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Abstract

We present a three-stage framework for training deep learning models specializing
in antibody sequence-structure co-design. We first pre-train a language model using
millions of antibody sequence data. Then, we employ the learned representations
to guide the training of a diffusion model for joint optimization over both sequence
and structure of antibodies. During the final alignment stage, we optimize the
model to favor antibodies with low repulsion and high attraction to the antigen
binding site, enhancing the rationality and functionality of the designs. To mitigate
conflicting energy preferences, we extend AbDPO (Antibody Direct Preference
Optimization) to guide the model toward Pareto optimality under multiple energy-
based alignment objectives. Furthermore, we adopt an iterative learning paradigm
with temperature scaling, enabling the model to benefit from diverse online datasets
without requiring additional data. In practice, our proposed methods achieve
high stability and efficiency in producing a better Pareto front of antibody designs
compared to top samples generated by baselines and previous alignment techniques.
Through extensive experiments, we showcase the superior performance of our
methods in generating nature-like antibodies with high binding affinity.

1 Introduction

Antibodies are large, Y-shaped proteins that play a crucial role in protecting the human body against
various disease-causing antigens [Scott et al., 2012]. As shown in Figure 1, an antibody consists of
two identical heavy chains and two identical light chains. Antibodies possess remarkable abilities to
bind a wide range of antigens, and the tips of the Y shape exhibit the most variability [Collis et al.,
2003, Chiu et al., 2019]. These critical regions, composed of specific arrangements of amino acids,
are known as Complementarity Determining Regions (CDRs) since their shapes complement those of
antigens. To a great extent, the CDRs at the tips of light and heavy chains determine an antibody’s
specificity to antigens [Akbar et al., 2021]. Hence, the key challenge in antibody design is identifying
and designing effective CDRs as part of the antibody framework that bind to specific antigens.

Recently, various deep learning models achieve great success in the long-standing problem of antibody
design and optimization. For example, Madani et al. [2023] and Rives et al. [2019] borrow ideas
from language models and treat proteins as sequences to predict their structures, functions, and
other important properties. These methods benefit from having access to large datasets with millions
of protein sequences, but often lead to subpar results in generation tasks conditioned on protein
structures [Gao et al., 2023, Martinkus et al., 2024]. Due to the determinant role of structure in
protein function, co-designing sequences with structures emerges as a more promising approach
[Anishchenko et al., 2020, Harteveld et al., 2022, Jin et al., 2022a,b]. Among all, diffusion-based
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Antibody CDRs on variable domain of heavy chain Vi CDR-H3 in Antigen-Antibody Complex

Figure 1: Illustration of an antibody binding to an antigen. The antibody’s light and heavy chains are
shown with their variable (V) and constant (C) regions. The third CDR in the heavy chain (CDR-H3),
colored in orange, is critical for determining the binding affinity to the antigen.

methods stand out by learning the reverse process of transforming desired protein structures from
noise [Vinod, 2022, Lisanza et al., 2023, Martinkus et al., 2024]. These methods achieve atomic-
resolution antibody design and state-of-the-art results in various tasks, including sequence-structure
co-design, fix-backbone CDR design, and antibody optimization [Luo et al., 2022, Zhou et al., 2024b].

Despite the prevalence of generative models, two key problems persist in effective antibody sequence-
structure co-design. First, datasets containing complete 3D structures of antibodies are orders of
magnitude smaller than sequence-only datasets. For example, the most common dataset for antibody
design, SAbDab [Dunbar et al., 2014], only contains a few thousand antibody structures despite
daily updates. The scarcity of high-quality antigen-antibody pairs, coupled with high variability of
CDR structures [Collis et al., 2003], further constrains the performance of learning-based approaches.
Second, existing methods overlook energy functions during supervised training and struggle to
generate antibodies with low repulsion and high binding affinity. Contrary to traditional computational
methods, recent efforts [Luo et al., 2022, Jin et al., 2022a,b, Kong et al., 2022] shift their focus from
searching for minimal energy states to optimizing metrics such as Amino Acid Recovery (AAR) and
Root Mean Square Deviation (RMSD). However, these metrics are prone to manipulation, often fail to
differentiate between different error types, and ignore important side chain structures in CDR-antigen
interactions [Zhou et al., 2024b]. Overreliance on these metrics gives rise to irrationality in generated
structures and widens the gap between in silico and in vitro antibody design.

To address these challenges, we introduce a three-stage training pipeline that focuses on the rationality
and functionality of the antibody. Inspired by the recent success of Large Language Models, we
adopt a similar training paradigm comprising pre-training, transferring and alignment.

1. Pre-training. We first utilize a pre-trained antibody language model, trained on millions of amino
acid sequences, to alleviate the shortage of structured antibody data. This approach enables the
model to capture underlying relationships between proteins and internalize fundamental biological
concepts such as structure and function [Rives et al., 2019, Chowdhury et al., 2021].

2. Transferring. We use the language model’s learned representations to train a smaller model
on a curated antibody-antigen dataset, adapting it for antigen-specific antibody design. The
diffusion-based model is able to recover not only sequences but also coordinates and side-chain
orientations of each amino acid conditioned on the antigen-antibody framework [Luo et al., 2022].

3. Alignment. For the final stage, we conduct energy-based alignment of the diffusion model using
Pareto-Optimal Energy Alignment as an extension of Direct Preference Optimization (DPO)
[Wallace et al., 2023]. By reusing designs generated by the model and labeling them with
biophysical energy measurements, we compel the model to favor antibodies with lower repulsion
and higher affinity in a data-free fashion. Additionally, we introduce an iterative version of the
alignment algorithm in an online setting, allowing the model to benefit from online exploration.
To balance exploration and exploitation during alignment, we propose decaying temperature
scaling during the sampling process. Empirical results verify that our methods surpass existing
alignment methods, consistently generating antibodies with energies closer to Pareto optimality.



In summary, our main contributions are as follows:

* We devise the first three-stage training framework for antibody sequence-structure co-design,
consisting of pre-training, transferring, and alignment.

* We propose an efficient multi-objective alignment algorithm with online exploration which
consistently produces a better Pareto front of models in terms of energy without extra data.

