ADSGD shows significantly stronger robustness. In
computation delay cases (case 3), all asynchronous methods outperform the synchronous baseline,
demonstrating their advantage under such conditions.

4.2 VGGI11 oN CIFAR-10

This section demonstrates ADSGD’s capabilities on more complex tasks. Following the previous
methodology, Fig. |3a] presents the average model’s loss curve. All algorithms show convergence

Under review as a conference paper at ICLR 2026

patterns similar to logistic regression. Parallel SGD is the fastest in cases without straggler, but as a
centralized baseline it avoids the challenges of data heterogeneity. Among the remaining methods,
ADSGD maintains the fastest convergence. Notably, RFAST diverges in the case of Slow Comm.,
where the communication delay is only twice the computation delay. Though unstable, RFAST does
exhibit much smaller loss oscillations due to gradient tracking.

Remark 4.1. Gradient tracking methods achieve O(1/+/K) convergence, matching the stochastic
optimal rate. However, this comes at the cost of (i) requiring extremely small step sizes and (ii)
inferior practical performance, as exemplified by RFAST: high delay-sensitivity due to doubled
communication and substantial memory overhead (see Appendix [A).

Fig. [3b| confirms ADSGD’s superiority. Asynchronous methods generally handle computation de-
lays well, with ADSGD particularly robust against communication delays. RFAST diverges in all
cases due to its delay sensitivity under non-convexity. Quantitatively, ADSGD achieves 85% test
accuracy 15-70% faster than async methods (70% for comm. stragglers), 30-85% faster than sync
methods, and 35-58% faster than parallel SGD under stragglers (See Appendix B).

Remark 4.2. Considering both synchronous and asynchronous methods, ADSGD is especially ad-
vantageous in the presence of stragglers. This property is particularly relevant for heterogeneous
compute clusters, where it is increasingly common to mix different generations of GPUs (e.g., XAI'’s
Colossus supercomputer, which combines NVIDIA H100s and GB200s).

4.3 SCALABILITY

While prior results demonstrate ADSGD’s effectiveness, computational constraints previously lim-
ited the number of agents tested. ADSGD’s scalability is presented by measuring speedup across
increasing agent counts under a ring topology and case 1 (Fig. [)). Logistic Regression (Fig. [4a))
scales to 128 agents, with loss curves showing consistent acceleration as parallelism grows. VGG11
Training (Fig. achieves comparable speedup up to 32 agents, beyond which hardware limitations
prevent further testing. The near-linear trend in both tasks confirms ADSGD’s ability to leverage
distributed training efficiently, revealing its potential to large scale applications.

—— ADSGD-n=2 —e— ADSGD-n=32 —— ADSGD-n=2
2501 —— ADSGD-n=4 +— ADSGD-n=64 —— ADSGD-n=4
—— ADSGD-n=8 ADSGD-n=128 2.0 —— ADSGD-n=8
2.25 —— ADSGD-n=16 —e— ADSGD-n=16

—e— ADSGD-n=32
1.5

loss

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 15 2.0 2.5 3.0
Time ted Time 1es
(a) Logistic Regression (b) VGGI11 Training

Figure 4: Speedup of ADSGD w.r.t. number of agents under a ring topology.

5 CONCLUSION

This paper explores the convergence of asynchronous algorithms under bounded communication
and computation delays, focusing on ASBCD and ADSGD. We show that ASBCD converges to the
neighborhood of its stationary points in non-convex settings and achieves a rate of O(1/ VK) given a
proper step size. Extending these results to ADSGD, we prove its convergence under non-convexity
with a computation-delay-independent step size, without assuming data heterogeneity. The experi-
mental results confirm the effectiveness of ADSGD on non-convex learning tasks. We highlight that
the proposed approach is simple, memory-efficient, communication-efficient, and highly resilient
to communication delays, providing greater flexibility and robustness in decentralized optimization
scenarios.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken deliberate steps to ensure the reproducibility of our results. All theoretical claims
are accompanied by complete proofs in Appendix [C} For empirical results, we provide detailed
descriptions of datasets (MNIST, CIFAR-10), model architectures (logistic regression, VGG11),
hyperparameters (learning rates, batch sizes, step sizes), and training protocols. We also specify the
compute resources used, including GPU types and cluster configurations, as well as the simulation
framework for modeling communication delays (see Appendix [B.I). These materials will allow
researchers to reproduce both the convergence plots and the scalability results reported in the paper.

ETHICS STATEMENT

This work focuses on the development and analysis of decentralized optimization algorithms. Our
contributions are methodological and theoretical in nature, and we do not foresee direct ethical risks
from the algorithms themselves. The datasets used (MNIST and CIFAR-10) are standard, publicly
available benchmarks that do not contain sensitive or personally identifiable information. While
decentralized learning can enhance privacy by avoiding central data aggregation, it may also be
deployed in settings where fairness, robustness, or misuse could become concerns. We encourage
practitioners to carefully evaluate these aspects when applying our methods in real-world systems.
Beyond these considerations, we are not aware of any immediate ethical issues raised by this re-
search.

REFERENCES

Marco Bornstein, Tahseen Rabbani, Evan Wang, Amrit Singh Bedi, and Furong Huang. Swift:
Rapid decentralized federated learning via wait-free model communication, 2022.

Loris Cannelli, Francisco Facchinei, Gesualdo Scutari, and Vyacheslav Kungurtsev. Asynchronous
optimization over graphs: Linear convergence under error bound conditions. /[EEE Transactions
on Automatic Control, 66(10):4604—-4619, 2020.

