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Abstract

Computer-aided translation (CAT) aims to en-
hance human translation efficiency and is still
important in scenarios where machine transla-
tion cannot meet quality requirements. One fun-
damental task within this field is Word-Level
Auto Completion (WLAC). WLAC predicts a
target word given a source sentence, translation
context, and a human typed character sequence.
Previous works either employ word classifica-
tion models to exploit contextual information
from both sides of the target word or directly
disregarded the dependencies from the right-
side context. Furthermore, the key information,
i.e. human typed sequences, is only used as
prefix constraints in the decoding module. In
this paper, we propose the INarIG (Iterative
Non-autoregressive Instruct Generation) model,
which constructs the human typed sequence
into Instruction Unit and employs iterative de-
coding with subwords to fully utilize input in-
formation given in the task. Our model is more
competent in dealing with low-frequency words
(core scenario of this task), and achieves state-
of-the-art results on the WMT22 and bench-
mark datasets, with a maximum increase of
over 10% prediction accuracy.

1 Introduction

Transformer and its variants (Vaswani et al., 2017;
Shaw et al., 2018; So et al., 2019; Dehghani et al.,
2018), coupled with large-scale parallel and syn-
thetic corpora (Sennrich et al., 2016; Edunov et al.,
2018; Wu et al., 2019; Pham et al., 2020), have
boosted machine translation quality to a large ex-
tent. Now, Machine Translation (MT) can basi-
cally meet users’ requirements in scenarios where
translation quality is undemanding, for instance,
understanding social media posts. However, in
other scenarios where audience expect highly ac-
curate translations (e.g. reading a product man-
ual or a government document), manual proof-
reading and post-editing are still required. Re-

Source x Wir haben die Meinung von zwei Fachärzten eingeholt.

We asked to sp We sp opinions

We asked to specialists for their opinions.Translation 

sp their opinionssp 

1 specialists
2 specific
3 split

a
1 specialists
2 specific
3 split

b
1 specialists
2 specific
3 split

c
1 specialists
2 specific
3 split

d

Figure 1: Illustration of WLAC task. c = (cl, cr) is
the translation context for source sentence x. s is the
human typed sequence. Words in the rounded rectangles
are predictions generated by the model given the tuple
(x, c, s). As cl, cr can be empty, the task has four types
of context data: (a) zero-context, (b) prefix, (c) suffix,
and (d) bi-context.

search on computer-aided translation (CAT) (Bar-
rachina et al., 2009; Green et al., 2014a; Knowles
and Koehn, 2016; Santy et al., 2019) aims at en-
hancing manual translation. Among these works,
sentence/word-level autocompletion (Knowles and
Koehn, 2016; Zhao et al., 2020; Li et al., 2021) is
a fundamental task and has been widely applied
to Post Editing (PE) and Interactive Translation
Prediction (ITP) (Knowles and Koehn, 2016).

Li et al. (2021) offer a more general definition
of Word-Level AutoCompletion (WLAC) (Figure
1): predicting a target word w given the source
sentence x, translation context c (left and right to
the target word), and human typed sequence s (one
or several character(s) of the target word). And
they open-source the first benchmark system with
training datasets and baseline results.

According to the definition, the task faces two
challenges: First, the target word may have con-
textual dependencies on both left and right sides.
Consequently, during decoding, it is imperative to
consider information from both sides. Second, the
human typed sequence is merely a prefix sequence
of the target word with an uncertain length. Thus,
how to fully utilize this information is a key to the



task.
In prior works (Navarro et al., 2022; Moslem

et al., 2022), dependencies from the right side are
disregarded during decoding, and only informa-
tion from the left side is utilized. Additionally, the
human typed sequence is merely used as a prefix
constraint in the decoding module. As a result,
it is difficult to achieve further performance en-
hancement based on these methods. Some other
works (Li et al., 2021; Yang et al., 2022) use word-
level models to perform word classification. These
methods are capable of integrating information de-
pendencies from both sides, but word-level models
are incapable of predicting low-frequency and out-
of-vocabulary (OOV) words, thus cannot satisfy
translators’ major needs as they type low-frequency
words the most (Casacuberta et al., 2022).

