Published as a conference paper at ICLR 2026

FLOW MATCHING WITH INJECTED NOISE FOR
OFFLINE-TO-ONLINE REINFORCEMENT LEARNING

Yongjae Shin Jongseong Chae Jongeui Park Youngchul Sung *
KAIST
{yongjae.shin, ycsung}@kaist.ac.kr

ABSTRACT

Generative models have recently demonstrated remarkable success across diverse
domains, motivating their adoption as expressive policies in reinforcement learn-
ing (RL). While they have shown strong performance in offline RL, particularly
where the target distribution is well defined, their extension to online fine-tuning
has largely been treated as a direct continuation of offline pre-training, leaving
key challenges unaddressed. In this paper, we propose Flow Matching with In-
jected Noise for Offline-to-Online RL (FINO), a novel method that leverages
flow matching-based policies to enhance sample efficiency for offline-to-online
RL. FINO facilitates effective exploration by injecting noise into policy train-
ing, thereby encouraging a broader range of actions beyond those observed in
the offline dataset. In addition to exploration-enhanced flow policy training, we
combine an entropy-guided sampling mechanism to balance exploration and ex-
ploitation, allowing the policy to adapt its behavior throughout online fine-tuning.
Experiments across diverse, challenging tasks demonstrate that FINO consistently
achieves superior performance under limited online budgets.

1 INTRODUCTION

Generative models have recently demonstrated substantial success across diverse domains, produc-
ing high-quality outputs in areas such as text and image (Brown et al.l |2020; Rombach et al., [2022).
By leveraging their expressive capacity, these models can capture complex or multimodal distribu-
tions present in the underlying datasets, beyond the reach of conventional parametric models. This
opens up new opportunities in reinforcement learning (RL), particularly for policy design.

Since a policy in RL can be regarded as a generative model conditioned on states, there has been
increasing interest in applying generative modeling to policy design, such as denoising diffusion
(Sohl-Dickstein et al., 20155 Ho et al., [2020) and flow matching (Lipman et al., 2023; |Albergo &
Vanden-Eijnden, [2023). While Gaussian policies have been the conventional choice, they often
struggle to represent multimodal or high-dimensional action distributions (Park et al., [2024). By
contrast, generative policies provide the expressivity required to handle complex RL tasks and have
demonstrated superior performance, particularly in offline RL where the target distribution is explic-
itly defined (Wang et al.2023b; [Hansen-Estruch et al., [2023; Kang et al., [2023; Zhang et al.| 2025;
Fang et al., 2025; [Park et al.l 2025b)).

Despite such expressivity, offline RL inherently suffers from a fundamental limitation in that the
performance of the policy is constrained by the quality of the offline dataset. Accordingly, offline-
to-online RL has been proposed to address this issue, enabling a pre-trained policy to further improve
its performance through short-term direct interaction with the environment (Lee et al.|[2022; Zhang
et al., 2023 [Nakamoto et al., [2023} Zhang et al., [2024} |Zhou et al., [2024). While some studies
(Hansen-Estruch et al.| 2023; Park et al.| 2025b) have incorporated additional online fine-tuning of
generative policies, they merely treat it as a continuation of offline pre-training rather than designing
approaches specialized to the online fine-tuning.

As offline-to-online RL encompasses both offline and online stages, it naturally introduces chal-
lenges beyond those faced in a purely offline RL framework. Unlike offline RL, which relies solely

*Corresponding author. Our code is available at https://github.com/CTID282/FINO.

https://github.com/CTID282/FINO

Published as a conference paper at ICLR 2026

on pre-collected datasets, offline-to-online RL incorporates an online fine-tuning phase, making it
beneficial to design the offline pre-training with this subsequent stage in mind from the beginning.
At the same time, the framework raises the practical question of how to best exploit the pre-trained
policy during online fine-tuning. Thus, framing offline-to-online RL merely as an extension of of-
fline RL can limit the extent to which its potential is realized.

In this work, we propose Flow Matching with Injected Noise for Offline-to-Online RL (FINO), a
novel policy learning approach for the offline-to-online RL framework. Motivated by recent findings
that maintaining diversity facilitates more effective fine-tuning (Fan et al.,2025; L1 et al., [2025} Zhai
et al., 2025} [Sorokin et al., 2025)), we introduce a training strategy that injects noise into the flow
matching to explicitly promote diversity in the policy from the beginning of offline pre-training.
This injection encourages the policy to learn a broader range of action space than that present in the
offline dataset, thereby establishing a strong foundation for exploration during online fine-tuning. To
effectively leverage this during online fine-tuning, we introduce an entropy-guided sampling mecha-
nism that exploits the acquired diversity for exploration while balancing exploration and exploitation
by adapting to the evolving behavior of the policy. We experiment on 45 diverse and challenging
tasks from OGBench (Park et al.| 2025a) and D4RL (Fu et al.| 2020) under a limited online fine-
tuning budget. The results show that FINO achieves consistently strong performance across tasks,
even in complex environments, thereby demonstrating FINO as an effective and reliable approach
for offline-to-online RL.

2 PRELIMINARIES

Offline-to-Online Reinforcement Learning. In this paper, we consider a Markov Decision
Process (MDP) (Sutton et all [1998) M = (S, A,r,P,~), where S denotes the state space, A
the action space, r the reward function, P the transition probability distribution, and ~y the discount
factor. The objective of RL is to train a policy that maximizes the expected cumulative return
E,[>; v'r(s;,a;)]. Offline-to-online RL is a two-stage learning framework consisting of offline
pre-training and online fine-tuning (Lee et al.l 2022} [Zhang et al., 2023} Nakamoto et al., 2023
Zhang et al. 2024} [Zhou et all 2024). This framework is designed to combine the strengths of
offline and online RL: the stability gained from pre-collected datasets without interactions and the
adaptability that comes from environment interaction. In the offline pre-training, a policy is trained
on a static dataset D = {(s, a,r, s")}, providing a reliable initialization. Subsequently, during the
online fine-tuning, the pre-trained policy directly interacts with the environment, allowing it to refine
its behavior and correct limitations inherited from the offline dataset.

Flow Matching. Flow matching (Lipman et al.,|2023;|Albergo & Vanden-Eijnden, |2023) is a gen-
erative modeling framework that constructs a transformation between two probability distributions
via ordinary differential equations (ODEs). Unlike diffusion models (Sohl-Dickstein et al., 2015}
Ho et al., [2020), which rely on stochastic differential equations (SDEs), flow matching is based on
deterministic ODEs. This design not only simplifies training but also enables faster inference.

The central component of flow matching is a time-dependent vector field vg (¢, z) that defines a flow
¢, mapping a base distribution pg into a target data distribution p; :

%fbt(fﬂ) =vg(t, ¢e(x)), ¢o(z) = 2. (1)

A widely used formulation of flow matching is based on Optimal Transport (OT) (Lipman et al.,
2023)), where transformations are constructed by linearly interpolating between samples from the
base and target distributions (x¢g ~ pg and z; ~ pp), with the interpolation time ¢ sampled uni-
formly:

e = (1 —t)xo +txy, t~ Unif(]0, 1]). ()

The vector field is trained to align its prediction with the direction of this linear path:
in Exo~po,z1~p1, t - — (1 — omin 21. 3
mn B o eags [[ve(t,z:) — (1 — (1 — omin)20) |[3] 3)

where oy, is a sufficiently small constant. Once the vector field vy is trained, generation is per-
formed by sampling 2y ~ po and solving the learned ODE until ¢ = 1 to obtain ¢ (z) ~ p;. In
this work, we use the Euler method to solve the ODE for sample generation.

Published as a conference paper at ICLR 2026

Flow Q-Learning. Flow Q-Learning (FQL) (Park et al., 2025b) applies flow matching to policy
design for offline RL. It formulates the policy as a state-conditioned flow model and trains it by
adapting flow matching to behavior cloning:

Lr(0) = Euyono.n, [l[va(t,s,2) = (21 — 20)[[3] - 4)

s,a=x1~D,
t~Unif([0,1])

Integrating the trained vector field vy induces a mapping ag(s, z) from state s and noise z to action,
which defines a policy (g, linking the flow formulation to a policy representation.

To enable efficient training, FQL further introduces a one-step policy 7, which is jointly optimized
by distillation from the flow policy and action-value maximization:
Lr(w)=E ifV(D : [— Qu(s,au(s,2) + allaw(s,z) — ag(s,z)Hg] , 3)
z2~N(0,1),

ay (8,2)~my

where « is a hyperparameter. In practice, the one-step policy provides a direct mapping from noise
to actions without sequential ODE integration, enabling efficient action selection while inheriting
the expressiveness of the flow model.

3 MOTIVATION

antmaze-giant-navigate FQL FINO (ours) 10000

* | I

100 1

*
5 .ﬂ'ld.l
—o— FINO(Ours)

—e— FQL e e e

Performance
«
3

Steps (x100k)

Figure 1: Comparison of FQL and FINO (ours) in terms of performance and exploration patterns on
the environment antmaze—giant—-navigate. The green circle and red star indicate the initial
and goal states, respectively.

Our motivation lies in better leveraging the expressivity of generative policy, flow policy in par-
ticular, to address the challenges of offline-to-online RL. There exist prior studies in offline RL
(Hansen-Estruch et al., [2023} |[Park et al.,|2025b) employing generative policies and extending them
to online fine-tuning. To examine their behavior during online fine-tuning, we conducted an experi-
ment with the challenging task antmaze-giant-navigate with FQL (Park et al.,[2025b). The
second plot of Figure [T]illustrates the maze, where the gray region marks the feasible paths, while
the third plot shows the visitation frequency of the FQL agent during the first 100k interaction steps.
It is seen that the agent stays mostly near the starting point and reaches the goal only via the upper
path, ignoring other possible routes, yielding degraded performance as shown in the first plot in Fig-
ure[I] This behavior reflects an offline pre-trained policy that is overly confined to the dataset, which
mainly contains the upper success route, resulting in limited exploration during online fine-tuning.
In a strictly offline setting, such confinement to the data distribution is a primary design objective to
ensure stability. But, considering the subsequent online learning, such confinement may not be the
best strategy.

