
PENCIL: Long Thoughts with Short Memory

Chenxiao Yang 1 Nathan Srebro 1 David McAllester 1 Zhiyuan Li 1

Abstract
While state-of-the-art LLMs have demonstrated
great promise of using long Chains-of-Thought
(CoT) to boost reasoning, scaling it up to more
challenging problems is fundamentally limited by
suboptimal memory usage — intermediate com-
putations accumulate indefinitely in context even
no longer needed for future thoughts. We intro-
duce PENCIL, which incorporates a novel reduc-
tion mechanism into the autoregressive genera-
tion process that recursively clean up intermedi-
ate thoughts based on patterns learned from train-
ing. By alternately generating and erasing, PEN-
CIL can think deeper to solve harder problems
using shorter context and less computes. Empiri-
cally, for example, we demonstrate PENCIL with
a small 25M-parameter transformer and 2048 con-
text length solves Einstein’s puzzle — a task that
challenges much larger models like GPT-4. Theo-
retically, we prove PENCIL can perform universal
efficient computation by simulating any Turing
machines with optimal time and space complexity,
and thus can solve arbitrary computable tasks that
are otherwise intractable for vanilla CoT.

1. Introduction
Recently, there has been a surge of interest in reasoning
with Chain-of-Thought (CoT) (Wei et al., 2022) and gen-
erating longer thoughts at test-time to tackle larger-scale
and more complicated problems (OpenAI, 2024; Guo et al.,
2025; Snell et al., 2024; Muennighoff et al., 2025). CoT is
an iterative generation process: each intermediate reason-
ing step is appended to the current context and treated as
the input in subsequent reasoning. The context grows until
reaching a final answer. While such an iterative model is
theoretically powerful – capable, in principle, of tackling
many intricate problems given unlimited length (Merrill &

1Toyota Technological Institute at Chicago. Correspondence
to: Chenxiao Yang <chenxiao@ttic.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Sabharwal, 2023; Feng et al., 2024; Li et al., 2024b) – it
suffers from the inherent write-only limitation: partial com-
putation remains in the context even when no longer needed
for future thought generation. This design becomes particu-
larly problematic for inherently hard reasoning tasks, where
no efficient algorithm exists and thus reasoning inevitably
spans many steps, forcing the context length to grow indefi-
nitely. This not only demands excessive memory resources
that become impractical for computationally hard tasks, but
could also degrades the model’s ability to effectively retrieve
information in the context, even when the maximum length
is not exceeded (Liu et al., 2024).

Memory management is a major issue in modern computer
systems. Turing machines, for example, can overwrite tape
cells and reclaim space for new computations, while high-
level programming languages rely on stack frames, func-
tion calls, and garbage collection to discard unneeded data.
While some previous works have attempted to augment
LLMs with external memory (e.g. (Gao et al., 2023; Wang
et al., 2024)), they often lack a direct mechanism for recla-
mation of no longer needed memory as stack deallocation or
garbage collection. This paper proposes PENCIL, 1 which
introduces cleaning mechanisms to CoT for space-efficient
and long-chain reasoning.

In a nutshell, PENCIL combines a next-token generator
(e.g., a decoder-only transformer) and a reduction rule, and
applies the reduction rule whenever possible throughout the
standard iterative next-token generation process to reduce
context length. In this paper, we focus on a simple yet
universal reduction rule motivated by the function call stack
in modern computers.

C [CALL] T [SEP] A [RETURN] ⇒ C A (1)

where [CALL], [SEP], and [RETURN] are special to-
kens that separate the context (C), thoughts (T), and answer
(A) in the sequence. Once a computation completes (marked
by [RETURN]), all intermediate reasoning steps (those be-
tween [CALL]and [SEP]) will be removed, merging the
answer back into the context. Importantly, this process can
be applied recursively, allowing for hierarchical reasoning
structures similar to nested function calls in programming.
PENCIL alternates between standard CoT-style generation

1PENCIL ENables Context-efficient Inference and Learning

1

PENCIL: Long Thoughts with Short Memory

Response : Let's break this problem down into parts! First,
let's figure out how many toys were in all blue bags. Looking
at the blue bags, they made 3 bags with 5 toys in each, so
multiplying 3 × 5 = 15. There were 15 toys in all blue bags.
That's just part of the story though - we still need to know
how many toys were in all red bags. Looking at the red bags,
they made 2 bags with 4 toys in each, so multiplying 2 × 4 =
8. There were 8 toys in all red bags. Now that we know both
amounts, we can find the total toys by adding the toys from
blue and red bags together: 15 + 8 = 23. There were 23 toys
used in total.

...[EndOfPrompt][CALL]Let's break this problem down into parts! [CALL] First, let's
figure out how many toys were in all blue bags. Looking at the blue bags, they made 3
bags with 5 toys in each, so multiplying 3 × 5 = 15. [SEP] There were 15 toys in all
blue bags. [RETURN]

Response : There were 23 toys used in total.

Chain-of-Thought

PENCIL

...[EndOfPrompt][CALL]Let's break this problem down into parts! There were 15 toys in
all blue bags.

...[EndOfPrompt][CALL]Let's break this problem down into parts! There were 15 toys in
all blue bags. [CALL] That's just part of the story though - we still need to know how
many toys were in all red bags. Looking at the red bags, they made 2 bags with 4 toys
in each, so multiplying 2 × 4 = 8. [SEP] There were 8 toys in all red bags. [RETURN]

...[EndOfPrompt][CALL]Let's break this problem down into parts! There were 15 toys in
all blue bags. There were 8 toys in all red bags. Now that we know both amounts, we can
find the total toys by adding the toys from blue and red bags together: 15 + 8 = 23.
[SEP]There were 23 toys used in total. [RETURN]

...[EndOfPrompt]There were 23 toys used in total.

...[EndOfPrompt][CALL]Let's break this problem down into parts! There were 15 toys in
all blue bags. There were 8 toys in all red bags.

[CALL] [SEP] AnswerContext [RETURN]

Context Answer

A toy store put together party bags for a birthday. They made 3 blue bags with 5 toys each and 2 red bags with 4 toys each.
How many toys were used in total?

 Intermediate Thoughts

(b) Hidden thoughts of PENCIL(a) PENCIL

:

:

:

:

:

:

Prompt :

: Model Generation

: Reduction Rule
...[EndOfPrompt]There were 23 toys used in total. [EndOfText]:

Figure 1: A toy example illustrating how PENCIL would potentially solve an arithmetic problem. Bold text indicates content
generated in the current iteration, content highlighted in blue indicates intermediate thoughts to be erased by the reduction
rule. See a concrete example of the complete thinking process for solving QBF in Fig. 2 and Einstein’s puzzle in Fig. 8.

and this reduction step, automatically discarding unneeded
thoughts based on patterns learned from training. Figure 1
gives a hypothetical example of how PENCIL might be
applied to natural language thoughts.

We train and evaluate PENCIL on SAT, QBF, and Einstein’s
puzzle — tasks that inherently require exponential com-
putation time. PENCIL effectively reduces the maximal
CoT length (i.e. the space requirement) from exponential
to polynomial. Consequently, under fixed architecture and
context window, PENCIL allows solving larger-sized prob-
lems whereas CoT fails due to exploding context length.
Furthermore, by continually discarding irrelevant tokens,
PENCIL can significantly save training computes and con-
verge faster even when memory or expressiveness is not a
bottleneck. Notably, on the 5×5 Einstein puzzle – a chal-
lenging natural-language logic puzzle that even large models
like GPT-4 struggle with – PENCIL achieves a 97% success
rate by using a small transformer with 25M-parameter and
2048-token context.

Theoretically, we show that PENCIL with a fixed finite-
size decoder-only transformer can perform universal space-
efficient computation, by simulating Turing machine run-
ning in T steps and S space withO(T) generated tokens and
maximal sequence length O(S). This indicates its power
for solving any computational tasks with optimal time and
space efficiency. This is a significant improvement over
standard CoT, which require context length to grow pro-
portionally with O(T), making them fundamentally unable
to solve problems requiring extensive computation within
fixed memory constraints.

See discussions about related work in Appendix A. Codes
are available at https://github.com/chr26195/
PENCIL.

2. PENCIL: Iterative Generation & Reduction
Chain-of-Thought (CoT) (Wei et al., 2022) allows language
models to generate intermediate reasoning steps before pro-
ducing a final answer. Formally, given a finite alphabet Σ,
let π : Σ∗ → Σ be a next-token predictor, which maps an
input sequence (x1, x2, · · · , xn) ∈ Σn to the next token
xn+1 ∈ Σ. Correspondingly, we can define a sequence-to-
sequence mapping f : Σ∗ → Σ∗ as

fπ(x1, . . . , xn) ≜ (x1, . . . , xn, π(x1, . . . , xn)) (2)

which concatenates the next token to the current context.
For brevity, we will write f instead of fπ when the context
is clear. CoT with k steps is denoted as fk : Σ∗ → Σ∗,
where fk ≜ f ◦ fk−1 and f1 ≜ f . Given any input se-
quence x = (x1, x2, . . . , xn) ∈ Σn, each application of f
extends the sequence by one token, such that fk(x) ∈ Σn+k.
Throughout this paper, we use shorthand x:j to denote
(x1, . . . , xj), and xi:j the subsequence from xi to xj , for
any string x ∈ Σ∗ longer than j.

The iterative generation process of CoT is inherently limited
by its write-once nature; that is, once written, intermedi-
ate computations permanently occupy the context, regard-
less of their relevance in the subsequent reasoning steps.
Consequently, the context length would eventually grow
overwhelmingly large for complex reasoning problems. To
address this, we introduce PENCIL, which is CoT equipped

2

https://github.com/chr26195/PENCIL
https://github.com/chr26195/PENCIL

PENCIL: Long Thoughts with Short Memory

with a reduction rule that enables selective elimination of
reasoning traces, allowing the model to generate longer
thoughts to solve larger problems with less memory.

2.1. The Reduction Rule and PENCIL

A reduction rule (a.k.a. rewriting rule) (Baader & Nip-
kow, 1998) is a formal mechanism originated from logic
for transforming one expression to another via predefined
patterns and ultimately reaching a final normal form, i.e.
the answer. It serves as a fundamental model of computa-
tion in classic functional programming languages such as
λ-calculus (O’Donnell, 1985), and proof assistants for au-
tomated theorem proving and reasoning (Wos et al., 1992).
Mathematically, the reduction rule can be thought of as a
sequence-to-sequence function ϕ : Σ∗ → Σ∗, which in this
paper is from a longer sequence (x1, . . . , xa) ∈ Σa to a
shorter one (xi1 , . . . , xib) ∈ Σb where b ≤ a.

The Reduction Rule Let Σ̂ = Σ ∪ { [CALL], [SEP],
[RETURN]} be the extended alphabet including three spe-
cial tokens that indicate certain structures of the reasoning
trace. Given the new alphabet, we can instantiate the rule ϕ
as (1), where

C ∈ (Σ ∪ {[CALL],[SEP],[RETURN]})∗

T ∈ (Σ ∪ {[SEP],[RETURN]})∗

A ∈ (Σ ∪ {[CALL]})∗
(3)

are subsequences separated by the special tokens. The al-
lowance of difference special tokens in C, T, A ensures that:
1) the [RETURN] token is the last [RETURN] token in the
sequence; 2) the [SEP] token in (1) is the one immediately
before the [RETURN] token ; 3) and the [CALL] token is
immediately before the [SEP] token.

Intuitively, C can be understood as context that can include
information that is either directly relevant to solving the cur-
rent problem or irrelevant but useful for solving future prob-
lems; T represents the intermediate thoughts for deriving the
answer and A represents the answer. If the input sequence
satisfy the pattern C [CALL] T [SEP] A [RETURN], the
rule will activate. Consequently, the entire intermediate
thoughts and the special token triplet will be removed, with
the answer being merged back into the context. Otherwise
if the pattern is not satisfied, the rule will leave the input
sequence unchanged.

It is important to note that the inclusion of [CALL]in C
enables nested reasoning structures critical for achieving op-
timal space efficiency, while allowing [CALL]in A enables
tail recursion optimization for better efficiency as will be
discussed in Sec. 3.

PENCIL consists of a learnable next-token predictor f as
defined in (2) which is responsible for generating the inter-
mediate reasoning steps (including special tokens [CALL],

[SEP], [RETURN]) as in the standard CoT, and the re-
duction rule ϕ as defined in (1) that serves to reduce the
context and clean the memory. Formally, we define one
step and k-steps of PENCIL as PENCIL1

ϕ,f = ϕ ◦ f and
PENCILk

ϕ,f = (ϕ◦f)k. Namely, each step of PENCIL first
generates the next token as in standard CoT and then applies
the reduction rule ϕ, deleting the intermediate computations
if the new sequence matches the pattern.

2.2. Alternated Generation and Reduction Process

The alternated generation and reduction process of PENCIL
can also be interpreted by grouping the f functions that are
interleaved by ineffective reduction steps (where ϕ does not
match the pattern):

PENCILk
ϕ,f = fkr+1 ◦ ϕ ◦ fkr ◦ ϕ ◦ · · · ◦ ϕ ◦ fk1 (4)

where k =
∑r+1

i=1 ki, and ki denotes the number of tokens
generated between the (i−1)-th and i-th effective reduction.
Here r is the total number of effective reductions, assuming
the model terminates with a [EOS] token indicating stop
generation. This process alternates between two phases

Generation: x(i) ≜ fki ◦ ϕ · · ·ϕ ◦ fk1(x)︸ ︷︷ ︸
x(i−0.5)

,

Reduction: x(i+0.5) ≜ ϕ ◦ fki · · ·ϕ ◦ fk1(x)︸ ︷︷ ︸
x(i)

(5)

where x(i) represents a generated sequence ending with
[RETURN]except for x(r+1) which ends with the [EOS]
token, and x(i+0.5) represents the reduced sequence after
each effective reduction, with x(0.5) ≜ x defined as the input
prompt. The complete reasoning trace can be expressed as:

x
fk1

−→ x(1)
ϕ−→ x(1.5) · · · x(r+0.5) fkr+1

−→ x(r+1) (6)

That is, at each iteration i, PENCIL first generates from
x(i−0.5), which could be understood as the prompt for the
current iteration, to x(i), a prompt-response pair that ends
with the [RETURN]token; then PENCIL applies the reduc-
tion rule to transform the prompt-response pair x(i) into a
new prompt x(i+0.5) for the next iteration i+ 1.

Space Efficiency To compare the space efficiency of CoT
and PENCIL, we define scaffolded CoT as the trace that
would be produced by PENCIL but without actually remov-
ing the thoughts. (We refer to it as “scaffolded” because
it includes the special tokens that mark the hierarchical
reasoning structure.) Formally, for any input sequence x,
scaffolded CoT is defined as

(x , x(1)\x(0.5) , . . . , x(r+1)\x(r+0.5)) (7)

where x(i)\x(i−0.5) represents the tokens generated at
iteration i. The max sequence length in PENCIL is

3

PENCIL: Long Thoughts with Short Memory

Prompt : ∃ 2 ∀ 1 : #1 (2 ∨ ¬ 2 ∨ 1) #2 (1 ∨ 2) #3 (2) #4 (¬ 2 ∨ ¬ 1) #5 (1 ∨ ¬ 1) #6 (¬ 1 ∨ ¬ 2)

[CALL] Question: prefix_from ∃ 2 Try 2 = False [CALL]
Question: prefix_from ∀ 1 Try 1 = False [CALL]
Question: evaluate 1 = False 2 = False Check #0 (2 ∨ ¬
2 ∨ 1) True Check #1 (1 ∨ 2) False [SEP] Answer:
False [RETURN][SEP] Answer: False [RETURN] Try 2
= True [CALL] Question: prefix_from ∀ 1 Try 1 = False
[CALL] Question: evaluate 1 = False 2 = True Check #0
(2 ∨ ¬ 2 ∨ 1) True Check #1 (1 ∨ 2) True Check #2 (2
) True Check #3 (¬ 2 ∨ ¬ 1) True Check #4 (1 ∨ ¬ 1)
True Check #5 (¬ 1 ∨ ¬ 2) True Formula = True [SEP]
Answer: True [RETURN] Try 1 = True [CALL] Question:
evaluate 1 = True 2 = True Check #0 (2 ∨ ¬ 2 ∨ 1) True
Check #1 (1 ∨ 2) True Check #2 (2) True Check #3 (¬
2 ∨ ¬ 1) False [SEP] Answer: False [RETURN] [SEP]
Answer: False [RETURN][SEP] Answer: False
[RETURN]

Chain-of-Thought

Answer: False

PENCIL

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False [CALL] Question:
prefix_from ∀ 1 Try 1 = False [CALL] Question: evaluate 1 = False 2 = False Check #0 (
2 ∨ ¬ 2 ∨ 1) True Check #1 (1 ∨ 2) False [SEP] Answer: False [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False [CALL] Question:
prefix_from ∀ 1 Try 1 = False Answer: False [SEP] Answer: False [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃
2 Try 2 = False [CALL] Question: prefix_from ∀ 1
Try 1 = False Answer: False

...[EndOfPrompt] [CALL] Question: prefix_from
∃ 2 Try 2 = False Answer: False

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True [CALL] Question: prefix_from ∀ 1 Try 1 = False [CALL] Question: evaluate 1 =
False 2 = True Check #0 (2 ∨ ¬ 2 ∨ 1) True Check #1 (1 ∨ 2) True Check #2 (2) True
Check #3 (¬ 2 ∨ ¬ 1) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 1 ∨ ¬ 2) True Formula
= True [SEP] Answer: True [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃
2 Try 2 = False Answer: False Try 2 = True [CALL]
Question: prefix_from ∃ 2 Try 2 = False Answer:
False Try 2 = True [CALL] Question: prefix_from ∀
1 Try 1 = False Answer: True

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True [CALL] Question: prefix_from ∀ 1 Try 1 = False Answer: True Try 1 = True [CALL]
Question: evaluate 1 = True 2 = True Check #0 (2 ∨ ¬ 2 ∨ 1) True Check #1 (1 ∨ 2)
True Check #2 (2) True Check #3 (¬ 2 ∨ ¬ 1) False [SEP] Answer: False [RETURN]

...[EndOfPrompt][CALL] Question: prefix_from ∃
2 Try 2 = False Answer: False Try 2 = True [CALL]
Question: prefix_from ∀ 1 Try 1 = False Answer:
True Try 1 = True Answer: False

...[EndOfPrompt][CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True [CALL] Question: prefix_from ∀ 1 Try 1 = False Answer: True Try 1 = True Answer:
False [SEP] Answer: False [RETURN]

...[EndOfPrompt] [CALL] Question: prefix_from
∃ 2 Try 2 = False Answer: False Try 2 = True
Answer: False

...[EndOfPrompt] [CALL] Question: prefix_from ∃ 2 Try 2 = False Answer: False Try 2 =
True Answer: False [SEP] Answer: False [RETURN] ...[EndOfPrompt] Answer: False

...[EndOfPrompt] Answer: False [EndOfText]

: Generation : Reduction

Figure 2: The complete thinking process of PENCIL on a small-sized QBF instance. The “...” at the beginning of a thought
hides the prompt. Bold text represents newly generated thoughts, while blue highlights indicate thoughts to be removed.

3 4 5 6 7 8 9 10
Problem Size

0
2500
5000
7500

10000
12500

M
ax

im
um

 L
en

gt
h

×0.205

w/o Reduction
w/ Reduction

(a) SAT

3 4 5 6 7 8 9 10
Problem Size

0
30000
60000
90000

120000
150000

M
ax

im
um

 L
en

gt
h

×0.004

w/o Reduction
w/ Reduction

(b) QBF

3 4 5
Problem Size

0
30000
60000
90000

120000
150000

M
ax

im
um

 L
en

gt
h

×0.022

w/o Reduction
w/ Reduction

(c) Einstein’s puzzle

Figure 3: Maximal sequence length with and without the reduction rule.

maxi∈[r+1]{|x(i)|}, whereas CoT has a length of n + k.
As we will demonstrate in Sec. 3, their difference becomes
particularly significant (i.e. maxi∈[r+1]{|x(i)|} ≪ n + k)
for complex reasoning tasks, where the context length of
CoT can grow exponentially while the context length length
of PENCIL is kept polynomial.

Computational Benefits Moreover, even though the total
number of predicted tokens or reasoning steps is the same
with or without reduction, PENCIL can significantly save
computes by maintaining a substantially shorter context
for each generated token. We discuss in Appendix B the
computational benefit of PENCIL in terms of the FLOPs for
generating a sequence and empirically quantify it in Sec. 4.

3. Thinking with PENCIL
We next demonstrate how the reduction rule can be applied
to several concrete computationally intensive problems.

3.1. SAT and QBF

SAT is a canonical NP-complete problem. We consider the
3-SAT variant, where each instance is a Boolean formula in
conjunctive normal form with clauses of length three, e.g.
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3). The ratio between
number of clauses and variables is set as 4.3, larger than the

threshold 4.267 where instances are empirically hardest to
solve and satisfiability probability transitions sharply from
1 to 0 (Selman et al., 1996). QBF is a PSPACE-complete
problem that generalizes SAT by adding universal (∀) and
existential (∃) quantifiers. Each instance is a quantified
Boolean formula in Prenex normal form, e.g., ∃x1∀x2∃x3 :
(x1 ∨¬x2 ∨x3)∧ (¬x1 ∨x2 ∨¬x3). We set the probability
of a variable being existentially quantified as 0.5.

We consider using the DPLL algorithm to solve the SAT
problem, and solving the QBF problem by recursively han-
dling quantifiers and trying variable values. The PENCIL
reasoning traces are generated as we run the algorithm.
Both algorithms recursively explore variable assignments by
splitting on an unassigned variable xi and trying branches
xi = True and xi = False. The reduction rule wraps
each branch with [CALL], [SEP]and [RETURN], which
creates a hierarchical binary tree structure. See Fig. 2 for a
concrete example.

Without the reduction rule, the context must retain the com-
plete recursive trace — all partial assignments and interme-
diate formulas — leading to worst-case exponential space
complexity O(2n). For PENCIL, once a branch returns, its
intermediate reasoning steps are discarded, therefore search
paths will be discarded, preserving only the final answer.

4

PENCIL: Long Thoughts with Short Memory

This reduces the maximal length to O(n), bounded by the
search tree depth. As shown in Fig. 3, at n = 10, the maxi-
mal sequence length drops from 13, 804 to 2, 507 for SAT
and from 151, 661 to 649 for QBF.

3.2. Einstein’s Puzzle

Einstein’s Puzzle We further consider Einstein’s puz-
zle (Prosser, 1993), a classic constraint satisfaction problem
where the model must learn to reason in natural language.
Each problem instance consists of a list of houses with dif-
ferent attributes (e.g., color, nationality, pet), and given a
set of constraints or clues as the prompt (e.g. the green
house is immediately to the right of the one who keeps
birds), the goal is to determine the attributes of each house
through logical deduction. The original puzzle has size 5
× 5 (5 houses and 5 attribute categories, totaling 25 vari-
ables), which presents a significant challenge for language
models to solve – even GPT-4 fails to solve it with few-shot
CoT (Dziri et al., 2024).