In this paper, we propose a new Iterative Non-
autoregressive Instruct Generation (INarIG) model
for WLAC. First, we construct the human typed se-
quence s into an Instruction Unit to instruct model
generation and encode it together with the transla-
tion context to fully leverage available informa-
tion. As human typed sequence is merely one
or several characters, we perform character-level
embedding. Second, we use conditional masked
decoding, which is similar to Non-autoregressive
Translation (NAT) model, to ensure compatibility
with dependencies from both side of the decoding
anchor (target word). This decoding strategy en-
ables one model to process four types of context.
Moreover, we employ iterative decoding of sub-
words to form the target word, which makes the
model more friendly to low-frequency words and
thus more appealing to translators.

Another major challenge in this task, which
was ignored in previous research, is the incom-
plete translation text. As cr and cl only provide
fragmented information, modeling the target lan-
guage is challenging, which in turn affects the
model performance. We propose two strategies
to enhance the model’s language modelling perfor-
mance: (1) fine-tuning on a pre-trained MT model
or Conditional Masked Language Model (CMLM)
(Ghazvininejad et al., 2019); and (2) multi-task
learning with the CMLM task.

Our models have achieved state-of-the-art per-
formance, with prediction accuracies that exceed
the benchmarks by an average of 7.76%, and a
maximum increase of over 10%.

Our main contributions include:

• Constructing the human typed sequence into
Instruction Unit and performing character-
level embedding to ensure deep information
fusion at the encoding phase.

• Iterative decoding at subword level ensures
compatibility with context dependencies on
both sides, making the model more competent
in handling low-frequency words.

• Utilizing pre-training and multi-task learning
strategies to efficiently address incomplete
translation context.

2 Background

2.1 Task Definition
According to Li et al. (2021), the WLAC task il-
lustration is shown in Figure 1, and a detailed defi-
nition is as follows: Suppose x = (x1, x2, ..., xm)
is a source sequence and s = (s1, s2, ..., sk) is a
sequence of human typed characters. The trans-
lation context is denoted as c = (cl, cr), where
cl = (cl,1, cl,2, ..., cl,i), cr = (cr,1, cr,2, ..., cr,j).
The translation pieces cl and cr are on the left and
right hand side of s, respectively. WLAC aims to
predict a target word w, which starts with s and is
to be placed in the middle of cl and cr to constitute
a complete translation. Note that w is not necessary
consecutive to cl,i or cr,1. More generally, cr, cl
can be empty, which lead to four types of context:
zero-context (no context), suffix (only right con-
text), prefix (only left context), and bi-context (left
and right context).

2.2 Main Challenges
As a new task, WLAC presents unique challenges
for modeling both its input and constraints. These
challenges include:

• The human typed sequence contains prefix
information of the target word, but its length
is uncertain, which poses a challenge for its
utilization.

• The target word may have contextual depen-
dencies to both the left and right sides. As a re-
sult, the decoding module must be adapted to
simultaneously utilize information from both
sides.

• Translation context (cr and cl) are only infor-
mation segments and may not be contiguous
with the target word. Incomplete information
on the translation side poses a significant chal-
lenge for modeling the target language.
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Figure 2: The figure on the left illustrates the decoder structure of our model. The human typed sequence "sp" is
constructed to Instruction Unit with character-level embedding. On the right, we provide an example of our iterative
decoding process. [TIP] and [SEP] are special tokens used in Instruction Unit. The [SEP] token is only present when
decoded subwords exist. The [EOW] token is used to mark the end of a word.

• In languages such as Chinese where the writ-
ing and phonetic symbols are inconsistent,
the translation-side language model should be
able to simultaneously process Chinese char-
acters, Pinyin, and their relationship.

2.3 Related Work

Prior to a general definition of this task provided
by Li et al. (2021), related researches include in-
teractive MT (IMT) (Green et al. (2014b), Santy
et al. (2019)) or translation prediction (TP) (Koehn
(2009), Alabau et al. (2014), Koehn et al. (2014),
Green et al. (2014b), Huang et al. (2015), Knowles
and Koehn (2016) and Coppers et al. (2018)),
Langlais et al. (2000), Santy et al. (2019), Lee et al.
(2021). Theses works focus on predicting the next
word/phrase given the left-side translation context.
The settings of the task share great similarity with
WLAC, so these works have referential importance
to WLAC.