* Our approach achieves state-of-the-art performance in generating more natural-like antibodies
with better rationality and functionality.

2 Related Work

Computational Antibody Design. Deep learning methods are widely used for antibody design, with
many latest works incorporating generative models [Alley et al., 2019, Saka et al., 2021, Shin et al.,
2021, Akbar et al., 2022]. Jin et al. [2022a] introduce HERN, a hierarchical message-passing network
for encoding atoms and residues. Kong et al. [2022] propose MEAN, utilizing E(3)-equivariant graph
networks to better capture the geometrical correlation between different components. Additionally,
Kong et al. [2023] propose dyMEAN, focusing on epitope-binding CDR-H3 design and modeling full-
atom geometry. Luo et al. [2022] propose a diffusion model that uses residue type, atom coordinates,
and side-chain orientations to generate antigen-specific CDRs. Martinkus et al. [2024] propose
Ab-Diffuser, which incorporates more domain knowledge and physics-based constraints.

Diffusion-based Generative Models. Diffusion models are a type of generative model with an
encoder-decoder structure. It involves a Markov-chain process with diffusion steps to add noise
to data (encoder) and reverse steps to reconstruct desired data from noise (decoder) [Weng, 2021,
Luo, 2022, Chan, 2024]. DDPM [Ho et al., 2020] is one of the most well-known diffusion models
utilizing this process. Song et al. [2020a] propose DDIM, which is an improved version of DDPM
that reduces the number of steps in the generation process. Score-matching [Hyvérinen and Dayan,
2005, Vincent, 2011, Song et al., 2020b] is also a popular research area in diffusion models. The key
idea of score-matching is to use Langevin dynamics to generate samples and estimate the gradient of
the data distribution. Later, Song et al. [2021] propose a solver for faster sampling in the context of
score-matching methods using stochastic differential equations.

Alignment of Generative Models. Preference alignment during fine-tuning improves the quality
and usability of generated data. Reinforcement Learning (RL) is one popular approach to align
models with human preferences, and RLHF [Ouyang et al., 2022] is an example of such algorithm.
Rafailov et al. [2024] propose DPO as an alternative approach to align with human preferences.
Different from RL-based approaches, DPO achieves higher stability and efficiency as it does not
require explicit reward modeling. Building upon DPO, recent works such as DDPO [Black et al.,
2023], DPOK [Fan et al., 2024], and DiffAC [Zhou et al., 2024a] demonstrate the possibility of
adapting existing alignment techniques to various generative models. SimPO [Meng et al., 2024]
improves DPO by using the average log probability of a sequence as the implicit reward.

3 Preliminaries

Problem Definition. In this work, we represent each amino acid by its residue type s; €
{ACDEFGHIKLMNPQRSTVWY}, coordinate z; € R3, and orientation O; € SO(3), where
i €{1,...,N}. Here, N is the total number of amino acids in the protein complex, which may con-
tain multiple chains [Luo et al., 2022]. We focus on designing CDR, a critical functioning component
of the antibody, given the remaining antibody and antigen structure. Let the CDR of interest consists
of m amino acids starting from index [ + 1 to [ + m on the entire antibody-antigen framework with a
total of N amino acids. We denote the target CDR as R = {(s;,x;,0;) | j=1+1,...,l+m} and
the given antibody-antigen framework as F = {(s;,®;,0;) | i € {1,..., N}\{I+ 1,...,l + m}}.
Therefore, our objective is to model the conditional distribution P(R | F).

Direct Preference Optimization. To tackle the common issues of fine-tuning with Reinforcement
Learning (RL), Rafailov et al. [2024] propose DPO as an alternative for effective model alignment.
In the setting of DPO, we have an input = and a pair of outputs (y1,y2) from dataset D, and a
corresponding preference denoted as y,, > y; | * where y,, and y; are the “winning” and “losing”
samples amongst (y1, y2) respectively. According to the Bradley-Terry (BT) model [Bradley and
Terry, 1952], for a pair of outputs, the human preferences are governed by a ground truth reward



model r(x, y) such that BT preference model is

p(y1 = y2 | 2) = o(r(z,y1) — r(z,92)), 3.1

where o (+) is sigmoid. Then, the optimal policy 7" is defined by maximizing reward:

T = argmax E r(xz,y) — Blog 7T(y|x))]’ (3.2)
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where £ is the inverse temperature controlling the KL regularization. By solving (3.2) analytically,
Rafailov et al. [2024] give a relation between the ground-truth reward and optimal policy:
Ty | )
et (Y | )
where Z(z) =3 mer(y | ) exp (r(x,y)/B). This allows us to rewrite BT preference model (3.1)
without reward model 7 (only in 7", Tyef):

r(z,y) = Blog + Blog Z(x), (3.3)

milyw | mily |
p(yw>ylm):0<ﬁlog (w | 2) — Blog (| )> (3.4)
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In this way, the maximum likelihood reward objective for a parameterized policy 7y becomes:
Coro(mpmnd) = - E [loga (5 log To(Yw | ) Blog o (Y1 | @) )} ' (3.5)
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This derived loss function bypasses the need for explicit reward modeling, enabling an RL-free
approach for preference optimization. While DPO is first designed for language models, we are
able to re-formulate it for diffusion models and arrive at a similar differentiable objective following
[Wallace et al., 2023], or see Appendix A.3 for details.

4 Methodology

In this section, we present our energy alignment method for designing nature-like antibodies, named
AlignAb. We introduce Pareto-Optimal Energy Alignment to fine-tune the model under conflicting
energy preferences in Section 4.1. Then, we present an iterative version of the algorithm and discuss
how to mitigate mode collapse during sampling with temperature scaling in Section 4.2. Finally, we
summarize the alignment algorithm and three-stage training framework in Section 4.3.

4.1 Pareto-Optimal Energy Alignment (POEA)

Pre-trained models often struggle to produce natural-like antibodies because they tend to ignore
important physical properties during the optimization process. These physical properties manifest
themselves as various energy measurements such as Lennard-Jones potentials (accounting for at-
tractive and repulsive forces), Coulombic electrostatic potential, and hydrogen bonding energies
[Adolf-Bryfogle et al., 2017]. We aim to close this gap by aligning the pre-trained model to favor
antibodies with low repulsion and high attraction energy configurations at the binding site. While
AbDPO [Zhou et al., 2024b] demonstrates the potential of naive DPO in antibody design, there are
two primary distinctions in this context:

(D1) The ground-truth reward model, given by energy measurements, is available.

