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Abstract

Understanding which inductive biases could
be helpful for the unsupervised learning of
object-centric representations of natural scenes
is challenging. In this paper, we systematically
investigate the performance of two models on
datasets where neural style transfer was used to
obtain objects with complex textures while still
retaining ground-truth annotations. We find that by
using a single module to reconstruct both the shape
and visual appearance of each object, the model
learns more useful representations and achieves
better object separation. In addition, we observe
that adjusting the latent space size is insufficient
to improve segmentation performance. Finally, the
downstream usefulness of the representations is
significantly more strongly correlated with segmen-
tation quality than with reconstruction accuracy.

1 INTRODUCTION

A core motivation for object-centric learning is that humans
interpret complex environments such as natural scenes as
the composition of distinct interacting objects. Evidence
for this claim can be found in cognitive psychology and
neuroscience (Spelke, 1990; Téglas et al., 2011; Wagemans,
2015), particularly in infants (Dehaene, 2020, Chapter 3).
Additionally, these concepts have already been successfully
applied, e.g., to reinforcement learning (Berner et al., 2019;
Mambelli et al., 2022; Vinyals et al., 2019) and physical
modelling (Battaglia et al., 2016; Sanchez-Gonzalez et al.,
2020). Current object-centric learning approaches try to
merge the advantages of connectionist and symbolic meth-
ods by representing each object with a distinct vector (Greff
et al., 2020). The problem of object separation becomes
central for unsupervised methods that can only use the data
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Figure 1: Left: samples from the original datasets. Right:
samples from the same datasets with neural style transfer.

itself to lean how to isolate objects. Several methods have
been proposed to provide inductive biases to achieve this ob-
jective (e.g., Burgess et al., 2019; Engelcke et al., 2020a,b;
Kipf et al., 2021; Locatello et al., 2020). However, they are
typically tested on simple datasets where objects show little
variability in their texture, often being monochromatic. This
characteristic may allow models to successfully separate
objects by relying on low-level characteristics, such as color
(Greff et al., 2019), over more desirable high-level ones,
such as shape.

Research in the direction of natural objects is still scarce (En-
gelcke et al., 2021; Karazija et al., 2021; Kipf et al., 2021),
as such datasets often do not provide exhaustive knowledge
of the factors of variation, which are very rich in natural
scenes. In this context, unsupervised methods struggle to
learn object-centric representations, and the reason for this
remains unexplained (Greff et al., 2019, Section 5).



In this paper, we conduct a systematic experimental study
on the inductive biases necessary to learn object-centric
representations when objects have complex textures. To ob-
tain significant and interpretable results, we focus on static
images and use neural style transfer (Gatys et al., 2016) to
apply complex textures to the objects of the Multi-dSprites
(Kabra et al., 2019) and CLEVR (Johnson et al., 2017)
datasets, as shown in Fig. 1. The increase in complexity
is, therefore, controlled. On the one hand, we still have
all of the advantages of a procedurally generated dataset,
with knowledge over the characteristics of each object, thus
avoiding the above-mentioned pitfalls of natural datasets.
On the other hand, we present a much more challenging
task for the models than the type of data commonly used in
unsupervised object-centric learning research.

We investigate MONet (Burgess et al., 2019) and Slot
Attention (Locatello et al., 2020), two popular slot-based
autoencoder models that learn to represent objects
separately and in a common format. The latter obtains
object representations by applying Slot Attention to a
convolutional embedding of the input, and then decodes
each representation into shape and visual appearance via
a single component. In contrast, MONet reconstructs them
with fwo components: a recurrent attention network that
segments the input, and a variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014) that
separately learns a representation for each object by learning
to reconstruct its shape and visual appearance. Unlike in
Slot Attention, the shape reconstructed by the VAE is not
used to reconstruct the final image; instead the shape from
the recurrent attention network is used. To still have shape
information in the latent representation of the VAE, the
training loss includes a KL divergence between the mask
predicted by the VAE and the one predicted by the attention
network. Therefore shape and visual appearance are, in
effect, separate unless the KL divergence provides a strong
enough signal. For this study, we posit two desiderata for
object-centric models, adapted from Dittadi et al. (2021b):

Desideratum 1. Object separation and reconstruction. The
models should have the ability to accurately separate and
reconstruct the objects in the input, even those with complex
textures. For the models considered here, this means that
they should correctly segment the objects and reproduce
their properties in the reconstruction, including their texture.