Navarro et al. (2022) and Moslem et al. (2022)
adapt the strategy mentioned above to this task. Un-
fortunately, the models do not fully fit the WLAC
task setting. According to their model designs,
some inputs (s, cr) or constraints (w is not neces-
sary consecutive to cl or cr) are not leveraged.

Li et al. (2021) and Yang et al. (2022) treat
WLAC as a word classification task using a word-
level model. The human typed sequence is used
as a vocabulary constraint during decoding. Such
models are well-suited for the WLAC task setting,
but it does not make full use of human typed se-
quence and is not very friendly to low-frequency
and out-of-vocabulary words. Ailem et al. (2022)

adopt the most similar approach as ours: use a
subword-level model for autoregressive decoding.
The human typed sequence is used as a soft con-
straint and the target word is generated by the
decoder. However, they do not particularly ad-
dress the incomplete translation, which hinders the
model performance.

3 Methodology

In this section, we first present the overall structure
of our model. Then, we introduce the Instruction
Unit we used, as well as our decoding procedure.
Figure 2 shows the details.

3.1 Conditional Masked Decoding

Our model’s overall structure is a Conditional
Masked Language Model (Ghazvininejad et al.,
2019), which is similar to that in the benchmark
system (Li et al., 2021). The source-side informa-
tion is encoded by the encoder, and its represen-
tation is passed to the decoder by cross attention.
A [MASK] token serves as decoding anchor and
translation context (cr, cl) is integrated as inputs
to be passed to the decoder. When decoding with
[MASK] token, the model can utilize contextual
information from both sides and also allows us to
process four types of context using a single model.
We denote Dwlac = Dzero ∪ Dpre ∪ Dsuf ∪ Dbi

as the training data for WLAC, and try to minimize
the following objective:

L(Dwlac; θ) =
∑

(x,c,s)∈Dwlac

logP (w|x, c, s; θ)

(1)



3.2 Instruction Unit

Human typed sequence, as the prefix of the tar-
get word, is a key to the WLAC task. In order to
simplify the model and ensure maximum utiliza-
tion of information, we choose to directly encode
it into the model. For this purpose, we construct
the sequence into an Instruction Unit using a spe-
cial token [TIP] and integrate it directly into the
decoder’s input together with translation context.
Additionally, the human typed sequence is merely
a prefix sequence of uncertain length so character-
level embedding is used. Figure 2 shows the details.
In section 6.2, we demonstrate that the Instruction
Unit can guide the model to generate the correct
target word.

3.3 Iterative Decoding with Subword

To better adapt to the task setting, we choose to
use subword as the encoding unit. Consequently,
in order to predict a complete target word, we need
to generate a set of subwords. Inspired by the
non-autoregressive model, we introduce iterative
decoding, which decodes one subword per iteration.
Then the decoded subword is also integrated into
the Instruction Unit to guide the generation of the
next subword. This process repeats until the final
word is formed. The decoding process is carried
out from left to right, as the human typed sequence
serves as the prefix of the target word.

An example is shown in the right part of Figure
2. The [EOW] token is used to mark the end of
a word, and the [SEP] token serves as a separator
between the human type sequence and decoded
subword tokens.

4 Training Strategy

4.1 Pre-training & Multi-Task learning

As mentioned in section 2.2, cl and cr are randomly
simulated incomplete translation pieces, posing
great challenges to train the target-side language
model (LM). To address this, we propose the fol-
lowing two strategies.

First, inheriting the target-side LM ability from
a pre-trained model. Related pre-training tasks
include MT and CMLM.

Another solution is multi-task joint training. By
incorporating an additional task, we can ensure that
the model can maintain language learning capabil-
ity throughout training. CMLM can be an addi-
tional task trained together with WLAC as it uses

我 非常 
我 非常 
我 非常

中国 的  
中国 的  
中国 的 

器 ！ 
器 ！ 
器 ！

c i
瓷

[MASK] i

 Original:
Code-Switch:

Random Mask:

我非常 xihuan 

1 喜欢
2 细化
3 西湖

x i h   u    a n
喜欢

x i h [MASK] a n

Figure 3: The upper part shows an example of Chi-
nese translation. The Chinese words need to predicted
with the human typed sequence "xih", which is a prefix
of the corresponding Pinyin "xihuan". The lower part
demonstrates Code-Switch and Random Mask for Chi-
nese sentence.

the same data structure. The overall optimization
objective is:

L(θ) =
∑

(x,c,s)∈Dwlac

logP (w|x, c, s; θ)

+
∑

(x,c′ )∈Dcmlm

logP (wmask|x, c
′
; θ)

(2)

Note that the Dcmlm is the CMLM data generated
from bilingual data. c

′
is the complete translation

context in CMLM data.