One could address this limitation by constructing a larger dataset with diverse data, but this incurs
additional cost and time. Then, how can one induce diverse behavior from a given dataset without
increasing the dataset size? To answer this question, we propose perturbed cloning during the
offline pre-training phase, especially suited to flow-based policy learning. In our training scheme,
we inject noise into flow matching, thereby driving the flow behavior model to extend its support
beyond the coverage of the dataset to some reasonable extent. The policy is then distilled from this
perturbed behavior model, which allows it to acquire behaviors spanning a broader action space. So
learned policies can leverage this broader coverage during subsequent online fine-tuning, facilitating
effective exploration to yield better performance, as shown in the rightmost plot of Figure[T] Details
of the proposed method follow in the next section.

Published as a conference paper at ICLR 2026

4 METHOD

In this section, we present Flow Matching with Injected Noise for Offline-to-Online RL (FINO), a
novel method that utilizes flow policies within the offline-to-online RL framework. Our approach
consists of two main components: (1) from the beginning of offline pre-training, we inject controlled
noise into flow matching, encouraging the policy to explore a broader range of actions beyond those
in the dataset; (2) in the online fine-tuning, we leverage this expanded action space for exploration,
while introducing an entropy-guided sampling mechanism that dynamically balances exploration
and exploitation according to the behavior of the policy.

4.1 NOISE INJECTION FOR FLOW MATCHING

Since our method builds directly on the flow matching formulation, we begin by presenting its
conditional probability path. The rationale behind training flow matching as in Equation [3|lies in
the design of its conditional probability path (Lipman et al., | 2023):

pI;M(z|x1) = N(z|tey, (1 — (1 — O’min)t)zl) (6)

where o, is a sufficiently small constant ensuring that pf™(z|x;) concentrates around the given
data point.

In FQL (Park et al., 2025b), the variance is set to o, = 0in Equation@ which reduces the training
objective to Equation 4 With opmin, = 0, the distribution collapses onto individual data points,
leaving little coverage beyond the dataset itself. This narrow formulation shows clear limitations
as shown in the previous section, as it restricts effective exploration during online fine-tuning. To
overcome this limitation, we propose a noise-injected training scheme that retains the core objective
of flow matching while enabling the model to learn a wider action space than point-wise matching:

Leno(0) = Es.ama,~n, [[[vo(t, 5,20+ €) — (m1 — (L =n)z0)|l3], & ~N(0,071) (7

zo~N(0,I),
¢~ Unif([0,1])

where af = (n? —2n) > + (2n)t is the scheduled variance for some n € [0,1], and ¢ is the
interpolation time. Equation [7]reduces to the standard flow matching (Equation[d) when 1 = 0. The
variance of the injected noise is non-negative for all 7 > 0 and ¢ € [0, 1]. Note thatat t = 0, a3 = 0,
andatt =1,a% =n% > 0.

Proposition 1. For notational simplicity, we denote (s;,z}) as x;. Given a dataset D = {z;}
the proposed time-dependent noise injection ¢; ~ N (0,a21) induces the following conditional

probability paths of flow ¢
P (o) = N (| (i) = tas, Sulws) = (1= (L=m)t)* 1)),

in which the mean tx; is equal to the mean induced from flow matching, and the variance (1 — (1 —
n)t)? is greater than or equal to the variance induced from flow matching.

N
=1’

Theorem 1. Given a data x; from a dataset distribution and a noise xq from the base distribution,
the conditional probability paths in Proposition[l|induce the unique conditional vector field that has
the following form:

ve(x|z;) = 2 — (1 — n)xo.

Then, for any dataset distribution, the marginal vector field vi(x) generates the marginal probability
path p.(z), in other words, both vi(x) and pt(x) satisfy the continuity equation.

Theorem [T| shows that FINO (Equation [7) yields a valid continuous normalizing flow, which means
that the flow model trained by Equation [/| can generate samples close to those obtained by the
behavior policy of the training dataset.

Theorem 2. Suppose the cardinality of the dataset is finite, D = {x1,xa,...,zN} for some N, and
data are independently and identically distributed (i.i.d.) sampled. The variance of the marginal
probability path induced by FINO (Equation[]) is greater than or equal to that of the marginal
probability path induced by the flow matching (FM) objective (Equation E]) For any time t € [0, 1],

Var (X;™0) > Var (X{) - X[~ pi(x), XM~ pi™(2).

Published as a conference paper at ICLR 2026

Algorithm 1 FINO: Flow Matching with Injected Noise for Offline-to-Online RL

1: Inputs: flow matching policy s, one-step policy m,,, value function ()4, candidate action
samples Ngample, entropy update steps N¢

Compute sampling probability p(z) using Equation
Select a from categorical distribution p

9: Update w, 6 based on Equation 5] [7]and update ¢ via TD loss
10: if step mod N¢ == 0 then

2: while in offline pre-training do

3: Update w, § based on Equation and update ¢ via TD loss

4: end while

5: while in online fine-tuning do

6: Sample Ngmple candidate actions {a1, as, -+, ang,.} ~ Tw(s)
7:

8:

11: Estimate the entropy of policy ‘H
12 Update ¢ using Equation 9]
13: endif

14: end while

Theorem states that at time ¢ = 1, the marginal probability path induced by FINO (pf™°(z)) ex-
hibits larger variance than flow matching (p¥™(z)). This means that the model trained by Equation
represents wider action regions than the flow matching model (Equation [3), making it more suitable
for exploration. The proofs of Proposition[I]and Theorems|T} [2] are provided in Appendix [C|

To illustrate the effect of our design, we conduct a simple toy experiment. We consider a setting with
a fixed state and a two-dimensional action space, where the dataset is generated by sampling points
inside four circular regions. Both flow match- FLOW FINO
ing and our proposed method are trained on ® @
the same dataset. As shown in Figure [2] flow °
matching predominantly focuses on the data

Q
points themselves, leading the trained actions @, @ @
to remain almost entirely within the dataset dis- o °
tribution. In contrast, our method with noise ° Or—¢
injection learns to cover a wider region of the ® @c

action space. Notably, this expansion occurs in

a reliable manner, remaining centered around Fjgure 2: Toy example: blue contours represent

the dataset and thereby providing a broader yet the Jog-density of model samples; red circles de-
plausible coverage of the action space. note the dataset.

The expanded flow model then guides the training of the one-step policy that interacts with the
environment. As the one-step policy is trained under Equation 5] the expanded flow model enables
action-value maximization over a broader region of the action space, which is then utilized for
exploration during online fine-tuning. We provide a detailed explanation in Appendix

4.2 ENTROPY-GUIDED SAMPLING

After offline pre-training, the next step is to leverage the policy effectively during online fine-tuning,
where the agent continues improving through direct interaction with the environment. With noise
injection, the policy is trained to yield more diverse actions, each reflecting slightly different be-
haviors. To exploit this action diversity, the agent first samples multiple candidate actions for a
given state using multiple base noises for the flow model. Now, we do not simply choose the action
that maximizes action-value, which corresponds to exploitation. Instead, we construct a sampling
distribution over the candidate actions based on their action-values as

L exp(€-Qu(s, aq)) Viel, -, Nomple) ®)

psampling(z) = Zj exp(€ - Qy(s, aj))7

where £ is a temperature parameter. An actual action is drawn from pgampling, S0 that even lower-
value actions can be sampled for exploration purposes. A smaller £ produces a flatter distribution
that promotes more uniform sampling and encourages exploration, whereas a larger £ sharpens the
distribution and prioritizes greedy actions for exploitation.

Published as a conference paper at ICLR 2026

Table 1: Performance of FINO and baselines across OGBench and D4RL tasks. Results show scores
after offline pre-training and after online fine-tuning, averaged over 10 seeds with mean and 95%
confidence intervals. D4RL antmaze and adroit aggregate six and four tasks, respectively, while
OGBench reports results over five tasks (task names abbreviated by omitting the singletask suffix).
Full results are presented in Table E}

Task ‘ ReBRAC Cal-QL RLPD IFQL FQL FINO
OGBench humanoidmaze-medium-navigate | 21+5— 3+3 0+0— 0+0 0+0— 141 59+7—70+5 53+6—61+2 50+7 —97+1
OGBench humanoidmaze-large-navigate 241 — 140 0+0— 0+o0 00— 0+0 1143 — 1042 S5+1— 1043 6+2— 3347
OGBench antmaze-large-navigate 85+3—99+0 12+9— 1248 0+0—80+7 32+4—72+6 81+2— 9241 81+2—99+0
OGBench antmaze-giant-navigate 3547 —96+4 2+3—0+0 0+0—47+9 1+1—=0+0 1646 — 71+s 14+6 —79+0
OGBench antsoccer-arena-navigate 0+0— 0+0 0+0— 040 0+0— 241 33+4—35+5 6l+2—T4+4 57+3—T7+s
OGBench cube-double-play 92— 2842 243 — 0+0 00— 243 14+1 —40+2 3143 —73+2 34+3—79+2
OGBench puzzle-4x4-play 14+1—29+5 2432048 0+0—58+11 26424244 15+2 4548 1943 — 565
D4RL antmaze 80+5—+89+5 50+3—89+2 0+0—91+2 66+5—79+5 80+4— 95+ 79+4—96+1
DA4RL adroit 21+2—=83+2 -0+0—-0+0 0+0—73+s 18+1—42+3 1443 —100+6 13+2— 11241