Ehsan Kazemi and Ligiang Wang. Asynchronous delay-aware accelerated proximal coordinate de-
scent for nonconvex nonsmooth problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1528-1535, 2019.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized sgd with changing topology and local updates. In International conference
on machine learning, pp. 5381-5393. PMLR, 2020.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous sgd for distributed and federated learning, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Vyacheslav Kungurtsev, Mahdi Morafah, Tara Javidi, and Gesualdo Scutari. Decentralized asyn-
chronous non-convex stochastic optimization on directed graphs. IEEE Transactions on Control
of Network Systems, 2023.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Asaga: Asynchronous parallel saga.
In Artificial Intelligence and Statistics, pp. 46-54. PMLR, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, pp. 3043-3052. PMLR,
2018.

Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and conver-
gence properties. SIAM Journal on Optimization, 25(1):351-376, 2015.

10

Under review as a conference paper at ICLR 2026

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597-2633, 2017.

Kenta Niwa, Guoqgiang Zhang, W Bastiaan Kleijn, Noboru Harada, Hiroshi Sawada, and Akinori
Fujino. Asynchronous decentralized optimization with implicit stochastic variance reduction. In
International Conference on Machine Learning, pp. 8195-8204. PMLR, 2021.

Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. Arock: an algorithmic framework for
asynchronous parallel coordinate updates. SIAM Journal on Scientific Computing, 38(5):A2851—
A2879, 2016.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedi¢. Push—pull gradient methods for distributed opti-
mization in networks. IEEE Transactions on Automatic Control, 66(1):1-16, 2020.

Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mérouane Debbah. Distributed federated
learning for ultra-reliable low-latency vehicular communications. /EEE Transactions on Commu-
nications, 68(2):1146-1159, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch Paschalidis. Robust asynchronous stochastic
gradient-push: Asymptotically optimal and network-independent performance for strongly con-
vex functions. Journal of machine learning research, 21(58):1-47, 2020.

Tao Sun, Robert Hannah, and Wotao Yin. Asynchronous coordinate descent under more realistic
assumptions. Advances in Neural Information Processing Systems, 30, 2017.

Zhenheng Tang, Yuxin Wang, Xin He, Longteng Zhang, Xinglin Pan, Qiang Wang, Rongfei Zeng,
Kaiyong Zhao, Shaohuai Shi, Bingsheng He, et al. Fusionai: Decentralized training and deploying
Ilms with massive consumer-level gpus. arXiv preprint arXiv:2309.01172, 2023.

Ye Tian, Ying Sun, and Gesualdo Scutari. Achieving linear convergence in distributed asynchronous
multiagent optimization. IEEE Transactions on Automatic Control, 65(12):5264-5279, 2020.

Paul Tseng. On the rate of convergence of a partially asynchronous gradient projection algorithm.
SIAM Journal on Optimization, 1(4):603-619, 1991.

Matthew Ubl and Matthew T Hale. Faster asynchronous nonconvex block coordinate descent with
locally chosen stepsizes. In 2022 IEEE 61st Conference on Decision and Control (CDC), pp.
4559-4564. IEEE, 2022.

Xuyang Wu, Changxin Liu, Sindri Magnusson, and Mikael Johansson. Delay-agnostic asyn-
chronous distributed optimization, 2023. URL https://arxiv.org/abs/2303.18034.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835-1854, 2016.

Jiaqi Zhang and Keyou You. Fully asynchronous distributed optimization with linear convergence
in directed networks. arXiv preprint arXiv:1901.08215, 2019.

Yi Zhou, Yingbin Liang, Yaoliang Yu, Wei Dai, and Eric P Xing. Distributed proximal gradient
algorithm for partially asynchronous computer clusters. Journal of Machine Learning Research,
19(19):1-32, 2018.

Zehan Zhu, Ye Tian, Yan Huang, Jinming Xu, and Shibo He. Robust fully-asynchronous methods
for distributed training over general architecture. arXiv preprint arXiv:2307.11617, 2023.

11

https://arxiv.org/abs/2303.18034

Under review as a conference paper at ICLR 2026

A ALGORITHM COMPARISON

Table[2]represents all decentralized stochastic gradient algorithms with provable convergence results
under identical asynchrony assumptions. We present details of derivation in the following subsec-
tions.

Table 2: Decentralized stochastic gradient algorithms that converge under identical asynchrony as-
sumptions. Memory and communication budget are normalized w.r.t. the model size. Comments:
(1) SC and NC represent strong convexity and general non-convexity, respectively. (2) The step size
in (Spiridonoff et al.,|2020) is computation-delay-independent. However, they used diminishing step
size, which will eventually be small enough for their convergence results. Readers may refer to the
appendix for details.

Comp.-delay-ind. Memory Comm.

ity(D)
Convexity Step Size Cost Budget
Spiridonoff et al. (2020) SC v® 3N +3 IV
7hu et al| (2023) NC 4INi| +5 2|V
Kungurtsev et al.[(2023) NC 4N+ 5 2|N;|
Ours NC v V| +2 IV

A.1 ON STEP SIZES

Only (Spiridonoff et al., 2020) and this work adopt a computation-delay-independent step size.
However, in (Spiridonoff et al., [2020), they use a diminishing step size rule to reach an asymptotic
result, whereas we use a fixed step size.

As mentioned in Section[I.T} current gradient tracking methods require not only computation-delay-
dependent step sizes but also extremely small ones. We simplify (increase) their required step sizes
to illustrate how impractical their bounds are.