Desideratum 2. Object representation. The models should
capture and represent the fundamental properties of each
object present in the input. When ground-truth properties
are available for the objects, this can be evaluated via a
downstream prediction task.

We summarize our main findings as follows:

1. Models that better balance the importance of both
shape and visual appearance of the objects seem to
be less prone to what we call hyper-segmentation (see

Section 3). We show how this can be achieved with an
architecture that uses a single module to obtain both
shape and visual appearance of each object. When
this is not the case, it becomes significantly more
challenging for a model to correctly separate objects
and learn useful representations.

2. Hyper-segmentation of the input leads to the inability
of the model to obtain useful representations. Sepa-
ration is a strong indicator of representation quality.

3. The representation bottleneck is not sufficient to
regulate a model’s ability to segment the input. Tuning
other hyperparameters such as encoder and decoder
capacity appears to be necessary.

In the remainder of this paper, we will present the methods
and experimental setup underlying our study, discuss our
findings, and lay out practical suggestions for researchers in
object-centric learning who might be interested in scaling
these methods to natural images.

2 METHODS

In this section, we outline the elements of our study, high-
lighting the reasons behind our choices.

Datasets. Similarly to Dittadi et al. (2021b), we use neural
style transfer (Gatys et al., 2016) to increase the complex-
ity of the texture of the objects in the Multi-dSprites and
CLEVR datasets (see Appendix B for details). This allows
for textures that have high variability but are still correlated
with the shape of the object, as opposed to preset patterns
as done in Greff et al. (2019) and Karazija et al. (2021)
or completely random ones. We apply neural style trans-
fer to the entire image and then select the objects using
the ground-truth segmentation masks (see Fig. 1). Keeping
the background simple allows for a more straightforward
interpretation of the models’ performance.

Models. The models we study are MONet (Burgess et al.,
2019) and Slot Attention (Locatello et al., 2020), that ap-
proach the problem of separation in two distinct ways, as
mentioned in Section 1. MONet uses a recurrent attention
module to compute the shape of the objects, and only later is
this combined with the visual appearance computed by the
VAE from the object representations. Instead, Slot Attention
incorporates everything into a single component, with the
shape and visual appearance of each object reconstructed
from the respective object representation.

Evaluation. Following the two desiderata in Section 1, we
separately focus on the separation, reconstruction, and rep-
resentation performance of the models. Separation is mea-
sured by the Adjusted Rand Index (ARI) (Hubert and Arabi,
1985), which quantifies the similarity between two partitions
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(a) MONet, baseline.

(c) Slot Attention, baseline.

(b) MONet, best model.
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(d) Slot Attention, best model.

Figure 2: Reconstruction and separation performance on Multi-dSprites (from the validation set). From left to right in each
subfigure: original input, final reconstruction, and product of the reconstruction and mask for each of the six slots. The
improved architecture for Slot Attention splits objects less often. MONet still fails to separate objects correctly although it
blurs the reconstructions. See Fig. 13 (Appendix G) for similar results on CLEVR.

of a set. The ARI is O when the two partitions are random
and 1 when they are identical up to a permutation of the
labels. Reconstruction is measured using the Mean Squared
Error (MSE) between input and reconstructed images. Rep-
resentation is measured by the performance of a simple
downstream model trained to predict the properties of each
object using only the object representations as inputs. Fol-
lowing previous literature (Dittadi et al., 2021b; Locatello
et al., 2020), we match ground-truth objects with object
representations such that the overall loss is minimized.

Performance studies. The baseline performance of the
models on the style transfer datasets is established using the
hyperparameters from the literature. We then vary parame-
ters and architectures to improve performance. In MONet,
we reduce the number of skip-connections of the U-Net in
the attention module, we change the latent space size, the
number of channels in the encoder and decoder of the VAE,
and the 8 and o parameters in the training objective. In Slot
Attention, we increase the number of layers and channels
in both encoder and decoder and increase the size of the
latent space. For both models, we investigate how the latent
space size alone affects performance. We use multiple ran-
dom seeds to account for variability in performance when
feasible (see Appendix E for further details).