Since sample-efficient learning under a limited interaction budget is the primary objective of online
fine-tuning, maintaining an appropriate balance between exploration and exploitation remains a crit-
ical challenge. However, relying on a fixed value of ¢ cannot adequately address the dynamics of
the learning process. So, we adapt the sampling strategy to the behavior of the policy, using entropy
of the policy (#) as an indicator and adjusting £ accordingly:

gnew = 5 — Qg [H - 7'2]’ (9)

where H is the target entropy, and a¢ denotes the learning rate. By adapting its behavior according
to the policy entropy, it properly controls the balance between exploration and exploitation through-
out online fine-tuning. At inference time, the agent deterministically selects the action with the
highest action-value, ensuring stable performance. The overall training pipeline is summarized in
Algorithm T]

4.3 PRACTICAL IMPLEMENTATION

We use FQL (Park et al., 2025b) as the backbone model, and accordingly the one-step policy, trained
with Equation [5|is employed for environment interaction. Since this policy is obtained through dis-
tillation and action-value maximization, its distribution is intractable, making direct entropy com-
putation infeasible. To address this, we follow prior work (Wang et al., | 2024) and estimate entropy
by sampling multiple actions from the same state and fitting them with a Gaussian Mixture Model
(GMM). A detailed description of the computation procedure is provided in Appendix [E.T}

Regarding hyperparameters, FINO involves two key parameters. For n, which determines the vari-
ance of the injected noise, we set its value based on the action range. Since all experimental environ-
ments use actions bounded within [—1, 1], we fix n = 0.1. For Ngample, as the volume of the action
space to explore grows significantly with the dimension, more samples are required to obtain a suffi-
ciently diverse set of candidates for effective exploration. Therefore, we set the number of sampled
actions to half of the action dimension. In implementation, we adopt a smooth shifted exponential
schedule for «; that satisfies the same boundary conditions, i.e., @3 ~ 0 and o} = n? > 0, and we
simply use the target vector 1 — xg, as we empirically observed no difference in performance. We
note that these core hyperparameters remain fixed throughout the training process. Further imple-
mentation details and additional hyperparameter settings are provided in Appendix [E|and[G]

5 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of FINO. To this end, we evaluate the
proposed method across a range of challenging environments, comparing its performance against
several baselines.

Environments. We primarily evaluate the performance of FINO on OGBench (Park et al.| |2025a)),
a recently proposed benchmark that extends beyond the commonly used D4RL (Fu et al., [2020) by
incorporating tasks with greater diversity and complexity. Although OGBench is originally intro-
duced for benchmarking offline goal-conditioned RL, we adapt it to our setting by employing its

Published as a conference paper at ICLR 2026

ReBRAC —¢— Cal-QL == RLPD == IFQL == FQL =O= FINO

OGBench D4RL

100 A 100 4

50 A 50 A
P A

0 1 2 3 4 5
Steps (x100k) Steps (x100k)

Performance

o 4
-
N
w
IS
wu

Figure 3: Aggregate performance across two benchmark domains. Each figure reports the averaged
learning curves over the common environments within the respective domain. Full results are pre-
sented in Figures[J)and |10}

single-task variant, where each goal is treated as an independent task. We also include results on the
widely adopted D4RL benchmark, which remains a common benchmark in offline-to-online RL.

Baselines. = We consider the following baselines for comparison: (1) ReBRAC (Tarasov et al.,
2023) is a Gaussian policy-based method, has demonstrated strong performance across offline RL
and the offline-to-online RL setting. (2) Cal-QL (Nakamoto et al., [2023) is a representative offline-
to-online RL algorithm that extends CQL (Kumar et al.| [2020) to the offline-to-online setting. (3)
RLPD (Ball et al.,[2023)) is an online RL algorithm initialized with an offline dataset, which achieves
superior performance despite relying solely on online training. Since prior work has provided lim-
ited investigation of flow matching and denoising diffusion in the offline-to-online RL setting, we
additionally construct flow matching variants of existing algorithms to provide a meaningful point
of comparison. (4) IFQL, introduced in the FQL paper (Park et al.,[2025b), is an adaptation of IDQL
(Hansen-Estruch et al.| 2023)) to the flow matching setting. Similar to our approach, it samples mul-
tiple actions from a single state and selects one for execution. (5) FQL (Park et al.,[2025b)), described
in Section[2] serves as the backbone algorithm upon which our method is built.

Evaluation. For all baselines, we report results using the same experimental protocol, consisting of
IM offline pre-training steps followed by 500K online fine-tuning steps. To assess the performance
gain during online fine-tuning, we present both the results immediately after offline pre-training and
those obtained at the end of online fine-tuning. All experiments are averaged over 10 random seeds,
and we report the mean and 95% confidence intervals. The best-performing results are highlighted
in bold when they fall within 95% of the best performance.

Results. Table [summarizes the results across a total of 45 tasks, aggregated by task category.
Overall, FINO consistently achieves strong performance across a diverse range of environments.
Crucially, this is achieved without degrading offline performance, as our method learns the model
that preserves the mean of the probability path while increasing variance from the offline dataset,
supported by Theorem |Zl When compared to ReBRAC (Tarasov et al.l [2023)), we observe that al-
though ReBRAC exhibits strong performance on environments such as antmaze, it struggles to
effectively learn in more complex and challenging humanoidmaze environments due to the in-
herent limitations of its conventional policy. The comparison with IFQL underscores that action
candidate sampling alone is insufficient to explain the performance improvement. In addition, when
compared to the backbone algorithm FQL (Park et al. 2025b), the results highlight the effective-
ness of our method during online fine-tuning, where FINO demonstrates both efficient exploration
and a balanced trade-off between exploration and exploitation. The improvements observed in the
navigate environments further suggest that FINO is well suited to environments where effective
exploration is critical.

In addition to the tabular summary, we provide aggregate learning curves by benchmark in Figure
to visualize the progression of performance over training steps. Consistent with the results in TableE
the figure shows that FINO consistently outperforms the baselines throughout training. In particular,
the experiments on OGBench demonstrate that, despite starting from the same performance as the
backbone algorithm, our method achieves stronger improvements, underscoring its high sample
efficiency.

Published as a conference paper at ICLR 2026

humanoidmaze-large-navigate puzzle-4x4-play door-cloned
100 A 100

=Q== FINO =}= Action Noise
100 o

50 1 50 1
50 4

0 5 0 5 0 5
Steps (x100k) Steps (x100k) Steps (x100k)

Performance

Figure 4: Comparison between FINO and the direct action noise injection baseline. Each plot shows
results aggregated over five tasks and averaged across 10 seeds, with shaded regions indicating 95%
confidence intervals.

6 DISCUSSION

6.1 IMPACT OF NOISE INJECTION POINT

One of the key components of the proposed method is the injection of noise into the flow matching
objective, which expands the action space and enables more efficient exploration during online fine-
tuning. To evaluate this design choice, we compare our approach with a simpler alternative that
promotes exploration by injecting Gaussian noise into the actions generated by the policy rather
than into the flow matching objective (denoted as Action Noise). For a fair comparison, we retain
other components such as the action-candidate mechanism and entropy guidance in this baseline as
well.

The results in Figure 4 demonstrate that the noise injection strategy of the proposed method yields a
notable performance gain. Consistent improvement is observed across both navigation and manip-
ulation environments, indicating that the proposed noise injection scheme remains effective across
task categories. This difference arises because, as mentioned in Section 4.1} the proposed method
enables the one-step policy to maximize action-value over a broader action space, rather than simply
adding noise to the action. Notably, the results on door—cloned show that, when compared with
the backbone algorithm FQL (whose performance is approximately 100), simply adding noise to
the action fails to facilitate exploration and can even degrade performance. These findings highlight
that the proposed noise injection method serves as an effective approach for promoting exploration
during online fine-tuning. Additional analyses of various noise injection strategies are provided in

Appendix

6.2 COMPARISON WITH ENTROPY-REGULATED NOISE SCALING

In Section @ we introduce an humanoidmaze-medium-navigate humanoidmaze-large-navigate
entropy-based guidance method for 100 —= FINO —0— ERNoise
action sampling. This approach en-
ables the policy to achieve a balanced
trade-off between exploration and ex- >0
ploitation during online fine-tuning, m
which is critical under a limited on-

line budget. Since previous studies
(Haarnoja et all [2018; |Wang et al.| Steps (x100k) Steps (x100k)

2024) have also employed entropy
to regulate this balance, we com-

Performance

Figure 5: Comparison between FINO and the entropy-
pare our method with an alternative regulated noise scaling baseline. Full results are presented

entropy-driven strategy (denoted as mn Table@

ER-Noise) to evaluate its effectiveness. Specifically, instead of using entropy to guide the action
sampling, the baseline replaces it with a simpler approach that scales the Gaussian noise based
on the entropy. The noise is then directly added to the action, allowing the action to be adjusted
according to the entropy of the policy.

Published as a conference paper at ICLR 2026

humanoidmaze-medium-navigate Training time ({) Inference time (1)

100 A 15 4
g 5 4
% — 10 —_—
E 504 g £
o — —
© =0= FINO 5 14
() .
a w/o Noise

w/o Guidance |_| ’_‘ ﬂ ﬂ
01 I ; 0 I 0
0 5
g,??‘ % \?Q\’?O\’Q\$O \‘%0\’ ?0\’<<\$0

Steps (x100k)

Figure 6: Comparison of performance and computational efficiency. The left figure shows the learn-
ing curve on the humanoidmaze-medium-navigate task, averaged over five tasks with 10
random seeds, with shaded regions denoting 95% confidence intervals. The middle and right figures
report the training and inference time per step of each baseline. Full results are presented in TableE}

Figure [5| shows that the proposed method significantly outperforms entropy-based noise scaling by
effectively balancing exploration and exploitation through sampling aligned with the entropy of the
policy. In particular, despite the inherent difficulty of finding relevant actions in high-dimensional
action spaces such as humanoidmaze, the proposed method successfully identifies appropriate
actions in such settings. However, the performance of ER-Noise indicates that mere noise scaling
guided by entropy is insufficient for selecting actions consistent with the policy. These findings thus
confirm that the proposed method effectively leverages entropy to enable sample-efficient learning
during online fine-tuning.