From Theorem III.1 in (Kungurtsev et al., 2023), its initial step size is upper bounded by
2C Gy 2 2¢/(D+2)n(1+w~"4) Lp A (- wKA)l/KA

S B ST

TSROt where C; = T—p? T , and

2

Ka = (2n — 1)B + nD. For ease of illustration, we increase the upper bound to C% = (12_09 .
1 0

Note that thi~s is a very loose bound since C’Q (C’§ in (Kungurtsev et al., |2023))) can be magnitudes
larger than C.

From (39) in (Zhu et al., 2023), the step size is upper bounded by W where 7 is the number

of common roots between subgraphs for pushing and pulling. For the ease of illustration, we assume
2 2

that » < 96. Thus, the upper bound is now p’Z—;, where & w4, p, £ 5403 CL([ng;”(l 0],

Gy 2 2v25(1+w %4) Cy

p(1—wFa)

= max{L;}, and S > (D + 1)n. Again for illustration, we assume

2166’% C% > 1, which should be satisfied for most applications. Therefore, we have p; > %
n*(1=p?)

5 .

0

and the step size must be smaller than

A.2 ON MEMORY AND COMMUNICATION COSTS

For (Spiridonoff et al.,[2020), from their Algorithm 3, each agent stores {x;, g;,¢7} for itself, and
{67, p;7, pi; } for all neighbors. In each iteration, each agent sends {¢7 }. Some scalars are ignored.

LV it Y W fi(at €)Y for itself, and

{v ", ; 9L, pt,;} for all neighbors. In each iteration, each agent sends {vf“, pﬁl} The

fculatlon for (Kungurtsev et al.|[2023) is identical.

For (Zhu et al |2023)), each agent stores {x

79 l’ l7

In the proposed method, each agent only stores {z;, g/ (x;)} for itself and {x} for its neighbors.
In each iteration, each agent sends {z; }.

12

Under review as a conference paper at ICLR 2026

Algorithm 3 Memory-efficient ADSGD

1: Initialization: All the nodes agree on o > 0, and cooperatively set w;; V{i,j} € €.

Each node chooses z; € R, creates a local buffer 3;, shares z; with all neighbors in A;, and
calculates g/ (z;).

: Each node stores y; = ZjeM w;;x; in B;.

3
4: All Nodes Do In Parallel:

5: while termination criterion not met do
6

7

8

»

repeat
Keep receiving z; from neighbors.
Update B; by Yi = Yi + Wi525.

9: until g/¢ (x;) is available.
10: Send z; = (wi; — 1)x; + y; — ag’i(x;) to all neighbors j € N;.
11: T, =x; + z;.

12: Calculates gfi (z;).
13: end while

A.3 MEMORY-EFFICIENT IMPLEMENTATION OF ADSGD

In Table ADSGD requires |N|;+2 units of memory, scaling linearly with the number of neighbors.
We can remove such a dependency by a straightforward memory-efficient implementation, as shown
in Algorithm [3| The key idea is to store only the weighted sum of neighboring models, rather than
each individual model. During each iteration, nodes exchange model updates instead of the full
models. Consequently, each node only maintains {z;, y;, z;, g/* (z;)}, where z; is the model update.
Note that since we introduced the additional variable z;, the memory requirement becomes fixed at
four times the model size, regardless of the number of neighbors |A/];. Such an implementation is
beneficial when |N|; > 2.

B MORE ON EXPERIMENTS

B.1 EXPERIMENT SETTINGS

B.1.1 COMPUTE RESOURCES

The experiments are conducted on a server with 8 NVIDIA 3090 GPUs, each with 24GB memory.
The overall experiment takes roughly over 1200 GPU hours. The heavy computation can be at-
tributed to two reasons: (1) We investigate 5 delay configurations and 3 levels of data heterogeneity.
(2) RFAST is over twice slower than ADSGD due to its complicated update mechanism.

B.1.2 SIMULATION FRAMEWORK

Our experiments employ a discrete-event simulation framework designed to accurately model asyn-
chronous distributed environments. Each agent operates independently, with its own computation
and storage (local buffer), and no shared memory or computation across agents. Asynchrony is
modeled via a priority queue: when an agent begins a task at time ¢ (e.g., gradient computation),
it samples a delay d from a distribution, and the corresponding event (e.g., gradient_ready) is
scheduled at time ¢ + d. The simulator then processes events in chronological order. This setup is
both realistic and flexible, producing results equivalent to distributing tasks across multiple indepen-
dent machines while enabling precise and reproducible ablation studies. For example, stragglers can
be modeled simply by altering their delay distribution, offering more controlled analysis than prior
approaches (e.g., RFAST, which simulates stragglers by adding extra computation). As mentioned
in Section[d, computation and communication delays are simulated using random draws from distri-
butions fitted to real-world GPU and interconnect measurements. We control only the mean of each
distribution, while other parameters vary accordingly; in practice, communication delays exhibit
larger variance than computation delays.

13

Under review as a conference paper at ICLR 2026

B.1.3 TEST CASES

We elaborate on the 5 test cases mentioned in Table[I] 1) the base case with identical communication
and computation speeds across all agents, where the mean of each delay distribution is set to 1;
2) the slow communication case, where all agents’ communication is 10 times slower (2 times
for the case of VGG training) than their computation; 3) the computation straggler case with one
agent computes 10 times slower than others, while the remaining agents have identical computation
and communication speed; 4) the communication straggler case with one agent communicates 10
times slower than others; and 5) a combined straggler case where one agent is 10 times slower
in both communication and computation. Here, having identical communication and computation
speeds indicates that the delay distributions have identical means while being different in shape.
10x slower computation implies the mean of computation delay is 10 times larger than the mean of
communication delay, and vice versa.