3 EXPERIMENTS

In this section, we present and discuss the experimental
results of our study. We first look at how different architec-

tural biases affect object separation. Then, we investigate
representation performance with a downstream property
prediction task. Finally, we study how the latent space size
alone affects object separation and reconstruction quality.

Architectural biases. Qualitatively, the MONet baseline
(Fig. 2a) segments primarily according to color, result-
ing in each slot encoding fragments of multiple objects
that share the same color. We call this behavior hyper-
segmentation. On the other hand, the Slot Attention baseline
(Fig. 2c) produces blurred reconstructions and avoids hyper-
segmentation. Here, some objects are still split across more
than one slot but, unlike in MONet, we do not observe mul-
tiple objects that are far apart in the scene being (partially)
modeled by the same slot. We observe this quantitatively in
Fig. 4 (top): compared to the Slot Attention baseline, the
MONet baseline has a significantly worse ARI score but
a considerably better MSE. Fig. 13 in Appendix G shows
similar results on CLEVR.

These observations can guide our search for better model
parameters. Slot Attention is blurring away the small details
of the texture and focuses on the shape to separate them.
MONet, instead, achieves good reconstructions but does so
by using the attention module to select pixels that share the
same color, as opposed to entire objects, while the VAE
simply reconstructs plain colors (see Appendix G for more
details). Therefore, for MONet we attempt to sacrifice some
reconstruction quality in exchange for better object separa-
tion. For Slot Attention, we investigate whether improving
the reconstructions negatively affects object separation. We
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Figure 3: Qualitative results for the reconstruction of the
visual appearance of the objects on Multi-dSprites (from
the validation set). In each of the 4 groups, we show the
input and the reconstruction of the visual appearance from
each of the six slots, before masking. From the top: MONet
Baseline, MONet Best Model, Slot Attention Baseline, Slot
Attention Best Model. MONet primarily reconstructs plain
colors with little to no regard to objects, while Slot Atten-
tion consistently separates objects even in the presence of
textures. In Fig. 13 (Appendix G), we show similar results
on CLEVR. See also Fig. 12 for results on additional images
from Multi-dSprites.

refer to Appendix E for further details and results on the
hyperparameter search for MONet and Slot Attention.

When qualitatively looking at the results obtained by the
hyperparameter search performed for MONet, we notice
a consistent inability of the “component VAE” to capture
different characteristics other than simple colors (see Fig. 3),
even when strongly penalizing the VAE for reconstructing
shapes that are inconsistent with the masks computed by
the recurrent attention network (which are directly used
for reconstruction). Here, we show and discuss quantitative
and qualitative results for the combination of hyperparam-
eters that achieves the best performance, which we call
best model. We now discuss the results obtained using the
combination of hyperparameters that achieves the best per-
formance, called best model. In Fig. 2b, we see that MONet
still hyper-segments even though the reconstructions are
now blurred. For Slot Attention (Fig. 2d), we observe that
the quality of reconstructions has improved, and it more of-
ten represents an entire object in a single slot. Although the
ARI for MONet has also improved, the separation problem
is still far from solved, while Slot Attention shows a signif-
icant improvement both in terms of ARI and MSE (see two
uppermost plots in Fig. 4). Note how, for Slot Attention, the
ARI is significantly lower in Multi-dSprites, when compared
to CLEVR. The likely reason is that, when a significant por-
tion of an object is occluded by another, the visible shape
is being altered significantly and the edges of objects are
not clear. Therefore, two explanations of the same scene can
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Figure 4: Median performance of the different seeds trained
for each of the indicated models (error bars denote 95%
confidence intervals). Top: ARI (1) and MSE ({) for each
dataset and model. Bottom: performance of the downstream
model on each feature of the objects. Accuracy is used
for categorical features and R? for numerical features. A
random guess baseline is shown in purple.

still be reasonable while not corresponding to the ground
truth. This extreme overlap never occurs in CLEVR.