6.3 ANALYSIS OF NOISE INJECTION AND ENTROPY-GUIDED SAMPLING

In our proposed method, we incorporate two key components, namely noise injection during offline
pre-training and entropy-guided sampling during online fine-tuning. To clarify the contribution of
each element, we design controlled experiments that reflect its intended role. In particular, we first
examine the case without injected noise (w/o Noise), where the procedure reduces to the same
formulation as Equation [4] while still retaining entropy-guided sampling. We then consider the case
without entropy guidance (w/o Guidance), in which the sampling process still produces action
candidates, but the selection is restricted to the one with the highest action-value, thereby excluding
the entropy-based balancing mechanism.

The left plot of Figure[6demonstrates that both components are indispensable to the effectiveness of
our method. Noise injection, in particular, proves to be especially critical. This is because, without
it, the offline pre-training is limited to actions contained in the offline dataset. Even when action
candidates are generated, this restriction makes them lack diversity, which in turn leads to insuf-
ficient exploration and thereby reduces overall performance. In the absence of entropy guidance,
the performance deteriorates in later stages, as the training process fails to maintain an appropriate
balance between exploration and exploitation. These observations suggest that both noise injection
and entropy-guided sampling play an important role in enabling sample-efficient learning in the
offline-to-online RL setting.

6.4 TRAINING AND INFERENCE EFFICIENCY

Since computational cost is also an important factor in methods employing generative models, we
compare our algorithm with the baselines on humanoidmaze-medium, where it achieves the
largest performance improvement. The middle and right plots of Figure [6] present the training time
and inference time, respectively. The results show that although additional components such as en-
tropy estimation and action candidate sampling slightly increase training time relative to the back-
bone algorithm, this increase is negligible when compared to algorithms such as Cal-QL, leaving
overall training efficiency largely unaffected. Regarding inference time, our method requires fewer
samples than baselines such as IFQL, demonstrating that the additional computation does not impose
a significant overhead.

Published as a conference paper at ICLR 2026

6.5 EFFECT OF ACTION SAMPLE SIZE (NsampLe)

The proposed method injects noise into the flow matching objec-
tive and samples action from a set of action candidates to utilize o _+
the expanded policy. Since the size of the exploration space in- 95 - /'%_
creases with the action dimension of the task, we set the hyper- 90 - +z’

parameter Ngample, Which determines the number of action can- -
didates, to half of the action dimension. To examine the impact 851 +
of this hyperparameter, we evaluate performance across 6 envi- 80
ronments with action dimensions greater than 10 while varying 75 4

N, sample -

100 -

Performance

1;8 1}4 1/2 (E)urs) 1
As shown in Figure [/| performance generally improves as the Nsampre (x dim(4))
number of action candidates increases, but the marginal gains Figure 7: Comparison of perfor-
diminish beyond a certain point. Since Ngmple directly affects mance with varying Nemple-
inference cost, we adopt the choice of setting it to half of the

action dimension, achieving a practical balance between performance and computational overhead.

7 RELATED WORK

Offline-to-Online Reinforcement Learning. Offline-to-online RL is a framework that learns
through two stages: offline pre-training and online fine-tuning (Lee et al., [2022; Zhang et al., 2023]
Wang et al., |2023a; [Nakamoto et al., 2023} [Zhou et al), 2024). The goal is to improve an agent,
initially trained on offline data, by allowing it to further refine through environment interaction. The
simplest way to train within this framework is to employ the same offline RL algorithm for both
offline pre-training and online fine-tuning (Lyu et al., |2022; |Wu et al.l 2022; [Tarasov et al., [2023).
However, this strategy inherits the conservative nature of offline RL methods, which restricts explo-
ration during online fine-tuning (Yu & Zhang} 2023} |Luo et al.|[2024;|[Zhang et al., 2024} Kim et al.,
2025). Several prior studies have attempted to ease this conservatism and support more effective on-
line fine-tuning (Wang et al.,|2023a; Nakamoto et al., 2023)). Still, because these approaches remain
conservative, they fail to provide sample efficiency through effective exploration (Shin et al.| [2025).
In contrast, our method leverages the expressivity of generative models to encourage exploration
and regulates it with entropy-guided sampling, thereby achieving high sample efficiency.

Reinforcement Learning with Generative Models. Recent advances in generative models such as
denoising diffusion (Sohl-Dickstein et al.l 2015} |Ho et al., [2020) and flow matching (Lipman et al.,
2023 |Albergo & Vanden-Eijnden, 2023)) have spurred growing interest in applying these techniques
to RL. Among these efforts, research that employs generative models as policies has shown strong
results in both offline (Wang et al., |2023b; [Hansen-Estruch et al., [2023]; [Kang et al., [2023}; [Zhang
et al., 2025} [Kim et al.| 2024a:b} [Fang et al., [2025}; [Park et al., [2025b; (Chae et al.| [2026) and online
(Wang et al., 2024; Psenka et al., 2024; Ding et al., 2024) settings by framing the policy as a state-
conditioned generative model. Within the offline-to-online RL framework, there have been studies
that exploit the expressive capacity of diffusion models for data augmentation (Liu et al.| 2024;
Huang et al.| 2025). However, no prior work has leveraged such expressivity directly as a policy in
this setting. In contrast, our work harnesses the generative model for exploration, demonstrating a
method that achieves strong sample efficiency in offline-to-online RL.

8 CONCLUSION

In this work, we propose FINO, a novel approach that leverages the expressivity of flow matching
through noise injection and enhances online fine-tuning via entropy-guided sampling. Noise injec-
tion, applied to the offline pre-training, broadens the action space and yields a stronger initialization
for exploration, while entropy-guided sampling adapts to the policy’s evolving behavior to maintain
a workable exploration—exploitation balance. FINO achieves sample-efficient learning across di-
verse and challenging benchmarks while maintaining modest computational cost. Beyond empirical
gains, our study highlights how flow matching can be effectively utilized to address the challenges of
offline-to-online RL, and we believe this line of work opens new directions for harnessing generative
policies in advancing the broader offline-to-online RL paradigm.

10

Published as a conference paper at ICLR 2026

ACKNOWLEDGEMENTS

This work was supported in part by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2022-
11220469, Development of Core Technologies for Task-oriented Reinforcement Learning for Com-
mercialization of Autonomous Drones, 50%) and in part by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2025-00557589, Generative
Model Based Efficient Reinforcement Learning Algorithms for Multi-modal Expansion in General-
ized Environments, 50%). We would like to thank Woohyeon Byeon for providing valuable insights
into Theorem 2}

REFERENCES

Michael Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
In The Eleventh International Conference on Learning Representations, 2023.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jongseong Chae, Jongeui Park, Yongjae Shin, Gyeongmin Kim, Seungyul Han, and Youngchul
Sung. Flow actor-critic for offline reinforcement learning. In The Fourteenth International Con-
ference on Learning Representations, 2026. URL https://openreview.net/forum?
id=wuncwN7iZN.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via g-weighted variational policy optimization.
Advances in Neural Information Processing Systems, 37:53945-53968, 2024.

Jiajun Fan, Shuaike Shen, Chaoran Cheng, Yuxin Chen, Chumeng Liang, and Ge Liu. Online
reward-weighted fine-tuning of flow matching with wasserstein regularization. In The Thirteenth
International Conference on Learning Representations, 2025.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. In The Thirteenth International Conference on Learning Representations, 2025.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. Pmlr, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Xiao Huang, Xu Liu, Enze Zhang, Tong Yu, and Shuai Li. Offline-to-online reinforcement learning
with classifier-free diffusion generation. arXiv preprint arXiv:2508.06806, 2025.

11

https://openreview.net/forum?id=wuncwN7iZN
https://openreview.net/forum?id=wuncwN7iZN

Published as a conference paper at ICLR 2026

Marco F Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D Hanebeck. On entropy approxima-
tion for gaussian mixture random vectors. In 2008 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems, pp. 181-188. IEEE, 2008.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36:67195—
67212, 2023.

Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul Sung. Decision convformer: Local
filtering in metaformer is sufficient for decision making. In International Conference on Learning
Representations, 2024a.

Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul Sung. Adaptive g-aid for conditional
supervised learning in offline reinforcement learning. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024b.

Jeonghye Kim, Yongjae Shin, Whiyoung Jung, Sunghoon Hong, Deunsol Yoon, Youngchul Sung,
Kanghoon Lee, and Woohyung Lim. Penalizing infeasible actions and reward scaling in reinforce-
ment learning with offline data. In Forty-second International Conference on Machine Learning,
2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic g-ensemble. In Conference on Robot
Learning, pp. 1702-1712. PMLR, 2022.

Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Zhi-Quan Luo, and Ruoyu Sun.
Preserving diversity in supervised fine-tuning of large language models. In The Thirteenth Inter-
national Conference on Learning Representations, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Ruifeng Chen, Zhilong Zhang, Xinwei Chen, and Yang
Yu. Energy-guided diffusion sampling for offline-to-online reinforcement learning. In Proceed-
ings of the 41st International Conference on Machine Learning, pp. 31541-31565, 2024.

Qin-Wen Luo, Ming-Kun Xie, Yewen Wang, and Sheng-Jun Huang. Optimistic critic reconstruc-
tion and constrained fine-tuning for general offline-to-online rl. Advances in Neural Information
Processing Systems, 37:108167-108207, 2024.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711-1724,
2022.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36:62244-62269, 2023.