B.1.4 DATA HETEROGENEITY

We evaluate ADSGD under varying levels of data heterogeneity, quantified by parameter (. Specif-
ically, ¢ denotes the fraction of each local dataset that is partitioned in a label-skewed manner, with
the remainder sampled uniformly. Larger ¢ values correspond to higher heterogeneity. For example,
when (= 0, data are partitioned uniformly across clients (homogeneous/IID). When ¢ = 0.5, each
client receives a mix of label-skewed and uniformly sampled data, resulting in partial overlap but
noticeable skew. When (= 1, data are fully label-partitioned, i.e., each client holds only a subset of
labels, yielding the most heterogeneous and challenging setting, which is presented in the main text.

Table [3] reports the relative time required to reach 83% test accuracy when training VGG11 on
CIFAR-10 under different levels of data heterogeneity. As expected, training becomes progressively
slower as heterogeneity increases: compared to the homogeneous case ((= 0), the commonly used
Dirichlet(ae = 0.1) benchmark already incurs a 48% slowdown, while the fully label-partitioned
setting ((= 1) is more than 3.5 times slower. This highlights the severity of the fully partitioned
regime adopted in the main text, which is substantially more challenging than standard benchmarks.

Table 3: Relative time to reach 83% test accuracy when training VGG11 on CIFAR-10 under differ-
ent data heterogeneity settings (lower is better).

Data Heterogeneity Setting Relative Time to 83% Acc.
Homogeneous (¢ = 0) 1.00
High (Dirichlet, apj = 0.1) 1.48
Extremely Heterogeneous ((= 1) 3.70

B.2 NON-CONVEX LOGISTIC REGRESSION ON MNIST

Fig. [5] and [6] present the plots of training loss as a function of runtime for different algorithms. We
see that under the presence of a combined straggler (Fig. [6c), parallel SGD performs the worst and
the lead of ADSGD is considerable.

Fig. [7]and[8]present the plots of test accuracy as a function of runtime for different algorithms. Under
all cases, ADSGD consistently achieves higher test accuracy within the same time frame. Notably, in
most cases, asynchronous algorithms other than ADSGD even fail to outperform DSGD, rendering
them of limited practical value.

Fig. [0]illustrates the relative time required to reach 89% test accuracy across different algorithms.
ADSGD maintains a substantial lead, converging faster than other asynchronous algorithms by at
least 50% in all cases. In case 4, ADSGD demonstrates its resilience to communication delay,
saving over 85% of the time compared to RFAST, which is more than 7 times faster. In the case
of slow communication, RFAST, while not diverging, converges very slowly and fails to reach 89%
accuracy within 2 x 10° units of time (for comparison, ADSGD achieves this at 5.3 x 10 units of
time). Moreover, ADSGD outpaces its synchronous counterpart by a margin of 28% - 75%.

It is important to note that ADPSGD cannot achieve 89% test accuracy in the presence of a straggler.
This is because it converges to the stationary point of the weighted sum of local cost functions,

14

Under review as a conference paper at ICLR 2026

>, pifi, instead of the global objective), f;, where p; represents the update frequency. This
issue stems from its partially synchronized update Xj11 = X;W) — ag(x). For instance, in
an extreme case where one agent is connected to all others and continues updating, that agent will
dominate the updates and drag the other agents toward its own stationary point. Therefore, the
partial synchronization in ADPSGD not only slows down the protocol under communication delays
because of stalls but also introduces some bias into the optimization process.

Fig. |10]shows convergence of Logistic Regression under varying heterogeneity levels (¢ € 0,0.5).
ADSGD demonstrates stronger performance with lower ¢ values, consistently outperforming base-
lines across all scenarios.

2550 —— ADSGD-Case 1 2550
—— SGD-Case 1
225 DSGD-Case 1 225

—— ADPSGD-Case 1
2.00 —— RFAST-Case 1 2.00

—— ADSGD-Case 2

175 —— SGD-Case 2
g DSGD-Case 2
~ 150 —+— ADPSGD-Case 2
—— RFAST-Case 2

0 1 2 3 4 5 0 1 2 3 4 5
Time Tt Time Tt

(a) Base (b) Slow Comm.
Figure 5: Logistic Regression - No Straggler - Training Loss - { = 1

2550 —— ADSGD-Case 4 2550 —— ADSGD-Case 5
—— SGD-Case 5
225 DSGD-Case 5
—— ADPSGD-Case 5
2.00 —— RFAST-Case 5

3

0 1 2 3 3 H 0 1 2 3) 5 0 1 2 3 4 5
Time et Time et Time E

(a) Comp. Straggler (b) Comm. Straggler (c) Combined Straggler
Figure 6: Logistic Regression - One Straggler - Training Loss - { = 1

% - %
80 80
70 70
60 60

—— ADSGD-Case 2
—— SGD-Case 2
DSGD-

—=— ADSGD-Case 1
30 —— SGD-Case 1 30
DSGD-Case 1
2 —=— ADPSGD-Case 1 2

—~— RFAST-Case 1

—— ADPSGD-Case 2
—— RFAST-Case 2

0 1 2 3 4 5 0 1 2 3 4 5
Time et Time et

(a) Base (b) Slow Comm.
Figure 7: Logistic Regression - No Straggler - Test Accuracy - (= 1

B.3 VGGI1 oN CIFAR-10

Fig. [T1] and [T2] present the training loss w.r.t. runtime for different algorithms. With a combined
straggler (Fig. [I2c), ADSGD maintains its lead by a significant amount, consistent with its perfor-
mance in logistic regression.