(D2) There are multiple, often conflicting, energy-based preferences.

Therefore, we propose Pareto-Optimal Energy Alignment to address (D1) by adding ground-truth
reward margin, and (D2) by extending DPO to multiple preferences.

Incorporating Reward Model. Since we have access to the ground-truth reward model, it would be
unwise to ignore this extra information and perform alignment with just the preference labels. We
show how to extend DPO and incorporate the available reward values in the training objective. Let’s
consider a new reward function v’ (z, y) := r(z,y) + f(z) by adding the ground-truth reward model
r(x,y) and a random reward model f(x) which depends only on the input. According to (3.3), we
express ' (z,y) in terms of its optimal policy under the KL constraint:

Ty | )
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where Z(z) = >° met(y | @) exp (r'(z,y)/B). Note that r'(z,y) and r(z,y) induce the same
optimal policy by construction (see Lemma A.2 and Appendix A.2 for details):

m(y | )
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Then, we cast the random reward model f(z) into a function of 7% and r:
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Finally, we replace r(x, y) with f(x) in the original preference model p(y; > y2 | ) = o(r(z, y1) —
r(x,y2)) and hence DPO loss (3.5) becomes below loss over the parametrized model 7y as
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where A, := r(x,y,) — r(x,y;) is the positive reward margin between y,, and y;. Notably, the
obtained loss differs from the vanilla DPO loss (3.5) by including an additional reward margin A,..
To better understand how the derived loss facilitates the alignment process, we take the gradient of
the loss and interpret each term individually:

(% Yw,y1)~D

5, E [o(mx, W) — ol ) + A [ Vologmlyn | ) — Vlogn(y ) } } 7
T, Yw Y1)~ —_——
(I): combined sample weight (II): increase likelihood of vy, (IIT): decrease likelihood of y;

where 7g(x,y) = Blog :"f((zll‘?) is the implicit reward defined by the models. Similar to the DPO

gradient, term (II) and (IIT) aim to increase the likelihood of the preferred sample y,, and decrease that
of the dispreferred sample y;. The key difference lies in term (I), where our weighting incorporates
both the implicit reward margin 70(x, y,,) — 70(x, y;) and the explicit ground-truth reward margin
A,., ensuring larger reward gaps lead to stronger weight adjustments.

Multi-Objective Alignment. Given n ground-truth reward models 7 = [ry, ..., 7,]T, we construct

a dataset D = {(z;, s, 7(x,y;))} that records the reward values for each input and its corresponding
output. In practice, each reward value is an energy measurement associated with certain physical
properties. Following Zhou et al. [2023], the goal for multi-objective preference alignment is not to
learn a single optimal model but rather a Pareto front of models {r} | # = w'r,w € Q} and each
solution optimizes for one specific collective reward model 7:

7wf =argmax E |7#(z,y) — flog Ty le) , 4.4)
™ z,y~D et (Y | )
where w = [wi,...,w,]" s.t. > w; = 1is a weighting vector in the preference space €.

To obtain a preference pair (x, Y., y1 ), we first select two random data points (z, y;, 7(z, y;)) and

(x,y;,7(z,y;)) from D and then compute their collective rewards 7(z,y;) and #(x,y;). Among
(yi,y;), we assign y,, = y; | & which satisfies #(x, y,,) > 7(z, y1).

To incorporate multiple preferences, we replace the original reward model r in (4.3) with the collective
reward model # = w " and arrive at a Pareto-Optimal-Energy-Alignment (POEA) loss:

Lpopa(mo; Tef) = —  E [1oga(6 log ol | ) Blog moly] @) A,».)}, 4.5)

(@, Yuw,y1)~D Wref(yw ‘ 1') 71—ref(yl | ‘T)

where Az == (2, Yy ) — 7(, Yy ). This simple formulation inherits the desired properties from its
single-objective counterpart, ensuring that it produces the optimal model 7; for each specific w. In
practice, we calculate the reward margin with energy measurements following Equation (D.4).

4.2 TIterative Alignment with Temperature Scaling

Iterative Online Alignment. To further exploit the available reward model, we develop an iterative
version of our alignment method as an analogy to online reinforcement learning (RL). Instead of
relying on a large offline dataset collected prior to training as in AbDPO [Zhou et al., 2024b], our
approach starts with an empty dataset and augments it with an online dataset constructed by querying
the current model at the start of each iteration. This method mirrors how online RL agents gather



data and learn by interacting with the environment, enabling continuous policy improvement. We
present the detailed algorithm in Algorithm 1. Ideally, we are able to repeat the process until no
further improvement is observed, and we select the best model based on validation metrics.

Temperature Scaling. While CDRs exhibit substantial sequence variation across antibodies [Collis
et al., 2003], parameterized neural networks often struggle to capture this diversity and suffer from
mode collapse during training [Bayat, 2023]. To quantify this effect, we measure the entropy of
generated sequences, defined as H = — ) plogp, and compare it with that of natural CDR-H3
sequences. As shown in Table 1, a clear entropy gap emerges, indicating reduced diversity and
potential model collapse, particularly evident when comparing results at different training steps.

To 'miti'gate this issup, we iptroducp temperature scgling Table 1: CDR-H3 Entropy
during inference. This technique adjusts the logits prior to
the softmax operation to modulate sampling randomness Meth E
(i.e., entropy). Specifically, the scaled softmax is given ethod ntropy (1)
by Softmax(z;/T) = %, where T denotes the ~_ Reference 3.95

J J
temperature. A higher 7" increases diversity, while a lower MEAN 2.18
T promotes determinism. Since our diffusion model uses ~ DiffAb (100k step) 3.57
multinomial distribution to model antibody sequences (see D}ffAb (200K step) 3.29
Appendix A.1), we inject a small temperature factor at ~ DiffAb-TS 3.84

inference time to enhance sequence diversity. Inspired by

the e-greedy strategy in RL, we adopt a decaying temperature schedule to balance exploration and
exploitation. We validate this approach by applying a small temperature scale (I' = 1.5) to the
pre-trained diffusion model DiffAb [Luo et al., 2022]. The resulting model, DiffAb-TS, produces
sequences that match the diversity of natural CDR-H3 sequences, as shown in Table 1.