Jongeui Park, Myungsik Cho, and Youngchul Sung. Empo: A clustering-based on-policy algorithm
for offline reinforcement learing. In ICML 2024 Workshop: Aligning Reinforcement Learning
Experimentalists and Theorists, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In The Thirteenth International Conference on Learning Representa-
tions, 2025a.

12

Published as a conference paper at ICLR 2026

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. In International Conference on
Machine Learning (ICML), 2025b.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model
policy from rewards via g-score matching. In Proceedings of the 41st International Conference
on Machine Learning, pp. 41163-41182, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Yongjae Shin, Jeonghye Kim, Whiyoung Jung, Sunghoon Hong, Deunsol Yoon, Youngsoo Jang,
Geon-Hyeong Kim, Jongseong Chae, Youngchul Sung, Kanghoon Lee, and Woohyung Lim.
Online pre-training for offline-to-online reinforcement learning. In Forty-second International
Conference on Machine Learning, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-

ing, pp. 2256-2265. pmlr, 2015.

Dmitrii Sorokin, Maksim Nakhodnov, Andrey Kuznetsov, and Aibek Alanov. Imagerefl: Balancing
quality and diversity in human-aligned diffusion models. arXiv preprint arXiv:2505.22569, 2025.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592-11620, 2023.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song,
and Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforce-
ment learning. Advances in Neural Information Processing Systems, 36:47081-47104, 2023a.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183-54204, 2024.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023b.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278-31291, 2022.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pp. 40452-40474. PMLR, 2023.

Shuangfei Zhai, Ruixiang ZHANG, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Joshua M Susskind. Normaliz-

ing flows are capable generative models. In Forty-second International Conference on Machine
Learning, 2025.

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. In The Eleventh International Conference on Learning Representations, 2023.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. In The Thirteenth International Conference on Learning Representations,
2025.

13

Published as a conference paper at ICLR 2026

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of g-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 16908-16916, 2024.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online reinforce-
ment learning fine-tuning need not retain offline data. In The Thirteenth International Conference
on Learning Representations, 2024.

14

Published as a conference paper at ICLR 2026

A LIMITATIONS

The entropy of the policy is approximated using a Gaussian Mixture Model (GMM) (Huber et al.,
2008)), which incurs computational overhead and remains an approximation rather than an exact cal-
culation (Wang et al.l [2024). Future work could focus on developing entropy estimation methods
that are both computationally efficient and more precise, or on exploring alternative metrics that
capture policy behavior beyond entropy. In addition, while our method directly addresses the chal-
lenges of exploration and the exploration—exploitation trade-off in offline-to-online RL, the issue
of distribution shift remains. Addressing this challenge constitutes another promising direction for
future research.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models are used solely to aid and polish the writing. They are not involved in
research ideation, methodological design, or experimental analysis.

15

Published as a conference paper at ICLR 2026

C THEORETICAL PROOFS

Proposition 1. For notational simplicity, we denote (s;, z}) as x;. Given a dataset D = {x;}¥,,

the proposed time-dependent noise injection ¢, ~ N (0,a?1) induces the following conditional

probability paths of flow ¢y
P (wles) = N (3 | pols) = tas, Sulws) = (1= (1=’ 1),

in which the mean tx; is equal to the mean induced from flow matching, and the variance (1 — (1 —
n)t)? is greater than or equal to the variance induced from flow matching.

Proof. We consider time-dependent conditional probability paths of flow ¢, (z) as follows:
pe(alzs) = N (alpue(:), 02(2,)T) (10)
Following the flow matching (Lipman et al., 2023)), we set the time-dependent mean and variance as
,LLt(I)Z'»L) = tl’i, O—t(gji) =1~ (1 - O—min)t7

where o, is a negligible small constant. The conditional probability paths provide the following
canonical transformation for Gaussian distribution, i.e., the flow conditioned on x;:

d(x) = op(x)x + () = (1 — (1 — on)) + ta;
~ (1 —t)x +ta;

By injecting the introduced time-dependent noise €;, we obtain the perturbed flow
br(x) = ta; + (1 —)z + e,
where is distributed as normal distribution N'(0, I).

Since the injected noise is designed as a Gaussian distribution A'(0, a7 1) and is independent over
distribution [T0] the perturbed flow can be expressed as the sum of two Gaussian distributions. This
leads to the following conditional probability paths:

pi(zlzy) =N (x|txi7 (1 —1)%+ af)])
=N (x|txi7 (1 =12+ (n* —2n)t* + 217t) I)
= N (a|te;, (1= (1 —n)t)* 1)

as desired. O

Theorem 1. Given a data x; from a dataset distribution and a noise xq from the base distribution,
the conditional probability paths in Proposition[l|induce the unique conditional vector field that has
the following form:

ve(x|z;) = 2 — (1 — n)xo.
Then, for any dataset distribution, the marginal vector field v, (x) generates the marginal probability
path py(x), in other words, both vi(x) and p;(x) satisfy the continuity equation.
Proof. The conditional probability path p;(z¢|z;) = pt(Pi(xo)|x;) provides the canonical transfor-
mation of Gaussian distribution as the perturbed flow ¢ (z) conditioned on z;:
xy = ¢i(xo) = tay; + (1 — (1 — n)t)xo,

its derivative is the vector field that generates the flow ¢; by the definition of vector fields of contin-
uous normalizing flow (Lipman et al., | 2023).

Soulao) = S (i (L= (1 = n)t)ao) = s — (1 = n)ao,

16

Published as a conference paper at ICLR 2026

which is the same result as one from Theorem 3 of (Lipman et al., 2023)):

o) = T o =) + 1)

. —(1-n , ,

Ot (Lt (- (b,
1—(1—mn)t

)+ (= (L)) 4,
1—(1—mn)t

0O () (1 g
1—(1—n)t

=z — (1 —n)zo

where f’ denotes the derivative w.r.t interpolation time ¢, and o¢(x;)I = 3;(x;) and p(x;) are the
covariance and the mean of p;(x¢|x;), respectively. This means that the Gaussian probability path
pt(x¢|x;) induces the unique conditional vector field vy (z¢|z;) = x; — (1 — n)xo

Since the conditional probability path p;(x|z;) has the form of Gaussian probability distribution,
and the unique vector field v;(x¢|z;) generates the perturbed flow ¢ (z) conditioned on x;, we can
use the definition of the marginal probability paths p;(x;) and the marginal vector field v;(x;) in
flow matching (Lipman et al., [2023)):

pi(r) = /pt(xt|33i)Q($i)dxi7 p1(xi) = q(x;)

muw—/v<|»“%jif”Mm

where ¢ is a dataset distribution, both marginal probability paths p;(x;) and vector field v (z;) satisfy
the continuity equation (Villani et al2008)) (refer to Theorem 1 of |[Lipman et al.| (2023))). O

Theorem 2. Suppose the cardinality of the dataset is finite, D = {1, x2, ..., TN} for some N, and
data are independently and identically distributed (i.i.d.) sampled. The variance of the marginal
probability path induced by FINO (Equation [7) is greater than or equal to that of the marginal
probability path induced by the flow matching (FM) objective (Equation E]) For any time t € [0, 1],

Var (X0) > Var (X[Y), XN O (2), XPY e pf(a),

Proof. For notational simplicity, given a data x;, lefINo() and p; x|x1) be the marginal and

conditional probability paths induced by equation (7, and pf™(z) and p!™(z|z;) be them induced
by equation 3]

FINO (

Since data are i.i.d. sampled, we can write the marginal probability paths as follows:

FINO FINO FINO
PN = [oN(elaa(a CM—NZP (sl
1
WU;ﬁWmmmmzﬁzwwm
=1

To simplify notation, we denote random variables as X; and X that follow a marginal distribution
pe(x) and py(z|x;), respectively, given a data z;. Assume the distributions p;(x) and p;(z|x;) have
identity covariances, then, for fixed ¢, the random variable X; from the marginal probability path
p¢ () has the variance as follows (the following equation can apply to both pf™O(z) and pf™(x)

17

Published as a conference paper at ICLR 2026

since their conditional probability paths are isotropic Gaussian distributions):

Var (X,) = B [X7] - B[P = [mie)etao - (| m(m)mdm)g
= / (;f ipi(x)) 22dr — </ (i{ ipi(x)) xdz)Q

;zi:/pi(m)ﬂdx— (Jile:/pg(x)mdx>2

& B (XE - (;ZEP; [Xt1)2

(2

= | o vElxE) - D 2B XKE X

= 3 NE,[x7] - ZE (X =D > EyXGIE, (X4

i il

= 7 | D VELIXE) = YD NEL L + SN - DB - 3 S By XE

i JijF

]\12 Z NVar(X}) + Z(N —1DE,; (X — Z Z Epi [Xt]Ep{ [X¢]

i JijFi

Using the equation above, the variance of the marginal probability path pf™° can be rewritten as
1 [
Var(XFINO) — = Z No_z,FINOd i Z(N _ 7, FINO Z Z uz ,FINO gFINO Coan
i=1 % i JijFi

JFINO .
where d is the dimension of data z;, given data z;, az

bility path pF™O (z|z;), and 1™ is the mean of the path.

is the variance of the conditional proba-

By the same argument, the variance of the marginal probability path of FM pf™

Var(XM™M) = N2 ZNUZFMd-i-Z — D™ =TT ™™ a2

i g

where d is the dimension of data z;, given data z;, UE’FM is the variance of the conditional probability
path p™(z|z;), and ;™ is the mean of the path.