Special Use Case: Summarization A notable special
case of the reduction rule used for solving Einstein’s puzzle
is when the answer itself leads to another question: when
A = [CALL] T’, (1) becomes

C [CALL] T [SEP] [CALL] T’ [RETURN]
⇒ C [CALL] T’.

(8)

This mimics the tail recursion in functional programming
where a function’s returned value is another function call. A
practical application of this rule is to simplify an originally
complex question by iteratively reducing it, through some
intermediate reasoning steps, to a more tractable form. In
Sec. 5 we will use this to prove PENCIL’s space efficiency.

See Fig. 8 for an illustration of how reduction rules can
be applied to solve the Einstein puzzle, which consists of
the following steps in one round of iteration: (a) Propa-
gating constraints to eliminate impossible attributes com-
binations; (b) Use the tail recursion rule to merge results
from constraints propagation and update the house states; (c)
Iteratively explore different solution branches and discard
intermediate reasoning steps from each branch, only pre-
serving the final answer. As shown in Fig. 3, for 5×5 puzzle,
the maximal sequence reduces dramatically from 151, 192
to 3, 335 (without tail recursion this number is 7, 705).

4. Experiments
Training The training of PENCIL is nearly identical to
that of CoT with a key difference being how the data is
processed. Specifically, the training pipeline of PENCIL
consists of the following steps:

For data preparation, we implement the algorithms for solv-
ing the problems mentioned in Sec. 3, generates the corre-
sponding scaffolded CoT (7) with special tokens [CALL],

[SEP], [RETURN]as we run the algorithm, and then trans-
form the long scaffolded CoT sequence into a set of smaller
sequences {x(1), x(2), . . . , x(r+1)} that ends with either
[RETURN]or EOS.

During training, the loss function is crucial for the success
of training PENCIL. In particular, we need not compute
loss on every single token in each shorter sequence x(i), but
only those that are generated starting from last iteration’s
reduction step (i.e. x(i)\x(i−0.5)). We maintain an index
for each x(i) for storing the information of the index where
the model generation starts. We can either feed all shorter
sequences into one batch (which is our default choice in
experiments), which makes it possible to reuse the KV cache
of other sequences to reduce training computes, or randomly
sample from these sequences from all problem instance,
which would lead to similar performance.

Implementation Unless otherwise stated, for model ar-
chitecture, we choose a 6-layer transformer with 10.63M
parameters for SAT and QBF problems, and an 8-layer
transformer with 25.19M parameters for the more complex
Einstein’s puzzle. All experiments use a context window of
2048 tokens and rotary positional encoding (Su et al., 2024);
we truncate the sequence to the maximal context window to
fit into the model for all methods if it exceeds the model’s
capacity. We use the same batch size and learning rate for
all methods across experiments.

Experimental Setting We adopt the online learning setting
where models train until convergence with unconstrained
data access, mirroring the common scenarios in language
model training where data can be effectively infinite (Hoff-
mann et al., 2022). To ensure fair comparison, we include
special tokens in the CoT, which might benefit its training
by introducing additional structural information.

Evaluation Protocol We evaluate on a held-out validation
set of 100 problem instances using two metrics: accuracy
(percentage of correct predictions) and trace rate (percent-
age of reasoning steps matching the ground truth). For all
problems, the labels for different classes are balanced.

4.1. Results on SAT and QBF

Performance As shown in Table 1, both CoT and PENCIL
significantly outperform the baseline (i.e. without using
CoT) and achieve almost perfect performance (≥ 95% ac-
curacy) on small problems (n ≤ 6 for SAT and 5 for QBF).
While CoT’s performance degrades sharply when problem
size increases - dropping to 50% accuracy on SAT and 61%
on QBF when n = 10, PENCIL maintains near-perfect ac-
curacy across all problem sizes. Furthermore, PENCIL’s
consistently high trace rate (above 90% for most problem
sizes) indicates that it precisely follows the intended algo-
rithm’s reasoning steps.

5

PENCIL: Long Thoughts with Short Memory

n = 3 4 5 6 7 8 9 10

Baseline Acc. 66 57 46 51 46 51 49 51

CoT Acc. 100 100 100 99 84 63 54 50
TR. 99.6 99.0 98.0 96.2 74.0 69.9 63.8 51.4

PENCIL
Acc. 100 100 100 99 99 100 100 100
TR. 100 99.0 97.1 95.9 91.8 93.3 92.9 83.0

n = 3 4 5 6 7 8 9 10

Baseline Acc. 90 82 85 68 60 69 71 66

CoT Acc. 100 100 97 94 74 72 69 73
TR. 100 100 98.3 93.9 65.1 49.4 40.7 32.8

PENCIL
Acc. 100 100 100 100 100 100 100 100
TR. 100 100 100 100 100 100 100 100

Table 1: Performance on SAT (left) and QBF (right). Acc denotes the Accuracy (%) and TR denotes the trace rate (%).

2.5 5.0 7.5 10.0
Inference Time (s)

0
2
4
6
8

10

So
lv

ab
le

Pr
ob

le
m

 S
iz

e

CoT ≥ 95%
CoT < 95%

PENCIL ≥ 95%
PENCIL < 95%

(a) SAT

0 10 20 30 40
Inference Time (s)

0
2
4
6
8

10

So
lv

ab
le

Pr
ob

le
m

 S
iz

e

CoT ≥ 95%
CoT < 95%

PENCIL ≥ 95%
PENCIL < 95%

(b) QBF

0 50 100 150 200
Inference Time (s)

3

4

5

So
lv

ab
le

Pr
ob

le
m

 S
iz

e

CoT ≥ 95%
CoT < 95%

PENCIL ≥ 95%
PENCIL < 95%

(c) Einstein’s puzzle

Figure 4: Comparison of maximally solvable problem size (with ≥ 95% accuracy) given different inference time budgets.

CoT PENCIL

0.0 0.5 1.0 1.5 2.0 2.5
Training FLOPs ∝ 1e10

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(a) QBF n = 3

CoT PENCIL

0.0 0.2 0.4 0.6 0.8 1.0
Training FLOPs ∝ 1e11

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(b) QBF n = 4

CoT PENCIL

0.0 0.6 1.2 1.8 2.4 3.0
Training FLOPs ∝ 1e11

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100
A

cc
ur

ac
y

(%
)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(c) QBF n = 5

CoT PENCIL

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Training FLOPs ∝ 1e12

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(d) QBF n = 6

Figure 5: Comparison of convergence speed for training on the QBF problem (with n ranges from 3 to 6). Circles and vertical
lines indicate the first time each method reaches optimal performance. The x-axis is the FLOPs budget for self-attention
calculated based on (11). See Fig. 9 in Appendix where the x-axis is the number of iterations.

Test-Time Scalability Figure 4 compares the test-time
scalability of CoT and PENCIL given different inference
time budget. For both SAT and QBF problems, PENCIL can
effectively solve larger problems with increased time budget,
handling up to n = 10 with inference time around 10s and
40s respectively while CoT struggles to scale up even when
given more time. This is because the reduction rule enables
PENCIL to keep the reasoning length growing polynomially
rather than exponentially with problem size, significantly
reducing the requirement of space during generation.

Convergence Figure 5 compares the convergence speed
of CoT and PENCIL on the QBF problem given fixed train-
ing FLOPs budget calculated based on (11). To isolate the
impact of memory constraints, which limit the expressive-
ness of models, we allow unlimited context window length
in this experiment, enabling both methods to potentially
achieve perfect performance. Since since for larger prob-

lems CoT’s space consumption becomes prohibitively large
and will cause out-of-memory, we only report results for
n = 3 to 6. The results show that PENCIL can effectively
save computation, and thus can consistently achieve better
performance under the same compute budget and converge
faster, with the gap becoming more significant as problem
size increases.

4.2. Results on Einstein’s Puzzle

Besides of the original challenging 5×5 Einstein’s puzzle,
we also consider two simplified variants: 3×3, 4×4. For
each size of the puzzle, we generate 10, 000 training in-
stances by randomly assigning attributes to houses and de-
riving valid constraints that ensure a unique solution. The
accuracy is evaluated based on whether the model can suc-
cessfully answer the question ”who owns the Fish” on 100
unseen validation samples.

6

PENCIL: Long Thoughts with Short Memory

Puzzle Size CoT PENCIL

5× 5
Accuracy (%) 25 97
Trace Rate (%) 2.97 78.27

4× 4
Accuracy (%) 34 100
Trace Rate (%) 8.33 86.52

3× 3
Accuracy (%) 99 99
Trace Rate (%) 99.37 99.66

Table 2: Comparison of performance w/o and with
the reduction rule on Einstein’s puzzle.

512 1024 2048
Context Length

10.63M

3.15M

0.40M#P
ar

am
et

er
s 48 61 97

45 54 92

39 38 43

CoT

512 1024 2048
Context Length

99 99 99

95 98 98

52 38 44

PENCIL

25
40
55
70
85
100

Figure 6: Effects of model size and context length on
accuracy for 3×3 Einstein’s puzzle.

Main Results Table 2 reports the performance with and
without using the reduction rule to solve different sizes of
Einstein’s puzzles. Remarkably, PENCIL solves the original
5×5 puzzle at 97% accuracy using only 25.19M parameters
(significantly smaller than GPT-2) and 2048 context length
(the same as GPT-2), with average inference time per sam-
ple 42.98s. In comparison, CoT fails catastrophically on
puzzles beyond 3×3, with accuracy dropping to 25% (i.e.
close to random guessing) on 5×5 puzzles, despite using
the same architecture and training.

Effects of Model Size As shown in Figure 6, PENCIL
achieves consistently high accuracy with sufficient model ca-
pacity (with≥ 3.15M parameters, i.e. a 4-layer transformer)
even with limited context length, while CoT requires both
larger models and longer context to achieve comparable
performance. However, when the model size is too small,
both methods fail to solve the puzzle effectively, suggesting
a minimum model capacity threshold.

5. Universal Space-Efficient Computation
A natural theoretical question arises as to how powerful is
PENCIL on general tasks? In this section, we answer it by
theoretically showing that PENCIL can perform universal
space-efficient computation for solving any task. More
specifically, we prove that PENCIL using transformers as
the base model can simulate Turing machines with optimal
efficiency in both time and space. Our main result can be
summarized informally as follows (see detailed statements
in Theorem H.1, Appendix H):
Theorem 5.1 (Main, Informal). For any Turing Machine,
there exists a fixed finite-size transformer such that for any
input, on which the computation of Turing Machine uses T
steps and S space, PENCIL with this transformer computes
the same output with O(T) generated tokens and using
maximal context length of O(S).
This result is a significant improvement over CoT (Pérez
et al., 2021; Merrill & Sabharwal, 2023), which showed
that even though CoT can perform universal computation, it
does so inefficiently; that is, it requires the context length
to grow at the same rate as the time O(T) required to solve
those problems. This is a fundamental limitation since most
meaningful computations require much less memory than

time (i.e. S ≪ T). To the best of our knowledge, PENCIL
is the first approach that provably enables universal space-
efficient computation for transformers. A direct implication
of Theorem 5.1 is:

Corollary 5.2. With polynomial maximal context length
(to input length), PENCIL with transformers can solve all
problems in PSPACE (solvable by a Turing machine using
polynomial space) while standard CoT with any poly-time
next-token generator can only solve P (solvable by a Turing
machine using polynomial time).2

It is well-known that P ⊂ NP ⊂ PSPACE and widely-
conjectured that P ⊊ PSPACE (a weaker assumption than
the famous P ̸= NP hypothesis). Under this assumption,
any PSPACE-complete problem (e.g., QBF (Stockmeyer &
Meyer, 1973) cannot be solved by CoT using polynomial
length. In contrast, PENCIL can solve these problems with
polynomial maximal context length, which is a significant
improvement in the computational power. Similarly, under
a slightly stronger yet widely-accepted assumption called
Exponential Time Hypothesis (ETH, Impagliazzo & Paturi
(2001)), even SAT requires exponential length and thus
cannot be solved by CoT efficiently.

Proof Overview The remaining of this section provides
an overview and the key ideas for the proof of Theorem 5.1
(the complete proof is deferred to Appendix H). In high
level, the proof contains the following three steps:

Section 5.1: We define a new abstract computational model
called Autoregressive Machine, which formalizes the com-
putation of Turing machines as a process of generating token
sequences (as illustrated in Figure 7(a)), and introduces the
State Function that transforms sequences into shorter ones
(i.e. the state) representing Turing machine’s configuration.

Section 5.2: We show that by iteratively simulating the
next-token generation of the autoregressive machine and
summarizing the generated tokens into its state periodically,
PENCIL can reduce the maximal context length to the opti-
mal levelO(S) while maintaining the running time atO(T)

2Poly-time next-token generator includes transformers, state-
space models (Gu et al., 2021). Exceptions include usage of
infinite-precision version of transcendental functions like exp.

7

PENCIL: Long Thoughts with Short Memory

Chain-of-Thought

PENCIL

Input Step 1 Step 2 Accept / Reject

State(i) 1 State(i) si

Step ti+1Step ti

[SEP]

...

:

Step ti+1 ... Step ti+1... [RETURN]

...

Previous State Simulate Summarize

State(i+1) 1 State(i+1) si+1
...

:

Step ti-1

State(i+1) 1 State(i+1) si+1
...

New State

Step 3

b 1 0 b b b

b 1 0 1 b b

b 1 0 1 1 b

b

b

b

b 1 0 0 1 b b

...

...

...

...

...

...

...

...

Turing Machine

Start

Step 1

Step 2

Step 3

Max Length :Total Steps :

Max Length :Total Steps :

Autoregressive Machine

Input Step 1 Step 2 Step 3

(a) Turing Machine (b) How PENCIL Simulates Turing Machine

Figure 7: (a) Autoregressive machine encodes each step of Turing machine’s computation as a triplet containing the state,
tape symbol, and movement direction. (b) PENCIL simulates Turing machine iteratively using two phases: simulating
computation steps from the previous state (i.e. State(i)), and summarizing into the new state (i.e. State(i+1)).

(as illustrated in Figure 7(b)).

Section 5.3: Finally, we form a new programming language
called Full-Access Sequence Processing (FASP) and use it
to establish that, under specific choices of the model archi-
tecture, finite-sized transformers are expressive enough to
perform this iterative generation and summarization process,
thus completing the proof.

5.1. Autoregressive Machine and Complexity

We begin by defining autoregressive machine as a general
purpose computation model. It subsumes Turing machine
as an example and can potentially include other models.

Definition 5.3 (Autoregressive Machine). An autoregres-
sive machine is a tupleM = (Σ, π,Σaccept,Σreject), where
Σ is a finite alphabet, π : Σ∗ → Σ is a next-token gen-
erator, and Σaccept,Σreject ⊆ Σ are accepting and rejecting
tokens. For any input x ∈ Σ∗, M iteratively generates
one token per step and appends it to the current sequence,
with fkπ (x) denoting the sequence after k iterations where
fπ(x) = (x, π(x)). The machine halts when it generates a
token in Σaccept or Σreject.

To achieve space efficiency in computation, we need a mech-
anism to compress the growing computational trace into a
minimal representation that preserves only the information
necessary for future steps. This is formalized by:

Definition 5.4 (State Function). A function s : Σ∗ →
Σ∗ is a state function of a autoregressive machine M =
(Σ, π,Σaccept,Σreject) if (1) π ◦ s = π; (2) for all x, x′, y ∈
Σ∗, s(x) = s(x′) =⇒ s((x, y)) = s((x′, y)); (3) s2 = s.

Note the above definition automatically implies that the
future trace of the autoregressive machineM, i.e. πk(x)
for k = 1, 2, . . ., can be uniquely determined by the state
function s ofM. Formally, s ◦ fkπ ◦ s = s ◦ fkπ and πk+1 =
πk+1 ◦ s for any k ≥ 0 (see Lemma I.1 in Appendix). In
other words, s defines a equivalent class over all possible

computational traces ofM, where the mapping x 7→ s(x)
erases irrelevant information while preserving the essential
information for future computation.

Correspondingly, time complexity T (M, x) can be defined
as the number of steps the autoregressive machineM takes
to halt on input x. Space complexity S(M, s, x) is defined
as the maximal length of the states (s ◦ fπ)k(x) for all steps
k. This quantifies the minimal memory required to continue
the computation at any point.

Example: Turing Machine Indeed, Turing machine can
be represented as a autoregressive machine by letting each
transition step produce a single token (encoding the new
state, symbol, and head movement), formalized as follows
(see proof in Appendix D):

Lemma 5.5 (Turing Machine asM). Any Turing machine
TM can be represented as a autoregressive machineMTM

associated with a state function sTM that preserves its time
and space complexity.

Specifically, the time complexity ofMTM equals the Turing
machine’s total step count, and the space complexity of
MTM matches the Turing machine’s actual memory usage.

5.2. Space and Time-Efficient Simulation using PENCIL

For proving Theorem 5.1, we consider a variant of PENCIL
with a simplified reduction rule ϕ′, whichis already powerful
enough for space-efficient universal simulation

ϕ′ : T [SEP] T’ [RETURN] ⇒ T’ (9)

This rule uses one less special token than our initial re-
duction rule (1) and can be expressed by it through tail
recursion (8), i.e. by substituting T ← [CALL]T and
T’ ← [CALL]T’ in (9). For our proof, we simply set
T’ = s(T), since the state contains the minimal informa-
tion for future computation per definition. Therefore, the
question remains as to when to trigger (9) and summarize:

8

PENCIL: Long Thoughts with Short Memory

Space-Efficient but Time-Inefficient Solution Naively, if
PENCIL trigger the summarization procedure too frequently,
e.g. after every new token generation, the maximal context
length would be bounded by O(S). However, this approach
would blow up the time complexity by a factor proportional
to the space complexity, i.e. O(S ·T), making it highly time
inefficient.

Space and Time Efficient Solution To achieve both op-
timal time and space efficiency (up to some multiplicative
constant), PENCIL can keep generating new tokens to sim-
ulate running autoregressive machine, and trigger the sum-
marization only when the length of T exceeds a certain
threshold. In particular, we define the time (i.e. the number
of tokens generated so far) to apply i-th summarization/re-
duction rule ti as the smallest integer larger than ti−1 such
that length of the state T’ is smaller than half of the length
of T = f

ti−ti−1
π ◦ s ◦ f ti−1

π (x), where s ◦ f ti−1
π (x) is the

state reduced from the last iteration and ti − ti−1 is the
number of simulated steps of autoregressive machine in the
current iteration. Correspondingly, we can define the trace
of PENCIL as x(i) =

f
ti−ti−1
π ◦ s ◦ f ti−1

π (x) , [SEP] , s ◦ f tiπ (x) , [RETURN] (10)

where s ◦ f tiπ (x) is equivalent to s ◦ f ti−ti−1
π ◦ s ◦ f ti−1

π (x)
per Definition 5.4. In short, PENCIL compresses the current
sequence into its state representation whenever its length
exceeds twice the state length, enforcing space stays within
O(S) without performing reductions so frequently that the
overall time cost exceeds O(T). Formally:

Proposition 5.6. For any autoregressive machine M =
(Σ, π,Σaccept,Σreject) with state function s, if a next-token
predictor fπθ

accurately generates the next token in (10)
from the prefix for every i on any input x ∈ Σ∗, then
PENCILfπθ

,ϕ′ can simulate M by using O(T (M, x))
steps and a maximal sequence length of O(S(M, s, x)).

Note that this result applies not just to Turing machines but
to any computational model representable as an autoregres-
sive machine with a suitable state function.

5.3. FASP for Proving Transformer Expressiveness

Now we complete our proof by demonstrating that trans-
formers are indeed expressive enough to produce the trace
described in (10) under specific architectural choices includ-
ing Gated ReLU activation (Dauphin et al., 2017), positional
embedding n 7→ n, and average-hard casual attention (Mer-
rill et al., 2022); details are specified in Appendix E.

Full-Access Sequence Processing (FASP) Since directly
constructing a transformer is challenging, following Weiss
et al. (2021); Yang & Chiang (2024), we developed a novel
programming language called FASP, where each code in
FASP represents a sequence-to-embedding mapping. The
language defines a set of primitives or functions (termed

Closed Operators) for writing the program and allows defin-
ing customized operators. Depending on positional encod-
ing and activation functions allowed to use in transformers,
FASP has different variants supporting an increasingly rich
family of primitives. A formal introduction of FASP and
variants thereof is deferred to Appendix F and G.

FASP is useful for the proof because it precisely charac-
terizes the class of functions that can be implemented by
finite-size transformers with average-hard casual attention,
denoted byHTF (see formal definition in Definition E.9):

Lemma 5.7 (Theorem F.2, Informal). FASP = HTF.

Thus our proof reduces to a FASP program that executes
the space and time efficient solution mentioned in Sec 5.2.

FASP is more powerful than RASP (Weiss et al., 2021)
because RASP cannot simulate certain hard attentions, as its
selection mechanism uses boolean condition function based
only query and local key. As a result, RASP cannot even
retrieve the value vector of the key that is the closest to the
query, which is essential in our construction (FASP code).

Program In a high level, the program implements the fol-
lowing three operations simultaneously (which is exactly
the premise of Proposition 5.6):

1. Summarization Trigger: Detecting when to transition
from the simulation phase to summarization phase by dy-
namically comparing the length of the current sequence with
the its state length throughout the generation process.

2. Simulation: During the simulation phase, generating the
next token of the autoregressive machine that simulates one
step of the Turing machine.

3. Summarization: During the summarization phase, com-
puting the compressed state representation of the current
token sequence.

The specific program is given in Appendix H, which com-
pletes the proof for Theorem 5.1. This technique can also
be used be prove other expressiveness results of transformer
with CoT, e.g. Merrill & Sabharwal (2023).

6. Conclusion
This paper identifies a fundamental limitation of CoT where
intermediate computations accumulate indefinitely in the
context, and introduce PENCIL to address this. PENCIL
adopts a simple reduction rule to “clean up” unneeded rea-
soning steps as soon as they are finalized. This mechanism
effectively transforms long traces into compact representa-
tions, enabling efficient training and allowing the model to
handle substantially larger problems under the same memory
constraints. Extensive experiments are done to demonstrate
the effectiveness of PENCIL to handle inherently challeng-
ing tasks with less computes and smaller memory.

9

PENCIL: Long Thoughts with Short Memory

Impact Statement
The goal of this paper to advance our understanding of
the reasoning capabilities in language models. There is no
immediate negative societal impact as far as we can foresee
unless language models are used for unethical purposes.

References
Arora, S. and Barak, B. Computational complexity: a mod-

ern approach. Cambridge University Press, 2009.

Baader, F. and Nipkow, T. Term rewriting and all that.
Cambridge university press, 1998.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 38, pp. 17682–17690, 2024.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning, pp. 933–
941. PMLR, 2017.

Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X.,
Chen, X., Bousquet, O., and Zhou, D. Compositional
semantic parsing with large language models. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
Welleck, S., West, P., Bhagavatula, C., Le Bras, R., et al.
Faith and fate: Limits of transformers on compositionality.
Advances in Neural Information Processing Systems, 36,
2024.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought: a
theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Friedman, D., Wettig, A., and Chen, D. Learning trans-
former programs. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Fu, Q., Cho, M., Merth, T., Mehta, S., Rastegari, M.,
and Najibi, M. Lazyllm: Dynamic token pruning for
efficient long context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. Retrieval-augmented generation
for large language models: A survey. arXiv preprint
arXiv:2312.10997, 2023.

Garrison, E. Memory makes computation universal, remem-
ber? arXiv preprint arXiv:2412.17794, 2024.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Impagliazzo, R. and Paturi, R. On the complexity of k-
sat. Journal of Computer and System Sciences, 62(2):
367–375, 2001.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. Llmlin-
gua: Compressing prompts for accelerated inference of
large language models. arXiv preprint arXiv:2310.05736,
2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson, K.,
Clark, P., and Sabharwal, A. Decomposed prompting:
A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W.,
Hassoun, J., and Keutzer, K. Learned token pruning for
transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 784–794, 2022.

10

PENCIL: Long Thoughts with Short Memory

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024a.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
arXiv preprint arXiv:2402.12875, 2024b.

Lindner, D., Kramár, J., Farquhar, S., Rahtz, M., McGrath,
T., and Mikulik, V. Tracr: Compiled transformers as a
laboratory for interpretability. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Liu, C., Lu, S., Chen, W., Jiang, D., Svyatkovskiy, A.,
Fu, S., Sundaresan, N., and Duan, N. Code execu-
tion with pre-trained language models. arXiv preprint
arXiv:2305.05383, 2023.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173,
2024.

Long, J. Large language model guided tree-of-thought.
arXiv preprint arXiv:2305.08291, 2023.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36, 2024.

Merrill, W. and Sabharwal, A. The expresssive power
of transformers with chain of thought. arXiv preprint
arXiv:2310.07923, 2023.

Merrill, W., Sabharwal, A., and Smith, N. A. Saturated
transformers are constant-depth threshold circuits. Trans-
actions of the Association for Computational Linguistics,
10:843–856, 2022.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

Nawrot, P., Lańcucki, A., Chochowski, M., Tarjan, D.,
and Ponti, E. M. Dynamic memory compression:
Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Nowak, F., Svete, A., Butoi, A., and Cotterell, R. On
the representational capacity of neural language mod-
els with chain-of-thought reasoning. arXiv preprint
arXiv:2406.14197, 2024.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

O’Donnell, M. J. Equational logic as a programming lan-
guage. Springer, 1985.

OpenAI. Learning to reason with llms, Septem-
ber 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Pérez, J., Barceló, P., and Marinkovic, J. Attention is turing-
complete. Journal of Machine Learning Research, 22
(75):1–35, 2021.

Prosser, P. Hybrid algorithms for the constraint satisfac-
tion problem. Computational intelligence, 9(3):268–299,
1993.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Sel, B., Al-Tawaha, A., Khattar, V., Jia, R., and Jin, M.
Algorithm of thoughts: Enhancing exploration of ideas in
large language models. arXiv preprint arXiv:2308.10379,
2023.

Selman, B., Mitchell, D. G., and Levesque, H. J. Generating
hard satisfiability problems. Artificial intelligence, 81
(1-2):17–29, 1996.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Stockmeyer, L. J. and Meyer, A. R. Word problems requir-
ing exponential time (preliminary report). In Proceedings
of the fifth annual ACM symposium on Theory of comput-
ing, pp. 1–9, 1973.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

PENCIL: Long Thoughts with Short Memory

Strobl, L., Merrill, W., Weiss, G., Chiang, D., and Angluin,
D. What formal languages can transformers express? a
survey. Transactions of the Association for Computa-
tional Linguistics, 12:543–561, 2024.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Suzgun, M. and Kalai, A. T. Meta-prompting: Enhancing
language models with task-agnostic scaffolding. arXiv
preprint arXiv:2401.12954, 2024.

Wang, W., Dong, L., Cheng, H., Liu, X., Yan, X., Gao, J.,
and Wei, F. Augmenting language models with long-term
memory. Advances in Neural Information Processing
Systems, 36, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like trans-
formers. In International Conference on Machine Learn-
ing, pp. 11080–11090. PMLR, 2021.

Wos, L., Overbeek, R., Lusk, E., and Boyle, J. Automated
reasoning introduction and applications. McGraw-Hill,
Inc., 1992.

Yang, A. and Chiang, D. Counting like transformers: Com-
piling temporal counting logic into softmax transformers.
arXiv preprint arXiv:2404.04393, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in neural information processing
systems, 33:17283–17297, 2020.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhang, D., Tigges, C., Zhang, Z., Biderman, S., Raginsky,
M., and Ringer, T. Transformer-based models are not yet
perfect at learning to emulate structural recursion. arXiv
preprint arXiv:2401.12947, 2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:

Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., et al.
Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625,
2022.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

12

PENCIL: Long Thoughts with Short Memory

(a) (b) (c)

$ Currently, the pet category of
House #1 allows the following
options: birds dogs, or fish ...
$ Let’s consider constraint 1

$ Since green must be
immediately to the right of Birds,
we remove “green” from House
#1 (it can’t be in the leftmost
position if it’s supposed to be on
the right of something else) ...

$ House #1’s color reduces to
possibilities blue and red

[CALL]

[CALL]

[SEP]

[CALL]

[SEP]

$ After considering all
constraints, the possible values
for the pet category of House #1
have been narrowed down to ...
[RETURN]

[CALL]

$ After considering all
constraints, the possible values
for the pet category of House #1
have been narrowed down to ...

[CALL]

$ Currently, the pet category of
House #1 allows only possibility
dogs ...

[CALL]

- Constraint 1 : The green house is
immediately to the right of the one who
keeps birds

Prompt :

Solution :

The Brit owns the fish

 House # 1 2 3
 Color Red Blue Green
 Nationality Swede German Brit
 Pet Dogs Birds Fish

[RETURN]

[CALL]

$... Currently, the pet category of
House #1 allows the following
options: birds dogs, or fish ...
$ Let’s consider constraint 1
$ House #1’s color reduces to ...
$ Let’s consider constraint 2
...
$ Now we've considered all
constraints, let's summarize

$ After considering all
constraints, the possible values
for the pet category of House #1
have been narrowed down to ...

[CALL]

$ House #1’s color reduces to
possibilities blue and red ...

$ Currently, the pet category of
House #1 allows the following
options: birds dogs, or fish ...
$ Let’s consider constraint 1

:

:

:

:

:
$ Since House #1 color
category still has two possible
choices blue and red, we
explore each option separately

$ Some constraints remain
unsatisfied and thus the puzzle
is still not fully solved

- Constraint 2 : The Brit is immediately to
the right of the German

- Constraint 3 : The one who keeps dogs
is the same house as the red house

- Constraint 4 : The one who keeps birds
is immediately to the right of the Swede

Who owns the fish?

PENCIL

(. . .)

(. . .)

$ Let us suppose House #1
is blue

. . .

(. . .)

.

. . .

. . .

Figure 8: A simplified illustration of the algorithm for generating the thinking process for Einstein’s puzzle (3×3). The
puzzle requires determining attributes of each house (Color: Blue/Green/Red, Nationality: Brit/German/Swede, Pet:
Birds/Dogs/Fish) given a set of constraints, with each house having unique attributes. The “...” in the arrow denotes omitted
thoughts for conciseness; the “...” in the box denotes omitted thought. See the complete example in Appendix M.

A. Related Work
Structured Reasoning A key distinction of scaffolded reasoning approaches stems from how space is managed during
generation. At one extreme, Chain-of-Thought (Wei et al., 2022; Nye et al., 2021; Kojima et al., 2022) demonstrates that
explicit intermediate steps can dramatically improve performance on complex problems, but at the expense of unbounded
context growth. This limitation has motivated approaches leveraging reasoning structures such as trees and graphs (Yao
et al., 2024; Long, 2023; Besta et al., 2024; Sel et al., 2023; Chen et al., 2022), adopting task decomposition strategies (Zhou
et al., 2022; Drozdov et al., 2022; Khot et al., 2022) or some other prompting frameworks (Zelikman et al., 2022; Madaan
et al., 2024; Suzgun & Kalai, 2024). While these methods enable more complex reasoning patterns, they require carefully
crafted prompts and multiple rounds of interactions, whereas our approach achieves structured reasoning through end-to-end
training.

Test-Time Scaling Extensive work has focused on addressing the computational bottlenecks of transformer architectures,
particularly during long-context inference. One line of research explores architectural innovations through sparse and local
attention patterns (Beltagy et al., 2020; Kitaev et al., 2020; Zaheer et al., 2020; Choromanski et al., 2020), while another
focuses on memory optimization via KV-cache reduction (Zhang et al., 2023; Fu et al., 2024; Li et al., 2024a; Nawrot et al.,
2024) and strategic context pruning (Kim et al., 2022; Jiang et al., 2023). However, these approaches still rely on next-token
prediction that fundamentally treats the context window as append-only storage, leading to inherently inefficient space
utilization.

LLMs as Programming Language Recent work has also explored intersections between programming languages and
LLMs. For example, Weiss et al. (2021) proposes a language called RASP, programs in which can be encoded into and
learned by transformers (Lindner et al., 2024; Friedman et al., 2024; Zhou et al., 2023). Liu et al. (2023) empirically shows
that language models can be pre-trained to predict the execution traces of Python code. The reduction rule introduced in this
work draws inspiration from term rewriting systems (Baader & Nipkow, 1998), a foundational means of computation in
functional programming. This enables language models to explicitly emulate recursion that is otherwise hard to learn (Zhang
et al., 2024), and manage space efficiently by erasing irrelevant contents in memory and focusing attention on those that are
useful.

Computational Power / Limitation of CoT While transformers can theoretically simulate Turing machines (Pérez et al.,
2021; Merrill & Sabharwal, 2023; Strobl et al., 2024; Nowak et al., 2024) with CoT, their practical computational power is
fundamentally constrained by context window limitations. Particularly, we show that even with CoT, transformers with

13

PENCIL: Long Thoughts with Short Memory

inherent space constraints would fail to handle problems requiring extensive intermediate computation. This parallels
classical space-bounded computation theory, where memory management is crucial for algorithmic capabilities (Arora &
Barak, 2009; Garrison, 2024). Our approach addresses this limitation by enabling more efficient use of the context.

B. Computational Benefits of PENCIL
To quantify the computational gap between PENCIL and CoT, consider using a standard causal-masking transformer and
an ideal case where one uses KV cache for storing key and value matrices for subsequent computation, the corresponding
FLOPs for self-attention (which is typically the bottleneck for very long sequences, see Kaplan et al. (2020) for a more
precise method for estimating the FLOPs) required for a problem instance x ∈ Σn is proportional to:

∑r+1

i=1

(
|x(i−0.5)|+ |x(i)|+ 1

)
·
(
|x(i)| − |x(i−0.5)|

)︸ ︷︷ ︸
number of generated tokens

+
∑r

i=1

(
|x(i) ∩ x(i+0.5)|+ |x(i+0.5)|+ 1

)
·
∣∣x(i+0.5)\x(i)

∣∣︸ ︷︷ ︸
length of the answer A

(11)

where x(i) ∩ x(i+0.5) represents the shared context C before the [CALL] token, and x(i+0.5)\x(i) denotes the answer A
between [SEP] and [RETURN] tokens. The first term accounts for model generation steps, while the second term captures
the computation cost of reduction steps where KV cache must be recomputed for A after merging it back into the context
(since the prefix has been changed).

C. Additional Experimental Results

CoT PENCIL

0 5000 10000 15000 20000
Iterations

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(a) QBF n = 3

CoT PENCIL

0 5000 10000 15000 20000
Iterations

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(b) QBF n = 4

CoT PENCIL

0 6000 12000 18000 24000
Iterations

0

1

Tr
ai

ni
ng

 L
os

s

20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(c) QBF n = 5

CoT PENCIL

0 6000 12000 18000 24000
Iterations

0

1

Tr
ai

ni
ng

 L
os

s
20

40

60

80

100

A
cc

ur
ac

y
(%

)

100.0
100.0

0
20
40
60
80

100

Tr
ac

e
R

at
e

(%
)

100.0

100.0

(d) QBF n = 6

Figure 9: Comparison of convergence speed for training on the QBF problem (with n ranges from 3 to 6). Circles and
vertical lines indicate the first time each method reaches optimal performance. The x-axis is number of iterations.

D. Turing Machine as Autoregressive Machine
We will restate the definition of a single-tape Turing machine, then show how each of its steps can be turned into tokens
generated by an autoregressive machineMTM, associated with a state function that captures only the machine’s current
configuration.

D.1. Definition of Turing Machine

A single-tape Turing machine is defined by:

Definition D.1 (Turing Machine). A single-tape Turing machine works on a infinitely long “Tape” on both of its ends with

14

PENCIL: Long Thoughts with Short Memory

cells indexed by integers Z. It is specified by a 7-tuple

TM = (A, b, Q, q0, δ, Qaccept, Qreject), (12)

where:

• A is a finite tape alphabet.
• b ∈ A is the designated blank symbol.
• Q is a finite set of control states.
• q0 ∈ Q is the initial control state.
• δ : Q×A → Q× (A \ {b})× {−1, 0, 1} is the transition function.
• Qaccept ⊆ Q is the set of accepting states.
• Qreject ⊆ Q is the set of rejecting states, disjoint from Qaccept.

Computation of Turing Machines. At the beginning of the computation, the initial tape content σ′
0 ∈ AZ is set by the

input σ ∈ (A \ {b})∗ for the cells indexed from 0 through |σ| − 1 and the other cells contain b. The head of the machine is
at the position |σ| and its control state is initialized to q0 ∈ Q. For convenience we use the pt to denote the head position at
step t. In each time step 0 ≤ t, the machine computes (q′, a′, d′) = δ(qt, at), where qt is the control state of the Turing
machine at step t and at = σ′

t[pt] is the symbol on the infinite-long tape before step t update σ′
t at the Turing machine’s

head position pt. Then the Turing machine moves its position to pt+1 = pt + d′, change the symbol on the current tape
to a′, and updates its new control state to qt+1 = q′. The Turing machine halts only when reaching an accept/reject state
in Qaccept ∪Qreject, otherwise it runs forever. We denote the output of Turing machine on input σ by TM(σ), and we set
TM(σ) = 1 is the final state is in Qaccept and TM(σ) = 0 is the final control state is in Qreject.

The computation of Turing machine is intrinsically an iterated process — applying the same transition rule δ until the halting
condition is met. Such iterated models can naturally be described as an autoregressive machine (Appendix D.2). We will
give the formal definition (Definition D.6) of Turing Machine as an autoregressive machine in Appendix D.2. Towards that,
we will first introduce a few more useful notations.

Definition D.2 (Configuration). The configuration of a Turing machine is defined as the tuple of (q, σ′, p) ∈ Q×AZ×Z ≜ C,
where q is its current control state, σ is the current symbols on the tape, starting from the leftmost non-blank one to the
rightmost non-blank one, and p is its current head position relative to the leftmost non-blank symbol. The configuration can
be thought as a snapshot or the ”global” state of Turing machine, which completely determines its future computation steps.

We also extend the update rule δ to the configuration space as follows: for any configuration c = (q, σ′, p) ∈ C, we define

δ(q, σ′, p) ≜ δ(q, σ′[p]). (13)

Definition D.3 (Space of Update and Update Rule). We define the space of the update as the range of transition function δ,
denoted by

Σ = Q× (A \ {b})× {−1, 0, 1}. (14)

Given a configuration c = (q, σ′, p) ∈ C and update x = (q′, a, d) ∈ Σ, we define the updated configuration of c with x as

Update(x, c) = (q̃, σ′, p̃) (15)

where p̃ = p+ d, and σ̃′[i] = σ′[i] for all i ∈ Z, i ̸= p and σ̃′[p] = a. We denote the update function as Update(c, x). We
also extend the notion of update function to any sequence of updates x1:n = (x1, . . . , xn) ∈ Σn and and configuration c,
where we define Update(c, x1:n) = Update(Update(c, x1:n−1), xn) recursively.

Given the update rule δ, the transition rule of the configuration of the Turing machine is defined as

gδ : Q×AZ × Z→ Q×AZ × Z

gδ(q, σ
′, p) ≜ Update(δ(q, σ′, p), (q, σ′, p)).

Denoting configuration as at step t as ct = (qt, σ
′
t, pt) ∈ Q×AZ × Z with c0 = (q0, σ

′
0, |σ|), the configuration of Turing

Machine at each step t can be formally defined as (qt+1, σ
′
t+1, pt+1) ≜ gδ(qt, σ

′
t, pt) = gt+1

δ (c0).

15

PENCIL: Long Thoughts with Short Memory

Definition D.4 (Translationally Equivalent Configurations). Two Turing machine configurations c1 = (q1, σ
′
1, p1) and

c2 = (q2, σ
′
2, p2) are said to be translationally equivalent (denoted by c1 ∼ c2)if:

1. They have the same control state: q1 = q2

2. There exists an integer k such that:
• Their tape contents are equivalent up to translation: σ′

1[i] = σ′
2[i− k] for all i ∈ Z

• Their head positions are equivalent up to the same translation: p1 = p2 + k

Translationally equivalent configurations will produce the same future computation behavior, differing only in the absolute
positions of symbols on the tape, which is formally described by the following Lemma D.5.

We omit the proof of the following lemma, which is straightforward from the definition of Turing machine configuration and
update rule.

Lemma D.5 (Translational Equivalence of Turing Machine Configurations). For any Turing machine TM and any configu-
rations c1, c2 ∈ C, if c1 ∼ c2, then δ(c1) = δ(c2) and that for any update x ∈ Σ, Update(c1, x) ∼ Update(c2, x). As a
result, gkδ (c1) ∼ gkδ (c2) for any k ∈ N.

D.2. Construction of Autoregressive Machine

We now build a autoregressive machineMTM from TM by letting each Turing step correspond to the generation of a single
token (new state, symbol written, head movement).

Definition D.6 (Autoregressive Representation of a Turing Machine). Let TM = (A, b, Q, q0, δ, Qaccept, Qreject) be a
single-tape Turing machine. We define a autoregressive machine

MTM = (Σ, π,Σaccept,Σreject) (16)

as follows:

• Alphabet / Tokens Σ = Q × A × {−1, 1, 0}: Each token (q, a, d) ∈ Σ represents a configuration that means “the
machine transitions to state q, writes symbol a on the current cell, and moves the head in direction d,” where N indicates “no
move” if desired. Furthermore, we let Σaccept = Qaccept×(A\{b})×{−1, 1, 0} and Σreject = Qreject×(A\{b})×{−1, 1, 0}.

• Next-Token Generator π : Σ∗ → Σ: Let c0 = (q0, b
Z, 0) be the initial configuration of the Turing machine, we define

the next-token generator π by π(·) ≜ δ(Update(c0, ·)). That is, given an input token sequence x = (x1, . . . , xn) ∈ Σ∗, the
next token is the next Turing Machine update after the configuration cn obtained by applying the updates x1, . . . , xn to the
initial configuration c0.

Definition D.7 (Maximum and Minimum Non-Blank Positions). For any tape configuration σ′ ∈ AZ with finitely many
non-blank symbols and position p, we define:

• max pos(σ′) = max{j ∈ Z | σ′[j] ̸= b}, which is the position of the rightmost non-blank symbol on the tape or head
position, whichever is larger.

• min pos(σ′) = min{j ∈ Z | σ′[j] ̸= b}, which is the position of the leftmost non-blank symbol on the tape or head
position, whichever is smaller.

Definition D.8 (Embedding Function from Turing Machine to Autoregressive Machine). Given a Turing machine TM and
its corresponding autoregressive machineMTM, we define an embedding function

embed : C → Σ∗

that maps a Turing machine configuration c = (q, σ′, p) ∈ C to a sequence of tokens in Σ∗ that represents the configuration
in the autoregressive machine, where σ′ only has finitely many non-blank symbol b. Specifically: 3

embed(q, σ′, p) = (x1, x2, . . . , xn)

3Note we only need to consider the case where min pos(σ′) − 1 ≤ p ≤ max pos(σ′) + 1 since Turing Machine has to write
non-blank tokens on every tape cell it visits.

16

PENCIL: Long Thoughts with Short Memory

where n = max pos(σ′)− min pos(σ′) + [max pos(σ′)− p− 1]+ + 1, and each xi = (qi, ai, di) is defined as:

qi = q, ai = σ′

i−1∑
j=1

dj + min pos(σ′)

 , (17)

and

di =compute move(i, p,max pos(σ′),min pos(σ′)) (18)

≜

+1 if 1 ≤ i ≤ max pos(σ′)− min pos(σ′)

+1 if i = max pos(σ′)− min pos(σ′) + 1 ∧ p = max pos(σ′) + 1

0 if i = max pos(σ′)− min pos(σ′) + 1 ∧ p = max pos(σ′)

−1 if n ≥ i ≥ max pos(σ′)− min pos(σ′) + 1 ∧ p ≤ max pos(σ′)− 1.

This is a standard construction used to show transformer can simulate Turing machine (Pérez et al., 2021; Merrill et al.,
2022) which allows the tape contents to be reconstructed from the computation history.

From the definition of the embedding function, we can see that the embedding of a configuration c of Turing Machine into a
series of tokens in Σ of Autoregressive Machine that encode the control state, the symbols on the tape, and the head position.
The embedding function is translationally invariant by defintiion and we omit the proof here.

Lemma D.9 (Embedding is Translationally Invariant). For any Turing machine TM and any configurations c1, c2 ∈ C, if
c1 ∼ c2, then embed(c1) = embed(c2).

Theorem D.10. The autoregressive machineMTM defined in Definition D.6 faithfully simulates the Turing machine TM in
the sense that, for any input x ∈ A∗, the output ofMTM on x (accept or reject) is the same as the output of TM on x.

More specifically, the equivalence is established by the following property. Recall c0 = (q0, b
Z, 0), it holds that for any

configuration c = (q, σ′, p) ∈ C and non-negative integer k,

Update(c0, f
k
π (embed(c))) ∼ gkδ (c). (19)

Proof of Theorem D.10. We will prove equation (19) by induction on k. First, recall that for any input sequence x ∈ Σ∗,
π(x) is defined as δ(Update(c0, x)), where δ is applied to the configuration resulting from updating the initial configuration
with the sequence x.

Base Case (k = 0): For any configuration c = (q, σ′, p) ∈ C, we need to show Update(c0,embed(c)) ∼ c.