Fig. [I3] and [T4] present the test accuracy w.r.t. runtime for different algorithms. When there is no
straggler, parallel SGD reaches a higher test accuracy given the same amount of time, followed by
ADSGD. Note that the loss function of VGG model is highly non-convex, resulting in additional
difficulties on adopting stale information and dealing with data heterogeneity. Thus, parallel SGD
beats all algorithms under certain cases. When there is a straggler, ADSGD consistently outper-
forms all other algorithms in most scenarios, except in the case of computation stragglers, where
asynchronous algorithms show comparable performance. The accuracy drops observed in RFAST
under several conditions highlight its sensitivity to delays.

15

Under review as a conference paper at ICLR 2026

90
80
70
60
g
8
< 50
40
—=— ADSGD-Case 3 —+— ADSGD-Case 4
30 —= SGD-Case 3 30 —— SGD-Case 4
DSGD-Case 3 DSGD-Case 4
2 —=— ADPSGD-Case 3 20 —r— ADPSGD-Case 4
—=— RFAST-Case 3 —— RFAST-Case 4
o 1 2 3 4 5 o 1 2 3 4 5
Time e Time e

(a) Comp. Straggler

(b) Comm. Straggler

—— ADSGD-Case 5
—— SGD-Case 5
DSGD-Case 5
—— ADPSGD-Case 5
—— RFAST-Case 5

0 1 2 3 4
Time

(c) Combined Straggler

Figure 8: Logistic Regression - One Straggler - Test Accuracy - (=1

= ADSGD] B 7
20{ Wmm ADPSGD Z Z Z
EEm RFAST] % ¢
° DSGD ¢] 7
E15| mm sGD ¢ v ¢
: wn N/A 4 % Z
210 7 @ 7
3 | | g
¢] 7
: &
; %

Case 3 Case 4
Figure 9: Relative time (lower is better) to achieve 89% test accuracy for Non-convex Logistic Re-
gression on MNIST, normalized w.r.t. the runtime of ADSGD Case 1). N/A indicates the algorithm
did not reach 89% accuracy. ¢ =1

Case 2 Case 5

Case 1

—+— ADSGD-Case 3
= SGD-Case 3

—+— ADSGD-Case
—— 5GD-Case 4
DSGD-Case 3 DSGD-Case 4
~+— ADPSGD-Case3 —— ADPSGD-Case 4
e RFASTCase3 —— RFAST-Cased

e ADSGD-Case3 —- ADSGD-Case 4

—— RFASTCase3 —— RFAST-Cased

—— ADSGD-Case 1
— SGD-Case 1
DSGD-Case 1

— ADSGD-Case 2
—— 5GD-Case 2 ”

DSGD-Case 2 2
- ADPSGD-Case1 —+ ADPSGD-Case2 |
—~ RFASTCasel —— RFAST-Case2

—— ADSGD-Case 2

—~ ADSGD-Case 1
D-Case 1

— sa

125
R os. o0s
1001
075 R
e 00 00
o0 05 10 15 20 25 30 o0 o5 10 15 20 25 30 oo o5 10 15 20 25 30
Time - Time 1 e Time

(b) Case 3&4-¢C =0 (c)Case 1&2-¢ =0.5 (d)Case3&4-(=0.5
Logistic Regression under smaller data heterogeneity levels

(a)Case 1&2-¢ =0
Figure 10:

16

Under review as a conference paper at ICLR 2026

We quantify the advantage of ADSGD using the relative runtime to achieve 85% test accuracy. As
shown in Fig. [I5] ADSGD saves at least 15% of the time compared to other asynchronous algo-
rithms. In the case of comm. straggler, ADSGD saves over 70% of the time compared to other
asynchronous methods. ADSGD also saves from 30% to 85% of the time against its synchronous
counterpart. Additionally, ADSGD outpaces parallel SGD by 35% to 58% under the straggler con-
dition.

Fig. shows convergence for VGG training under different heterogeneity levels (¢ € 0,0.5).
Mirroring the logistic regression results, ADSGD achieves better performance with lower ¢ values,
consistently surpassing all baselines.

—=— ADSGD-Case 1
—— SGD-Case 1
DSGD-Case 1
—— ADPSGD-Case 1
—— RFAST-Case 1

—— ADSGD-Case 2
—— SGD-Case 2
DSGD-Case 2
—— ADPSGD-Case 2
—— RFAST-Case 2

Time e Time

(a) Base (b) Slow Comm.
Figure 11: VGG - No Straggler - Training Loss - (=1

—=— ADSGD-Case 3 —— ADSGD-Case 4 —— ADSGD-Case 5
20 —=— SGD-Case 3 —=— SGD-Case 4 20 —— SGD-Case 5
DSGD-Case 3 2.0 DSGD-Case 4 DSGD-Case 5
—=— ADPSGD-Case 3 —r— ADPSGD-Case 4 —— ADPSGD-Case 5

—=— RFAST-Case 3 —— RFAST-Case 4 —— RFAST-Case 5

Time 16 Time 16 Time

(a) Comp. Straggler (b) Comm. Straggler (c) Combined Straggler
Figure 12: VGG - One Straggler - Training Loss - (=1

40 —+— ADSGD-Case 1 40 —— ADSGD-Case 2
—»— SGD-Case 1 —+— SGD-Case 2
20 DSGD-Case 1 DSGD-Case 2
—+— ADPSGD-Case 1 30 —+— ADPSGD-Case 2
—+— RFAST-Case 1 —+— RFAST-Case 2
20
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time o6 Time o6
(a) Base (b) Slow Comm.