FIN M FIN
From Proposition l we already have p™° = ;5™ and o MO

tion [IT] from equation[I2] then we obtain

7,FM

> o, ', by subtracting equa-

Var(X[N) — Var(XP) = — ZNd(,FINO a;*FM) >0

=1

18

X

Published as a conference paper at ICLR 2026

D ANALYSIS OF NOISE INJECTION

In Section we describe a training approach that injects noise into the flow matching objective,
enabling the model to learn over a broader action space. In this section, we discuss alternative noise
injection strategies that can be applied to the flow matching objective and illustrate their effects
through a toy example. Throughout this section, we assume the use of zero-mean noise € ~ Pyoise
(e.g., Gaussian Noise).

D.1 CASE 1: INJECTING NOISE TO VELOCITY TARGET

Adding noise to the target velocity in Equation []is the simplest form of noise injection. The flow
matching objective with the added noise can be written as follows:

Lr(0) =E soonon, [[lo(t,s,21) = (21 = 0) = €l[3]

s,a=x1~D,
t~Unif([0,1]),

€~ Proise

=E [llvg(t, s,2¢) = (21 — z0)[13 — 2 (vo(t, 5,2¢) — (w1 — w0)) e + [lel[3] -

Since the noise has zero mean (Ec~yp,,,.[€] = 0), the second term becomes zero in expectation.
Furthermore, because ¢ is independent of 6, the last term ||€||3 is a constant with respect to 6, so it
does not contribute to the gradient during optimization. As a result, the total gradient of the objective
is identical to that of the original flow matching objective in Equation 4] which means that training
proceeds in exactly the same way in expectation.

19

Published as a conference paper at ICLR 2026

D.2 CASE 2: INJECTING NOISE TO POLICY ACTION

A straightforward way to encourage exploration is to inject noise directly to the actions generated
by the policy. However, as shown in Section [6.1] this approach leads to limited improvement dur-
ing online fine-tuning. This difference stems from the training process of the one-step policy, as
described in Section 4.1} which is the component that directly interacts with the environment.

The one-step policy is trained with the following objective:

2
Lr()=E owp, [—Qs(s,0u(s,2)) + allau(s z) —as(s,2)]3] -

2N (0,1),

ay, (8,2)~my,
It distills the flow model trained from the offline dataset while simultaneously maximizing action-
value through the value function. Since our algorithm employs the flow model trained with the
expanded action space from Equation[7} the resulting one-step policy learns to explore regions that
are more informative for improving action-values. In contrast, simply adding noise to the action
ignores action-value information, making it an inherently less efficient exploration strategy.

To illustrate this difference, we conduct a comparative experiment in a toy example. In this setting,
the state is fixed, and the action is two-dimensional, corresponding to the x- and y- axes in the figure.
The dataset is sampled from a Gaussian distribution centered at the origin, and the reward increases
monotonically toward the right. We train two flow models using Equations[d]and[7] respectively, and
each flow model is then used to train a separate one-step policy via Equation éEThe baseline that
uses the flow model trained with Equation[dand injects Gaussian noise directly into the action output
is referred to as the Action Noise. The approach based on the flow model trained with Equation [7]
corresponds to our proposed method, which does not apply any modification to the action output.

Action Noise FINO

Reward 1 Reward 1

Figure 8: Action samples of two one-step policies: blue contours indicate the log-density of the
sampled actions, and red x marks denote the centers of the dataset.

Figure [§ shows that, since the reward increases toward the right, the action samples generated by
both policies shift rightward relative to the dataset. While adding noise directly to the actions causes
the samples to spread in random directions, FINO guides the samples toward regions with higher
action-values. This is because the method leverages both the expanded action space and the action-
value maximization objective. As a result, the one-step policy is guided toward a more informed
learning direction, leading to more effective exploration during online fine-tuning and ultimately
explaining the superior performance of our approach.

20

Published as a conference paper at ICLR 2026

E IMPLEMENTATION DETAILS

We implement our proposed method, FINO, based on the official implementation of FQLB In FINO,
the entropy estimation module is adapted from the official DACER implementatio For all base-
lines except Cal-QL, we adopt the components provided in the FQL implementation, while for
Cal-QI_E] we rely on its official implementation.

E.1 ENTROPY ESTIMATION

In our proposed algorithm, entropy-guided sampling requires an estimate of policy entropy. How-
ever, since the one-step policy training objective combines behavior cloning from flow policy with
action-value maximization, the entropy cannot be derived in closed form. To address this, we adopt
an estimation strategy introduced in prior work (Wang et al., 2024).

To compute the policy entropy, we employ a Gaussian Mixture Model (GMM) as an approximation
of the action distribution. A GMM represents complex data distributions by combining multiple
Gaussian components. Formally, the likelihood of a sample under a GMM is defined as a mixture
of Gaussian densities:

K
pla) = mN(alp, Sk) (13)
k=1

where K denotes the number of Gaussian components and 7, € [0, 1] is the mixing coefficient that
specifies the probability of selecting the k-th Gaussian, satisfying ZkK:l = 1.

Training a GMM corresponds to estimating its parameters such that the likelihood of the given data
is maximized. To approximate the action distribution of the policy using a GMM, we first sample
multiple actions (a',a?,--- ,a’) from the policy for each state. We then fit the GMM to these
samples using the Expectation-Maximization (EM) algorithm. The EM algorithm alternates between
two iterative phases, namely the expectation step and the maximization step. In the expectation step,
the latent probabilities required to compute the likelihood are estimated:

. N (@ | g, X,
1(ef) = el)

(14)
S TN (an |, i)

where (z}) denotes that under the current parameter estimates, the observed data ™ come from
the k-th component of the probability. In the maximization step, the GMM parameters are updated
based on these probabilities:

N N N
1 n on=1(zg) - a” D omer V() (@ =) (@™ —)"
Wk:NZ'V(Zk)v Mk =]\1, kn , o X = LTk N ”
n=1 Zn:l V(Zk) Zn:l V(Zk)

5)

By repeating these two steps until convergence, we obtain a GMM that approximates the action
distribution of the policy.

The entropy of the fitted GMM is then computed following the approach established in prior work
(Huber et al., 2008):

K
WS om (logmet 5 los((2me) (k) (16

where d denotes the dimensionality of the action space. The entropy estimate of the policy is ob-
tained by averaging this quantity across a batch of sampled states. In practice, we set the number
of mixture components to K = 3, which we found sufficient across all tasks. The number of states
used for entropy estimation is determined by the batch size, and the number of actions sampled per
state is fixed at 200, following prior work (Wang et al.| 2024)).

"https://github.com/seohongpark/fgl
>https://github.com/happy-yan/DACER-Diffusion-with-Online-RL
3https://github.com/nakamotoo/Cal-QL

21

Published as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

F.1 BENCHMARKS

We conduct experiments on 35 tasks from OGBench (Park et al.,[2025a) and 10 tasks from D4RL
(Fu et al.l 2020). For OGBench, we adopt single-task variants (singletask) provided in the
benchmark and configure them to fit the offline-to-online RL framework. Each environment consists
of five distinct tasks, each defined by a different goal. In our experiments, we use the following 7
environments and datasets:

* humanoidmaze-medium-navigate-vQ

* humanoidmaze-large-navigate-v0

* antmaze-large-navigate-v0

* antmaze-giant-navigate-v0

* antsoccer-arena-navigate-vQ

* cube-double-play-v0

* puzzle-4x4-play-v0
In humanoidmaze, the objective is to control a humanoid robot with a 21-dimensional action space
to reach the designated goal. In antmaze and ant soccer, the agent controls a quadrupedal robot
with an 8-dimensional action space to navigate the goal; in antsoccer, the robot is required to
move a ball to the goal. For cube and puzzle, the agent manipulates a robotic arm with a 5-

dimensional action space. The cube task requires pick-and-place, while the puzzle task involves
pressing the buttons to solve the puzzle.

For D4RL, we evaluate on the following environments and datasets:

* antmaze-umaze-v2
* antmaze-umaze-diverse-v2
* antmaze-medium-play-v2
* antmaze-medium-diverse-v2
* antmaze-large-play-v2
* antmaze-large-diverse-v2
* pen-cloned-v1
* door-cloned-vl
¢ hammer-cloned-v1
* relocate-cloned-v1
The ant amze tasks share the same 8-dimensional robot as in OGBench but differ in their environ-

ment and dataset settings. The adroit suite (pen, door, hammer, relocate) involves
high-dimensional dexterous manipulation tasks, with action spaces exceeding 24 dimensions.

F.2 EVALUATION

We evaluate all baselines during online fine-tuning by reporting the average return over 50 episodes
every 50,000 environment steps. For OGBench and the antamze tasks in D4RL, we follow the
original evaluation protocol and use the success rate as the performance metric, while for the adroit
suite in D4RL, we adopt the normalized score. All experiments are conducted with 10 random seeds.