4.2 Code-Switching for Chinese

Another typical issue regarding Chinese is the con-
version between Chinese characters and Pinyin
(phonetic symbols). Most people need to input
the Pinyin first and then use an input method editor
to convert it into Chinese words, see the upper part
of Figure 3. Since Pinyin is not used in pre-training
or multi-task learning, the model has no knowledge
of the structure of Pinyin and the mapping between
Chinese words and Pinyin, which poses another
challenge to this task.

To address this issue, we refer to the code-
switching strategy and convert a portion of Chinese
words into Pinyin sequence when constructing the
CMLM training data, thus the model is able to learn
the mapping between Pinyin and Chinese charac-
ters. We also mask character(s) in Pinyin sequence
with a certain probability, allowing the model to
learn the inner structure of Pinyin. A case is shown
in the lower part of Figure 3.

5 Experiment

5.1 Datasets

To validate our model’s effectiveness, we per-
form experiments on two datasets: one from



WMT221 and the other from the Benchmark sys-
tem. Each dataset includes data of two language
pairs (Chinese-English and English-German) on
both directions. Regarding Chinese↔English
data, the benchmark dataset contains 1.25M bilin-
gual sentence pairs from LDC corpora while the
WMT22 dataset contains 15M pairs from UN Par-
allel Corpus V1.02. pypinyin3 is used to con-
vert Chinese word to phonetic symbols. For
the English↔German tasks, the two datasets use
the same data: 4.5M from WMT14 and is pre-
processed by Stanford4. We first use the data gen-
eration script5 provided by the WMT22 task to
construct training data Dwlac from bilingual pairs.
Both datasets contain their corresponding test sets.
We adopt sentencepiece (Kudo and Richardson,
2018) for subword modeling and set the vocabu-
lary size to 32K.

5.2 Model Configuration
We adopt the Transformer-base configuration for
the purpose of fair comparison. The batch size is
set to 64K tokens with a learning rate of 5e-4 and
a 4000 step warmup. Other parameters are set to
the default values of fairseq (Ott et al., 2019) 6.
All of our experiments are performed on NVIDIA
8*V100 and we save a model every 2K updates.

5.3 Training Process
We train a single model to process all types of
translation context. The model leverages the joint
training strategy mentioned in §3.1. During train-
ing, we divide the training process into three phases
according to the two strategies presented in 4.1:

1) Generate the final training data Dtrain from
Dwlac according to 3.3.

2) Pre-train an MT or CMLM model with the
original bilingual pairs.

3) Finetune it with Dcmlm and Dtrain using
multi-task joint training.

Models are measured by loss on dev sets. Partic-
ularly, for CMLM task pre-training, we set the prob-
ability of mask token to 15%-50%, to ensure the
model learn target-side LM. In the multi-task learn-
ing phase, we set the ratio of Dcmlm and Dwlac

1https://www.statmt.org/wmt22/word-
autocompletion.html

2https://conferences.unite.un.org/uncorpus
3https://github.com/mozillazg/python-pinyin
4https://nlp.stanford.edu/projects/nmt/
5https://github.com/lemaoliu/WLAC
6https://github.com/facebookresearch/fairseq

data as 1:1, and the probability of mask token in
CMLM data is 20%.

Code-switching for the EN⇒ZH model is per-
formed during the multi-task training phase. We
randomly select 50% of the Dcmlm data for code
switching. Each Chinese token has a 30% chance
of being selected and converted to Pinyin charac-
ters.

5.4 Inference & Evaluation

During inference, we average the last 10 check-
points to obtain the final model and report results
from a single model without ensemble. We adopt
beam search during decoding and the beam size is
set to 4 for models of all language pairs.