Algorithm 1 Iterative Pareto-Optimal Energy Alignment

1: Input: Initial dataset ﬁo = (), KL regularization coefficient 3, total online iterations T, batch
size m, reference model 7y, initial model 7wy = 7.f, and reward model 7.

2: fort=0,1,2,--- ;T do
3:  Sample input prompts z; ~ X fort =1,...,m.
4:  Generate two responses for each prompt: ygl), yz@) ~a (] ).
5:  Calculate rewards 7(z;, yl(l)) and 7(x;, yz@) for all i € [m], and collect them as D;.
6:  Optimize 7y with ZA?O;t according to (4.5):
sl $— argminE(T g~ D {logcr (5log w — Blo M — A,)] .
T T, Yw YL 0:t Wref(yw | x) Wref(yl I .%‘)
7: end for
8: Output: Best-performing policy ;- selected from {mg, 71, ..., 77} using a validation set.

4.3 Three-Stage Training Framework

Inspired by the recent success of large language models, we adapt the widely used three-stage training
framework to the task of antibody design in combination with our devised alignment method.

* Pre-training. Due to the limited availability of structured antibody data, we leverage the abundant
online antibody sequences for pre-training using a BERT-based model [Devlin et al., 2019].
Following Gao et al. [2023], we employ a masked language modeling objective, where we mask
all residues within CDRs and aim to recover them. This approach enables the antibody language
model to learn expressive representations that capture the underlying relationships between
proteins and internalize fundamental biological concepts such as structure and function.

* Transferring. We use the pretrained BERT model as a frozen encoder to train a downstream
diffusion model. Specifically, this transfers learned representations to the diffusion model for anti-
body generation (see details of embedding fusion in Appendix E.1). Crucially, this representation
enhancement addresses the challenge of antigen-specific antibody design: datasets are limited
and curated by human experts. The diffusion-based model recovers sequences, coordinates, and
orientations of each amino acid, conditioned on the entire antigen-antibody framework. For
detailed formulation on diffusion models for antibody generation, see Appendix A.1.



* Alignment. Lastly, we align the trained diffusion model via Pareto-Optimal-Energy-Alignment
(POEA) from (3.2), an extended version of multi-objective DPO-diffusion for antibody design.
Importantly, the Pareto weight w allows us to incorporate designers’ preferences, enabling
balanced control over multiple objectives (physical, chemical, and biological properties) by
domain experts. In summary, we propose POEA (3.2) to address issues of conflicting energy
preferences and potential mode collapse during the alignment stage. We take advantage of
ground-truth reward models (see detailed reward calculations in Appendix D) by incorporating
reward margin in the loss function and utilizing online exploration datasets.

S Experimental Studies

We evaluate our proposed framework, AlignAb, on the task of designing antigen-binding CDR-
H3 regions. In Section 5.1, we outline the experimental setup for the three training stages. We
then introduce the evaluation metrics and discuss the main results in Section 5.2, followed by
comprehensive ablation studies in Section 5.3.

5.1 Experiment Setup

Energy Definitions. We introduce four key energy measurements where we use the first two to
evaluate the rationality and functionality of antibodies and use the rest to generate preferences during
alignment. To determine the rationality and functionality of different CDR designs, we identify two
key energy measurements: CDR FE, and CDR-Ag AG.

(1) CDR E\yy represents the combined energy of all amino acids within CDR, calculated using the
default score function in Rosetta [Chaudhury et al., 2010]. This energy is a strong indicator of
structural rationality, as higher Fi, suggests large clashes between residues.

(2) CDR-Ag AG represents the binding energy between the CDR and the antigen, determined using
the protein interface analyzer in Rosetta [Chaudhury et al., 2010]. This measurement reflects
the difference in total energy when the antibody is separated from the antigen. Lower AG
corresponds to higher binding affinity, serving as a strong indicator of structural functionality.

To generate energy-based preferences during model alignment, we use two fine-grained energy
measurements: CDR-Ag Ei., and CDR-Ag Fy.

(3) CDR-Ag E, captures the attraction forces between the designed CDR and the antigen.
(4) CDR-Ag Ey, captures the repulsion forces between the designed CDR and the antigen.

As suggested by Zhou et al. [2024b], we further decompose E, and Ey, at the amino acid level to
provide more explicit and intuitive gradients. We include detailed calculation formulas for the energy
measurements and their corresponding reward functions in Appendix D. We exclude CDR Eiy
and CDR-Ag AG measurements when determining the preference pairs because our experiments
demonstrate that CDR-Ag E, and CDR-Ag Ei, are sufficient for effective model alignment. This
simplification reduces the computational cost associated with tuning multiple weights for different
reward models, resulting in a more efficient and stable alignment process.

Datasets. For pre-training, we utilize the antibody sequence data from the Observed Antibody Space
database [Olsen et al., 2022]. Following Gao et al. [2023], we adopt the same preprocessing steps
including sequence filtering and clustering. Since we focus on CDR-H3 design, we select 50 million
heavy chain sequences to pre-train the model.

To transfer the knowledge, we use the antibody-antigen data with structural information from SAbDab
database [Dunbar et al., 2014]. Following Kong et al. [2022], we first remove complexes with a
resolution worse than 4A and renumber the sequences under the Chothia scheme [Chothia and Lesk,
1987]. Then, we identify and collect structures with valid heavy chains and protein antigens. We
also discard duplicate data with the same CDR-H3 and CDR-L3. We use MMseqs2 [Steinegger and
Soding, 2017] to cluster the remaining complexes with a threshold of 40% sequence similarity based
on the CDR-H3 sequence of each complex. During training, we split the clusters into a training set
of 2,340 clusters and a validation set of 233 clusters. For testing, we borrow the RAbD benchmark
[Adolf-Bryfogle et al., 2017] and select 42 legal complexes not used in training.