22

Published as a conference paper at ICLR 2026

G HYPERPARAMETER SETTINGS

G.1 FINO

Since our method builds on FQL (Park et al., 2025b) as the backbone algorithm, we retain all hyper-
parameters from FQL without modification. The hyperparameters introduced in our method, namely
o for noise injection and Ngpple and H for entropy-guided sampling, are configured depending on
the environment settings. The entropy update interval (V) is aligned with the evaluation frequency
and set to 50,000 steps. A complete list of hyperparameters is provided in Table[2]

Table 2: Hyperparameters

Hyperparameter ‘ Value

Noise constant 7) 0.05 -|A|

Candidate action samples Ngample 0.5 - dim(A)

Target entropy H —dim(A)

Entropy update steps N¢ 50,000

Standard deviation of noise a; n-exp(5(t — 1))

Hyperparameter (from FQL) ‘ Value

Learning rate 0.0003

Optimizer Adam (Kingma & Bal[2015)

Minibatch size 256

MLP dimensions [512,512,512,512]

Nonlinearity GELU (Hendrycks & Gimpel|[2016)

Target network smoothing coefficient | 0.005

Discount factor v 0.99 (default), 0.995 (antmaze—-giant, humanoidmaze, antsoccer)
Flow steps 10

Flow time sampling distribution Unif([0, 1])

Clipped double Q-learning False (default), True (adroit, antmaze-large, giant-navigate)
BC coefficient v Table

G.2 OTHER BASELINES

For the other baselines, we retain the hyperparameters used in FQL (Park et al.l [2025b)). For Re-
BRAC (Tarasov et al.,[2023)), we treat the actor bc coefficient (1) and the critic bc coefficient ()
as tunable hyperparameters, while keeping all other settings at their default values. For Cal-QL, the
cql regularizer coefficient («v) and the target action gap (/3) are used as hyperparameters. Regarding
the network size, we set it to [256, 256, 256, 256] for manipulation tasks and [512, 512, 512, 512]
for locomotion tasks of OGBench, with all other parameters kept at their default values. For RLPD,
we use a re-implementation of RLPD from the codebase of FQL and adopt the same configuration
as FQL, including setting the update-to-data ratio to 1 and using two value functions. For IFQL, the
only hyperparameter is the number of action samples (/V). For FQL, the behavior cloning coefficient
(«v) is the sole hyperparameter. The task-specific hyperparameters are summarized in Table[3]

Table 3: Task-specific hyperparameters for each baseline.

Task | ReBRAC (ay,a;) Cal-QL (o, 8) IFQL (N) FQL ()
humanoidmaze-medium-navigate-v0 (0.01, 0.01) (5,0.8) 32 100
humanoidmaze-large-navigate-v0 (0.01, 0.01) (5,0.8) 32 30
antmaze-large-navigate-v0 (0.003, 0.01) (5,0.8) 32 30
antmaze-giant-navigate-v0 (0.003, 0.01) (5,0.8) 32 10
antsoccer-arena-navigate-v0 (0.01, 0.01) (5,0.2) 64 30
cube-double-play-v0 (0.1,0) (0.01, 1) 32 300
puzzle-4x4-play-v0 (0.3,0.01) (0.003, 1) 32 1000
antmaze-umaze-v2 (0.003, 0.002) (5,0.8) 32 10
antmaze-umaze-diverse-v2 (0.003, 0.001) (5,0.8) 32 10
antmaze-medium-play-v2 (0.001, 0.0005) (5,0.8) 32 10
antmaze-medium-diverse-v2 (0.001, 0) (5,0.8) 32 10
antmaze-large-play-v2 (0.002, 0.001) (5,0.8) 32 3
antmaze-large-diverse-v2 (0.002, 0.002) (5,0.8) 32 3
pen-cloned-v1 (0.05, 0.5) (1,0.8) 128 1000
door-cloned-v1 (0.01,0.1) (1,0.8) 128 1000
hammer-cloned-v1 (0.1, 0.5) (1,0.8) 128 1000
relocate-cloned-v1 (0.1, 0.01) (1,0.8) 128 10000

23

Published as a conference paper at ICLR 2026

Table 4: Full results for main experiments (corresponding to Table [1| and Fig. '

Scores show

offline pre-training — online fine-tuning, averaged over 10 seeds (mean £ 95% CI). For OGBench,
the singletask suffix is omitted.

Environment ReBRAC Cal-QL RLPD IFQL FQL FINO
OGBench humanoidmaze-medium-navigate-task 1 14+7— 141 0+0—0+0 0+0—0+0 65+18 —45+11 1145 — 1444 13439143
OGBench humanoidmaze-medium-navigate-task2 | 18+9— 1+1 0+0— 0x0 0+0— 0=0 9244 — 837 89+13—90+3 T7+25 = 99+1
OGBench humanoidmaze-medium-navigate-task3 | 30+14 — 141 0+0— 0+0 00— 141 38+30— 74418 56+23 — 8942 52424 — 9941
OGBench humanoidmaze-medium-navigate-task4 | 17+11 — 141 0+0— 0+0 00— 0+0 0+0— 56+9 9+12— 1846 1144 — 9443
OGBench humanoidmaze-medium-navigate-task5 | 28+14 — 1016 0+0— 0+0 0+0—4+3 99419213 100+0 — 94+3 99+1 — 100+1
OGBench humanoidmaze-large-navigate-task 1 14+1—0+0 00— 0+0 0+0—0+0 1+1—0+0 443 — 141 5+4— 549
OGBench humanoidmaze-large-navigate-task2 0+0— 0+0 0+0— 0+0 00— 0+0 0+0— 0+0 00— 0+0 0+0 — 6+6
OGBench humanoidmaze-large-navigate-task3 O+6 — 242 0+0— 0+0 00— 0+0 4510 = 41+7 1746 — 3611 22410 — 9941
OGBench humanoidmaze-large-navigate-task4 1+1—= 141 0+0—0+0 0+0—0+0 0+0— 543 242 — 848 0+0— 48429
OGBench humanoidmaze-large-navigate-task5 I+1— 01 0+0— 0x0 0+0— 0=0 8+10— 53 1+1—5+7 0+0— 816
OGBench antmaze-large-navigate-task 1 9444 —100+£0 20426 —30+30 0+0— 9348 32410 — 66+15 8245 —98+1 8246 — 9842
OGBench antmaze-large-navigate-task2 88+2— 98+1 0+0— 0x0 0+0 — 5425 1747 —=70+4 63+5—T1+4 626 — 97+1
OGBench antmaze-large-navigate-task3 65+14—100+0 20+26 — 10+20 0+0— 99+1 5749 — 884 94+2—100+1 9243 — 100+0
OGBench antmaze-large-navigate-task4 8645 — 99+1 0+0— 040 00— 86411 1345 —75+8 80+5— 961 83+4—99+1
OGBench antmaze-large-navigate-task5 90+4 —100+1 20426 —20+26 00— 69+24 39+10— 59+23 85+£4—95+2 85+5—99+1
OGBench antmaze-giant-navigate-task 1 53+16—97+1 0+0— 0+0 00— 7+12 0+0— 0+0 8+7—65+24 344—96+1
OGBench antmaze-giant-navigate-task2 25+17— 98+1 0+0— 0+0 00— 48424 0+0— 0+0 17+11— 9641 0+1— 991
OGBench antmaze-giant-navigate-task3 34420 — 8619 0+0— 0+0 0+0— 44+18 0+0— 0+0 0+1—2+2 0+0— 0x0
OGBench antmaze-giant-navigate-task4 00— 98+1 0+0— 0+0 00— 59+26 0+0— 040 10413 — 96+2 29423 — 99+1
OGBench antmaze-giant-navigate-task5 61+12—99+1 10420 — 00 0+0— 80+12 4+4— 0+0 4321 — 99+ 36+15—99+1
OGBench antsoccer-arena-navigate-task 1 11— 040 0+0— 0+0 0:+£0 — 64 6915 — 64-+10 82+4— 9142 7746 — 9342
OGBench antsoccer-arena-navigate-task2 0+1—0+0 0+0—0+0 0+0—5+4 7047 — 66+21 88+4— 9743 8445 —98+1
OGBench antsoccer-arena-navigate-task3 0+0— 0+0 0+0— 0x0 0+0— 1+1 616 — 26+9 604 — 88+4 56+5— 91+2
OGBench antsoccer-arena-navigate-task4 141 — 040 0+0— 0+0 00— 0+0 2049 — 1746 32+4—70+5 3416 — T0+6
OGBench antsoccer-arena-navigate-taskS 0+0— 0+0 0+0— 0+0 00— 0+0 12— 443 43+9— 22418 3247 — 33425
OGBench cube-double-play-task 1 27+8—100+0 10+20 — O+0 0+0— I1x15 3145 — 8943 59+9—97+2 62+5— 9841
OGBench cube-double-play-task2 8+3—20+6 0+0— 040 00— 0+0 1343 —29+4 4249 — 8647 4047 — 9043
OGBench cube-double-play-task3 3+2— 167 0+0— 0x0 0+0— 0=0 6+2— 317 29+5— 89+9 3548 —90+4
OGBench cube-double-play-task4 I+1— 041 0+0— 0+0 00— 0+0 I+1—0+0 S5+3— 442 1144 — 2148
OGBench cube-double-play-task5 342342 0+0—0+0 0+0—0+0 1743 — 5146 206 — 8843 23410 — 9643
OGBench puzzle-4x4-play-task 1 25+4—100+0 10+20 = 70+30 0+0—100+0 38+6 — 100+ 32+6—100+0 3348 — 100+0
OGBench puzzle-4x4-play-task2 1044 — 0+0 0+0— 0+0 0+0— 40+32 1645 — 141 13+4— 00 1144 — 00
OGBench puzzle-4x4-play-task3 16+4 — 422 0+0—30+30 0+0—89+19 49+8—91+12 18+5 — 70+28 22+9— 100+0
OGBench puzzle-4x4-play-task4 8+2— 343 0+0— 0+0 0+0 — 40+32 2044 — 19417 T+4— 53430 20+5 — 80+24
OGBench puzzle-4x4-play-task5 9+2— 040 0+0—0+0 00— 20+26 843 — 040 5+2—0+0 8+2—0+0
D4RL antmaze-umaze-v2 90+4—100+1 81+3—=99+1 00— 100+1 94+2— 96+2 98+£1—99+1 98+2 — 100+1
D4RL antmaze-umaze-diverse-v2 75+12—= 1001 36+£12— 9444 00— 99+1 Tl+14— 53422 85+7—99+1 T8+5—99+1
D4RL antmaze-medium-play-v2 8+8— 91+ 60+£12—91+11 0+0—97+1 S54+14— 79418 78+5— 9442 79+5— 97+1
D4RL antmaze-medium-diverse-v2 1148 — 98+2 61+5—95+2 0+0— 98+1 41420 — 8643 669 — 95+2 60+11 — 97+1
D4RL antmaze-large-play-v2 42421 — 51428 3545 —=T74+6 0+0— 79411 6445 — 7843 73418 — 9541 75417 — 9541
D4RL antmaze-large-diverse-v2 T7+5 —93+2 298 —80+4 0+0—83xs T3+6— 843 8111 =91+ 82+4—97+1
D4RL pen-cloned-v1 T7+6— 12944 -lir—-141 3429343 7343 —97+7 53+12— 14144 5148 — 14043
DARL door-cloned-v1 00— 83+6 0+0— 0x0 0+0— 101+4 1+1— 235 0+0— 1012 00— 1041
D4RL hammer-cloned-v1 5+3— 11942 0+0— 0+0 0+£0—99+19 1+1—44+8 0+0— 110+25 0+0 — 1342
DA4RL relocate-cloned-v1 0+0— 0+0 0+0— 0+0 00— 00 0+0— 241 10— 47+2 1+0— 7242

24

Published as a conference paper at ICLR 2026

Table 5: Full results for ablation studies (Fig.[5] Fig.[6). Scores show offline pre-training — online
fine-tuning, averaged over 10 seeds (mean £ 95% CI). For OGBench, the singletask suffix is
omitted.