Figure 13: VGG - No Straggler - Test Accuracy - (= 1

C CONVERGENCE PROOF

C.1 PROOF OF LEMMA[3.8

Following a similar way as in (Sun et al.,|2017)), let

k-1
L .
k A& k - - _ 3|2
SR L Y (- (k- D)+ DA,
i=(k—D)+
where A% £ xF+1 — xk — —qgf (%), and we define d* £ x* — x*.

We first characterize the relation between A* and d*. The following proof follows exactly the
reasoning in (Zhou et al.,2018)). However, we found that such a relation holds for a broader class of
algorithms.

17

Under review as a conference paper at ICLR 2026

g g
< <
50 50
a0] —=— ADSGD-Case 3 20 —— ADSGD-Case 4 20 —— ADSGD-Case 5
J —=— SGD-Case 3 —»— SGD-Case 4 —=— SGD-Case 5
DSGD-Case 3 1) DSGD-Case 4 DSGD-Case 5
30 —=— ADPSGD-Case 3 301 —— ADPSGD-Case 4 30 —+— ADPSGD-Case 5
—=— RFAST-Case 3 —¥— RFAST-Case 4 —— RFAST-Case 5
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 08 1.0
Time o8 Time 18 Time o8
(a) Comp. Straggler (b) Comm. Straggler (c) Combined Straggler

Figure 14: VGG - One Straggler - Test Accuracy - ¢ = 1

') mmm ADSGD 7 7
1> = ADPSGD % %
mmm RFAST ? Z
0 10 DSGD Z ?
£ . SGD /]
5 8| m NA ¢ ¢
£ 2 7
T 6] 7
g f
a]
2

Case 1 Case 2 Case 3 Case 4 Case 5
Figure 15: Relative time (lower is better) to achieve 85% test accuracy for VGG11 on CIFAR-10,
normalized w.r.t. the runtime of ADSGD Case 1). N/A indicates the algorithm did not reach 85%
accuracy. (= 1

Lemma C.1. Ler 2¥ € R% and x* = (z%,.... %) € RY. For any algorithm that updates in the
following form

P = {Ti(f{k)a 1= i,

mf, otherwise,

k
tl

k ’
where X¥ = (2!, ..., x;) and T;(-) is some mapping from R to R%, if k — t¥ < D for all i and
k, we have

o —+ ADSGD-Case3 —— ADSGD-Case d —+ ADSGD-Casel —+ ADSGD-Case 2 = ADSGD-Case3 — ADSGD-Case 4
20 = SGD-Case 3 —— sGD-Case 4 20 -Case -Case 201 = 5GD-Case 3 —— SGD-Case d
DSGD-Case 3 DSGD-Case 4 - - DSGD-Case 3 DSGD-Case &
~+ ADPSGD-Case3 —+— ADPSGD-Case 4 \ v P 02 —~ ADPSGD-Case3 —+— ADPSGD-Case 4
15 - RFASTCase3 —— RFAST-Case4 5] | -Case FCase 15 —~ RFAST.Case3 —— RFASTCased

- TS = o
00 M 0.0 e T e 001 i,Tt"\"‘~‘~-ﬂ—-———-

G0 o5 1o 15 20 25 30 o0 05 10 15 20 25 30 o0 o5 10 15 20 25 30 oo o5 10 15 20 25 30
Time - Time L Time - Time]

(a)Case 1&2-¢ =0 (b) Case 3&4-¢ =0 (c)Case 1&2-¢ =0.5 (d)Case3&4-(=0.5
Figure 16: VGG training under smaller data heterogeneity levels

18

Under review as a conference paper at ICLR 2026

Proof.

I — x*||* = Z [E
k—1
> =it =l

—¢k
t=t;

IN

s
Il
-

k—1

Y it -

1 \t=(k—D)*

k—1 k—1
’ ’
> o ettt —adlllla T - ot

i=1t=(k—D)* t'=(k—D)*
k—1

k—1 n
’ ’
= > Do D llatt —abllaf -2

t= (D)+ t/—(k D)+z 1

< Z Z I+ — [x|

t=(k—D)+ t'=(k—D)+

M-

-
Il

I
NE

-
Il

k—1

[X e

t=(k—D)+
O]

Remark C.2. Lemma|C.I|bounds the staleness error by the sum of magnitude of updates. It holds
for any algorithm that obeys a block-updating pattern with staled parameters, e.g. ASBCD and
ADSGD.

By Lemma|[C.I] we have
k-1

ld* < > 1Ak ®)
t=(k—D)+
With the above relation, we are ready to prove the following.
Lemma C.3. Given Assumption - and o < m, the sequence {x*} generated by (ﬂ)
satisfies the following relation:

b0 BIVAEGHI? £ — £ (D+DLa
K “a(l-(D+3)La)K 2(1—(D+ 3)La)

Proof. We have
, . n 1
(BEAR, VF(x5)) = —a|| Vi, f(&)]* = = —[EAF?, ©)

and
Var(AF) = o?0?, (10)
where the expectation [is taken over the randomness of the gradient estimator.