Overall, even when MONet sacrifices reconstruction quality
and blurs away the details, hyper-segmentation is still
present as evidenced by our qualitative and quantitative
analyses. This suggests that the separation problem in
MONet may not simply be caused by the training objective,
but rather by its architectural biases. Indeed, improving the
reconstruction performance of Slot Attention has, instead,
yielded both better separation and more detailed recon-
structions, suggesting that generating shape and appearance
using a single module is a more favorable inductive bias for
learning representations of objects with complex textures.

Representation performance. To understand the inter-
play between separation and learned representations, we
explore the performance on a downstream property predic-
tion task that was trained using the object representations
as inputs (see Appendix C.1 for details). Only the prop-
erties that were not affected by the change in texture are
considered, to ensure a fair assessment of the quality of
the representations. From Fig. 4, we observe how MONet
fails to capture some of the properties in the representations
and consistently performs worse than Slot Attention, for
both the baseline and the improved versions. This suggests
that, as highlighted in Dittadi et al. (2021b), a model that is
not capable of correctly separating objects will also fail to
accurately represent them.

The trend is also clear from Fig. 5, which shows that a
higher ARI score strongly correlates with an increased per-
formance of the downstream model on all object properties.
The correlation with MSE is much weaker, which highlights
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Figure 5: Rank correlation of the ARI and MSE scores with
downstream property prediction performance. Correlations
are computed over all the models trained with that dataset
in our study.

how strong visual reconstruction performance is not the ul-
timate indicator for good object representations. This result
does not contradict previous findings (Dittadi et al., 2021b)
as here the properties we expect the downstream model to
predict have little to do with the texture of the object and,
therefore, the model can have poorer reconstructions while
still obtaining useful representations.

Representation bottleneck. Object representations are
typically obtained by using a low-dimensional latent space
for each object. This constitutes a bottleneck in the model,
which we term representation bottleneck (see Appendix A).
Here, we investigate how the size of this bottleneck affects
a model’s performance.

We observe from Fig. 6 that the MSE improves for both
MONet and Slot Attention when the latent space size in-
creases. However, for MONet this comes with a decrease in
separation performance. For Slot Attention, when the latent
space reaches a critical size (256 in CLEVR and 512 in
Multi-dSprites), the performance degrades, and the variabil-
ity across seeds increases drastically, suggesting this may be
due to optimization problems during training. The increase
in latent space size arguably increases the model’s capacity,
but it does not prove to be enough to significantly improve
separation and reconstruction. Instead, we can obtain con-
siderable improvements only by changing architecture.

4 RELATED WORK

Learning representations that reflect the underlying struc-
ture of data is believed to be useful for downstream learning
and systematic generalization Bengio et al. (2013); Greff
et al. (2020); Lake et al. (2017). While many recent empiri-
cal studies have investigated the usefulness of disentangled
representations and the inductive biases involved in learning
them Dittadi et al. (2021c, 2022); Locatello et al. (2019);
Montero et al. (2021); Trduble et al. (2021); Van Steenkiste
et al. (2019), analogous experimental studies in the context
of object-centric representations are scarce. The study by
Engelcke et al. (2020a) presents an investigation into in-
ductive biases for object separation, focusing on one model
and traditional synthetic datasets. In this work, we study
hyper-segmentation on datasets where objects have complex

textures. Karazija et al. (2021) recently proposed ClevrTex,
a dataset that introduces challenging textures to scenes from
CLEVR (Johnson et al., 2017). The experiments reported
show that, without any tuning, some models fail to segment
complex scenes by focusing on colors. The authors, simi-
larly to what we highlighted in this work, state that “ignoring
confounding aspects of the scene rather than representing
them might aid in the overall task [of segmentation].” In our
work, we investigate the mechanism behind the ability of
some models to ignore superfluous details and more suc-
cessfully segment the image, proposing a useful inductive
bias to achieve better object representations.