Environment ‘ FINO Direct Noise w/o Noise w/o Guidance
OGBench humanoidmaze-medium-navigate-task 1 1343 —91+3 1445 — 041 18+5— 040 16+3 —50+16
OGBench humanoidmaze-medium-navigate-task2 | 77+25 — 99+1 88+16 — 96+6 80+19 — 99+2 71425 — 84420
OGBench humanoidmaze-medium-navigate-task3 | 52424 — 99+1 54422 — 60+32 45+24—49+32 48+23 — 79425
OGBench humanoidmaze-medium-navigate-task4 1144 — 9443 T+10— 31424 2+4—20+26 0+0— 74+16
OGBench humanoidmaze-medium-navigate-task5 | 99+1 — 100+1 991 — 100+1 991 —99+1 98+1—99+1
OGBench humanoidmaze-large-navigate-task 1 S5+4—5+9 4+4— 0+0 34— 8414 4+4— 041
OGBench humanoidmaze-large-navigate-task2 0+0—6+6 0+0—0=0 0+0—243 0+1—3+5
OGBench humanoidmaze-large-navigate-task3 22410 —99+1 1946 — 41+5 1847 —95+4 25+10— 78426
OGBench humanoidmaze-large-navigate-task4 00— 48429 242 — 847 0+0—5+9 0+0— 18422
OGBench humanoidmaze-large-navigate-task5 0+0— 8+16 00 —4+4 1+2— 0+0 0+0—13+18
OGBench antmaze-large-navigate-task 1 82+6— 98+2 82+5—98+1 6815 — 98+1 7845 — 35427
OGBench antmaze-large-navigate-task2 6246 — 97+1 5945 — 69+38 6245 — 9443 7546 — 9143
OGBench antmaze-large-navigate-task3 9243 —100+0 96+2— 99+1 95+2— 1000 9543 — 99+1
OGBench antmaze-large-navigate-task4 83+4—99+1 72416 — 96+2 6915 — 98+1 81+4— 9841
OGBench antmaze-large-navigate-task5 85+5—99+1 83+3—95+2 83+3— 98+2 82+5 — 83+21
OGBench antmaze-giant-navigate-task 1 3+4—96+1 9+7— 6442 9+10— 85+13 4+5—79+2
OGBench antmaze-giant-navigate-task2 0+1—99+1 18411 — 96+1 142 — 98+2 1+2— 99+
OGBench antmaze-giant-navigate-task3 0+0—0+0 01— 1+2 0+0— 00 0+0— 7415
OGBench antmaze-giant-navigate-task4 29423 —99+1 10+12—85+15 5+7—98+1 28423 — 9743
OGBench antmaze-giant-navigate-task5 3615 —99+1 43420 — 98+1 22413 —99+1 31+17 =99+
OGBench antsoccer-arena-navigate-task 1 77+6—93+2 81+4—93+4 69+7 — 9442 68+5 — 73+16
OGBench antsoccer-arena-navigate-task2 84+5— 98+1 90+3 = 97+2 83+6—97+2 83+4—93+2
OGBench antsoccer-arena-navigate-task3 5645 — 91+2 5844 — 87+4 54+4— 8144 57+4— T8+4
OGBench antsoccer-arena-navigate-task4 34+6—T70+6 3344 — 7148 4345 — 6247 43+4—50+11
OGBench antsoccer-arena-navigate-task5 324733425 43+7— 14+17 19+5 — 10+19 3348 — 42423
OGBench cube-double-play-task 1 6245 — 98+1 64+9—97+3 73+6—95+3 7448 —96+3
OGBench cube-double-play-task2 40+7 —90+3 40+5 — 8643 60+£7 — 8049 61+9— 895
OGBench cube-double-play-task3 3548 — 90+4 26+5 — 88+6 57+5— 8845 5247 — 96+2
OGBench cube-double-play-task4 1144 —2148 S+2—3+2 14+£1 =241 8+3— 644
OGBench cube-double-play-task5 23+10—96+3 2146 — 88+s 43+15— 86+6 26+9 — 91+4
OGBench puzzle-4x4-play-task 33+8—100+0 31+5—100+0 56+7 — 100+0 61+7—100+0
OGBench puzzle-4x4-play-task2 1144 — 0+o0 1242 — 0+0 1545 — 0+o0 1043 — 0+o0
OGBench puzzle-4x4-play-task3 2249 —100+0 20+2 — 80+26 53411 — 88+15 5946 — 97+6
OGBench puzzle-4x4-play-task4 20+5 — 80+24 943 — 61431 18+4 — 33429 1946 — 10+20
OGBench puzzle-4x4-play-task5 8+2— 0+0 743 —0x0 6+3— 0x0 9+4— 0x0
D4RL antmaze-umaze-v2 98+2—100+1 9642 — 99+1 98+1—99-+1 9742 — 99+1
D4RL antmaze-umaze-diverse-v2 78+5 —99+1 85+5 =97+ 85+7—99+1 8216 — 1000
D4RL antmaze-medium-play-v2 7945 — 97+1 T4+4— 9343 80+5 — 96+2 7944 — 96+2
D4RL antmaze-medium-diverse-v2 60+11—97+1 6248 — 951 62+10— 9546 61+11—97+1
D4RL antmaze-large-play-v2 75+£17— 95+1 72+£19— 90+s5 67+22—92+2 T3+16 — 94+3
D4RL antmaze-large-diverse-v2 82+4— 9741 83+9—90+4 T2+16 — 9443 8143 — 9443
DA4RL pen-cloned-v1 51— 14043 57+9—137+4 60+£8 — 13544 57+7—136+4
D4RL door-cloned-v1 0+0— 104+1 0+0— 102+2 0+0— 1022 0+0— 1014
D4RL hammer-cloned-v1 0+0— 13412 0+0— 11626 0+0— 120+12 0+0— 112414
D4RL relocate-cloned-v1 1+0—72+2 1+0—59+3 1+0—61+s 11— 6247

25

Published as a conference paper at ICLR 2026

~{— ReBRAC —&— Cal-QL —%— RLPD —#A— IFQL —O- FQL =O= FINO

humanoidmaze-medium-navigate
task3

task2 task4 task5

Performance

task2 task3 task4 task5

100 o -

i
o
c
©
£ 504 E E E
o
£
&
0- A

antmaze-large-navigate
task3

Performance

— T T T T
antmaze-giant-navigate
task3

Ll

antsoccer-arena-navigate

Performance

task3 task4 task5
100 B o000] B B
5]
c
©
o
£
&
04 4 i 4 i

L
cube-double-play
task3

Performance

task2 task4 task5

Performance

e

A
2-0=¢=0-¢= 93|

o 1 2 3 4 5 O0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Steps (x100k) Steps (x100k) Steps (x100k) Steps (x100k) Steps (x100k)

Figure 9: Full results on OGBench environments. Each row corresponds to one environment, with

five single-task variants shown side by side. Shaded areas denote 95% confidence intervals over 10
seeds.

26

Published as a conference paper at ICLR 2026

Performance

Performance

100

50

umaze-v2

~{— ReBRAC

umaze-diverse-v2

—%— Cal-QL

=¥— RLPD

—i— IFQL

medium-play-v2

—- FQL

=== FINO

medium-diverse-v2

large-play-v2

door-cloned-vl

hammer-cloned-vl

relocate-cloned-vl

100

50

100

50

100

504

50

Steps (x100k)

Steps (x100k)

Steps (x100k)

Steps (x100k)

Steps (x100k)

Figure 10: Full results on DARL environments. For AntMaze tasks, the prefix “antmaze-" is omitted
for clarity. Shaded areas denote 95% confidence intervals over 10 seeds.

27

	Introduction
	Preliminaries
	Motivation
	Method
	Noise Injection for Flow Matching
	Entropy-Guided Sampling
	Practical Implementation

	Experiments
	Discussion
	Impact of Noise Injection Point
	Comparison with Entropy-Regulated Noise Scaling
	Analysis of Noise Injection and Entropy-Guided Sampling
	Training and Inference Efficiency
	Effect of Action Sample Size (Nsample)

	Related Work
	Conclusion
	Limitations
	The Use of Large Language Models (LLMs)
	Theoretical Proofs
	Analysis of Noise Injection
	Case 1: Injecting Noise to Velocity Target
	Case 2: Injecting Noise to Policy Action

	Implementation Details
	Entropy Estimation

	Experimental Details
	Benchmarks
	Evaluation

	Hyperparameter Settings
	FINO
	Other Baselines