For alignment, we avoid using additional datasets and only draw samples from the trained diffusion
model. During each iteration, we first generate 1,280 unique CDR-H3 designs and collect them as the
online dataset. Then, we reconstruct the full CDR structure including side chains at the atomic level



Table 2: Summary of CDR Eiy,;, CDR-Ag AG, CDR-Ag E,, and CDR Erep (kcal/mol) of reference
antibodies, ranked top-1 antibodies and total antibodies designed by our model and other baselines
(MEAN, HERN, dyMEAN, ABGNN, DiffAb, AbX). We compute the generation gap as the mean
absolute error relative to the reference. Lower values are better in all measurements. Our results show
that our generated antibodies are closer to references compared to all baseline methods.

Method CDR FEioal CDR-Ag AG CDR-Ag Eyy CDR-Ag Eiep Gap

Top Avg. Top Avg. Top Avg. Top Avg. Top Avg.
Reference | -19.33 - | -16.00 - | -18.34 - | 1805 - |
MEAN 46.27 186.05 -19.94 26.14 -5.13  -5.16 7.77 29.21 31.16 73.14

HERN 7,345.11 10,599.92 | 640.50  2,795.15 | -6.64 -1.98 1.67 36.88 145375  2416.97
dyMEAN | 5,074.11 12,311.15 | 4,452.26 10,881.22 | -12.62 -5.06 | 139.42 1,762.59 | 2422.10 6183.425
ABGNN 131534 3022.88 -11.52 16.08 -1.63  -048 | 22.15 8.84 354.38 778.54
DiffAb -1.50 158.90 -6.18 260.30 -12.30  -15.71 | 18.63 603.58 19.74 263.44

AbX 13.56 25.33 94.76 170.34 -13.68 -15.12 | 21.38 38.20 37.75 63.43
AlignAb -6.37 30.45 -8.81 25.16 -14.89 -14.81 | 15.52 56.22 17.91 39.00

using PyRosetta [Chaudhury et al., 2010], and record the predefined energies for each CDR at residue
level. We repeat this iterative process 3 times for each antibody-antigen complex in the test set.

Baselines. We compare AlignAb with 5 recent state-of-the-art antibody sequence-structure co-design
baselines. MEAN [Kong et al., 2022] generates sequences and structures using a progressive full-shot
approach. HERN [Jin et al., 2022a] generates sequences autoregressively and refines structures
iteratively. dyMEAN [Kong et al., 2023] generates designs with full-atom modeling. ABGNN
[Gao et al., 2023] introduces a pre-trained antibody language model combined with graph neural
networks for one-shot sequence-structure generation. DiffAb [Luo et al., 2022] utilizes diffusion
models to model type, position and orientation of each amino acid. AbX [Zhu et al., 2024] integrates
evolutionary priors, physical interaction modeling, and geometric constraints into a score-based
diffusion framework for sequence-structure co-design. All methods except for MEAN are capable of
generating multiple antibodies for a specific antigen. To ensure a fair comparison, we implement a
random version of MEAN by adding a small amount of random noise to the input structure.

5.2 Antigen-binding CDR-H3 Design

Evaluation Metrics. To better measure the gap between designs generated by different models and
natural antibodies, we use CDR Eiy,; and CDR-Ag AG as defined above, rather than commonly
used metrics such as AAR and RMSD. Additionally, we include CDR-Ag E, and CDR-Ag Ei,
used during model alignment. Zhou et al. [2024b] argue that these physics-based measurements are
indispensable in designing nature-like antibodies and act as better indicators of the rationality and
functionality of antibodies. Based on energy measurements, we compute energy gap as the mean
absolute error relative to natural antibodies. We sample 1,280 antibodies using each method and
perform structure refinement with the relax protocol in Rosetta [Chaudhury et al., 2010]. To select
the best sample from each test case, we aggregate rankings of CDR Ejy, and CDR-Ag AG.

Results. We report the main results in Table 2. We also include metrics for RMSD and AAR
in Table 4 and additional binding and developability metrics in Table 5. We present visualization
examples in Figure 4. Overall, AlignAb outperforms baseline methods and narrows the gap between
generated and natural antibodies. Furthermore, AlignAb demonstrates the smallest difference between
top samples and average samples, suggesting a higher consistency in the generated antibody quality.

While baseline methods possess lower values for certain energy measurements, the generated anti-
bodies are often far from ideal. For instance, MEAN, despite achieving a low CDR-Ag AG, exhibits
significantly higher CDR Eiq,, indicating less favorable overall interactions and potential structural
clashes. HERN, dyMEAN and ABGNN show poor performance across most metrics, with high CDR
Eioa1 values, suggesting strong repulsion due to close antigen-antibody proximities. Comparatively,
DiffAb demonstrates a more balanced approach. It benefits from the theoretically guaranteed diversity
of diffusion models and produces a higher variance in the quality of the designed CDRs. This provides
DiffAb a higher probability of generating high-quality top-1 designs compared to other baselines.
AbX further improves over DiffAb by incorporating evolutionary, physical, and geometric constraints,
producing antibodies with more realistic structures and better binding energies. However, AlignAb
surpasses all baselines, including AbX, showcasing smallest energy gap relative to natural antibodies.
Through its energy alignment, AlignAb reduces average CDR Eyy,, CDR-Ag AG and CDR-Ag
E.p by a large margin, while maintaining reasonable CDR-Ag E, values. This indicates antibodies
generated by AlignAb have fewer clashes and exhibit strong binding affinity to target antigens.



Table 3: Ablation studies for the proposed AlignAb framework. Lower values are better in all
measurements. Results show that each component contributes to improved antibody quality, with the
full method (Iterative POEA) achieving the lowest energy gap and strongest overall performance.