Recently, works that propose new object-centric learning
methods also include evaluations on more complex datasets.
Greff et al. (2019) train IODINE on Textured MNIST and
ImageNet, and observe that the model separates the im-
age primarily according to color when the input is com-
plex. GENESIS-V2 (Engelcke et al., 2021) was trained
on Sketchy and APC, two real-world robot manipulation
datasets. However, the authors do not explore the mecha-
nism behind the performance of the models they tested, and
do not attempt to optimize the architectures. In the video
domain, Kipf et al. (2021) include evaluations on a dataset
with complex textures, training their model to predict optical
flow rather than a reconstruction of the input.

Relevant work naturally includes object-centric learning
methods. Here, we provide a brief overview focusing on
slot-based models—a subset of object-centric models that
includes those studied in this paper. We will be using the
categorization proposed by Greff et al. (2020) to distinguish
different ways to tackle object separation.

Models based on instance slots (Chen et al., 2019; Goyal
et al., 2019; Greff et al., 2016, 2017, 2019; Huang et al.,
2020; Kipfetal., 2019,2021; Le Roux et al., 201 1; Locatello
et al., 2020; Lowe et al., 2020; Racah and Chandar, 2020;
Van Steenkiste et al., 2018; van Steenkiste et al., 2020;
Yang et al., 2020) represent objects with individual slots
that share a common format of representation, making no
assumption regarding interaction between objects. In short,
this introduces a routing problem, as the slots are all equally
capable of representing a given object present in the input.
To solve this ambiguity, an explicit separation step needs
to be introduced, often utilizing some form of interaction
between slots.

Models that use sequential slots (Burgess et al., 2019; En-
gelcke et al., 2020b, 2021; Eslami et al., 2016; Kosiorek
et al., 2018; Kossen et al., 2019; Stelzner et al., 2019; von
Kiigelgen et al., 2020) implement the same shared format
between slots as instance slots based models, but here the
routing problem is solved by reconstructing each object
sequentially, conditioning on previous ones. The lack of
independence between slots can lead to a decrease in the
compositionality of the representations.
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(line) and 95% confidence interval (shaded area).

Finally, models based on spatial slots (Crawford and
Pineau, 2019, 2020; Deng et al., 2021; Dittadi and
Winther, 2019; Jiang et al., 2020; Lin et al., 2020a,b; Nash
et al., 2017) associate each slot with a spatial coordinate,
providing more explicit positional bias in the representation
and reconstruction process.

S CONCLUSIONS

In this paper, we have investigated which inductive biases
may be most useful for slot-based unsupervised models to
obtain good object-centric representations of scenes where
objects have complex textures. We found that using a single
module to reconstruct both shape and visual appearance
of objects naturally balances the importance of these two
aspects in the generation process, thereby avoiding hyper-
segmentation and achieving a better compromise between
precise texture reconstructions and correct object segmenta-
tion. Therefore, our recommendation is that models should
have separation as an integral part of the representation pro-
cess. Additionally, we showed that separation strongly cor-
relates with the quality of the representations, while recon-
struction accuracy does not: this justifies sacrificing some
reconstruction quality. Finally, we observed that the rep-
resentation bottleneck is not a sufficient inductive bias, as
increasing the latent space size can be counterproductive
unless the model is already separating the input correctly.

We limited our study to two models based on instance slots
and sequential slots. Although the models considered in our
study have been shown to be among the most successful
ones on this type of data, it would be interesting and natural
to extend our study and explore if the same holds for other
models that approach the problem in a similar way, such as
GENESIS, IODINE, and GENESIS-V2, as well as methods
based on spatial slots, such as SPAIR or SPACE.

Another interesting avenue for future work is to extend
our study to more complex downstream tasks involving
abstract reasoning, e.g., in a neuro-symbolic system, where
symbol manipulation can be performed either within a

connectionist framework (Battaglia et al., 2018; Evans
and Grefenstette, 2018; Smolensky, 1990) or by purely
symbolic methods (Asai and Fukunaga, 2018; Dittadi et al.,
2021a; Mao et al., 2019). Finally, it would be relevant
to validate our conclusions on additional datasets, and
to introduce objects with varying texture complexity, as
this could require different model capacities to achieve
separation (Engelcke et al., 2020a).
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A REMARKS ON NOTATION

The term representation bottleneck should not be confused
with the reconstruction bottleneck introduced by Engelcke
et al. (2020a). The representation bottleneck refers to the
small size of the latent space, while the reconstruction bottle-
neck refers to how easy it is for the model to reconstruct the
data. In Engelcke et al. (2020a), the reconstruction bottle-
neck is posited to be the reason behind the models’ inability
to separate objects into different slots.