Let’s denote mmin = min pos(σ′) and mmax = max pos(σ′). By Definition D.8, embed(c) is a sequence
(x1, x2, . . . , xn) where each token xi = (qi, ai, di) encodes the state q, the symbol at a specific position, and a movement
direction.

When we apply this sequence to the initial configuration c0 = (q0, b
Z, 0), we perform the following operations:

1. The embedding first writes all non-blank symbols from the leftmost position mmin to the rightmost position mmax by
moving right. 2. If needed, additional movements are generated to ensure the head ends at the correct position p. 3. All
tokens share the same control state q.

After applying the entire sequence embed(c) to c0, we obtain a configuration c′ = (q′, σ′′, p′) where:

• q′ = q (all tokens in the embedding share the same control state)
• σ′′[i] = σ′[i+mmin] for all i ∈ {0, 1, . . . ,mmax −mmin} (the tape contents are shifted)
• σ′′[i] = b for all other positions
• p′ = p−mmin (the head position is shifted accordingly)

This defines a translational equivalence between c′ and c with translation constant k = −mmin, as:

1. They have the same control state: q′ = q

17

PENCIL: Long Thoughts with Short Memory

2. The tape contents are translated: σ′′[i] = σ′[i+ k] for all i ∈ Z

3. The head positions are translated: p′ = p+ k

Therefore, Update(c0,embed(c)) ∼ c, which proves the base case.

Inductive Step: Assume equation (19) holds for some k ≥ 0, i.e., Update(c0, fkπ (embed(c))) ∼ gkδ (c).

Let c′k = Update(c0, f
k
π (embed(c))). By the induction hypothesis, c′k ∼ gkδ (c).

For the (k + 1)-th step, we have:

fk+1
π (embed(c)) = (fkπ (embed(c)), π(f

k
π (embed(c)))) = (fkπ (embed(c)), δ(c

′
k)) (20)

Therefore:

Update(c0, f
k+1
π (embed(c))) = Update(c′k, δ(c

′
k)) = gδ(c

′
k) (21)

By Lemma D.5, since c′k ∼ gkδ (c), we have:

gδ(c
′
k) ∼ gδ(gkδ (c)) = gk+1

δ (c) (22)

This proves that Update(c0, fk+1
π (embed(c))) ∼ gk+1

δ (c), completing the induction.

Since acceptance or rejection depends only on the final state (which is preserved exactly in the relation ∼),MTM accepts x
if and only if TM accepts x.

D.3. Construction of State Function sTM

AlthoughM writes out every Turing step, we can define a state function sTM that condenses the final sequence into a
minimal representation of the tape.

Definition D.11 (State Function sTM). LetMTM = (Σ, π,Σaccept,Σreject) be the autoregressive machine representation of
Turing machine from Definition D.6. We define its state function sTM : Σ∗ → Σ∗ as the following

sTM(x) = embed(Update(c0, x)), ∀x ∈ Σ∗, (23)

where c0 = (q0, b
Z, 0) is the initial configuration.

We claim that the constructed sTM satisfies all three properties in Definition 5.4:

(1) Next-Token Preservation (π ◦ sTM = π): We need to prove that for any x ∈ Σ∗, π(sTM(x)) = π(x). Let
c = Update(c0, x) be the configuration after applying sequence x to the initial configuration c0. By definition of
sTM, we have sTM(x) = embed(c). By the definition of π in Definition D.6, π(x) = δ(Update(c0, x)) = δ(c).
Similarly, π(sTM(x)) = π(embed(c)) = δ(Update(c0,embed(c))). From Theorem D.10, Equation (19) with k = 0,
we have Update(c0,embed(c)) ∼ c. Since δ is invariant under translational equivalence (Lemma D.5), we have
δ(Update(c0,embed(c))) = δ(c). Therefore, π(sTM(x)) = δ(c) = π(x), which proves the property.

(2) Future-Trace Preservation: We need to prove that for any x, x′ ∈ Σ∗ and y ∈ Σ∗, if sTM(x) = sTM(x
′), then

sTM((x, y)) = sTM((x
′, y)). Let c = Update(c0, x) and c′ = Update(c0, x

′). By definition of sTM, sTM(x) =
embed(c) and sTM(x′) = embed(c′). Since sTM(x) = sTM(x

′), we have embed(c) = embed(c′). This implies that
c ∼ c′, as embed maps translationally equivalent configurations to identical sequences. For any sequence of tokens
y = (y1, . . . , ym) ∈ Σ∗, let cy = Update(c, y) and c′y = Update(c′, y). By Lemma D.5, since c ∼ c′, we have cy ∼ c′y.
Therefore, sTM((x, y)) = embed(cy) = embed(c′y) = sTM((x

′, y)), which proves the property.

(3) Idempotence (s2TM = sTM): We need to prove that for any x ∈ Σ∗, sTM(sTM(x)) = sTM(x). Let c = Update(c0, x).
By definition, sTM(x) = embed(c). Now, sTM(sTM(x)) = sTM(embed(c)) = embed(Update(c0,embed(c))). From
Theorem D.10, Equation (19) with k = 0, we have Update(c0,embed(c)) ∼ c. Since embed maps translationally equiv-
alent configurations to identical sequences by Lemma D.9, we have: sTM(sTM(x)) = embed(Update(c0,embed(c))) =
embed(c) = sTM(x). This completes the proof.

18

PENCIL: Long Thoughts with Short Memory

Proof of Lemma 5.5 (Time and Space Preservation). By construction, each Turing step of TM corresponds to precisely
one token generation under the next-token predictor π inMTM. Consequently, the total number of tokens generated before
halting matches the Turing machine’s step count, ensuring time complexity is preserved exactly. Moreover, the state function
sTM “compresses” the entire history of tokens into a short sequence that encodes only the currently used tape cells plus
head position. Since a Turing machine at most needs space proportional to the number of non-blank cells and the head’s
location, the maximum length maxk |sTM(fkπ (x))| is bounded by the tape usage of TM. This shows space complexity is
also preserved. Hence, the constructedMTM and sTM simulate TM optimally in both time and space.

E. Notations and Transformer Architecture
Let Σ be a finite vocabulary. A decoder-only transformer πθ : Σ∗ → Σ with h heads, L layers, hidden dimension d, and
feed-forward width w is defined as follows, with all parameters and operations in R. We will first introduce the standard
transformer architecture then list all non-standard architectural modifications useful for proving the main theorem.

E.1. Standard Notations

Definition E.1 (Seq-to-Embedding Function Space). H(B) is defined as the class of all functions mapping from Σ∗ → B.
We also defineH = ∪d∈N+H(Rd) as the union of all such classes across real spaces of all output dimensions.

Definition E.2 (Canonical Extension to Seq-to-Seq Function). Let A,B be two arbitrary sets and function ψ : A∗ → B be
a mapping from sequences to elements from A to B. We define its canonical sequence-to-sequence extension ψ : A∗ → B∗

as follows: for any input sequence x = (x1, . . . , xn) ∈ A∗ of length n to an output sequence constructed iteratively as

[ψ(x)]i = ψ(x1, . . . , xi) for i = 1, . . . , n (24)

where x1, . . . , xi is the prefix of length i of sequence x.

Definition E.3 (Probability Simplex). For any natural number n, the n-dimensional probability simplex (with n + 1
coordinates) is defined as

∆n =

{
(x1, x1, . . . , xn+1) ∈ Rn+1

∣∣∣∣∣ xi ≥ 0,∀i ∈ [n+ 1] ∧
n+1∑
i=1

xi = 1

}
. (25)

Definition E.4 (Softmax). For any vector x ∈ Rm and temperature parameter β > 0, the softmax function softmaxβ :
Rm → ∆m−1 is defined as:

[softmaxβ(x)]i =
exp(xi/β)∑m
j=1 exp(xj/β)

for i = 1, . . . ,m (26)

where ∆m−1 denotes the (m− 1)-dimensional probability simplex. When β = 1, we simply write softmax without the
subscript.

In our analysis we will consider the instance-wise limit when β → 0, which leads to the Average-Hard Attention
(AHA) (Merrill et al., 2022) or Hardmax:

Definition E.5 (Hardmax). For any vector x ∈ Rn, we define the hardmax function, softmax0 : Rn → ∆n−1, as the
instance-wise limit of 0 temperature limit of softmax

softmax0(x) ≜ lim
β→0

softmaxβ(x). (27)

The following lemma shows the explicit form of the hardmax function. Its proof is deferred to Appendix J.1.

Lemma E.6 (Hardmax Explicit Form). For any vector x ∈ Rn, the zero-temperature softmax function outputs a uniform
distribution over the set of indices achieving the maximum value:

[softmax0(x)]i =

{
1

| argmaxj xj | if i ∈ argmaxj xj

0 otherwise
(28)

19

PENCIL: Long Thoughts with Short Memory

E.2. Transformer Layers

Below we define the modules used standard transformer architecture. For simplicity, we define each module as a parametrized
function mapping from sequences to embeddings (Definition E.1), which can be extended to sequences-to-sequences by the
canonical extension (Definition E.2).

1. Token Embeddings (TE) A Token Embedding layer parametrized by parameters θTE ∈ Rd×|Σ| is a function TEθTE
:

Σ→ Rd, which maps each element x ∈ Σ to a d-dimensional vector θTE(x) ∈ Rd. We abuse the notation and extend
the definition to sequences, that is, TEθTE : Σ∗ → Rd where TE(x1, . . . , xn) = TE(xn) for any positive integer n and
x1, . . . , xn ∈ Σ.

2. Positional Embedding (PE) For dPE ∈ N, let ϕPE : N+ → RdPE be a parameter-free feature function.4 A positional
embedding layer parametrized by parameters θPE ∈ Rd×dPE , PEθPE

: N+ → Rd maps each position i ∈ N+ to a
d-dimensional vector PE(i) ≜ θPE · ϕPE(i). We abuse the notation and extend the definition to sequences, that is,
PEθPE : Σ∗ → Rd where PE(x1, . . . , xn) = PE(n) = θPE · ϕPE(n) for any positive integer n and x1, . . . , xn ∈ Σ.

3. Attention A (parameter-free) Attention mechanism with temperature parameter β ≥ 0 is a function ATTNβ :

(RdATTN × RdATTN × Rd′
ATTN)∗ → Rd′

ATTN for dATTN, d
′
ATTN ∈ N+. For a sequence of tuples of query/key/value

vectors (qi, ki, vi)ni=1 ∈ (RdATTN × RdATTN × Rd′
ATTN)n, the attention mechanism computes:

α = softmaxβ

(
(qn · kj)nj=1

)
∈ Rn, (29)

where β is the temperature parameter. In our analysis we will use β → 0 (see Definition E.5) and we denote ATTN0 by
AHA (Average-Hard Attention). The output of attention is then computed as a weighted sum of value vectors:

ATTNβ((qi, ki, vi)
n
i=1) =

n∑
j=1

αjvj . (30)

4. Single-Head Self-Attention Layer (SA) A Single-Head Self-Attention layer parametrized by parameters θSA =
(WQ,WK ,WV ,WO) is a function SAθSA

: (Rd)∗ → Rd. For a sequence of embeddings (h1, h2, . . . , hn), the projection
matrices WQ,WK ,WV ,WO ∈ RdSA×d map each embedding to query, key, and value vectors:

q =WQ · hn, kj =WK · hj , vj =WV · hj . (31)

For a decoder-only (causal) transformer, the last position n can only attend to positions j ≤ n. The output is computed
using the attention mechanism:

SAθSA
(h1, h2, . . . , hn) =W⊤

O ·ATTNβ((qi, ki, vi)
n
i=1). (32)

5. Multi-Head Self-Attention Layer (MHA) A Multi-Head Self-Attention layer parametrized by parameters θMHA =
(θ1SA, θ

2
SA, . . . , θ

h
SA) is a function MHAθMHA

: (Rd)∗ → Rd, where each θkSA = (W k
Q,W

k
K ,W

k
V ,W

k
O) for k = 1, . . . ,H

parametrizes a separate single-head attention. For a sequence of embeddings (h1, h2, . . . , hn) ∈ (Rd)n, the multi-head
attention output is defined as the concatenation of outputs from all individual attention heads:5

MHAθMHA(h1, h2, . . . , hn) =

H∑
i=1

SAθi
SA
(h1, h2, . . . , hn). (33)

This formulation allows the model to jointly attend to information from different representation subspaces.

6. Feed-Forward (FF) A Feed-Forward layer with single activation function σ : Rk → R and parametrized by parameters
θFF,σ = (W0,W1, . . . ,Wk) is a function FFσ

θFF
: Rd → Rd, where W0,W1, . . . ,Wk ∈ RdFF×d.

[FFθFF
(h)]i =

dFF∑
j=1

W0,ji · σ

(
d∑

r=1

W1,jrhr,

d∑
r=1

W2,jrhr, . . . ,

d∑
r=1

Wk,jrhr

)
(34)

4A particular case which we will be interested in is the 1-dimensional feature ϕPE(i) = i.
5We note our definition of multi-head attention is slightly different from the most classic definition of transformer, where the dimension

of each head is the model dimension divided by the number of heads. We inflate the head dimension to model dimension for each head to
ensure more attention heads is always better so things are simplified.

20

PENCIL: Long Thoughts with Short Memory

We also extend our definition of Feed-Forward layer to the case with a finite set of activation functions, denoted by
TACT. In this case we create a copy of feedforward layer for each of the activation function and define FFθFF =∑

σ∈TACT
FFσ

θFF,σ
with θFF = (θFF,σ)σ∈TACT

where θFF,σ is the parameter of the feedforward layer with activation
function σ. Similar to token embedding, we extend the definition to sequences, that is, FFθFF

: Rd∗ → Rd where
FFθFF

(h1, . . . , hn) = FFθFF
(hn) for any positive integer n and h1, . . . , hn ∈ Rd.

7. Identity and Residual Connections For any embedding dimension d ∈ N+, we will use the identity function
idd : (Rd)∗ → Rd to represent the residual connections in transformer layers. Similar to token embedding, we extend
the definition to sequences, that is, idd : Rd∗ → Rd where idd(h1, . . . , hn) = hn for any positive integer n and
h1, . . . , hn ∈ Rd.

8. Linear Projection Layer A Linear Projection Layer parametrized by parameters θPROJ ∈ RdPROJ×d is a function
PROJθPROJ : (Rd)∗ → RdPROJ . For a sequence of embeddings (h1, h2, . . . , hn), the linear projection layer applies a
linear transformation to the last embedding in the sequence:

PROJθPROJ(h1, h2, . . . , hn) = θPROJ · hn. (35)

9. Decoding Layer A (Greedy) Decoding Layer is a special projection layer followed by argmax, parametrized by
θDEC ∈ R|Σ|×d, where dPROJ = |Σ|. For a sequence of embeddings (h1, h2, . . . , hn), the decoding layer first applies a
linear projection to the last embedding:

DECθDEC(h1, h2, . . . , hn) = θDEC · hn ∈ R|Σ|. (36)

Then, the next token is deterministically selected by taking the argmax:

xn+1 = argmax
x∈Σ

[DECθDEC
(h1, h2, . . . , hn)]x. (37)

Here we assume the argmax is well-defined, i.e., the maximum is unique.

Definition E.7 (Transformer Layer). A single transformer layerHθMHA,θFF
: (Rd)∗ → Rd with residual connection and set

of activation fucntions TACT, and average-hard attention is defined as:

TFθMHA,θFF
= (FFθFF

+ idd) ◦
(
MHAθMHA

+ idd
)

(38)

The sequence-to-sequence version of the layer is defined as:

TFθMHA,θFF =
(
FFθFF + idd

)
◦
(
MHAθMHA + idd

)
(39)

Definition E.8 (Transformer as Next-Token Generator). Let θ = (θTE, (θ
(ℓ)
MHA)

L
ℓ=1, (θ

(ℓ)
FF)

L
ℓ=1, θDEC) be the parameters of

the transformer. The end-to-end next token generator πθ : Σ∗ → Σ is defined as:

πθ = DECθDEC ◦
(
⃝L

ℓ=1TFθ
(ℓ)
MHA,θ

(ℓ)
FF

)
◦
(
PEθPE +TEθTE

)
, (40)

where⃝L
ℓ=1fl means the composition of functions fL ◦ fL−1 ◦ · · · ◦ f1.

E.3. Function Classes Implementable by Transformers

To understand what kind of next-token generator can be implemented by a transformer in the sense of Definition E.8, it is
very useful to understand the class of seq-to-embedding functions implementable by transformers. After all, the next-token
generator is a sequence-to-embedding function followed by a decoding layer. We define the class of seq-to-embedding
functions implementable by transformers as follows:

Definition E.9 (Class of Embedding Functions Implementable by Transformers). For any positive integers dPROJ, we
define HTF[ϕPE;TACT](dPROJ) as the class of seq-to-embedding functions ψ : Σ∗ → RdPROJ that can be computed by
fixed-size transformers (independent of the length of input sequence). That is, there exist positive integers d, dFF, dSA, H ,L,
and θ = (θTE, (θ

(ℓ)
MHA)

L
ℓ=1, (θ

(ℓ)
FF)

L
ℓ=1, θDEC) with matching dimensions such that:

ψ = PROJθPROJ
◦
(
⃝L

ℓ=1TFθ
(ℓ)
MHA,θ

(ℓ)
FF

)
◦
(
PE + TEθTE

)
(41)

Finally we defineHTF[ϕPE;TACT] = ∪dPROJ∈N+HTF[ϕPE;TACT](dPROJ).

21

PENCIL: Long Thoughts with Short Memory

Finally, we define the function class that can be implemented by a token embedding layer, a positional embedding
layer, a single-head attention layer, a multi-head self-attention layer, a feed-forward layer, a linear projection layer, a
transformer layer, and a decoding layer, with all possible input embedding dimensions and output embedding dimensions, as
HTE,HPE, TSA, TMHA, TFF, TPROJ, TTF, TDEC respectively.

For simplicity, we do not assume rounding like standard floating point arithmetics like (Li et al., 2024b) and forward pass
of transformer is done in full precision. However, because we only use average-hard attention and do not use layernorm,
all the intermediate computation in the forward at position n only requires O(log(n)) precision. More concretely, all the
intermediate steps can be written exactly as ratio of two integers bounded by a polynomial of n independent of the input (but
depending on Turing Machine). In the later parts of paper, we will still use Rd to be the codomain of the seq-to-embedding
funcitons, but it can easily be replaced by Qd with polynomial upper bound (in terms of input length) for the denominators
and numerators.

E.4. Closed Operators

Definition E.10 (Average Hard Attention Operator). For any d, d′ ∈ N+, we define the average-hard attention operator
aha : H(Rd)×H(Rd)×H(Rd′

)→ H(Rd′
) as the operator induced by average-hard attention AHA. Formally, for any

three seq-to-embedding functions q, k ∈ H(Rd) and v ∈ H(Rd′
), and any integer n, and any sequence x ∈ Σn, we define

aha(q, k, v)(x) = AHA((q, k, v)(x)) =
∑
j≤n

αjv(x1:j) (42)

where α = softmax0
(
(q(x) · k(x1:j))nj=1

)
are the attention weights using the hardmax function from Definition E.5.

(q, k, v)(x) is a sequence of length n where the ith term is (q(x1:i), k(x1:i), v(x1:i)) Specifically, αj is non-zero only for
positions j that maximize the dot product q(x) · k(x1:j), with equal weight assigned to all such maximizing positions.

Definition E.11 (Local Operator). We say an operator ω : H(Rd1) × H(Rd2) × . . . × H(Rdk) → H(Rd′
) is local for

some positive integers k, d′, and {di}ki=1 iff there exists a function ϕω : R
∑k

i=1 di → Rd′
such that for any ψi ∈ H(Rdi),

ω(ψ1, . . . , ψk) = ϕω ◦ [ψ1, . . . , ψk].
Definition E.12 (Direct Sum and Concatenation). We use [u, v] denotes the concatenation of vectors u and v. For two real
vector spaces Rd1 and Rd2 , their direct sum Rd1 ⊕Rd2 is defined as the set of the concatenation of their individual elements:

Rd1 ⊕ Rd2 = {[v1, v2] | v1 ∈ Rd1 , v2 ∈ Rd2} = Rd1+d2 . (43)

For two functions ϕ1 : Rd1 → Rd′
1 and ϕ2 : Rd2 → Rd′

2 , their direct sum ϕ1 ⊕ ϕ2 : Rd1 ⊕Rd2 → Rd′
1 ⊕Rd′

2 is defined as:

(ϕ1 ⊕ ϕ2)([v1, v2]) = [ϕ1(v1), ϕ2(v2)] for all v1 ∈ Rd1 , v2 ∈ Rd2 . (44)

For two function spaces T1 = {f : Rd1 → Rd′
1} and T2 = {g : Rd2 → Rd′

2}, their direct sum T1 ⊕ T2 is defined as:

T1 ⊕ T2 = {f ⊕ g | f ∈ T1, g ∈ T2} (45)

where each element is a function from Rd1 ⊕ Rd2 to Rd′
1 ⊕ Rd′

2 .

For two seq-to-embedding functions ψ1 ∈ H(Rd1) and ψ2 ∈ H(Rd2), their concatenation [ψ1, ψ2] : Σ
∗ → Rd1+d2 is

defined as:
[ψ1, ψ2](x) = [ψ1(x), ψ2(x)] for all x ∈ Σ∗. (46)

Definition E.13 (Closed Operators). A closed operator is a mapping ω : H(Rd1)×H(Rd2)× . . .×H(Rdk)→ H(Rd′
),

for some positive integer k, that is ω(ψ1, . . . , ψk) ∈ HTF[ϕPE;TACT] for any ψ1, . . . , ψk ∈ HTF[ϕPE;TACT].

F. Full-Access Sequence Processing
Following the footsteps of (Weiss et al., 2021; Yang & Chiang, 2024), we define a more powerful version of RASP, called
Full-Access Sequence Processing language. Our language is poewrful than RASP and C-RASP in the following two senses:
(1). FASP support sequence of vectors as opposed to sequence of numbers only. (2). We allow simulating standard hard
attention mechanism, while RASP must decide whether to “select” (attend) some entry only based on the indivual pair of key
and query, but not the comparison between the rest pairs. FASP is provably equivalent to the expressiveness of transformers
with average-hard attention and casual masking.

22

PENCIL: Long Thoughts with Short Memory

Definition F.1 (FASP). Let ϕPE : N+ → RPE be a feature function for positional embedding and TACT be the class of
activation functions. We define the FASP[ϕPE; TACT] program as the process of defining a sequence of token-sequence-to-
embedding ψ1, . . . , ψn ∈ H using FASP[ϕPE; TACT] operators. The program is defined as follows: at each step t ∈ [n],
the program maintains a set of defineable seq-to-embedding functions St, and defines a new function by concatenation
functions in St, or applying local operators (corresponding to MLP), or non-local operators (corresponding to average-hard
attention) to some function in St. Finally we add the newly defined function to St, which yields St+1. In detail, we define
the defineable functions at step t ∈ [n]:

St ≜ HTE ∪ {ϕPE} ∪ {ψi | 1 ≤ i ≤ t− 1}. (47)

Note this also implies that St = St−1 ∪ {ψt}.