Method \ CDR Eyga | CDR-AgAG | CDR-AgFEy,;| CDR-Agk,,| Gapl
Reference -11.03 16.75 -12.45 15.77 -

w/o Alignment 128.10 235.82 -14.31 479.00 205.82
w/o Pre-training 50.23 76.89 -13.84 118.29 56.33
DPO 113.59 183.19 -19.98 352.15 158.74
POEA 48.53 74.85 -13.41 103.54 51.59
Iterative POEA 34.13 55.71 -14.60 59.06 32.39

We anticipate further performance improvements beyond current results with several simple modifi-
cations. Due to limited computational resources, we assign the same weight to the reward models
across all test data (see Appendix E.2). By tuning the reward weightings, we are able to optimize
the energy trade-offs between multiple conflicting objectives for each antigen-antibody complex,
potentially resulting in an improved Pareto front of optimized models. Additionally, increasing the
sample size and number of iterations for alignment will likely enhance the overall performance and
reliability of the generated antibodies. These preliminary results underscore the potential of AlignAb
in generating nature-like antibodies. We include the full evaluation results in Table 6.

5.3 Ablation Studies

Our approach combines a three-stage training pipeline (pre-training, supervised fine-tuning, and
preference alignment), a Pareto-Optimal Energy Alignment objective, and an iterative online ex-
ploration strategy with temperature scaling. To quantify the contribution of each component, we
evaluate variants of AlignAb on the first 10 antigens in the test set by generating 32 candidates for
each antigen and report the average energy metrics. We present quantitative results in Table 3 and
qualitative examples for a specific antigen with PDB ID 5nuz in Figure 2.

Three-Stage Training. We assess the contribution of each stage using the metrics described in
Section 5.2. We observe that the variant without alignment stage performs poorly across all energy
metrics as indicated by Table 3, highlighting that preference alignment is essential for steering the
generator toward energetically favorable designs. The variant without pre-training stage, which
disregards knowledge learned from large-scale antibody pre-training, also degrades performance
relative to the full method. This confirms that pre-training provides a strong inductive bias that yields
more realistic and stable initial proposals before alignment. Taken together, these results indicate that
pre-training, supervised fine-tuning, and preference alignment are mutually reinforcing and are all
essential components of a robust pipeline for high-quality antibody design.

Pareto-Optimal Energy Alignment. We evaluate the impact of the proposed POEA algorithm
through controlled ablations. As shown in Table 3, the DPO baseline, which follows the original DPO
formulation, performs significantly worse than our proposed method. This validates that our multi-
objective POEA function is substantially more effective at balancing competing energy terms than a
naive DPO approach. We also compare our full, iterative method to a single-iteration variant. The
iterative method consistently achieves the highest performance across all metrics. This demonstrates
that our iterative online exploration paradigm, where the model refines its policy over multiple turns,
is critical for converging to the most optimal designs. This aligns with our analysis in Figure 2, which
shows that the full framework with online exploration and temperature scaling produces a superior
Pareto front compared to offline alignment or alignment without temperature scaling.

Balancing Conflicting Objectives. One of the central challenges in antibody design is resolving
conflicting biophysical objectives, such as maximizing binding affinity (low Ey;) and minimizing
steric clashes (low Ei,). Figure 2 visualizes this trade-off by plotting the Pareto front of these
two energy values. Our full method, AlignAb, consistently occupies the lower-left region of the
plot, maintaining a smaller gap to the reference antibody (yellow) compared to baseline methods
like DiffAb and other alignment variants. This position indicates that AlignAb achieves a superior
balance and lower overall energy. The figure also illustrates the typical failure modes that arise from
unbalanced objectives. When attractive energy FE, is weighted too strongly in Figure 2 (C), the
model overemphasizes bulky aromatic residues such as Tyrosine and Tryptophan, causing steric
clashes and elevated E\p. Conversely, over-weighting the repulsive term Fi, in Figure 2 (D) biases
the model toward small residues like Serine and Glycine, which results in weak binding affinities.
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Figure 2: Frontiers of CDR-Ag E,; and CDR-Ag E., alignment and typical samples produced by
different reward weightings in POEA. (A) is the reference CDR-H3 (colored in orange) from PDB
ID 5nuz. (B) is the best CDR-H3 design generated by AlignAb with low overall energy and high
similarity with the reference structure. (C) is the typical type of design when E,; reward dominates,
and often consists of large side chains and contains structural collisions. (D) is the typical type of
design when FEi., reward dominates, and often lack of side chains with weak binding with the antigen.

In contrast, our multi-objective POEA formulation is able to identify Pareto-optimal solutions in
Figure 2 (B) that achieve both strong attraction and low repulsion. This allows our method to produce
stable, high-affinity antibody designs that closely resemble the reference structure in Figure 2 (A),
This demonstrates that AlignAb effectively balances conflicting objectives through Pareto-guided
optimization, leading to nature-like antibodies with well-formed binding interfaces.

6 Conclusion

In this work, we adapt the successful paradigm of training Large Language Models to the task of
antibody sequence-structure co-design. Our three-stage training pipeline addresses the key challenges
posed by limited structural antibody-antigen data and the common oversight of energy considerations
during optimization. During alignment, we optimize the model to favor antibodies with low repulsion
and high attraction to the antigen binding site, enhancing the rationality and functionality of the
designs. To mitigate conflicting energy preferences, we extend AbDPO in combination with iterative
online exploration and temperature scaling to achieve Pareto optimality under multiple alignment
objectives. Our proposed methods demonstrate high stability and efficiency, producing a superior
Pareto front of antibody designs compared to top samples generated by baselines and previous
alignment techniques. Future work includes further investigating the performance of the framework
using larger fine-tuning datasets and extending our method to other structures such as small molecules.
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A Supplementary Backgrounds
A.1 Diffusion Processes for Antibody Generation

A diffusion probabilistic model consists of two processes: the forward diffusion process and the
reverse generative process. Let 7' denote the terminal time, and ¢ € [T'] denote the diffusion time
step. Let R* = {(s%,2%,0%) | j =1+ 1,...,1+ m} denote a sequence of latent variables sampled

during the diffusion process, where (s?, a:;, O;) is the intermediate state for amino acid j at diffusion

step t. Intuitively, the forward diffusion process injects noises to the original data R, while the
reverse generative process learns to recover ground truth by removing noise from R”. To model both
the sequence and structure of antibodies, Luo et al. [2022] defines three separate diffusion processes
for g(R? | R?) as follows:

(54 19 =c(16st) [ a1 + (1 -0 - 55 1),
Val - af, (1 - aO)I)
¢(0! | 09) = TGso (o; ’ ScaleRot(vat, 09),1 — at)

q(x} | x?) = N(scﬁ

J J

where a' = Hizl (1 —7) and {8}, is the predetermined noise schedule. Here, C denotes the

categorical distribution defined on 20 types of amino acids; A denotes the Gaussian distribution on
R3; ZGso@) denotes the isotropic Gaussian distribution on SO(3). We use 1 to represent one-hot
encoding function and ScaleRot to represent rotation angle scaling under a fixed axis.