Often, in the paper, we refer to object-centric representa-
tions and slots as synonyms, although this is only true for
slot-based models.

The term hyper-segmentation refers to when a model splits
the input into different slots with little to no regard to high-
level characteristics of the input, such as the shapes of ob-
jects, and instead just uses low-level characteristics, primar-
ily color. This often results in slots that consist of small
clusters of pixels with similar color, which means that sev-
eral objects can be partially represented in the same slot
and at the same time each object may be partially repre-
sented in multiple slots. This phenomenon is distinct from
over-segmentation (Engelcke et al., 2020b), where multiple
slots may reconstruct a single object but no slot reconstructs
(parts of) multiple objects. Examples are shown in the main
text of the paper (see Fig. 2b and Fig. 2b), where MONet is
hyper-segmenting the input, while Slot Attention is some-
times over-segmenting it.

B DATASETS

The original versions of both datasets are taken from Kabra
et al. (2019).

CLEVR. The CLEVR dataset consists of 3D objects
placed on a gray background at different distances from
the camera. Overlap between objects is kept to a minimum.
There are spheres, cylinders, and cubes of eight different
colors. The objects can be metallic of opaque. There is a
big and small variant of each object and they can be placed
in several different orientations. We use the variant of the
dataset that has no more than 6 objects in it, as was done in
previous object-centric learning research. The total number
of samples in the training dataset is 49483, and we leave
2000 samples for validation and 2000 samples for testing.

Multi-dSprites. The Multi-dSprites dataset places several
2D objects on a grayscale background. The objects can be
a square, an ellipse, or a heart. They can have any RGB
color, orientation, and different levels of overlap. Here, we
use 90000 samples for the training, 5000 for validation, and
5000 for testing.

(a) Samples from original
Multi-dSprites.

(b) Samples from style transfer
Multi-dSprites.

(c) Samples from original
CLEVR.

(d) Samples from style transfer
CLEVR.

Figure 7: Samples from the original and neural style transfer
datasets.

Neural Style Transfer. Neural Style Transfer was applied
in its most basic form (Jacq, 202 1) except for a few additions
to make running it on several datasets easier. We opted to
use The Starry Night by Dutch painter Vincent Van Gogh as
a reference style image (we used the photo from Wikimedia
Commons, which is in the public domain). We experimented
with several parameters, and we noticed a lot of variability
between runs and a more pleasant result from the most basic
implementation of the algorithm.

The final version of the datasets was obtained by first ap-
plying neural style transfer to each image (optimization
happens on an image-to-image basis). This results in the
entire scene having the style of the reference image. After
obtaining the neural style transfer version of the image, we
applied the original segmentation masks of the objects to
obtain an image where only the foreground objects have a
complex texture, while the background remains the original
one.



C EVALUATION

C.1 DOWNSTREAM FEATURE PREDICTION
TASK

The setup for the feature prediction task is the same as the
one used in Dittadi et al. (2021b). The models used are a
simple linear model and an MLP with one hidden layer
having 256 neurons and enough outputs to predict all of
the features of an object. The input to the model is the
object representation of a single object and the output is the
predicted features for that object. Let r be the representation
of an object, M the model, § = M (r) is the output of the
model, and y is the target vector such that y;, .;, , , is the kth
feature of the object, a vector of dimension (ix11 — ix + 1).
We use the MSE loss for numerical features and the cross-
entropy loss for categorical ones.