ψt at step t has to be defined by applying one of the following four primitive operators on already-defiend functions from St:

1. Concatenation: ψt = [ψ,ψ′], where ψ,ψ′ ∈ St. This operator concatenates the output embedding vector of two
functions into a longer vector.

2. Average-Hard Attention: ψt = aha(ψ,ψ′, ψ′′), where ψ,ψ′, ψ′′ ∈ St and ψ,ψ′ have the same output dimension. This
implements average-hard attention with query ψ, key ψ′, and value ψ′′.

3. Linear Projection: ψt = ϕ ◦ ψ, where ψ ∈ St and ϕ is a linear transformation with arbitrary output dimension.

4. Nonlinear Activation: ψt = ϕ ◦ ψ, where ϕ : Rk → R ∈ TACT, ψ ∈ St ∩H(k) for some positive integer k. 6

We denote the set of all such final outputed seq-to-embedding functions defineable by FASPas some ψi with position
embedding ϕPE and activation functions TACT as FASP[ϕPE; TACT].

In particular, when we want to use FASPto define or represent a function mapping from a sequence of tokens Σ∗ to a single
token in Σ, we could simply require to the embedding of dimension of |Σ|, assume an implicit order over Σ so the index
maps to a token in Σ and return the index (token) with the largest value in the last function defined.7

Theorem F.2. For any positional encoding feature function ϕPE and activation function class TACT, it holds that
FASP[ϕPE; TACT] = HTF[ϕPE;TACT].

The high-level idea towards the proof of Theorem F.2 is to show that the four operators that generates new functions in
FASP[ϕPE; TACT] are also closed under the class of embedding functions that can be implemented by transformers, namely
HTF[ϕPE;TACT]. We defer its full proof to Appendix J.2 and only sketch the high-level idea via providing some key lemmas
below.

As the base case, i.e., when the number of transformer layers is 0, we know that the class of seq-to-embedding functions is
simply the class of embedding functions, including both token embedding and positional embedding.
Lemma F.3. The function classes corresponding to token embedding and positional embeddings are subsets of
HTF[ϕPE;TACT]. Formally,HPE,HTE ⊆ HTF[ϕPE;TACT].

Next we will also identify two main types of closed operators: concatenation and transformer layer, where the latter includes
local operators by feedforward networks with non-linear activation functions and non-local operators by average-hard
attention.
Lemma F.4 (Closedness Under Concatenation, Direct Sum, and Sum). We have the following closedness property for
seq-to-embedding functions under concatenation, direct sum, and sum:

1. For any setH ∈ {HPE,HTE}, for any ψ1, ψ2 ∈ H, their concatenation [ψ1, ψ2] ∈ H.

2. For any d, d′ ∈ N, let 0d,d′ : Rd → Rd′
be the zero function (mapping every input to 0 ∈ Rd′

). For any set
T ∈ {TSA, TMHA, TFF, TPROJ}, (a). 0d,d′ ∈ T and (b).for any ϕ ∈ T , the direct sum ϕ⊕ 0d,d′ ∈ T .

3. For any set T ∈ {TMHA, TFF, TPROJ}, T = T + T ≜ {ϕ1 + ϕ2 | ϕ1, ϕ2 ∈ T }. Moreover, TMHA is the sum closure of
TSA, that is, TMHA = {

∑h
j=1 ϕj | ϕj ∈ TSA, h ∈ N+}.

6We allow multi-variable activation functions like Gated ReLU (ReGLU), x, y 7→ x[y]+.
7We could assume an arbitrary order to break ties, but we omit this for simplicity. In our examples we always ensure the argmax is

unique.

23

PENCIL: Long Thoughts with Short Memory

4. For any set T ∈ {TMHA, TFF, TPROJ, TTF, {idd | d ∈ N}}, for any ϕ1, ϕ2 ∈ T , their direct sum ϕ1 ⊕ ϕ2 ∈ T .

Lemma F.5. The concatenation operator is closed overHTF[ϕPE;TACT], that is, [·, ·] : H2
TF[ϕPE;TACT] → HTF[ϕPE;TACT].

Lemma F.6 (Local Closed Operators). A local operator ω is closed overHTF[ϕPE;TACT], that is, ω : HTF[ϕPE;TACT](d1)×
HTF[ϕPE;TACT](d2) × . . . ×HTF[ϕPE;TACT](dk) → HTF[ϕPE;TACT](Rd′

) for some positive integers k, d′, and {di}ki=1, if
its equivalent local function ϕω can be implemented by a multi-layer network with activation functions in TACT

Besides the local operators induced feedforward networks, we also have the following non-local closed operator induced by
attention (Lemma F.12).

Lemma F.7 (AHA is a Closed Operator). Average-hard attention is a closed operator overHTF[ϕPE;TACT], that is, for any
q, k ∈ HTF[ϕPE;TACT](Rd) and v ∈ HTF[ϕPE;TACT](Rd′

), we have aha(q, k, v) ∈ HTF[ϕPE;TACT](Rd′
).

The proof of Lemma F.12 is similar to that of Lemma F.11, which uses the definition ofHTF[ϕPE;TACT] and the closedness
property of concatenation (Lemma F.10). The proof is straightforward and omitted.

F.1. Custom Operators in FASP

To further improve the convenience of coding in FASP and proving certain functions can be expressed by constant depth
transformers uniformly, we introduce an extension to FASP, which instead of allowing the four primitive operators, we also
allow other closed operators Definition E.13. Below we are going to introduce a specific grammar that allows us to build
new custom operators that are commonly used in transformer models. These operators are not primitive operators in FASP,
but can be easily implemented by composition of the primitive operators defined in Definition F.1. Those custom operators
are closed under the class of embedding functions that can be implemented by transformers, namelyHTF[ϕPE;TACT], since
each primitive operator is closed.

Definition F.8 (Custom Closed Operators). Let ω : H(Rd1)×H(Rd2)× . . .×H(Rdk)→ H(Rd′
) be an operator and let

its input be ψ̃1, . . . , ψ̃k. We say ω is a custom closed operator if it can be expressed as a composition of primitive operators
in FASPand other previously defined custom closed operators8.

In detail, the definition of ω via composition is similar to FASPand is as follows:

• at each step t ∈ [n], the program maintains a set of defineable seq-to-embedding functions St ≜ HTE ∪ {ϕPE} ∪ {ψi |
1 ≤ i ≤ t− 1}∪{ψ̃j | 1 ≤ j ≤ k}.

• at each step t ∈ [n], the program defines a new function ψt by applying either one of the four primitive operators in FASP,
or a previously defined custom closed operator to some functions in St.

• the operator ω returns the last function defined in the program, i.e., ψn, on input of ψ̃1, . . . , ψ̃k.

When the definition via composition is short, we also write them in an inline format without explicitly naming the
intermediate ψi.

Example F.9 (Addition). We define the addition operator add : H(R) ×H(R) → H(R) as the operator that takes two
seq-to-embedding functions ψ,ψ′ ∈ H(Rd) and outputs their element-wise sum:

add(ψ,ψ′)(x) = ψ(x) + ψ′(x) for all x ∈ Σ∗. (48)

Lemma F.10. The concatenation operator is closed overHTF[ϕPE;TACT], that is, [·, ·] : H2
TF[ϕPE;TACT] → HTF[ϕPE;TACT].

Lemma F.11 (Local Closed Operators). A local operator ω is closed overHTF[ϕPE;TACT], that is, ω : HTF[ϕPE;TACT](d1)×
HTF[ϕPE;TACT](d2) × . . . ×HTF[ϕPE;TACT](dk) → HTF[ϕPE;TACT](Rd′

) for some positive integers k, d′, and {di}ki=1, if
its equivalent local function ϕω can be implemented by a multi-layer network with activation functions in TACT

Besides the local operators induced feedforward networks, we also have the following non-local closed operator induced by
attention (Lemma F.12).

Lemma F.12 (AHA is a Closed Operator). Average-hard attention is a closed operator overHTF[ϕPE;TACT], that is, for any
q, k ∈ HTF[ϕPE;TACT](Rd) and v ∈ HTF[ϕPE;TACT](Rd′

), we have aha(q, k, v) ∈ HTF[ϕPE;TACT](Rd′
).

8Those operators cannot be defined with ω

24

PENCIL: Long Thoughts with Short Memory

The proof of Lemma F.12 is similar to that of Lemma F.11, which uses the definition ofHTF[ϕPE;TACT] and the closedness
property of concatenation (Lemma F.10). The proof is straightforward and omitted.

The addition operator is a custom closed operator, as it can be expressed as a composition of the primitive operators in
FASP:

Algorithm 1 Implementation of addition operator, add(ψ1, ψ2)

Input :Two seq-to-embedding functions ψ1, ψ2 ∈ H(Rd)
Output :A seq-to-embedding function ψ∗ ∈ H(R)
ψcat ← [ψ1, ψ2] // Concatenate the two functions
ψ∗ ← (ψcat)1 + (ψcat)2 // Linear transformation – summation over both coordinates
return ψ∗

Alternatively, in the inline format for composition, we can simply write: add(ψ,ψ′) = ψ + ψ′.

F.2. Fine-Grained Types of Seq-to-Embedding Functions

So far we have been talking about seq-to-embedding functions whose ranges are Rd. It turns out to be useful to consider
more fine-grained types of seq-to-embedding functions whose range are only subset of Rd. The main benefit of restricting
output types is that it also simmplifies the construction of following operators, as they they only need to be defined on
seq-to-embedding functions with smaller domains. In particular, we will be interested in and use the following three types:

• Binary Seq-to-Embedding Functions: These are seq-to-embedding functions whose range is {0, 1}d. We denote the set
of all such functions asH({0, 1}d).

• Integer Seq-to-Embedding Functions: These are seq-to-embedding functions whose range is Zd. We denote the set of
all such functions asH(Zd).

• One-Hot Seq-to-Embedding Functions: Given a finite set A, we define H(onehot(A)) as the class of seq-
to-embedding functions whose range is the set of one-hot encodings of elements in A. Specifically, for any
ψ ∈ H(onehot(A)) and any input x ∈ Σ∗, ψ(x) ∈ {ea : a ∈ A} where ea ∈ {0, 1}|A| is the one-hot encoding
of element a ∈ A. (See definition of onehot below, Definition F.13)
One-hot embedding will be particularly useful at the last line of FASP, when we need to take argmax of the output
embedding to get the final token. A recommended practice here for the readability of the code here is to ensure the last
embedding before argmax computes the one-hot embedding of the desired output token.

Definition F.13 (One-Hot Encoding). We define the one-hot encoding operator onehotA : A→ {0, 1}|A| for any finite
set A as:

[onehotA(a)]i =

{
1 if a is the i-th element of A under some fixed ordering
0 otherwise

(49)

We use onehot(A) ≜ {onehotA(a) | a ∈ A} to denote the set of all one-hot encoding operators for all finite sets A.

The inverse operation, which maps a one-hot vector back to the corresponding element, is denoted as onehot−1
A :

{0, 1}|A| → A, defined as:

onehot−1
A (v) = a where a is the i-th element of A and vi = 1 (50)

When the set A is clear from context, we may simply write onehot and onehot−1 for brevity.

G. Notable Special Cases of FASP
In this section, we would like to discuss some special cases of FASP that are of particular interest. We consider four special
cases of FASP, from less expressive to more expressive (see Lemma G.1), that are of particular interest: FASP[0; [·]+] (Ap-
pendix G.1), FASP[0; [·]+,×] (Appendix G.2), FASP[is first; [·]+,×] (Appendix G.3) and FASP[seq len; [·]+,×]
(Appendix G.4).

25

PENCIL: Long Thoughts with Short Memory

We first formally define the above mentioned positional embeddings and activation functions. We start with positional
embeddings.

• 0 : N+ → {0}. We use 0 to denote the constant position embedding that always outputs 0, which is equivalent to not
having positional encoding.

• is first : N+ → {0, 1}. We use is first to denote the function that outputs 1 if the input is the first position and 0
otherwise. That is, is first(n) = 1[n = 1].

• seq len : N+ → N+. We use seq len to denote the identity mapping over N+, which returns the position index itself.
That is, seq len(n) = n. This allows the model to directly access the current sequence length.

Now we define the non-linear activation functions that will be used in this subsection.

• ReLU(or[·]+) : R→ R. We define ReLU(x) = [x]+ = max(x, 0) to bethe ReLU activation function, which outputs the
input if it is positive and 0 otherwise.

• multiply(or×) : R× R→ R. We use × to denote the multiplication function, which outputs the product of its two
inputs.

• square : R→ R. We use this to denote the square function, which outputs the square of its input, i.e., square(x) = x2.
• ReGLU : R× R→ R. We use this to denote the ReGLU (Rectified Gated Linear Unit) activation, which multiplies the

first input by the rectified second input, that is, ReGLU(x, y) = x[y]+.

Lemma G.1. Let ϕPE and ϕ′PE be two feature functions for positional embedding, and TACT and T ′
ACT be two sets of activa-

tion functions. If ϕ′PE ∈ FASP[ϕPE; TACT] and T ′
ACT ⊆ FASP[ϕPE; TACT], then FASP[ϕ′PE; T ′

ACT] ⊆ FASP[ϕPE; TACT].

Proof of Lemma G.1. Since ϕ′PE ∈ FASP[ϕPE; TACT], there exists a program in FASP[ϕPE; TACT] that computes ϕ′PE.
Similarly, for each activation function σ′ ∈ T ′

ACT, there exists a program in FASP[ϕPE; TACT] that computes σ′. Given
any program in FASP[ϕ′PE; T ′

ACT], we can transform it into a program in FASP[ϕPE; TACT] by: (1) replacing each use
of ϕ′PE with its implementation in FASP[ϕPE; TACT], and (2) replacing each activation function σ′ ∈ T ′

ACT with its
implementation in FASP[ϕPE; TACT]. This transformation preserves the functionality of the original program, showing that
FASP[ϕ′PE; T ′

ACT] ⊆ FASP[ϕPE; TACT].

Theorem G.2 (Hierarchy of FASP Variants). The following containment relations hold between variants of FASP:

FASP[0; [·]+] ⊆ FASP[0; [·]+,×] ⊆ FASP[is first; [·]+,×] ⊆ FASP[seq len; [·]+,×] (51)

where each inclusion represents a strict increase in expressiveness.

Why we care about FASP[0; [·]+,×] Most modern LLM architectures use 2-layer MLP with gated linear units
(GLU) (Dauphin et al., 2017) as the activation function (Equation (34)), such as SwishGLU (Shazeer, 2020), which
is a variant of GLU with Swish activation (Ramachandran et al., 2017). For simplicity, we focus on ReGLU, which is
a variant of GLU with ReLU activation (Dauphin et al., 2017), and also the limit of SwishGLU as the Swish activation
approaches ReLU by letting β →∞.
Theorem G.3 (Equivalent Expressiveness of Different Activation Sets). The following function classes are equivalent:
FASP[0; [·]+,×] = FASP[0; [·]+,square] = FASP[0;ReGLU].

Proof of Theorem G.3. We prove that FASP[0; [·]+,×] = FASP[0; [·]+,square] = FASP[0;ReGLU] by showing that
both FASP[0; [·]+,square] and FASP[0;ReGLU] are equivalent to FASP[0; [·]+,×].

Equivalence of FASP[0; [·]+,×] and FASP[0; [·]+,square]: For the forward direction (FASP[0; [·]+,×] ⊆
FASP[0; [·]+,square]), we show that multiplication can be expressed using square and ReLU:

multiply(x, y) = x · y =
(x+ y)2 − x2 − y2

2
=
square(x+ y)− square(x)− square(y)

2
(52)

For the reverse direction (FASP[0; [·]+,square] ⊆ FASP[0; [·]+,×]), we observe that square is simply multiplication with
itself:

square(x) = x2 = x · x = multiply(x, x) (53)

26

PENCIL: Long Thoughts with Short Memory

Equivalence of FASP[0; [·]+,×] and FASP[0;ReGLU]: For the forward direction (FASP[0; [·]+,×] ⊆ FASP[0;ReGLU]),
we need to show that both ReLU and multiplication can be expressed using ReGLU:

ReLU(x) = [x]+ = ReGLU(x, 1) (54)
multiply(x, y) = x · y = ReGLU(x, y)− ReGLU(x,−y) (55)

For the reverse direction (FASP[0;ReGLU] ⊆ FASP[0; [·]+,×]), we can directly express ReGLU using ReLU and multipli-
cation:

ReGLU(x, y) = x[y]+ = x · [y]+ = multiply(x,ReLU(y)) (56)

Therefore, FASP[0; [·]+,×] = FASP[0; [·]+,square] = FASP[0;ReGLU].

G.1. Expressiveness of FASP[0; [·]+]

By Lemma F.11, all the local operators that can be written as MLP with ReLU activation are in FASP[0; [·]+]. This includes:

1. Arithmetic operators over reals (addition, subtraction, max, min):
• add : H(R)×H(R)→ H(R). See Example F.9. We also write ψ1 + ψ2 for add(ψ1, ψ2).
• minus : H(R)×H(R)→ H(R), minus(ψ1, ψ2) ≜ add(ψ1,−ψ2). We also write ψ1 − ψ2 for minus(ψ1, ψ2).
• max : H(R)×H(R)→ H(R), max(ψ1, ψ2) ≜ [ψ1 − ψ2]+ψ2.
• min : H(R)×H(R)→ H(R), min(ψ1, ψ2) ≜ −[ψ1 − ψ2]+ψ2.

2. Boolean operators(AND, OR, NOT, XOR): For any ψ1, ψ2 ∈ H({0, 1}), boolean operators are defined as:
• and : H({0, 1})×H({0, 1})→ H({0, 1}), and(ψ1, ψ2) ≜ min(ψ1, ψ2). We also denote it as ψ1 ∧ ψ2.
• not : H({0, 1})→ H({0, 1}), defined as: not(ψ) ≜ 1− ψ. We also denote it as ¬ψ.
• or : H({0, 1})×H({0, 1})→ H({0, 1}), defined as: or(ψ1, ψ2) ≜ ¬(¬ψ1 ∧ ¬ψ2). We also denote it as ψ1 ∨ ψ2.
• xor : H({0, 1})×H({0, 1})→ H({0, 1}), defined as: xor(ψ1, ψ2) ≜ (ψ1 ∨ ψ2) ∧ ¬(ψ1 ∧ ψ2). We also denote it

as ψ1 ⊻ ψ2.

3. Comparison operators over integers (less than, equality, etc.);
• leq(ψ1, ψ2): For every input x ∈ Σ∗, the less-than-or-equal operator leq : H(Z)×H(Z)→ H({0, 1}) returns 1 if

the first argument ψ1 is less than or equal to the second argument ψ2, otherwise it returns 0. Because it is a comparison
operator defined only over integers, it admits the following equivalent definition:

leq(ψ1, ψ2) ≜ [ψ2 − ψ1 + 1]+ − [ψ2 − ψ1]+ (written as ψ1 ≤ ψ2) (57)

• The remaining comparison operators can be derived from less, which all have typeH(Z)×H(Z)→ H({0, 1}):

geq(ψ1, ψ2) ≜ leq(ψ2, ψ1) (written as ψ1 ≥ ψ2) (58)

equal(ψ1, ψ2) ≜ leq(ψ1, ψ2) ∧ leq(ψ2, ψ1) (written as ψ1 = ψ2) (59)

less(ψ1, ψ2) ≜ leq(ψ1, ψ2 − 1) (written as ψ1 < ψ2) (60)

greater(ψ1, ψ2) ≜ less(ψ2, ψ1) (written as ψ1 > ψ2) (61)

neq(ψ1, ψ2) ≜ not(equal(ψ1, ψ2)) (written as ψ1 ̸= ψ2) (62)

It is worth noting that equal can be extended to vector inputs, ∪d∈N+H(Zd)×H(Zd) by comparing each coordinate of
the two vectors and take the logical AND of all the results. Similarly we can extend neq to vector inputs by still setting it
to be not ◦ equal.

4. All operators on finite discrete inputs (with one-hot encoding). Namely all operators with signatureH(onehot(A1))×
H(onehot(A2))×. . .×H(onehot(An))→ H for finite setsA1, A2, . . . , An. In particular this includes the kronecker-
product operator ⊗ : H(onehot(A1))×H(onehot(A2))→ H(onehot(A1 ×A2), where

⊗(ψ1, ψ2)(x) = (ψ1 ⊗ ψ2)(x) = ψ1(x)⊗ ψ2(x), (63)

27

PENCIL: Long Thoughts with Short Memory

for any x ∈ Σ∗. Here ⊗ on RHS is just the usual kronecker product in on vector space. For simplicity, we will use
a1 ∈ A1 and a2 ∈ A2 to denote the coordinates of ψ1 and ψ2 respectively, and use (a1, a2) to denote the coordinate of
ψ1 ⊗ ψ2. We can construct ψ1 ⊗ ψ2 by setting (ψ1 ⊗ ψ2)(a1,a2) = ψ1a1

andψ2a2
for all a1 ∈ A1 and a2 ∈ A2. 9

We can also define the following non-local closed operators:

1. Running Average: For any ψ ∈ H(R), the running average operator average : H(R)→ H(R) computes the average
of all prefix function values. For any input x ∈ Σ∗ of length n:

average(ψ)(x) =
1

n

n∑
j=1

ψ(x1:j) (64)

This can be constructed using average-hard attention with constant queries and keys: average(ψ) ≜ aha(1,1, ψ).

2. Running Maximum: For any ψ ∈ H(R), the running maximum operator seq max : H(R) → H(R) returns the
maximum value across all prefixes. For any input x ∈ Σ∗ of length n:

seq max(ψ)(x) = max
j=1,...,n

ψ(x1:j) (65)

This can be constructed as seq max(ψ) ≜ aha(ψ,ψ, ψ), where the position with maximum value receives all attention.

3. Running Minimum: For any ψ ∈ H(R), the running minimum operator seq min : H(R) → H(R) returns the
minimum value across all prefixes. For any input x ∈ Σ∗ of length n:

seq min(ψ)(x) = min
j=1,...,n

ψ(x1:j) (66)

This can be implemented by negating the maximum of the negated function: seq min(ψ) ≜ −seq max(−ψ).
4. Running Logical AND: For any ψ ∈ H({0, 1}), the running logical AND operator seq and : H({0, 1})→ H({0, 1})

computes the conjunction of all prefix values. For any input x ∈ Σ∗ of length n:

seq and(ψ)(x) =
n∧

j=1

ψ(x1:j) (67)

Since binary values are used, this is equivalent to the running minimum: seq and(ψ) ≜ seq min(ψ).

5. Running Logical OR: For any ψ ∈ H({0, 1}), the running logical OR operator seq or : H({0, 1}) → H({0, 1})
computes the disjunction of all prefix values. For any input x ∈ Σ∗ of length n:

seq or(ψ)(x) =
n∨

j=1

ψ(x1:j) (68)

Since binary values are used, this is equivalent to the running maximum: seq or(ψ) ≜ seq max(ψ).