To recover R° from R given specified antibody-antigen framework F, Luo et al. [2022] defines the
reverse generation process p(R!~! | Rt, F) at each time step as follows:

p(si 7 | R F) = (57 | fo. (R P))
p(@ ™t | R F) = N (27| fou (RLF)IJL BT,
p(O;" [ R, F) ZIgsom( i ‘ foo (R' 7}—)[J']n3t>7

where all three fp are parameterized by SE(3)-equivariant neural networks and f(-)[j] denotes the
output for amino acid j. Therefore, the training objective consists of three parts:
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Finally, the overall loss function is £ = E; uniform(1,..-,T) (LY + LL + L£L)]. After training the model,
we can use the reverse generation process to demgn CDRs given the antlbody-antigen framework.

A.2 Optimal Policy of Equivalent Reward Functions

We cite the following definition and lemmas from DPO [Rafailov et al., 2024]:

Definition A.1. We say that two reward functions r(z,y) and r'(x,y) are equivalent iff
r(z,y) — r'(z,y) = f(x) for some function f.

Lemma A.1. Under the Plackett-Luce, and in particular the Bradley-Terry, preference framework,
two reward functions from the same class induce the same preference distribution.
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Lemma A.2. Two reward functions from the same equivalence class induce the same optimal policy
under the constrained RL problem.

A.3 DPO for Diffusion Model Alignment

Here we review DPO for diffusion model alignment [Wallace et al., 2023]. By alignment, we mean
to align the diffusion models with users’ preferences.

Let D = {(z,yw,¥:)} be a dataset consisting an input/prompt = and a pair of output from a
preference model p,o¢ with preference y,, > y;. Our goal is to learn a diffusion model py(y | x)
aligning with such preference associated with p,.s. Let T' denote the diffusion terminal time, and ¢
denote the diffusion time step. Let 47 be the intermediate latent variables and R(y,y%7) be the
commutative reward of the whole markov chain such that

’I“(JJ, yo) = Epe(yl:T|I7y0) [R(y, yO:T)}.
Aligning pg to pyer needs

HZI)%X {EIND yO: T ~pg (yO: T |z) [T(.’E, yO)] - DKL [p0 (yO:T | {E) | pref(yO:T | CL’)] }
Mirroring DPO (3.2), we arrive a ELBO-simplified DPO objective for diffusion model [Wallace et al.,
2023, Appendix S.2]:

LDPO-Diffusion (P, Pref)

po(zy, ' | 2f,) po(z; " | x})
<-E  Gpoyep,  logo (BT log (@ [ty BT log g

t~U(0,T), Pref{Tw Loy DPret\Z; T
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where U denotes uniform distribution, 8 is KL regularization temperature. We remark this objective
has a simpler form for empirical usage, see [Wallace et al., 2023, Eqn. 14].

B Additional Numerical Experiments

This section provides supplementary results to support the main findings. Appendix B.1 reports
additional metrics (AAR and RMSD) comparing our method to baselines. Appendix B.2 reports
additional binding and developability metrics to illustrate the effect of alignment stage. Appendix B.3
presents ablation examples illustrating CDR-antigen interaction trade-offs. Appendix B.4 includes
detailed evaluation results across benchmarks.

B.1 Additional Evaluation Metrics

Table 4: Summary of AAR and RMSD metrics by our method and other baselines. We follow the
default sampling settings from all baselines and use ranked top-1 samples generated by our method.
AlignAb* indicates the AlignAb framework without the alignment stage.

Metrics HERN MEAN dyMEAN ABGNN DiffAb AlignAb* AlignAb
AAR T 33.17 33.47 40.95 38.3 36.42 37.65 35.34
RMSD| 9.86 1.82 7.24 2.02 248 2.25 1.51
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B.2 Additional Binding and Developability Metrics

Table 5: Summary of Boltz-2 IPTM for binding correlation and TAP scores for developability. We
report averages over 16 candidates for each of the first 10 test antigens. AlignAb* indicates the
AlignAb framework without the alignment stage. Higher Boltz-2 IPTM and lower deviation from

reference TAP scores are desirable.

Method Boltz-2 IPTM 1 PSH

PPC PNC SFvCSP

Reference 0.728 118.554
AlignAb* 0.669 £+ 0.118 119.720 £ 7.397
AlignAb 0.698 + 0.104 120.510 £ 6.069

0.096 0.522 -0.471
0.085 £ 0.068 0.402 £0.280 0.070 £ 1.384
0.073 £0.049 0363 £0.065 -0.116 £1.072

B.3 Additional Ablation Examples
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Figure 3: Frontiers of CDR-Ag E,; and CDR-Ag E,

weightings in POEA with four PDB examples.

B.4 Detailed Evaluation Results
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C Additional Visualization

Reference

_ \ _
(A) RNTLTGDYFDY (B)RGYYYYYYFDY (C) DYDYGYYYLDV

dyMEAN DiffAb AlignAb

(D) ENHRGSGYSDH (E) GYGGSDYAYDY (F) RRNRYGGYFDY

Figure 4: Visualization of reference antibody for antigen (PDB ID 5nuz) and different antibodies
designed by our method and other baselines. The designed CDR-H3 structures are colored in orange
and the designed CDR-H3 sequences are recorded accordingly.
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D Energy Calculation and Reward Models

In Section 5, we introduce the calculation of two functionality-associated energies, CDR-Ag E, and
CDR-Ag Ep. Following Zhou et al. [2024b], we denote the residue with the index ¢ in the antibody-
antigen complex as A,. We then represent the side chain of the residue as AJ° and backbone of the
residue as A%, respectively.