Now, it is important to note that, in order to correctly train
the model, the representation r needs to be matched with
the target vector y of the object that r is representing. How-
ever, this is very challenging, as the models can represent
any object in any of the slots. Therefore, following Dittadi
et al. (2021b), we adopted two different strategies to match
slots with objects. The first is called loss matching: The loss
for each pair of slot and object is computed, resulting in a
loss matrix L, where L; ; is the loss between the predicted
features from the jth slot and the target features from the ¢th
object in the scene. Then, the Hungarian matching algorithm
is used to find the pairs of slots-objects that minimize the
sum of the loss. The second approach is called mask match-
ing: The masks predicted by the models and the ground
masks are matched, to find the pairs that have the smallest
difference. By using loss matching, the assumption is that
the initial errors that are inevitable (because the downstream
model has not been trained yet) will eventually disappear.
When using mask matching, this problem disappears, how-
ever, we rely on the ability of the models to generate masks
that closely match the ground truth, which is not the case
for models that are hyper-segmenting the input, as is often
the case in our study.

C.2 ARIAND MSE

We use the standard definitions of Adjusted Rand Index and
Mean Square Error.

The ARI is computed on the foreground objects and is meant
to measure the similarity between two partitions of the same
set. The adjusted part of the name comes from the fact that
the Rand Index has been normalized according to a null
hypothesis to give 0 when the partitions are random and 1
when they coincide.

The MSE is computed between each channel in each pixel
of the image.

D IMPLEMENTATION OF THE MODELS

The models were re-implemented in PyTorch (Paszke et al.,
2019) and run on NVIDIA A100 or NVIDIA TitanRTX
GPUs. The total approximate training time to reproduce this
study is 300 GPU days.

E HYPERPARAMETER SEARCHES

E.1 BASELINES

The baselines were obtained by training the models on the
two datasets with 3 different seeds. The parameters are taken
from the original papers, but for MONet we use different
values for the foreground and background sigma, as sug-
gested by Greff et al. (2019). We stopped the training for
all runs in our study, even the ones described later, to 500k
steps.

Parameter Value(s)
foreground sigma 0.05, 0.5
background sigma 0.03,0.3

gamma 0.05,1, 5
latent size 64
latent space MLP size 128
decoder input channels 66
number of skip- 0.3.5

connections in U-Net

dataset CLEVR, Multi-dSprites

Table 1: Hyperparameter search for MONet.

E.2 IMPROVING MONET

Starting from the baseline results, we first explored the hy-
perparameter space manually, to develop an intuition regard-
ing the effect of each hyperparameter on the performance.

We then performed a hyperparameter search for MONet. We
ran a full search, resulting in 36 runs. Because of the high
number of runs, we decided to use a single seed. The param-
eters are listed in Table 1. Those that are not listed were kept
unchanged. All combinations of parameters are tested, but
foreground sigma and background sigma have
been changed in pairs, so that when the foreground sigma
is 0.05, the background sigma is 0.03 and when foreground
sigma is 0.5, background sigma is 0.3 to keep consistent
weights of the reconstruction loss.

Some analysis on the results of these models can be seen in
Fig. 8, where we can see how the parameters have little to
no impact on the overall performance of the model. What



proved to be most effective was reducing the number of skip
connections in the U-Net and using a small sigma for the loss
function. However, these results are not very conclusive, as a
small number of skip connections is actually just increasing
the ARI slightly by reconstructing bigger patches of objects
in the slots and not actually separating them correctly.

E.3 REPRESENTATION BOTTLENECK STUDY

The representation bottleneck study was done by changing
the latent space of both MONet and Slot Attention with 2
seeds and without changing any other parameter, resulting
in 32 runs. The latent sizes tested are shown in Table 2. The
findings are summarized in the main text of the paper.

Slot
MONet Attention
8 32
16 64
32 128
64 256
128 512

Table 2: Latent space sizes tested in the study for each of
the two models.

E.4 IMPROVING SLOT ATTENTION

We tried to increase the size of the encoder and decoder
architecture as much as possible, while being reasonable
regarding training time and GPU memory. We tested several
architectures, with the objective of improving the overall re-
construction quality by reducing the blurriness. We quickly
realised that we needed a very deep architecture, therefore,
we opted to use residual layers. The final architecture man-
aged to achieve the best results when averaged over 3 differ-
ent seeds. Each layer is a stack of two convolutional layers,
with Leaky ReLLU activation functions, a skip connection
and we also employ the re-zero strategy (Bachlechner et al.,
2021). We increased the latent size to 512, used upscaling
in the encoder and downscaling in the decoder. We fixed the
broadcast size of the decoder to 32. We used a stack of 16
residual blocks. The architecture of the encoder is described
in Table 3, and the decoder is symmetrical (starting from
256 channels going down and instead of downscaling we
have upscaling). To map from the input number of channels
to the desired ones we use an additional convolutional layer,
the same for the output channels. We did not experiment
with the number of iterations that the Slot Attention Module
performs, but it would be interesting to understand whether
this parameter is very influential in natural scenes.