We use accuracy as the evaluation metric (Li
et al., 2021):

ACC =
Nmatch

Nall
(3)

where Nmatch is the number of correctly predicted
words and Nall is the number of all test examples.

6 Results

6.1 Main Results

We first compare our method with other related
works on the WMT22 test sets in Table 1. The
results demonstrate that our model achieves higher
accuracy (an average increase of 4.8% and a max-
imum increase of 7.58%) compared with the best
results from other works, resulting in a new state-
of-the-art performance. Additionally, we also com-
pare our model with the benchmark system (Li
et al., 2021) on the benchmark test sets. Results are
shown in Table 2. And the results remain consistent
with that of WMT22 dataset, with an average accu-
racy improvement of over 7% and a maximum im-
provement of over 10%. The results fully validate
the effectiveness and robustness of our method.

6.2 Effectiveness of Instruction Unit

One of our primary contributions is constructing
the human typed sequence into character-level In-
struction Unit, which efficiently encodes prefix con-
straint information into the model to guide word
generation. To demonstrate its effectiveness, we
conduct a comparative experiment by replacing the
Instruction Unit with a vocabulary filter module
similar to the one used in the benchmark system.
Results are presented in Table 3.



Models ZH⇒EN EN⇒ZH DE⇒EN EN⇒DE
Li et al. (2021) (our reproduction) 52.06 50.86 60.13 56.18
Moslem et al. (2022) 50.41 31.94 61.44 58.94
Ailem et al. (2022) - - 57.36 48.97
Yang et al. (2022) 54.05 53.98 57.27 41.83
Navarro et al. (2022) - - 39.02 33.97
INarIG (Ours) 59.10 56.23 69.02 63.52

Table 1: Experiment results on WMT22 dataset and "-" means not provided. The results of benchmark system (Li
et al., 2021) are reproduced by us.

Models ZH⇒EN EN⇒ZH DE⇒EN EN⇒DE
NIST05 NIST06 NIST05 NIST06 NT13 NT14 NT13 NT14

Li et al. (2021) 55.54 55.85 53.64 54.25 57.84 56.75 56.91 52.68
INarIG (Ours) 62.50 64.16 59.31 60.76 65.21 65.76 61.22 62.76

Table 2: Experiment results on benchmark dataset. NIST05 and NIST06 are test sets used in the benchmark system
for Chinese-English (both directions), and test sets for German-English tasks are newstest13 and newstest14.

Models EN⇒ZH DE⇒EN
NIST05 NIST06 NT13 NT14

INarIG 59.31 60.76 65.21 65.76
w/o IU 53.60 53.85 58.64 57.71
w/o Iter-D 55.61 56.82 60.45 61.22

Table 3: Results of the comparative experiments based
on benchmark dataset. "w/o IU" means replace Instruc-
tion Unit with a vocabulary filter module. "w/o Iter-D"
means replace subword based iterative decoding with a
word-level model.

According to the results, Instruction Unit
achieves consistent enhancement across various
language pairs. Particularly, in terms of accuracy,
we observe 6.6% to 8% increase on DE⇒EN and
5.7% to 6.9% increase on EN⇒ZH. The results
indicate that model-based deep information fusion
is much more effective than shallow fusion in the
decoding module.

6.3 Effectiveness of Iterative Decoding

To improve performance with low-frequency
words, we utilize a subword-level model and an
iterative decoding strategy. To verify the effective-
ness of this strategy, we train a word-level model
to perform word classification and use it for com-
parison. We compare the accuracies on benchmark
test set, as shown in Table 3. The accuracies of
our models outperform the word-level model, with
an average accuracy improvement of around 4.2%,
verifying the effectiveness of our decoding strategy.
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Figure 4: A case study of cross attention-based word
alignment for [MASK] token with source sentence.

7 Anlysis

In this chapter, we analyzes the effectiveness of our
innovative points and optimization strategies used
in training to better validate our method. Unless
otherwise specified, the experiments are conducted
on the benchmark dataset.