By L-smoothness,

1) < £c) + (VEGe), A4+ Za%3, an

19

Under review as a conference paper at ICLR 2026

We define the filtration F, as a sequence of o-algebra that captures all the randomness up to and
including the k-th iteration. Take conditional expectation of equation[T1] by Assumption 3.2}

equation @
<

E[f (") | Fi] — £(x") (VE(x") — VEE"), E[A*[F]) + gE[IIA’“IIQ\fk] - éIIE[AkIFk]II2

L 1
< Lfjd*|| - IEIAR|F + SEIAMPIA] - ~[IEIA*|A?

k-1
L . eLD 1 L
<5 NI+ (5 - DIEANAE + SENARPIA,
€ o
i=(k—D)*
where the last inequality is from equation [§]
Therefore, by definition of & ’Jf
L LD
k k+1 k k+1)2 2
& ~ EIE§ ™I 2) ~BEGS AL+ 50 0 (AU - SEE(IAPI
i=(k—D)t+
> (2 - (== 4 =
> (= = SOV EANARIR - (G2 + SElIAMIF]
1 eLD LD L LD L

= (== — = 5 — DIERAMF® - (5 + 5)Var(ah)

« 2 2¢ 2 2e 2
e=1 1] L L(D+1
> (= — = — DL)a?|V,;, f(x")||? - ga%ﬂ (12)
o 2 2
Take full expectation of the above and sum over k,
1 L RV EER) 2 —EF LD +1)
L _ LY pryg2 k=0 ik <2 5 252
G73 o K S S R
f(x) —f* L(D+1) 5 ,
<
< K + B a“o
O

Lemma characterizes the convergence of E||V;, f(%*)||?, which implies the convergence of the
ABCD algorithm. Based on the lemma, we now derive the convergence rate of E||V f(x*)]|2.

Note that

E|[Vif(x")|? < 3BV)| + E|Vif (x*) — Vif (27> + B[Vif (") — V£ (&)%)

k—1
< 3(E| V& W)+ LPE|d*|* + LB Y E%/ - &7|°). (13)
j=ti(k)
For the second term on the RHS,
k—1)
E|d*P<D Y E|A)?
j=(k—D)*
k—1)
=Da® Y (®+E[Vif&)[). (14)
j=(k—D)*

20

Under review as a conference paper at ICLR 2026

For the third term,

k-1 k—1
dOOERT P < Y (BE|? + 3B + 3E|AT)%)
j=ti(k) j=ti(k)
equation @ k-1 J—1 .
B3 (DY @A +EIAR) +BlATR)
j=ti(k) I=(G-D)*
k—1 j—1 -1

<3y (p (@ 3 (207 +E|Vs, f=™)P+
j=ti(k) 1=(G-D)* m=(-D)*

j—1

B[V, &) +a® 3 @ +E[VLEE)D) a5)
I=G-D)*
By equation [T4]and the following inequality,
K—1 - K—1
S Y wepYa
k=0

k=0 j=(k—D)+

we have
K-1 K-1
> Elld*|* < D*o? (Z E||V,, f(x")[? + K02> . (16)
k=0 k=0
Similarly, from equation@,
K—-1 k-1 K—-1
S Y BRI 2P < 3B(2D3a2(z E||V;, £(&")]? + Ko?)
k=0 j=t;(k) k=0
K—-1
+ Da?(3 E|V,, 838 + K02)>
k=0

=3B(D + 2D%)a (ZEuva ||2+Ka> (17)

Moreover, since each agent updates at least once every B steps, we have
Z IV (x“®)|* < B Z (2R {E]k (18)

Combining equation[I3]and equation [I6]to equation [T8]
K-1 K-1
SDEIVEGH? TR S BV
K K

K-1 f(oti(R))[2 K-1 YNNI
<3n< o BIVAEOPR o0 i Bl Vot 6] +02)>

K K

K-1 N NIP]
E|V;. f
< 3n ((B+C0L2a2) k=0 ||sz ")l +C0L2a202>,

where Cy = D? 4+ 3B?(D + 2D3).

By Lemma|[C.3]
ko EIIVEGH)? _ 3n (B + Cola?) f(x") - £ 2 L(D+1) >
K Sal-(D+hla) K “(3”O°LO‘+ 2(1— (D + 3)La)) '

21

Under review as a conference paper at ICLR 2026

C.2 A COROLLARY ON LEMMA[C3]

We provide a corollary on Lemma|[C.3] specifying its convergence rate under a specific step size.
Corollary C4. For pmbleml given Assumpttonﬁ H when o =

{x*} generated by (EI) satisfies the following relations:

B[VE(xR))2 £(x0) — £* 1 3nCy
=0 <nLCi——t=—+ | —= 2
K <nLC; I o

R S
DTLDIVE the sequence

JE AR
where C; = 6B%2D? +3B? +3BD + 3B + D and Cy = 6B%D + 3B?/D + 1.

Proof. When o = we have La < and1 — (D+1/2)La < 1/2.

1 1
2(D+1/2)LVK’ 2(D+1/2)

Thus the first term on the RHS of Lemma [3.§]can be upper bounded by
C() I f(XO) —

Likewise, its second term can be upper bounded by

(3nC) L(D+1)) I
AD+1/22K * 2(D+1/2)IVK)

Substituting (T9) and (20) to Lemma[3.8] we have

K51E||Vf<xk>|2§3n<3+3(Co)(D+1)Lf<x0>f*+<4(3Cy LD +1))UZ

(20)

K D +1/2)2 2 VK D+1/2))K 2(D+1/2)LVK
C() 3TLC() 1 2
< -
< 3nL (B(D+1)+3D> +<4D2K \ﬁ)
f(x0) — £* (1 3an> 5
<nLCi———— + [—= + o2, 21
=R PR TR ey
where Oy = 6B2D? +3B% 4+ 3BD + 3B + D and Cy = 6B?D +3B%/D + 1. O

C.3 PROOF OF THEOREM[3.0]

As mentioned, ADSGD with double step size {«, 3} on problem || can be viewed as ABCD with
T

step size /3 on the function L (x) = F(x) + w, where F(x) = Y, fi(;).