G.2. Expressiveness of FASP[0; [·]+,×]

FASP[0; [·]+,×] allows one more activation function, x, y 7→ x×y on top of FASP[0; [·]+] discussed in the previous section.
We first recall that multiplication activation induces the following multiplication operator multiply : H(R)×H(R)→
H(R), which is defined as:

multiply(ψ1, ψ2)(x) ≜ ψ1(x) · ψ2(x) (69)

for any x ∈ Σ∗. We will use ψ1 · ψ2, ψ1ψ2, or ψ1 × ψ2 to denote multiply(ψ1, ψ2) hereafter.

In FASP[0; [·]+,×] we have the following closed operator:

9Note this construction uses the fact that each coordinate of ψ1, ψ2 is boolean. We cannot define the kronecker product on infinite
domains integers or reals without multiplication/square/gated ReLu activation. Will return to this in next subsection (Appendix G.2).

28

PENCIL: Long Thoughts with Short Memory

Conditional Operator We define a conditional operator if then else : H({0, 1})×H(Rd)×H(Rd)→ H(Rd) for
control flow, which selects between values based on a condition:

if then else(ψcond, ψtrue, ψfalse)(x) =

{
ψtrue(x) if ψcond(x) = 1

ψfalse(x) if ψcond(x) = 0
(70)

This can be constructed directly from previously defined closed operators:

if then else(ψcond, ψtrue, ψfalse) ≜ ψcond · ψtrue + (¬ψcond) · ψfalse). (71)

G.3. Expressiveness of FASP[is first; [·]+,×]

We first recall the definition of is first:

is first(n) = 1[n = 1]. (72)

where 1[·] is the indicator function. In practice, it is important for language model to know whether the current position
is the first position, and it is standard to use [BOS] token to indicate the beginning of the sequence. By using is first
position embedding, we achieve the similar effect as using [BOS] token. It is easy to prove that LLM cannot count without
any positional embedding, even with softmax attention. Concretely, without positional encoding, for any parameter θ, any
token a ∈ Σ, any integer n, πθ(an) = πθ(a). So in some sense is first is the minimal positional embedding that allows
LLM to count.

Simply adding is first position embedding allows us to define the following closed operators in FASP[is first; [·]+],
and thus also in FASP[is first; [·]+,×]:

• inv seq len: We define inv seq len(n) = 1/n as the inverse of sequence length by constructing

inv seq len ≜ average(seq len = 1). (73)

This operator computes the inverse of the current sequence length, which is useful for normalizing operations that depend
on sequence length.

• is pos k: We define is pos k(n) = 1[n = k] as the indicator function for the k-th position. This can be constructed
as:

is pos k = geq0(k + 1− k(k + 1) · inv seq len) ∧ geq0(k(k + 1) · inv seq len− k − 1) (74)

where geq0 : H((−∞,−1] ∪ [0,∞))→ H({0, 1}) is defined as geq0(ψ) = [ψ + 1]+ − [ψ]+. geq0 satisfies that for
any x ∈ Σ∗, geq0(ψ)(x) = 1 if ψ(x) ≥ 0 and 0 if ψ(x) ≤ −1.
This works because at position n, we have inv seq len(n) = 1/n. When n = k, both k + 1 − k(k + 1)/n =
k+ 1− k(k+ 1)/k = k+ 1− (k+ 1) = 0 and k(k+ 1)/n− k− 1 = k(k+ 1)/k− k− 1 = (k+ 1)− k− 1 = 0, so
both terms are ≤ 0. When n ̸= k, at least one of the expressions will be > 0, making the result false.

• rha: We define Rightmost-Hard Attention rha : H(Zd′
) ×H(Zd′

) ×H(Rd) → H(Rd) as the hard-attention which
breaks tie by picking most recent argmax of attention score for any positive integer d, d′. That is, for any x ∈ Σn:

rha(ψq, ψk, ψv)(x) = ψv(x1:j∗) (75)

where j∗ is the rightmost position with maximal query-key match:

j∗ = max{j | ψq(x) · ψk(x1:j) = max
k≤n

ψq(x) · ψk(x1:k)}. (76)

This can be implemented using the aha primitive with augmented query and key vectors:

rha(ψq, ψk, ψv) ≜ aha ([ψq,1], [ψk,inv seq len], ψv) . (77)

For any two positions j < j′ with identical query-key match scores in the original space, the augmented scores will differ
by −1/j + 1/j′, which is always positive since −1/j > −1/j′ when j < j′. This ensures that when multiple positions
have the same original match score, the rightmost position (largest j) will achieve the highest augmented score, making
rha select it as the unique maximum.

We also have the following variant of rightmost hard attention rha which relies on the multiplication activation,
rightmost best match:

29

PENCIL: Long Thoughts with Short Memory

Rightmost Best Match For any positive integer d, d′, we define rightmost best match : H(Zd′
) × H(Zd′

) ×
H(Rd) → H(Rd) as the variant of rightmost hard attention which minimizes the ℓ2 distance between key and query, as
supposed to maximize their inner product. That is, for any x ∈ Σn:

rightmost best match(ψq, ψk, ψv)(x) = ψv(x1:j∗) (78)

where j∗ is the rightmost position with maximal query-key match quantified by the ℓ2 norm:

j∗ = max

(
argmin

j≤n
∥ψq(x)− ψk(x1:j)∥2

)
, (79)

This can be implemented using the rha and the multiplication operator:

rightmost best match(ψq, ψk, ψv) ≜ rha
(
[ψq,1], [2ψk,−ψ⊤

k ψk], ψv

)
, (80)

For ant input x, this definition retrieves the value at the position k that maximizes 2ψq(x)
⊤ψk(x1:k)− ψk(x1:k)

⊤ψk(x1:k),
or equivalently, minimizes ∥ψq(x)− ψk(x1:k)∥22.

Rightmost Exact Match For any positive integer d, d′, we define rightmost exact match : H(Zd′
)×H(Zd′

)×
H(Rd) × H(Rd) → H(Rd) as the variant of rightmost best match (and thus variant of rightmost hard attention) which
returns the value ψv associated with the rightmost key ψk that exactly matches the query ψq, and otherwise returns the
default value ψd. That is, for any x ∈ Σn:

rightmost exact match(ψq, ψk, ψv, ψd)(x)

≜if then else(rightmost best match(ψq, ψk, ψk) = ψq, ψv, ψd). (81)

G.4. Expressiveness of FASP[seq len; [·]+,×]

We end this section by considering the most expressive case FASP[seq len; [·]+,×] so far, where seq len is the identity
mapping over N+. With positional embedding seq len, we can define the following partial sum operator,

∑
, which is

closed in FASP[seq len;×], and thus also FASP[seq len; [·]+,×].

Partial Sum: We define sum : H(R)→ H(R) as the operator that computes the running sum. That is, for any x ∈ Σn:

sum(ψ)(x) =

n∑
j=1

ψ(x1:j) (82)

This can be constructed by scaling the average operator, i.e., sum(ψ) = average(ψ) · seq len.

We note that the ability of transformer to express or compute seq len (e.g., in terms of precision) is necessary to define the
partial sum operator, as the sum of the constant token embedding of value 1 immediately gives the sequence length,which
implies that any transformer class that can compute partial sum necessarily can also compute seq len, even without any
non-linear actiation function.

We also note that with sum as a closed operator in FASP[seq len; [·]+,×], it is clear that FASP[seq len; [·]+,×] is a
superset of C-RASP (Yang & Chiang, 2024).

H. Proof of Theorem 5.1: Main Result
We state the formal version of Theorem 5.1 as follows:
Theorem H.1 (Main). Let TM = (A, b, Q, q0, δ, Qaccept, Qreject) be any single-tape Turing machine that has time complexity
T (x) and space complexity S(x) on input x ∈ (A \ {b})∗. There exists a transformer with constant depth, constant
embedding dimension, Gated ReLU activation, and positional embedding n 7→ n, average hard attention, such that for the
next-token predictor πθ implemented by this transformer and the reduction rule ϕ′ defined in (9), the following holds:

1. PENCILfπθ
,ϕ′ produces the same output (accept or reject) as TM on x.

2. The total number of tokens generated by PENCILfπθ
,ϕ′ is O(T (x)).

3. The maximal context length used by PENCILfπθ
,ϕ′ during generation is at most O(S(x)).

30

PENCIL: Long Thoughts with Short Memory

Problem Setup Our goal is to construct a learnable model that can replicate PENCIL’s model generation process, since
the reduction process can be realized by the reduction rule. Specifically, at each iteration i, starting from a compressed state

x(i−0.5) ≜ s ◦ f ti−1
π (x) ∈ Σ∗, (83)

we need to construct a model that can autoregressively produce the extended sequence

x(i) ≜
(
f ti−ti−1
π ◦ s ◦ f ti−1

π (x), [SEP], s ◦ f ti
π (x), [RETURN]

)
∈ Σ∗. (84)

Intuitively, x(i) includes a newly generated block of uncompressed tokens representing the computations of Turing machine,
followed by a separator [SEP], followed by an updated compressed state representing Turing machine’s current memory,
and finally the token [RETURN].

The base case x(0.5) ≜ x serves as the initial prompt. Iteration i then starts from x(i−0.5) and ends with x(i). Here π : Σ̂∗ →
Σ̂ is the next-token generator in the autoregressive machine that simulates Turing Machine, where Σ̂ = Q×A×{−1, 0, 1}.
To implement this mapping, PENCIL uses a transformer as the next-token generator πθ : Σ∗ → Σ where transformer
vocabulary is Σ ≜ Σ̂ ∪ {[SEP],[RETURN]} and θ is the transformer parameter. It suffices to show that there is a
next-token generator π′ ∈ FASP[n; [·]+,×] (or equivalently, expressible by a transformer with n 7→ n positional embedding,
average-hard attention and Gated ReLU activation) that can

1. simulate the next-token generator in the autoregressive machine that simulates Turing Machine.
2. generate the special token [SEP] at the earliest time that the length will be halved after summarization.
3. simulate the summarization process.

Transformer Construction as FASP Program: The construction of the transformer is defined by the following FASP
program where each line uses a close operator to construct a new transformer model in the desired class. For readability, we
use colored keywords: orange for primitive functions, red for non-local closed operators, and blue for local closed operators.
We below clarify the new primitive seq-to-embedding functions used here. 10

1. get symbol : Σ→ onehot(A) - Maps a token to a one-hot encoding of the symbol part of the token, extracting the
symbol from state-symbol-move triples. Returns a one-hot vector in the symbol alphabet space.

2. get move : Σ→ {−1, 0, 1} - Maps a token to a scalar value representing the move direction (-1 for left, 0 for stay, 1
for right) extracted from state-symbol-move triples.

3. get state : Σ → onehot(Q) - Maps a token to a one-hot vector of the state part, extracting the state information
from state-symbol-move triples.

Most of the closed operators used in the program below are all already defined in Appendix G, except transition, which
maps one hot embedding of state and symbol to the onehot embedding of (next state, next symbol, next move) in Σ. The
following program thus completes the proof of Theorem 5.1

10We are proving for the simplified reduction rule only. The proof extends to the original PENCIL reduction rule in a straight-forward
manner.

31

PENCIL: Long Thoughts with Short Memory

Detect separator token
is_sep = (get_token = onehot([SEP]))
exist_sep = seq_or(is_sep)

Phase masks to distinguish between simulation and summarization phases
sim_phase_mask = not exist_sep
sum_phase_mask = exist_sep and (not is_sep)

Position tracking for Simulation, frozen in SUMMARIZATION (after [SEP] is generated)
next_sim_pos = seq_sum(get_move and sim_phase_mask)
current_sim_pos = next_sim_pos - (get_move and sim_phase_mask)
max_pos = seq_max(current_sim_pos)
min_pos = seq_min(current_sim_pos)
expected_sum_len = max_pos - min_pos + ReLU(max_pos- next_sim_pos -1) + 1

SIMULATION Phase
Get current symbol at head position
current_symbol = rightmost_exact_match(next_sim_pos,current_sim_pos,get_symbol,onehot(b))
Compute next step based on transition function
simulation_step = transition(get_state, current_symbol)

Decide whether to continue simulation or switch to summarization
end_simulation = sequence_len >= 2* expected_sum_len
simulation=if_then_else(end_simulation, onehot([SEP]), simulation_step)

SUMMARIZATION Phase
current_sum_pos = seq_sum(get_move and sum_phase_mask)
current_sum_len = seq_sum(sum_phase_mask)

Decide the next move in SUMMARIZATION PHASE
next_move = compute_move(current_sum_len, next_sim_pos, max_pos, min_pos)

By construction, exact match always happens.
summary_symbol=rightmost_best_match(current_sum_pos+min_pos,current_sim_pos,get_symbol)
summary_step = get_state ⊗ summary_symbol ⊗ onehot(next_move)

Check if we've reached the final position in summarization
end_summary = (current_sum_len = expected_sum_len)
summary = if_then_else(end_summary, onehot([RETURN], summary_step))

MAIN - Select appropriate action based on current phase
result = if_then_else(exist_sep, summary, simulation)

32

PENCIL: Long Thoughts with Short Memory

I. Omitted Proofs from Section 5 for Genreal Autoregressive Machines
Lemma I.1. Let s be a state function of a autoregressive machineM = (Σ, π,Σaccept,Σreject). It holds that s◦fkπ ◦s = s◦fkπ
and that πk+1 = πk+1 ◦ s for any k ≥ 0.

Proof of Lemma I.1. For any z ∈ Σ∗, we have that s2(z) = s(z). Now let x = s(z), x′ = z and y = π(z) = π(s(z)),
since s(x) = s(x′), we have s((x, y)) = s((x′, y)), which further implies that

s(fπ(s(z))) = s((x, y)) = s((x′, y)) = s(fπ(z)). (85)

Therefore, s ◦ fπ ◦ s = s ◦ fπ . Now we use induction to prove that s ◦ fkπ ◦ s = s ◦ fkπ for all k ∈ N+. The base case k = 1
is already proved. Now suppose s ◦ fkπ ◦ s = s ◦ fkπ , we have

s ◦ fk+1
π ◦ s = s ◦ fπ ◦ fkπ ◦ s = s ◦ fπ ◦ s ◦ fkπ ◦ s = s ◦ fπ ◦ s ◦ fkπ = s ◦ fπ ◦ fkπ (86)

which completes the induction.

Now we turn to the second part, which is a simple consequence of the first part. Note that for k ≥ 1, πk = π ◦ fk−1
π =

π ◦ s ◦ fk−1
π . By first part, s ◦ fk−1

π = s ◦ fk−1
π ◦ s. This completes the proof of the second part.

I.1. Proof of Proposition 5.6

Recall that we partition the full generation into segments indexed by i ∈ [I] where I is the total number of iterations and
each iteration corresponds to one effective reduction. Let t0 = 0, and for each i ≥ 1, define ti to be the smallest integer
greater than ti−1 such that

|s ◦ f ti
π (x)| ≤ 1

2

∣∣∣ f ti−ti−1
π ◦ s ◦ f ti−1

π (x)
∣∣∣, (87)

where | · | denotes sequence length. In words, ti is the next time step at which the (compressed) state is at most half the
length of the newly generated segment. Each iteration i therefore covers times from ti−1 + 1 to ti.

We let x(i) denote the sequence

x(i) ≜
(
f ti−ti−1
π ◦ s ◦ f ti−1

π (x), [SEP], s ◦ f ti
π (x), [RETURN]

)
. (88)

Applying ϕscroll then discards all tokens except the final compressed state

x(i+0.5) ≜ s ◦ f ti
π (x) (89)

which is treated as the initial sequence for the next iteration.

Bounding the Maximum Sequence Length (Space) Consider any point immediately before the [RETURN] of iteration
i. By definition of ti, we have ∣∣s ◦ f ti−1

π (x)
∣∣ > 1

2

∣∣∣ f ti−1−ti−1
π ◦ s ◦ f ti−1

π (x)
∣∣∣. (90)

Hence, if we look at the entire sequence (88) its length is at most

2
∣∣s ◦ f ti−1

π (x)
∣∣ + 2 +

∣∣s ◦ f ti
π (x)

∣∣ + 2 = O
(
S(M, s, x)

)
. (91)

Here the additional “+2” accounts for the two special tokens [SEP] and [RETURN], plus a small constant overhead.
Because s ◦ f ti−1

π (x) (and also s ◦ f ti
π (x)) is at most S(M, s, x) in length, we conclude that at every [RETURN], the

sequence is O(S(M, s, x)) long. This implies the maximum context length under PENCIL never exceeds O(S(M, s, x)).

Bounding the Total Number of Tokens (Time) Next, we show the total tokens generated (summing over all iterations)
is O(T (M, x)). The critical point is that our reduction rule does not trigger too frequently: if we were to compress
immediately after every single token (e.g. each Turing-machine step), we would incur an excessive time overhead. By only
reducing when the sequence grows sufficiently large relative to the state size, we avoid inflating the total time cost. Formally,
define

ℓi ≜
(
ti − ti−1

)
+
∣∣s ◦ f ti

π (x)
∣∣ + 2, (92)

33

PENCIL: Long Thoughts with Short Memory

which represents the cost (length) of generating the new tokens in iteration i, plus the two special tokens (such as [SEP]
and [RETURN]). We wish to bound

∑I
i=1 ℓi. From the definition of ti, it follows that(

ti − ti−1

)
+
∣∣s ◦ f ti

π (x)
∣∣ ≥ 2

∣∣s ◦ f ti−1
π (x)

∣∣. (93)

Summing up (93) from i = 1 to I gives us

(
tI − t0

)
+
∣∣s ◦ f tI

π (x)
∣∣ ≥ I∑

i=1

∣∣s ◦ f ti−1
π (x)

∣∣. (94)

where |s ◦ f t0
π (x)| = 0. Since tI ≤ T (M, x) (the total number of steps forM), each iteration’s generation cost can be

bounded by a linear function of tI plus the space used by the states. Concretely, summing up ℓi over i yields

I∑
i=1

ℓi ≤
I∑

i=1

[(
ti − ti−1

)
+
∣∣s ◦ f ti

π (x)
∣∣ + 2

]
≤ 2 tI + 2 I +

∣∣s ◦ f tI
π (x)

∣∣. (95)

Since I ≤ tI (each iteration covers at least one time step) and tI ≤ T (M, x), we conclude
∑I

i=1 ℓi = O
(
T (M, x)

)
.

Conclusion Together with our bound on the maximum sequence length, this shows that PENCIL simulatesM using both
optimal space S(M, s, x) and optimal time T (M, x). Thus, we complete the proof of Proposition 5.6.

J. Omitted Proofs
J.1. Omitted Proofs in Appendix E

Proof of Lemma E.6. Let M = argmaxj xj be the set of indices achieving the maximum value, and let xmax = maxj xj .
For any i ∈ M , we have xi = xmax, and for any i /∈ M , we have xi < xmax. Consider the softmax function with
temperature β:

[softmaxβ(x)]i =
exp(xi/β)∑n
j=1 exp(xj/β)

=
exp(xi/β)∑

j∈M exp(xmax/β) +
∑

j /∈M exp(xj/β)

For i ∈M , as β → 0:

lim
β→0

[softmaxβ(x)]i = lim
β→0

exp(xmax/β)

|M | exp(xmax/β) +
∑

j /∈M exp(xj/β)

= lim
β→0

1

|M |+
∑

j /∈M exp((xj − xmax)/β)

Since xj < xmax for all j /∈ M , we have (xj − xmax)/β → −∞ as β → 0, and thus exp((xj − xmax)/β) → 0. This
gives:

lim
β→0

[softmaxβ(x)]i =
1

|M |
for all i ∈M (96)

For i /∈M , we have:

lim
β→0

[softmaxβ(x)]i = lim
β→0

exp(xi/β)

|M | exp(xmax/β) +
∑

j /∈M exp(xj/β)

= lim
β→0

exp((xi − xmax)/β)

|M |+
∑

j /∈M exp((xj − xmax)/β)

34

PENCIL: Long Thoughts with Short Memory

Since xi < xmax, we have (xi − xmax)/β → −∞ as β → 0, so exp((xi − xmax)/β)→ 0, giving:

lim
β→0

[softmaxβ(x)]i = 0 for all i /∈M (97)

This proves that softmax0(x) distributes probability mass uniformly over the indices achieving the maximum value of
x.

J.2. Omitted Proofs in Appendix F

Proof of Theorem F.2. We will prove the theorem by showing both directions of the inclusion: FASP[ϕPE; TACT] ⊆
HTF[ϕPE;TACT] andHTF[ϕPE;TACT] ⊆ FASP[ϕPE; TACT].

Direction 1: FASP[ϕPE; TACT] ⊆ HTF[ϕPE;TACT] We show that any function definable in FASP can be implemented
by a transformer. We prove this by induction on the number of steps in the FASP program. The base case is trivial as the
initial set of definable functions S0 includes token embeddingsHTE and positional embeddings ϕPE, which are directly
implementable by transformer embedding layers, as established in Lemma F.3.

For the inductive step, assume that all functions in St can be implemented by transformers. Consider a new function ψt

defined at step t. We need to show that ψt ∈ HTF[ϕPE;TACT]. There are four possible operators:

1. Concatenation: If ψt = [ψ,ψ′] where ψ,ψ′ ∈ St, then by the induction hypothesis, both ψ and ψ′ can be implemented
by transformers. By Lemma F.10, we know that concatenation is a closed operator over HTF[ϕPE;TACT], thus ψt ∈
HTF[ϕPE;TACT].

2. Average-Hard Attention: If ψt = aha(ψ,ψ′, ψ′′) where ψ,ψ′, ψ′′ ∈ St, by Lemma F.12, average-hard attention is a
closed operator overHTF[ϕPE;TACT]. Therefore, ψt ∈ HTF[ϕPE;TACT].

3. Linear Projection: If ψt =W · ψ where ψ ∈ St and W is a matrix, this defines a local operator as per Definition E.11.
By Theorem F.11, any local operator implementable by a network with quadratic and ReLU activations is closed over
HTF[ϕPE;TACT]. Linear projection falls into this category, so ψt ∈ HTF[ϕPE;TACT].

4. Nonlinear Activation: If ψt = ϕ ◦ ψ where ϕ ∈ TACT and ψ ∈ St, this also defines a local operator. Since the
activations in TACT can be implemented by networks with quadratic and ReLU activations (as assumed in our framework),
Theorem F.11 ensures that ψt ∈ HTF[ϕPE;TACT].

Thus, any function in FASP[ϕPE; TACT] can be implemented by a transformer, establishing that FASP[ϕPE; TACT] ⊆
HTF[ϕPE;TACT].

Direction 2: HTF[ϕPE;TACT] ⊆ FASP[ϕPE; TACT] We need to show that any transformer can be expressed as a FASP
program. We prove this by induction on the number of layers in the transformer.