We define the interaction energies between a pair of amino acids as EP, with the default weights
defined by REF15 [Adolf-Bryfogle et al., 2017]. EP consists of six different energy types: EPppond,
EPyy, EPrep, EPo1, EPglec, and EPy. Following the settings from Section 3, we define the indices
of residues within the CDR-H3 range from [ + 1 to [ 4+ m, and the indices of residues within the
antigen range from g + 1 to g + n. Thus, for the CDR residue with the index j, the CDR-Ag E, and
CDR-Ag Ei, are defined as:

g+n

CDR-Ag Bl = > 3 (EPE(AjC, A3%) + EP.(AY, A’;b)), D.1)
i=g+1 e€ {hbond,att,sol elec,lk }
gt+n
CDR-Ag El, = > (Eprep(A;C, AS%) + EPrgp (A5, AP + 2 5 EPrep(A%, AS°) + 2 X EPyep (A%, Ai’”))_
i1=g+1

(D.2)

From Equations (D.1) and (D.2), we conclude that the interaction energy between the CDR and the
antigen is determined by both side-chain and backbone interactions. The CDR-Ag E,, considers
interactions primarily from side-chain atoms in the CDR-H3 region. In contrast, CDR-Ag E,
assigns higher costs to repulsions from backbone atoms in the CDR-H3 region. This reason for the
different is that side-chain atoms contribute most of the interaction energy between CDR-H3 and
the antigen, as shown in Figure 1. Therefore, CDR-Ag F, exhibits a benefit in interactions, while
CDR-Ag Ei, represents repulsive costs.

To guide the model alignment process, we utilize the above two energy definitions to compute the
final rewards as follows:

I4+m I+m
ra(w,y) = — > CDR-AgEL, 7rp(x,y)=— Y  CDR-AgEJ,, (D.3)
i=l+1 i=l+1

where lower energy corresponds to a higher reward. Therefore, we compute the final collective reward
with predetermined weights as 7(2,y) = WaTau (%, Y) + WrepTrep(,y). We observe the repulsion
reward is often several orders of magnitude bigger than the attraction reward. Therefore, we utilize
the following reward margin in our actual experiments:

Ap = log(F(x, yuw) — *(2,31))- (D.4)
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E Implementation Details
E.1 Model Details

AlignAb consists of two parts: a pre-trained BERT model from AbGNN [Gao et al., 2023], and a
pre-trained diffusion model from DiffAb [Luo et al., 2022]. For the pre-trained BERT model, our
model uses a 12-layer Transformer model with a BERT}, . configuration. We set the embedding
size to 768 and the number of heads to 12. For the pre-trained diffusion model, our model takes the
perturbed CDR-H3 and its surrounding context as input. For example, 128 nearest residues of the
antigen or the antibody framework around the residues of CDR-H3. The input consists of both single
and pairwise residue embeddings. The number of features with single residue embedding is 128. It
consists of the encoded information of its amino acid types, torsional angles, and 3D coordinates
of all heavy atoms. The number of features with pairwise residue embedding is 64. It consists of
the encoded information of the Euclidean distances and dihedral angles between the two residues.
To combine the feature embeddings with the hidden representations learned from the pre-trained
BERT model, we extract the embedding for each residue from the final layer of the BERT model
and concatenate it with the single and pairwise residue embeddings. We then utilize multi-layer
perception (MLP) neural networks to process the concatenated embeddings. The MLP has 6 layers.
In each layer, the hidden state 128. The output of this neural network is the predicted categorical
distribution of amino acid types, C,, coordinates, a so(3) vector for the rotation matrix.

The diffusion models aim to generate amino acid types, C, coordinates, and orientations. Hence, for
training the diffusion models, we take the output of MLP as input for diffusion models. We set the
number of diffusion (forward) stets to be 100. For the noise schedules, we apply the same setting of
DDPM [Ho et al., 2020], utilizing a 8 schedule with s = 0.01. The noises are gradually added to
amino acid types, C,, coordinates, and orientations.

E.2 Training Details

Transferring. We train the diffusion model part of AlignAb following the same procedure as
Luo et al. [2022]. The optimization goal is to minimize the rotation, position, and sequence
loss. We apply the same weight to each loss during training. We utilize the Adam [Kingma and
Ba, 2014] optimizer with init_learning_rate=1e-4, betas=(0.9,0.999), batch_size=16,
and clip_gradient_norm=100. We also utilize a learning rate scheduler, with factor=0.8,
min_lr=5e-6, and patience=10. We perform evaluation for every 1000 training steps and train
the model on one NVIDIA GeForce GTX A100 GPU, and it can converge within 36 hours and 200k
steps.

Alignment. After obtaining the diffusion model, we further align it with energy-based
preferences provided by domain experts. We utilize the Adam [Kingma and Ba,
2014] optimizer with init_learning rate=2e-7, betas=(0.9,0.999), batch_size=8,
clip_gradient_norm=100. We set the KL regularization term S = 100.0. In each batch, we
select 8 pairs of energy-based preference data with labeled rewards. We do not use learning rate
scheduling during alignment stage. For rewards, we set the w, and wyp with a fixed ratio 1:3. In
each alignment iteration, we fine-tune the diffusion model for 4k steps. We repeat this process 3
times for each antigen in the test set.

F Broader Impact

This research advances the intersection of machine learning and therapeutic antibody design by
providing a generalizable framework for sequence-structure co-design. The proposed method not
only enhances the rationality and efficiency of antibody generation but also offers a scalable approach
applicable to broader biomolecular engineering tasks. By enabling more accurate and interpretable
Al-driven design pipelines, this work can accelerate the discovery of life-saving therapeutics and
benefit researchers and practitioners developing biologics for global health and social good.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: Contributions and scope are clearly stated in the abstract and introduction.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations both in experiments section and conclusions section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include assumptions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
» All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the information needed to reproduce the main experimental results
in Section 5 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

L]

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
Justification: Code is not available at the time of submission.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: They are specified in Section 5 and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate different test data with different random seeds which is widely applied
in previous works.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Jtis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: They are in Section 5 and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

¢ The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and followed the NeurIPS Code of Ethics.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss them in Appendix F
Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

 If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: All data and models used are cited.
Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|

Justification: Code is not available at the time of submission but will be available as an open-source
repository upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|
Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in the paper does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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