7.1 Instruct Generation
We analyze the Instruct Generation method used
in our model from the perspective of word align-
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Figure 5: The accuracies of words at different frequen-
cies for DE⇒EN task. The test sets newstest13 and
newstest14 are merged and divided to 10 bins with equal
size according to the frequency of target word. Bin 1
and Bin 10 denote the most frequent and infrequent bin.

ment. According to the task setting, the translation
context is incomplete, making it difficult for the
[MASK] token to align with the corresponding in-
formation in the source text. The prefix information
of the target word in Instruction Unit enhances the
representation of the [MASK], facilitating align-
ment and guiding decoding. We use an example to
visualize the last cross-attention layer’s attention
weights, as shown in Figure 4.

In this case, the candidate words are "princi-
ple" and "people-oriented" with the corresponding
source tokens "原则" and "以人为本". When com-
paring the top and middle figures, the addition of
prefix "p" increases the attention weights for the
correct original token, especially for "原则". In ad-
dition, if subword "people" has already be decoded,
the target word should only be "people-centered".
As shown in the bottom figure, the model shift the
attention to focus on "本" in the source side.

The case confirms that our Instruction Unit can
effectively guide the model to generate correct
words, improving the accuracy of the model.

7.2 Accuracy & Word Frequency

As mentioned before, in real-world scenarios, trans-
lators have a stronger demand for autocompletions
of low-frequency words (Casacuberta et al., 2022).
In Section 6.3, we have already demonstrated the
effectiveness of our subword-level model in terms
of overall accuracy. Here, we conduct further anal-
ysis on the accuracy of words at different word
frequencies for additional validation.

The results for DE⇒EN task are shown in Figure
5, which demonstrate that the subword-level model

Models EN⇒ZH DE⇒EN
NIST05 NIST06 NT13 NT14

Raw-Model 50.69 52.34 53.21 51.82
+NMT-FT 56.24 58.33 63.66 64.12
+CMLM-FT 56.44 57.25 63.58 63.80
+Multi-Task 57.28 59.41 64.00 64.75

INarIG 59.31 60.76 65.21 65.76

Table 4: The results of our experiments on different
training strategies. Raw-Model refers to the baseline
model trained directly on WLAC data. NMT-FT and
CMLM-FT uses NMT and CMLM pre-trained models,
respectively. Multi-Task means multi-task training with
both CMLM and WLAC data. The INarIG uses a com-
bination of an NMT pre-trained model and multi-task
training.

is superior at all frequency intervals, especially
for low-frequency words. For 30% less-frequent
words, the accuracy improves by more than 8%.
The results of the EN⇒ZH task shown in appendix
§A, also exhibit almost the same trend, confirming
that our model has an advantage in predicting low-
frequency words.

7.3 Pre-training & Multi-Task learning

As stated above, we realize that incomplete trans-
lation context challenges the model performance.
To prove the effectiveness of our pre-training and
multi-task strategy, we conduct experiments on the
benchmark dataset, and the results are shown in
Table 4.

According to the results, the accuracy of our
models drops 7% to 13% when no related strategy
is applied. To be more specific, we observe pre-
training on either NMT or CMLM task achieves
equivalent results and multi-task training leads to
greater improvements than pre-training. The final
model which combines the two strategies, obtains
further 1.2% improvement on average.

Furthermore, our analysis of the training loss
curve is consistent with the findings. In addition,
we evaluate the performance of our models on four
types of context and observe consistent improve-
ments, demonstrating the robustness of our model.
Details of this analysis is presented in the appendix
§B.

7.4 Code-Switching for Chinese

In order to verify the effectiveness of code-
switching strategy for Chinese, we conduct exper-
iments on EN⇒ZH using both datasets, and the



Models EN⇒ZH
NIST05 NIST06 WMT22

INarIG 59.31 60.76 56.23
w/o CS 58.02 59.77 55.07

Table 5: Results of the code-switching strategy compar-
ative experiments for Chinese. "w/o CS" means without
code-switch strategy during training.

Models EN⇒ZH DE⇒EN
NIST05 NIST06 NT13 NT14

INarIG 59.31 60.76 65.21 65.76
+ BT 60.66 61.83 67.89 68.12

+Big 61.56 63.75 69.97 70.80

Table 6: Results of BT style synthetic data on bench-
mark dataset. "+ BT" means back translation style
synthetic data is added for training, and "+Big" means
changing model configuration to transformer Big.

accuracy results are summarized in Table 5.