For the base case, a 0-layer transformer just consists of token and positional embeddings, which are already in the initial set
of definable functions S0 in FASP.

For the inductive step, assume that any transformer with L layers can be expressed in FASP. Consider a transformer with
L+ 1 layers. The first L layers can be expressed in FASP by the induction hypothesis. Let’s denote this as ψL. We need to
show that adding the (L+ 1)-th layer maintains expressibility in FASP.

The (L+ 1)-th layer consists of a multi-head self-attention sublayer followed by a feed-forward network:

1. Multi-Head Attention: The multi-head attention can be decomposed into h single-head attention, each of which can
be expressed as aha(W i

Q · ψL,W
i
K · ψL,W

i
V · ψL) for i ∈ {1, . . . , h}, where W i

Q, W i
K , and W i

V are the query, key, and
value projection matrices for the i-th head. The outputs of these heads are concatenated and projected through WO, which
can be represented as a linear projection in FASP.

2. Feed-Forward Network: The feed-forward network applies a linear transformation followed by a nonlinear activation and
another linear transformation. This can be directly expressed in FASP using the linear projection and nonlinear activation.

3. Residual Connections: The residual connections simply add the input to the output of each sublayer, which can be
expressed as addition (which is a linear transformation) in FASP.

35

PENCIL: Long Thoughts with Short Memory

Therefore, any transformer with L + 1 layers can be expressed in FASP, establishing that HTF[ϕPE;TACT] ⊆
FASP[ϕPE; TACT].

Combining the two directions, we have FASP[ϕPE; TACT] = HTF[ϕPE;TACT], which completes the proof.

Proof of Lemma F.4. We prove each claim separately:

(1) Token and Positional Embeddings: For any ψ1, ψ2 ∈ HTE, let ψ1 : Σ→ Rd1 and ψ2 : Σ→ Rd2 be parameterized
by θ1TE ∈ (Rd1)Σ and θ2TE ∈ (Rd2)Σ respectively. We define [ψ1, ψ2] : Σ→ Rd1+d2 parameterized by θTE ∈ (Rd1+d2)Σ

where for each σ ∈ Σ, θTE(σ) = [θ1TE(σ), θ
2
TE(σ)]. This directly implements the concatenation, showing that [ψ1, ψ2] ∈

HTE.

The case for positional embeddings follows similarly. For any ψ1, ψ2 ∈ HPE with parameters θ1PE ∈ Rd1×dPE and
θ2PE ∈ Rd2×dPE , we can define [ψ1, ψ2] ∈ HPE with parameters θPE = [θ1PE; θ

2
PE] ∈ R(d1+d2)×dPE .

(2) Zero Function and Direct Sum with Zero: The statement that 0 ∈ T is straightforward as each operator allows
setting all parameters (weight matrices and biases) to zero.

For ϕ⊕ 0d,d′ ∈ T , consider any ϕ ∈ T :

• For TSA: Given ϕ = SAθSA
with parameters θSA = (WQ,WK ,WV ,WO), we define ϕ⊕ 0 as SAθ′

SA
with parameters

θ′SA = (W ′
Q,W

′
K ,W

′
V ,W

′
O) where:

W ′
Q =

[
WQ

0

]
, W ′

K =

[
WK

0

]
, W ′

V =

[
WV

0

]
, W ′

O =
[
WO 0

]
• For TMHA: The proof follows from the fact that TMHA is composed of multiple TSA attention heads.
• For TFF: it suffices to prove for the sub feedforward network corresponding to each activation σ ∈ TACT. Given
σ : Rk → R and ϕ = FFσ

θFF,σ
with parameters θFF,σ = (Wi)

k
i=0, we define ϕ ⊕ 0 as FFθ′

FF
with parameters

W ′
i =

[
Wi 0

]
.

• For TPROJ: Given ϕ = PROJθPROJ with parameter θPROJ ∈ RdPROJ×d, we define ϕ ⊕ 0d,d′ as PROJθ′
PROJ

with
θ′PROJ =

[
θPROJ 0

]
.

(3) Closure Under Addition: For any T ∈ {TMHA, TFF, TPROJ}, we have T = T + T :

• For TMHA: The sum ϕ1 + ϕ2 of two multi-head attention modules can be implemented by concatenating their attention
heads into a single module with h1 + h2 heads.

• For TFF: The sum of two feed-forward networks can be implemented by doubling the intermediate dimension and
summing their outputs through appropriate matrix concatenation.

• For TPROJ: The sum of two projection layers is simply implemented by adding their parameter matrices.
• By definition, TMHA is the sum closure of TSA since multi-head attention is the sum of outputs from single-head attention

modules.

(4) Direct Sum Closure: For any set T ∈ {TMHA, TFF, TPROJ, {idd | d ∈ N}}, for any ϕ1 ∈ T with input dimension d1
and output dimension d′1, and ϕ2 ∈ T with input dimension d2 and output dimension d′2, their direct sum ϕ1 ⊕ ϕ2 ∈ T .
This can be proved by decomposing the direct sum as:

ϕ1 ⊕ ϕ2 = (ϕ1 ⊕ 0) + (0⊕ ϕ2) (98)

where 0 represents the appropriate zero function. From claim (2), we know that ϕ1 ⊕ 0, 0⊕ ϕ2 ∈ T , and from claim (3), we
know that T = T + T . Therefore, ϕ1 ⊕ ϕ2 ∈ T .

For the identity function, note that idd : (Rd)∗ → Rd can be implemented by any of the above operators with appropriate
parameter choices. For instance, in TMHA, we can set each head to implement identity by using WQ = WK = WV = I
and WO = I/h where h is the number of heads. For TFF, we can set W0 = W1 = 0, W2 = 0, b0 = b1 = 0, and b2 = 0.
The direct sum of identity functions remains an identity function: idd1 ⊕ idd2 = idd1+d2 , which is again implementable by

36

PENCIL: Long Thoughts with Short Memory

the same operators with appropriately sized parameters. For TTF: Given any two transformer layers ϕ1, ϕ2 ∈ TTF, where
ϕ1 : (Rd1)∗ → Rd1 and ϕ2 : (Rd2)∗ → Rd2 with parameters θ(1)MHA, θ

(1)
FF and θ(2)MHA, θ

(2)
FF respectively, we need to show

ϕ1 ⊕ ϕ2 ∈ TTF.

By definition of TTF and transformer layers (Definition 3.16), we have:

ϕ1 =
(
FF

θ
(1)
FF

+ idd1

)
◦
(
MHA

θ
(1)
MHA

+ idd1

)
(99)

ϕ2 =
(
FF

θ
(2)
FF

+ idd2

)
◦
(
MHA

θ
(2)
MHA

+ idd2

)
(100)

For the direct sum ϕ1 ⊕ ϕ2, we have:

ϕ1 ⊕ ϕ2 =
((

FF
θ
(1)
FF

⊕ FF
θ
(2)
FF

)
+ (idd1 ⊕ idd2)

)
◦
((

MHA
θ
(1)
MHA

⊕MHA
θ
(2)
MHA

)
+
(
idd1 ⊕ idd2

))
(101)

=
((

FF
θ
(1)
FF

⊕ FF
θ
(2)
FF

)
+ idd1+d2

)
◦
((

MHA
θ
(1)
MHA

⊕MHA
θ
(2)
MHA

)
+ idd1+d2

)
(102)

From our earlier results: 1. FF
θ
(1)
FF

⊕FF
θ
(2)
FF

∈ TFF (claim 4) 2. idd1⊕idd2 = idd1+d2 (claim 4) 3. MHA
θ
(1)
MHA

⊕MHA
θ
(2)
MHA

∈
TMHA (claim 4)

Therefore, ϕ1 ⊕ ϕ2 can be expressed as a transformer layer, which means ϕ1 ⊕ ϕ2 ∈ TTF.

Proof of Lemma F.10. We need to prove that for any ψ1, ψ2 ∈ HTF[ϕPE;TACT], their concatenation [ψ1, ψ2] ∈
HTF[ϕPE;TACT]. Let ψ1 : Σ∗ → Rd1 and ψ2 : Σ∗ → Rd2 be two sequence-to-embedding functions inHTF[ϕPE;TACT]. By
definition, for i ∈ {1, 2}, there exist token embedding TEi ∈ HTE, positional embedding PEi ∈ HPE, transformer layers
TFi,ℓ ∈ TTF for ℓ ∈ {1, . . . , Li}, and projection PROJi ∈ TPROJ such that:

ψi = PROJi ◦
(
⃝Li

ℓ=1TFi,ℓ

)
◦
(
PEi +TEi

)
(103)

Without loss of generality, we can assume L1 = L2 = L (if not, we can pad the shallower transformer with identity layers
since idd ∈ TTF). We construct a transformer that computes [ψ1, ψ2] as follows:

1. Initial embedding layer: By Lemma F.4(1), we construct token and positional embeddings TE = [TE1,TE2] ∈ HTE

and PE = [PE1,PE2] ∈ HPE.

2. Transformer layers: For each ℓ ∈ {1, . . . , L}, we define TFℓ = TF1,ℓ ⊕ TF2,ℓ ∈ TTF by Lemma F.4(4).

3. Projection layer: We define PROJ = PROJ1 ⊕ PROJ2 ∈ TPROJ by Lemma F.4(4).

Thus, [ψ1, ψ2] = PROJ ◦
(
⃝L

ℓ=1TFℓ

)
◦
(
PE+TE

)
is expressible by a valid transformer with a constant number of layers,

which proves [ψ1, ψ2] ∈ HTF[ϕPE;TACT].

Proof of Lemma F.11. First we claim that if ϕω can be implemented by a 2-layer feedforward network with ReGLU
activation, then ω is closed overHTF[ϕPE;TACT]. This is because for any ψi ∈ HTF[ϕPE;TACT](di), we have [ψ1, . . . , ψk] ∈
HTF[ϕPE;TACT] since concatenation is closed. Suppose [ψ1, . . . , ψk] can be expressed as:

[ψ1, . . . , ψk] = PROJθPROJ
◦
(
⃝L

ℓ=1TFθℓ
MHA,θℓ

FF

)
◦
(
PE + TEθTE

)
(104)

Now, applying a 2-layer feedforward network ϕω to this concatenated output means:

ω(ψ1, . . . , ψk) = ϕω([ψ1, . . . , ψk]) (105)

Adding a 2-layer feedforward network ϕω after this means:

ω(ψ1, . . . , ψk) = ϕω ◦ PROJθPROJ
◦
(
⃝L

ℓ=1TFθℓ
MHA,θℓ

FF

)
◦
(
PE + TEθTE

)
(106)

37

PENCIL: Long Thoughts with Short Memory

To prove this remains inHTF[ϕPE;TACT], we can construct an additional transformer layer TFθL+1
MHA,θL+1

FF
where: 1. θL+1

MHA

implements zero attention (all weights set to 0) 2. θL+1
FF implements ϕω ◦ PROJθPROJ

This is valid because the linear projection PROJθPROJ
can be absorbed into the first layer of the feedforward

network in ϕω. Specifically, if ϕω has parameters (W0,W1,W2, b0, b1, b2) and PROJθPROJ
has parameter matrix

θPROJ, then ϕω ◦ PROJθPROJ is equivalent to a feedforward network with parameters: (W ′
0,W

′
1,W

′
2, b

′
0, b

′
1, b

′
2) =

(W0θPROJ,W1θPROJ,W2, b0, b1, b2).

Therefore, ω(ψ1, . . . , ψk) = PROJθ′
PROJ
◦
(
⃝L+1

ℓ=1 TFθℓ
MHA,θℓ

FF

)
◦
(
PE+TEθTE

)
∈ HTF[ϕPE;TACT] where θL+1

FF implements
the combined function ϕω ◦ PROJθPROJ and PROJθ′

PROJ
is the identity projection. This completes the proof of the claim.

Since composition of closed operators remains closed, the above claim extends to any number of layers, which are just
composition of 2-layer networks. This completes the proof of Lemma F.11.

38

PENCIL: Long Thoughts with Short Memory

K. Example: Boolean Satisfiability (SAT)
K.1. Chain-of-Thought

• Prompt:

<|startoftext|> (4 ∨ ¬ 3 ∨ ¬ 2) ∧ (¬ 4 ∨ ¬ 2 ∨ 1) ∧ (¬ 2 ∨ ¬ 1 ∨ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 2
↪→ ∨ 4) ∧ (¬ 1 ∨ 4 ∨ 2) ∧ (1 ∨ ¬ 4 ∨ 2) ∧ (4 ∨ ¬ 2 ∨ 3) ∧ (¬ 4 ∨ 1 ∨ ¬ 3) ∧ (3 ∨ 2 ∨
↪→ 4) ∧ (¬ 3 ∨ 1 ∨ ¬ 4) ∧ (¬ 4 ∨ 2 ∨ ¬ 3) ∧ (2 ∨ 4 ∨ ¬ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 1 ∨ ¬
↪→ 4) ∧ (¬ 1 ∨ ¬ 4 ∨ ¬ 2) ∧ (2 ∨ 3 ∨ 4) <|endofprompt|>

• Response:

[CALL] Question: (4 ∨ ¬ 3 ∨ ¬ 2) ∧ (¬ 4 ∨ ¬ 2 ∨ 1) ∧ (¬ 2 ∨ ¬ 1 ∨ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬
↪→ 2 ∨ 4) ∧ (¬ 1 ∨ 4 ∨ 2) ∧ (1 ∨ ¬ 4 ∨ 2) ∧ (4 ∨ ¬ 2 ∨ 3) ∧ (¬ 4 ∨ 1 ∨ ¬ 3) ∧ (3 ∨ 2 ∨
↪→ 4) ∧ (¬ 3 ∨ 1 ∨ ¬ 4) ∧ (¬ 4 ∨ 2 ∨ ¬ 3) ∧ (2 ∨ 4 ∨ ¬ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 1 ∨
↪→ ¬ 4) ∧ (¬ 1 ∨ ¬ 4 ∨ ¬ 2) ∧ (2 ∨ 3 ∨ 4) Try 1 = True [CALL] Question: (4 ∨ ¬ 3 ∨ ¬ 2) ∧
↪→ (¬ 2 ∨ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 2 ∨ 4) ∧ (4 ∨ 2) ∧ (4 ∨ ¬ 2 ∨ 3) ∧ (3 ∨ 2 ∨ 4)
↪→ ∧ (¬ 4 ∨ 2 ∨ ¬ 3) ∧ (2 ∨ 4 ∨ ¬ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 2) ∧ (2 ∨ 3
↪→ ∨ 4) Try 2 = True [CALL] Question: (4 ∨ ¬ 3) ∧ (3) ∧ (3 ∨ 4) ∧ (4 ∨ 3) ∧ (3 ∨ ¬ 4
↪→) ∧ (¬ 4) Found 3 Let 3 = True [CALL] Question: (4) ∧ (¬ 4) Found 4 Let 4 = True [SEP]
↪→ Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 2 = False [CALL] Question: (3 ∨ 4)
↪→ ∧ (4) ∧ (3 ∨ 4) ∧ (¬ 4 ∨ ¬ 3) ∧ (4 ∨ ¬ 3) ∧ (3 ∨ 4) ∧ (3 ∨ ¬ 4) ∧ (3 ∨ 4) Found
↪→ 4 Let 4 = True [CALL] Question: (¬ 3) ∧ (3) Found ¬ 3 Let 3 = False [SEP] Answer: False
↪→ [RETURN] [SEP] Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 1 = False [CALL]
↪→ Question: (4 ∨ ¬ 3 ∨ ¬ 2) ∧ (¬ 4 ∨ ¬ 2) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 2 ∨ 4) ∧ (¬ 4 ∨ 2) ∧
↪→ (4 ∨ ¬ 2 ∨ 3) ∧ (¬ 4 ∨ ¬ 3) ∧ (3 ∨ 2 ∨ 4) ∧ (¬ 3 ∨ ¬ 4) ∧ (¬ 4 ∨ 2 ∨ ¬ 3) ∧ (2 ∨
↪→ 4 ∨ ¬ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (2 ∨ 3 ∨ 4) Try 2 = True [CALL] Question: (4 ∨ ¬ 3) ∧ (¬ 4)
↪→ ∧ (3 ∨ 4) ∧ (4 ∨ 3) ∧ (¬ 4 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 4) Found ¬ 4 Let 4 = False [CALL]
↪→ Question: (¬ 3) ∧ (3) ∧ (3) Found ¬ 3 Let 3 = False [SEP] Answer: False [RETURN] [SEP]
↪→ Answer: False [RETURN] Try 2 = False [CALL] Question: (3 ∨ 4) ∧ (¬ 4) ∧ (¬ 4 ∨ ¬ 3) ∧ (
↪→ 3 ∨ 4) ∧ (¬ 3 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 3) ∧ (4 ∨ ¬ 3) ∧ (3 ∨ 4) ∧ (3 ∨ 4) Found ¬ 4 Let
↪→ 4 = False [CALL] Question: (3) ∧ (3) ∧ (¬ 3) ∧ (3) ∧ (3) Found 3 Let 3 = True [SEP]
↪→ Answer: False [RETURN] [SEP] Answer: False [RETURN] [SEP] Answer: False [RETURN] [SEP]
↪→ Answer: False [RETURN] <|endoftext|>

K.2. PENCIL

• Prompt:

<|startoftext|> (4 ∨ ¬ 3 ∨ ¬ 2) ∧ (¬ 4 ∨ ¬ 2 ∨ 1) ∧ (¬ 2 ∨ ¬ 1 ∨ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 2
↪→ ∨ 4) ∧ (¬ 1 ∨ 4 ∨ 2) ∧ (1 ∨ ¬ 4 ∨ 2) ∧ (4 ∨ ¬ 2 ∨ 3) ∧ (¬ 4 ∨ 1 ∨ ¬ 3) ∧ (3 ∨ 2 ∨
↪→ 4) ∧ (¬ 3 ∨ 1 ∨ ¬ 4) ∧ (¬ 4 ∨ 2 ∨ ¬ 3) ∧ (2 ∨ 4 ∨ ¬ 3) ∧ (3 ∨ 4 ∨ 2) ∧ (3 ∨ ¬ 1 ∨ ¬
↪→ 4) ∧ (¬ 1 ∨ ¬ 4 ∨ ¬ 2) ∧ (2 ∨ 3 ∨ 4) <|endofprompt|>

• Response:

Answer: False <|endoftext|>

K.3. Internal Thinking Process of PENCIL

Model Generation (1)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨
↪→ 4) ∧ (¬ 4 ∨ 3) Try 3 = True [CALL] Question: (¬ 4) ∧ (4) ∧ (4) Found ¬ 4 Let 4 =
↪→ False [SEP] Answer: False [RETURN]

Reduction Rule (1)

39

PENCIL: Long Thoughts with Short Memory

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨
↪→ 4) ∧ (¬ 4 ∨ 3) Try 3 = True Answer: False

Model Generation (2)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨
↪→ 4) ∧ (¬ 4 ∨ 3) Try 3 = True Answer: False Try 3 = False [CALL] Question: (¬ 4) Found ¬
↪→ 4 Let 4 = False [SEP] Answer: True [RETURN]

Reduction Rule (2)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨
↪→ 4) ∧ (¬ 4 ∨ 3) Try 3 = True Answer: False Try 3 = False Answer: True

Model Generation (3)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨
↪→ 4) ∧ (¬ 4 ∨ 3) Try 3 = True Answer: False Try 3 = False Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (3)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True Answer: True

Model Generation (4)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True [CALL] Question: (¬ 4 ∨ ¬ 3) ∧ (¬ 3
↪→ ∨ 2) ∧ (¬ 3 ∨ 4) ∧ (2 ∨ ¬ 4) ∧ (¬ 3 ∨ 4) ∧ (¬ 3 ∨ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ 3) ∧ (2 ∨ ¬
↪→ 3 ∨ 4) ∧ (4 ∨ 2 ∨ ¬ 3) Try 2 = True Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (4)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True Answer: True

40

PENCIL: Long Thoughts with Short Memory

Model Generation (5)

[CALL] Question: (¬ 3 ∨ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (¬ 4 ∨ ¬ 3 ∨ ¬ 1) ∧ (¬ 3 ∨ ¬ 1 ∨ 2) ∧ (4 ∨ 1
↪→ ∨ 3) ∧ (4 ∨ 1 ∨ ¬ 3) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 1 ∨ 2 ∨ ¬ 4) ∧ (¬ 3 ∨ ¬ 1 ∨ 4) ∧ (¬ 3 ∨
↪→ 2 ∨ ¬ 4) ∧ (¬ 4 ∨ ¬ 1 ∨ 3) ∧ (2 ∨ 1 ∨ ¬ 3) ∧ (1 ∨ 4 ∨ 3) ∧ (2 ∨ ¬ 3 ∨ 4) ∧ (2 ∨ ¬
↪→ 4 ∨ 1) ∧ (1 ∨ 3 ∨ 2) ∧ (4 ∨ 2 ∨ ¬ 3) Try 1 = True Answer: True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (5)

Answer: True

Model Generation (Final Response)

Answer: True <|endoftext|>

L. Example: Quantified Boolean Formula (QBF)
L.1. Chain-of-Thought

• Prompt:

<|startoftext|> ∀ 3 ∀ 4 ∃ 1 ∀ 2 : #1 (3 ∨ ¬ 3) #2 (¬ 3 ∨ 3 ∨ 1) #3 (3 ∨ 1) #4 (¬ 1 ∨ ¬ 3 ∨ ¬ 4
↪→) #5 (1 ∨ ¬ 1) #6 (¬ 4 ∨ 4 ∨ 3) #7 (¬ 4 ∨ 4) #8 (4 ∨ 1) <|endofprompt|>

• Response:
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL]

↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = False 2 = False 3 = False 4 = False Check #0 (3 ∨ ¬ 3) True
↪→ Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) False [SEP] Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 1 = True [CALL]
↪→ Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = True 2 = False 3 = False 4 = False Check #0 (3 ∨ ¬ 3) True Check
↪→ #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True
↪→ Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [RETURN] Try 2 = True [CALL] Question: evaluate 1 =
↪→ True 2 = True 3 = False 4 = False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨
↪→ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP]
↪→ Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 =
↪→ False [CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = False 2 = False 3 = False 4 = True Check #0 (3 ∨ ¬ 3
↪→) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) False [SEP] Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 1 = True [
↪→ CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = True 2 = False 3 = False 4 = True Check #0 (3 ∨ ¬ 3) True
↪→ Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3
↪→) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [RETURN] Try 2 = True [CALL] Question:
↪→ evaluate 1 = True 2 = True 3 = False 4 = True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check #3 (
↪→ ¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula
↪→ = True [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] Try 3 = True [CALL
↪→] Question: prefix_from ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: prefix_from ∀ 2 Try 2 = False [
↪→ CALL] Question: evaluate 1 = False 2 = False 3 = True 4 = False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1
↪→) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨
↪→ 1) False [SEP] Answer: False [RETURN] [SEP] Answer: False [RETURN] Try 1 = True [CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL]
↪→ Question: evaluate 1 = True 2 = False 3 = True 4 = False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True
↪→ Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1)
↪→ True Formula = True [SEP] Answer: True [RETURN] Try 2 = True [CALL] Question: evaluate 1 = True 2 = True 3 = True 4 = False Check #0 (3
↪→ ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (
↪→ ¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [RETURN] [SEP] Answer: True [
↪→ RETURN] [SEP] Answer: True [RETURN] Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: prefix_from ∀ 2 Try 2 =
↪→ False [CALL] Question: evaluate 1 = False 2 = False 3 = True 4 = True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (
↪→ 3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7
↪→ (4 ∨ 1) True Formula = True [SEP] Answer: True [RETURN] Try 2 = True [CALL] Question: evaluate 1 = False 2 = True 3 = True 4 = True
↪→ Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1)
↪→ True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [RETURN] [SEP]
↪→ Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] [SEP] Answer: True [RETURN] <|endoftext|>