Name Number of Activation
channels / Comment

Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU

Downscaling Only for CLEVR
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU

Downscaling
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU

Table 3: Final encoder used for the Slot Attention model
that obtained the best results in terms of both ARI and MSE.
Residual Blocks always have 2 convolutions and use ReZero
(Bachlechner et al., 2021), two downscaling operations are
used for the CLEVR dataset, while one for Multi-dSprites.
The decoder is perfectly simmetrical to this structure.
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Figure 8: Results (top row: ARI; bottom row: MSE) from the hyperparameter search for MONet. Although increasing
gamma or foreground sigma in the loss function successfully deteriorates reconstruction performance (MSE), they are not
sufficient to improve the ARI (in fact, the increase of foreground sigma actually decreases the ARI). A smaller number of
skip connections also achieves the desired higher MSE, which corresponds to higher ARI only for small values of sigma.
Often, having big values for gamma and sigma results in trends opposing the desired ones in terms of ARI.



F ADDITIONAL RESULTS
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Figure 9: Comparison of the downstream performance for all combinations of slot-object matching and model type (results
on from the test set, downstream models trained on the validation set). We notice how accuracy (1) and R2 (1) both increase
significantly for both MONet models when using loss matching compared to mask matching (especially for numerical
features). This is expected, as the masks generated by MONet suffer substantially from hypersegmentation, which makes
mask-matching a very unstable way to pair slots with the correct object. Instead, Slot Attention manages to generate more
accurate masks, which results in more consistent performance between mask and loss matching methods.
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Figure 10: Pearson’s correlation coefficient for all runs, grouped by dataset and showing the different combinations of
matching and downstream model. The correlation between downstream model’s performance and the ARI (1) and MSE (J.)
metrics shows that ARI is a strongest indicator of good representation quality when the object-centric models are being
trained on data with complex texture. Difference in correlation between different matching methods and downstream models
is again to be attributed to the poor mask generation quality, which makes mask matching very challenging.
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Figure 11: Scatter plots to inspect correlation between downstream performance, and ARI (1) and MSE ({). The color shows
the different models, which clearly display distinct patterns. A visual inspection shows that there is very little correlation
between downstream performance and MSE. Only loss matching is shown here.
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Figure 12: Qualitative results for the separation performance of the models in the comparative study on Multi-dSprites. From
left to right in all subfigures: (top) input, final reconstruction, reconstruction for each of the six slots (no predicted mask is
applied here, only the visual appearance part of the reconstruction is shown), (bottom) mask for each of the six slots. Here
the difference between the two versions of Slot Attention is even more noticeable, and we can see how MONet is blurring
the masks. However, MONet never manages to reconstruct the correct visual appearance, even when a more accurate shape
of the objects is being predicted by the attention module. Balancing visual appearance and shape is much more challenging
in MONet.
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Figure 13: Qualitative results for the separation performance of the models in the comparative study on CLEVR. From left to
right in all subfigures: (top) input, final reconstruction, reconstruction for each of the six slots (no predicted mask is applied
here, only the visual appearance part of the reconstruction is shown), (bottom) mask for each of the six slots. The masks
on the improved Slot Attention start to include more of the background for each object. In both baseline and best result,
Slot Attention isolates each object in a distinct slot, rarely over-segmenting the input, a stark difference when comparing to
Multi-dSprites. For MONet, it manages to perform better in CLEVR than Multi-dSprites, however, the best result is still
hypersegmenting the input and not blurring it. Overall, MONet cannot reconstruct the visual appearance using the VAE, and
leaves all the heavy lifting to the attention module.
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