W.L.O.G., we assume identical initialization. Note that L,,(x) is L,-smooth. By Lemma when
p< (D+1%)LL ’

o BIVL GO 3n(B + Colif) L, (fila) — £7)
K T B~ (D+3)LLP) K

Lp(D+1) 2
+ﬁ<3nC’0L 6+ (1—(D—|—)LL5)>U, (22)

We now bound E||V f(z*)||? by the relations between f, F, and L,,.
E|Vf@")|* =E| Zsz)|
< QEHZVﬂ H2+2]E||Z V(@) =V fi(a))?

<2E||ZVfZ H2+2n(maxL) E|1, ® z* — x*||? (23)

=1

22

Under review as a conference paper at ICLR 2026

For the first term,

Ellzvfz)N? = EllZVF)12
_]E||ZVL)= > [= W]gah)|?
Jj=1
—]Ellzv Lo (x")]|?

< nE||VLa(x Z, (24)
where the third equality is from the doubly stochasticity of W.

k

For the second term, since 1,, ® Z* — x* is in the range space of I — W,

M)T(I — W)x*
1 =k _ k)2 < (x)" (
2

= W]E [La(x") — F(x")]

2a k *
T 6

equation@ 200 n _ D+1 2 92
< T—nW) (;(fz(x)=)+ 7KL LBo > ;o (25)

where Apin(-) is the minimal positive eigenvalue.

Bringing equation 23] and equation [24] back to equation 23]

Xq Lig 2 -
BV /@) < 0B VLo + T e (Z(L—(w%)+ KL /W)
i=1

Sum the above over k and combine with equation

o BIVAGHI? _ 6n*(B+CoLE8") T, (fila®) = £7)

i ~ B(1—(D+3)LLB) K
+Lp3 <6n2C0LLﬁ + 1—((DD—|—+1))LLﬁ) -

4n(max; L;)*a D+1
+T2(m (;(fz(x)= I)+7KL ﬂQ 2)

C.4 PROOF OF COROLLARY [3.12]

When o = LF12(1/376 = 4LF(D+11/2)K2/3’ we have
2
LB <(Lr+ a)ﬁ
1 1
< -+ -
SIDT1KE RD 1K
1

P —
= 2(D+1/2)K'/3

Thus, the first term on the RHS of Theorem [3.9)can be upper bounded by

n) x() =
48n* (B + M) (D+1/2)Lp Zi=1(];’<(1/3) J;). (26)

23

Under review as a conference paper at ICLR 2026

Similarly, its second and third terms can be respectively upper bounded by

3n*Cy n(D +1))
(2(D+1/2)K2/3 * (D+1/2)K1/3) ? 27)

and

8n(max; L;)? i i} D1l ,
(1 — o(W))LpK1/3 <;(fi($0)) - [+ 601 2L,) : (28)

Taking equation 26] equation[27] and equation [28]into Theorem [3.9] we have
K-1 =k |12 n 0 *
E||V ’ . — f
KBV Co Y (py 12y, Siaalhilah = 1)
K 4D +1/2)2 K1/3

3n2Cy n(D+1) 9
(2(1) T1/2)K%3 " (D + 1/2)K1/3> 7

< 48n? (B +

8n(max; L;)? - . D+1)
TS WA <Z(fi(w°)) —fi)+ 16(D + 1/2)2Lr ")

=1
8n) I Z?:l(.fi(xo) - f)
1—xw))" K1/3

Co
< 2 —
< <48n (BID+1) + 55) +

o2 3n2C,y o2

n
+ (D(l WiV 2“) K3 T 2D K3

8n i (fi(=%) = fF)
< 1 2 L =1 T
+ n 49 o? + 3n?2Cy o?
DA - oWy ") KUST 2D K23

where C' is defined in equation 21]

D LLM USAGE

We made limited use of a large language model (LLM) to assist with minor text polishing. Specif-
ically, the LLM was employed to improve grammar, clarity, and readability of certain sentences.
All technical content, mathematical derivations, experimental design, and analysis were conceived,
written, and verified entirely by the authors. The LLM did not contribute to the generation of ideas,
proofs, algorithms, or experimental results.

24

	Introduction
	Related Work
	Main Contributions

	The algorithms
	ASBCD
	ADSGD

	Convergence Analysis
	Assumptions
	Convergence of ASBCD
	Convergence of ADSGD

	Empirical Evaluation
	Non-convex Logistic Regression on MNIST
	VGG11 on CIFAR-10
	Scalability

	Conclusion
	Algorithm Comparison
	On Step Sizes
	On Memory and Communication Costs
	Memory-efficient Implementation of ADSGD

	More on Experiments
	Experiment Settings
	Compute Resources
	Simulation Framework
	Test Cases
	Data heterogeneity

	Non-convex Logistic Regression on MNIST
	VGG11 on CIFAR-10

	Convergence Proof
	Proof of Lemma 3.8
	A corollary on Lemma C.3
	Proof of Theorem 3.9
	Proof of Corollary 3.12

	LLM Usage