L.2. PENCIL

• Prompt:

<|startoftext|> ∀ 3 ∀ 4 ∃ 1 ∀ 2 : #1 (3 ∨ ¬ 3) #2 (¬ 3 ∨ 3 ∨ 1) #3 (3 ∨ 1) #4 (¬ 1 ∨ ¬ 3 ∨ ¬ 4
↪→) #5 (1 ∨ ¬ 1) #6 (¬ 4 ∨ 4 ∨ 3) #7 (¬ 4 ∨ 4) #8 (4 ∨ 1) <|endofprompt|>

• Response:

Answer: True <|endoftext|>

41

PENCIL: Long Thoughts with Short Memory

L.3. Internal Thinking Process of PENCIL

Model Generation (1)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL]
↪→ Question: evaluate 1 = False 2 = False 3 = False 4 = False Check #0 (3 ∨ ¬ 3) True Check
↪→ #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) False [SEP] Answer: False [RETURN]

Reduction Rule (1)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer
↪→ : False

Model Generation (2)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer
↪→ : False [SEP] Answer: False [RETURN]

Reduction Rule (2)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False

Model Generation (3)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = True 2 = False 3 = False 4 =
↪→ False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check
↪→ #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6
↪→ (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [RETURN]

Reduction Rule (3)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: True

Model Generation (4)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL] Question: evaluate 1 = True 2
↪→ = True 3 = False 4 = False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (
↪→ 3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4
↪→ ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer:
↪→ True [RETURN]

Reduction Rule (4)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True

Model Generation (5)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]
↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True [SEP] Answer: True [
↪→ RETURN]

42

PENCIL: Long Thoughts with Short Memory

Reduction Rule (5)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]

↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True Answer: True

Model Generation (6)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False [CALL]

↪→ Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True Answer: True [SEP] Answer:
↪→ True [RETURN]

Reduction Rule (6)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True

Model Generation (7)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = False 2 = False 3 = False 4 =
↪→ True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) False [SEP]
↪→ Answer: False [RETURN]

Reduction Rule (7)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: False

Model Generation (8)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: False [SEP] Answer: False [RETURN]

Reduction Rule (8)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False

Model Generation (9)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = True 2 = False 3
↪→ = False 4 = True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1)
↪→ True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3)
↪→ True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (9)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True

Model Generation (10)
[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:

↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL] Question:
↪→ evaluate 1 = True 2 = True 3 = False 4 = True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨
↪→ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True
↪→ Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula =
↪→ True [SEP] Answer: True [RETURN]

43

PENCIL: Long Thoughts with Short Memory

Reduction Rule (10)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:
↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True

Model Generation (11)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:
↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True [SEP]
↪→ Answer: True [RETURN]

Reduction Rule (11)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:
↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ Answer: True

Model Generation (12)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:
↪→ True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (12)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:
↪→ True Try 4 = True Answer: True

Model Generation (13)

[CALL] Question: prefix_from ∀ 3 Try 3 = False [CALL] Question: prefix_from ∀ 4 Try 4 = False Answer:
↪→ True Try 4 = True Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (13)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True

Model Generation (14)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = False 2 = False 3 = True 4 =
↪→ False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1) True Check
↪→ #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6
↪→ (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) False [SEP] Answer: False [RETURN]

Reduction Rule (14)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: False

Model Generation (15)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False [CALL] Question:
↪→ prefix_from ∀ 2 Try 2 = False Answer: False [SEP] Answer: False [RETURN]

Reduction Rule (15)

44

PENCIL: Long Thoughts with Short Memory

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False

Model Generation (16)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = True 2 = False 3
↪→ = True 4 = False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1)
↪→ True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3)
↪→ True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (16)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True

Model Generation (17)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL] Question:
↪→ evaluate 1 = True 2 = True 3 = True 4 = False Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨
↪→ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True
↪→ Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula =
↪→ True [SEP] Answer: True [RETURN]

Reduction Rule (17)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True

Model Generation (18)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ [CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True [SEP]
↪→ Answer: True [RETURN]

Reduction Rule (18)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ Answer: True

Model Generation (19)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False [CALL] Question: prefix_from ∃ 1 Try 1 = False Answer: False Try 1 = True
↪→ Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (19)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True

Model Generation (20)

45

PENCIL: Long Thoughts with Short Memory

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [
↪→ CALL] Question: prefix_from ∀ 2 Try 2 = False [CALL] Question: evaluate 1 = False 2 = False 3
↪→ = True 4 = True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨ 1) True Check #2 (3 ∨ 1)
↪→ True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True Check #5 (¬ 4 ∨ 4 ∨ 3)
↪→ True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula = True [SEP] Answer: True [
↪→ RETURN]

Reduction Rule (20)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [
↪→ CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True

Model Generation (21)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [
↪→ CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True [CALL] Question:
↪→ evaluate 1 = False 2 = True 3 = True 4 = True Check #0 (3 ∨ ¬ 3) True Check #1 (¬ 3 ∨ 3 ∨
↪→ 1) True Check #2 (3 ∨ 1) True Check #3 (¬ 1 ∨ ¬ 3 ∨ ¬ 4) True Check #4 (1 ∨ ¬ 1) True
↪→ Check #5 (¬ 4 ∨ 4 ∨ 3) True Check #6 (¬ 4 ∨ 4) True Check #7 (4 ∨ 1) True Formula =
↪→ True [SEP] Answer: True [RETURN]

Reduction Rule (21)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [
↪→ CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True

Model Generation (22)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False [
↪→ CALL] Question: prefix_from ∀ 2 Try 2 = False Answer: True Try 2 = True Answer: True [SEP]
↪→ Answer: True [RETURN]

Reduction Rule (22)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False
↪→ Answer: True

Model Generation (23)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True [CALL] Question: prefix_from ∃ 1 Try 1 = False
↪→ Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (23)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True Answer: True

Model Generation (24)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True [CALL] Question: prefix_from
↪→ ∀ 4 Try 4 = False Answer: True Try 4 = True Answer: True [SEP] Answer: True [RETURN]

Reduction Rule (24)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True Answer: True

46

PENCIL: Long Thoughts with Short Memory

Model Generation (25)

[CALL] Question: prefix_from ∀ 3 Try 3 = False Answer: True Try 3 = True Answer: True [SEP] Answer:
↪→ True [RETURN]

Reduction Rule (25)

Answer: True

Model Generation (Final Response)

Answer: True <|endoftext|>

M. Example: Einstein’s Puzzle
M.1. Chain-of-Thought

• Prompt:

<|startoftext|> Constraint#1 : the Green house is immediately to the right of the one who keeps Birds
Constraint#2 : the Brit is immediately to the right of the German
Constraint#3 : the one who keeps Dogs is the same house as the Red house
Constraint#4 : the one who keeps Birds is immediately to the right of the Swede <|endofprompt|>

• Response:

[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Green and Birds under RIGHT constraint
PHASE 2: Handling relation Green RIGHT Birds
Green is immediately RIGHT of Birds
Removing Green from House#1 because Green can't be in the leftmost house if it's to the RIGHT of

↪→ Birds
Removing Birds from House#3 can't be in the rightmost house if it's to the LEFT of Green
[SEP] House#1 Color category changed from 3 possibilities Blue Green Red to 2 possibilities Blue Red
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Dogs Fish [

↪→ RETURN]
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Brit and German under RIGHT constraint
PHASE 2: Handling relation Brit RIGHT German
Brit is immediately RIGHT of German
Removing Brit from House#1 because Brit can't be in the leftmost house if it's to the RIGHT of

↪→ German
Removing German from House#3 can't be in the rightmost house if it's to the LEFT of Brit
[SEP] House#1 Nationality category changed from 3 possibilities Brit German Swede to 2 possibilities

↪→ German Swede
House#3 Nationality category changed from 3 possibilities Brit German Swede to 2 possibilities Brit

↪→ Swede [RETURN]
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Dogs and Red under SAME constraint

47

PENCIL: Long Thoughts with Short Memory

PHASE 2: Handling relation Dogs SAME Red
Dogs must be in the SAME house as Red
[SEP] No changes from this constraint [RETURN]
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Birds and Swede under RIGHT constraint
PHASE 2: Handling relation Birds RIGHT Swede
Birds is immediately RIGHT of Swede
Removing Birds from House#1 because Birds can't be in the leftmost house if it's to the RIGHT of

↪→ Swede
Removing Swede from House#3 can't be in the rightmost house if it's to the LEFT of Birds
[SEP] House#3 Nationality category changed from 2 possibilities Brit Swede to 1 possibilities Brit
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Dogs Fish [

↪→ RETURN]
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Red
Nationality category have 2 possibilities German Swede
Pet category have 2 possibilities Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category is Brit
Pet category have 2 possibilities Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4 [RETURN]
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Red
Trying possibility Blue in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Blue
Nationality category have 2 possibilities German Swede
Pet category have 2 possibilities Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category is Brit
Pet category have 2 possibilities Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Green and Birds under RIGHT constraint
Removing Blue from House#2 Color category because Blue is pinned in another house
Removing Blue from House#3 Color category because Blue is pinned in another house
Forcing Birds in House#2 Pet category because it can only appear here
PHASE 2: Handling relation Green RIGHT Birds
Green is immediately RIGHT of Birds
Since Birds is pinned to House#2 , removing Green from House#2 because Green must be right of House

↪→ #2
Placing Green in House#3 because Birds is pinned to House#2
[SEP] House#2 Color category changed from 3 possibilities Blue Green Red to 1 possibilities Red
House#3 Color category changed from 3 possibilities Blue Green Red to 1 possibilities Green
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds [RETURN]
Remove Constraint#1 because it is satisfied
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Brit and German under RIGHT constraint
Removing Brit from House#2 Nationality category because Brit is pinned in another house
PHASE 2: Handling relation Brit RIGHT German
Brit is immediately RIGHT of German
German must be exactly one house to the LEFT , removing from House#1

48

PENCIL: Long Thoughts with Short Memory

Placing German in House#2 because Brit is pinned to House#3
[SEP] House#1 Nationality category changed from 2 possibilities German Swede to 1 possibilities

↪→ Swede
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities

↪→ German [RETURN]
Remove Constraint#2 because it is satisfied
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Dogs and Red under SAME constraint
PHASE 2: Handling relation Dogs SAME Red
Dogs must be in the SAME house as Red
Since Red is pinned to House#2 , removing Dogs from House#1
Since Red is pinned to House#2 , removing Dogs from House#3
House#2 can't hold Dogs since it can't hold Red
[SEP] House#2 Color category changed from 1 possibilities Red to 0 possibilities empty
House#1 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities Fish
House#3 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities Fish [RETURN]
[SEP] No Solution [RETURN]
Trying possibility Red in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Red
Nationality category have 2 possibilities German Swede
Pet category have 2 possibilities Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category is Brit
Pet category have 2 possibilities Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Green and Birds under RIGHT constraint
Removing Red from House#2 Color category because Red is pinned in another house
Removing Red from House#3 Color category because Red is pinned in another house
Forcing Birds in House#2 Pet category because it can only appear here
PHASE 2: Handling relation Green RIGHT Birds
Green is immediately RIGHT of Birds
Since Birds is pinned to House#2 , removing Green from House#2 because Green must be right of House

↪→ #2
Placing Green in House#3 because Birds is pinned to House#2
[SEP] House#2 Color category changed from 3 possibilities Blue Green Red to 1 possibilities Blue
House#3 Color category changed from 3 possibilities Blue Green Red to 1 possibilities Green
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds [RETURN]
Remove Constraint#1 because it is satisfied
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Brit and German under RIGHT constraint
Removing Brit from House#2 Nationality category because Brit is pinned in another house
PHASE 2: Handling relation Brit RIGHT German
Brit is immediately RIGHT of German
German must be exactly one house to the LEFT , removing from House#1
Placing German in House#2 because Brit is pinned to House#3
[SEP] House#1 Nationality category changed from 2 possibilities German Swede to 1 possibilities

↪→ Swede
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities

↪→ German [RETURN]
Remove Constraint#2 because it is satisfied
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Dogs and Red under SAME constraint
PHASE 2: Handling relation Dogs SAME Red
Dogs must be in the SAME house as Red
Placing Dogs in House#1 since Red is in this house
Since Red is pinned to House#1 , removing Dogs from House#3
[SEP] House#1 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities Dogs

49

PENCIL: Long Thoughts with Short Memory

House#3 Pet category changed from 2 possibilities Dogs Fish to 1 possibilities Fish [RETURN]
Remove Constraint#3 because it is satisfied
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Birds and Swede under RIGHT constraint
PHASE 2: Handling relation Birds RIGHT Swede
Birds is immediately RIGHT of Swede
[SEP] No changes from this constraint [RETURN]
Remove Constraint#4 because it is satisfied
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish
Unsatisfied constraints are [RETURN]
=> Puzzle is solved
[SEP] Solution House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish [RETURN]
[SEP] Solution House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2
Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish [RETURN]
=> House#3 owns the Fish
=> the Brit owns the Fish <|endoftext|>

M.2. PENCIL

• Prompt:

<|startoftext|> Constraint#1 : the Green house is immediately to the right of the one who keeps Birds
Constraint#2 : the Brit is immediately to the right of the German
Constraint#3 : the one who keeps Dogs is the same house as the Red house
Constraint#4 : the one who keeps Birds is immediately to the right of the Swede <|endofprompt|>

• Response:

Solution House#1
Color category is Red
Nationality category is Swede
Pet category is Dogs
House#2

50

PENCIL: Long Thoughts with Short Memory

Color category is Blue
Nationality category is German
Pet category is Birds
House#3
Color category is Green
Nationality category is Brit
Pet category is Fish
=> House#3 owns the Fish
=> the Brit owns the Fish <|endoftext|>

M.3. Internal Thinking Process of PENCIL

Model Generation (1)

[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Fish and Red under RIGHT constraint
PHASE 2: Handling relation Fish RIGHT Red
Fish is immediately RIGHT of Red
Removing Fish from House#1 because Fish can't be in the leftmost house if it's to the RIGHT of Red
Removing Red from House#3 can't be in the rightmost house if it's to the LEFT of Fish
[SEP] House#3 Color category changed from 3 possibilities Blue Green Red to 2 possibilities Blue

↪→ Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs [

↪→ RETURN]

Reduction Rule (1)

[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs

Model Generation (2)

51

PENCIL: Long Thoughts with Short Memory

[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Green and Red under LEFT constraint
PHASE 2: Handling relation Green LEFT Red
Green is immediately LEFT of Red
Removing Green from House#3 because Green can't be in the rightmost house if it's to the LEFT of Red
Removing Red from House#1 because Red can't be in the leftmost house if it's to the RIGHT of Green
[SEP] House#1 Color category changed from 3 possibilities Blue Green Red to 2 possibilities Blue

↪→ Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue [RETURN]

Reduction Rule (2)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue

Model Generation (3)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red

52

PENCIL: Long Thoughts with Short Memory

Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Fish and Swede under RIGHT constraint
PHASE 2: Handling relation Fish RIGHT Swede
Fish is immediately RIGHT of Swede
Removing Swede from House#3 can't be in the rightmost house if it's to the LEFT of Fish
[SEP] House#3 Nationality category changed from 3 possibilities Brit German Swede to 2 possibilities

↪→ Brit German [RETURN]

Reduction Rule (3)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 2 possibilities Brit German

Model Generation (4)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs

53

PENCIL: Long Thoughts with Short Memory

Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue Green Red to 2
↪→ possibilities Blue Green

House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 2 possibilities Brit German
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Brit and Birds under LEFT constraint
PHASE 2: Handling relation Brit LEFT Birds
Brit is immediately LEFT of Birds
Removing Brit from House#3 because Brit can't be in the rightmost house if it's to the LEFT of Birds
Removing Birds from House#1 because Birds can't be in the leftmost house if it's to the RIGHT of

↪→ Brit
[SEP] House#3 Nationality category changed from 2 possibilities Brit German to 1 possibilities

↪→ German
House#1 Pet category changed from 2 possibilities Birds Dogs to 1 possibilities Dogs [RETURN]

Reduction Rule (4)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs
Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 2 possibilities Brit German
Applying Constraint#4 House#3 Nationality category changed from 2 possibilities Brit German to 1

↪→ possibilities German
House#1 Pet category changed from 2 possibilities Birds Dogs to 1 possibilities Dogs

Model Generation (5)
[CALL] ====== Possible Assignments ======
House#1
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#3 Color category changed from 3 possibilities Blue Green Red to 2

↪→ possibilities Blue Green
House#1 Pet category changed from 3 possibilities Birds Dogs Fish to 2 possibilities Birds Dogs

54

PENCIL: Long Thoughts with Short Memory

Applying Constraint#2 House#1 Color category changed from 3 possibilities Blue Green Red to 2
↪→ possibilities Blue Green

House#3 Color category changed from 2 possibilities Blue Green to 1 possibilities Blue
Applying Constraint#3 House#3 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 2 possibilities Brit German
Applying Constraint#4 House#3 Nationality category changed from 2 possibilities Brit German to 1

↪→ possibilities German
House#1 Pet category changed from 2 possibilities Birds Dogs to 1 possibilities Dogs
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4 [RETURN]

Reduction Rule (5)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4

Model Generation (6)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red

55

PENCIL: Long Thoughts with Short Memory

Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 [CALL]
PHASE 1: Single-value logic for Fish and Red under RIGHT constraint
Removing Dogs from House#2 Pet category because Dogs is pinned in another house
Removing Dogs from House#3 Pet category because Dogs is pinned in another house
Removing Green from House#2 Color category because Green is pinned in another house
Removing Blue from House#2 Color category because Blue is pinned in another house
PHASE 2: Handling relation Fish RIGHT Red
Fish is immediately RIGHT of Red
Since Red is pinned to House#2 , removing Fish from House#2 because Fish must be right of House#2
Placing Fish in House#3 because Red is pinned to House#2
[SEP] House#2 Color category changed from 3 possibilities Blue Green Red to 1 possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish [RETURN]

Reduction Rule (6)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish

Model Generation (7)

56

PENCIL: Long Thoughts with Short Memory

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 [CALL]
PHASE 1: Single-value logic for Green and Red under LEFT constraint
PHASE 2: Handling relation Green LEFT Red
Green is immediately LEFT of Red
[SEP] No changes from this constraint [RETURN]

Reduction Rule (7)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1

57

PENCIL: Long Thoughts with Short Memory

Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint

Model Generation (8)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 [CALL]
PHASE 1: Single-value logic for Fish and Swede under RIGHT constraint
Removing German from House#1 Nationality category because German is pinned in another house

58

PENCIL: Long Thoughts with Short Memory

Removing German from House#2 Nationality category because German is pinned in another house
PHASE 2: Handling relation Fish RIGHT Swede
Fish is immediately RIGHT of Swede
Swede must be exactly one house to the LEFT , removing from House#1
Placing Swede in House#2 because Fish is pinned to House#3
[SEP] House#1 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities

↪→ Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities Swede

↪→ [RETURN]

Reduction Rule (8)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities Swede

Model Generation (9)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede

59

PENCIL: Long Thoughts with Short Memory

Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities Swede
Remove Constraint#3 because it is satisfied
Applying Constraint#4 [CALL]
PHASE 1: Single-value logic for Brit and Birds under LEFT constraint
PHASE 2: Handling relation Brit LEFT Birds
Brit is immediately LEFT of Birds
[SEP] No changes from this constraint [RETURN]

Reduction Rule (9)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede

60

PENCIL: Long Thoughts with Short Memory

Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint
Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities Swede
Remove Constraint#3 because it is satisfied
Applying Constraint#4 No changes from this constraint

Model Generation (10)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments ======
House#1
Color category is Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Propagation ======
Applying Constraint#1 House#2 Color category changed from 3 possibilities Blue Green Red to 1

↪→ possibilities Red
House#2 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Birds
House#3 Pet category changed from 3 possibilities Birds Dogs Fish to 1 possibilities Fish
Remove Constraint#1 because it is satisfied
Applying Constraint#2 No changes from this constraint

61

PENCIL: Long Thoughts with Short Memory

Remove Constraint#2 because it is satisfied
Applying Constraint#3 House#1 Nationality category changed from 3 possibilities Brit German Swede to

↪→ 1 possibilities Brit
House#2 Nationality category changed from 3 possibilities Brit German Swede to 1 possibilities Swede
Remove Constraint#3 because it is satisfied
Applying Constraint#4 No changes from this constraint
Remove Constraint#4 because it is satisfied
[SEP] [CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
Unsatisfied constraints are [RETURN]

Reduction Rule (10)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
Unsatisfied constraints are

Model Generation (11)
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede

62

PENCIL: Long Thoughts with Short Memory

Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
Unsatisfied constraints are
=> Puzzle is solved
[SEP] Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish [RETURN]

Reduction Rule (11)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3

63

PENCIL: Long Thoughts with Short Memory

Color category is Blue
Nationality category is German
Pet category is Fish

Model Generation (12)

[CALL] ====== Possible Assignments After Propagation ======
House#1
Color category have 2 possibilities Blue Green
Nationality category have 3 possibilities Brit German Swede
Pet category is Dogs
House#2
Color category have 3 possibilities Blue Green Red
Nationality category have 3 possibilities Brit German Swede
Pet category have 3 possibilities Birds Dogs Fish
House#3
Color category is Blue
Nationality category is German
Pet category have 3 possibilities Birds Dogs Fish
Unsatisfied constraints are Constraint#1 Constraint#2 Constraint#3 Constraint#4
=> Puzzle not solved yet
====== Branch ======
Branching on House#1 Color category with 2 possibilities Blue Green
Trying possibility Green in House#1 Color category
Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
[SEP] Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish [RETURN]

Reduction Rule (12)

Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish

Model Generation (Final Response)

64

PENCIL: Long Thoughts with Short Memory

Solution House#1
Color category is Green
Nationality category is Brit
Pet category is Dogs
House#2
Color category is Red
Nationality category is Swede
Pet category is Birds
House#3
Color category is Blue
Nationality category is German
Pet category is Fish
=> House#3 owns the Fish
=> the German owns the Fish <|endoftext|>

65