The code-switching strategy can increase the ac-
curacy of the model by an additional 1-2%, which
also confirms the necessity of modeling the inter-
nal structure of Pinyin and the relationship between
pinyin and Chinese words. It is worth noting that
Chinese is a representative example of this type of
language, and the code-switching strategy can be
easily extended to similar languages.

7.5 Enhancement with Monolingual data

Due to the high degree of similarity between our
model and the standard MT models, we are able
to transfer existing optimization strategies from
MT tasks. Back translation (Sennrich et al., 2016;
Edunov et al., 2018; Wu et al., 2019) is the sim-
plest and most effective one. To confirm that back
translation can be applied to our model, we conduct
an additional experiment by adding 10M Chinese
and 20M English monolingual data on top of the
Benchmark dataset. The beam-search back trans-
lation (Sennrich et al., 2016) is used to construct
synthetic data. The results are shown in Table 6.

Overall, the BT-style synthetic data can improve
the accuracy of the model, and increasing the model
capacity can further enhance the model perfor-
mance. This demonstrates that our model can effec-
tively adopt optimization strategies from other NLP
tasks, such as MT, and it is worth further research.

7.6 Inference Performance
Theoretically, our model has higher computational
complexity compared to word-based classification
models. Regarding the iterative decoding process
of a non-autoregressive model, the representations
of all tokens on the decoder side need to be com-
puted repeatedly. However the impact on inference
speed is not serious in practical applications for
two reasons: (1) The task predicts only one word
so the sequence length is limited. (2) Computing
can be processed in parallel, and shallow-decoder
(Kasai et al., 2020; Wang et al., 2019) Transformer
models are widely used.

8 Discussion & Future Work

Two issues requires more research and analysis:
1. Our model allows us to apply more main-

stream enhancement strategies in the field of nat-
ural language processing, such as multilingual en-
hancement and word alignment. How to efficiently
use these strategies should be further explored.

2. Our decoding strategy is inspired by non-
autoregressive models. More general decoding
strategies that integrate autoregressive and non-
autoregressive approaches have been studied by
Wang et al. (2022); Li et al. (2022), and future
researches may find better strategies.

8.1 LLM for WLAC
Upon the release of ChatGPT7, we observe that
large language models exhibit exceptional perfor-
mance across a range of NLP tasks. To evaluate
ChatGPT’s capability on WLAC, we extract a sub-
set of 1000 instances from the EN⇒DE newstest14
test set and construct a corresponding task prompt
(provided in the appendix §C).

The accuracy on our test set is 44.2%. Chat-
GPT’s performance on the WLAC task is inferior
to our method (63.5% in terms of accuracy). Im-
proving prompts may improve its efficacy. Fur-
thermore, large language models suffer from slow
inference speeds, and the word completion task re-
quires minimal latency to ensure seamless input.
Overall, further exploration and adaptation may be
needed for the application of large models to the
WLAC task.

9 Conclusion

In this paper, we propose a novel iterative non-
autoregressive instruct generation model for the

7https://chat.openai.com/



WLAC task, and validate the effectiveness of our
model on two mainstream datasets. Subsequently,
through carefully-designed experiments, we ver-
ify that our model’s better capability of utilizing
avaialbe information compared to previous works,
as our approach uses model-based deep informa-
tion fusion. We also demonstrate that our iterative
decoding based on subwords can improve the accu-
racy of low-frequency words and better meet trans-
lators’ requirements. Afterwards, through com-
parative experiments, we confirm that a series of
training strategies used in our work help improve
accuracy.

10 Limitations

The iterative NAT decoding strategy we used can
decode one or several tokens in a single iteration,
depending on the number of masks being input. We
choose to decode one token per iteration. Further
research should be done to explore the effective-
ness of decoding more than one tokens per iteration.
In addition, NAT decoding can be performed from
left to right, right to left, or randomly. We employ
the most straightforward approach: left to right.
Further research is required to analyze the perfor-
mance of other decoding directions.
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A Accuracy & Word Frequency for
EN⇒ZH task

Accuracy results of words with different frequen-
cies for EN⇒ZH task is presented in Figure 6.
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Figure 6: The accuracies of words at different fre-
quencies for EN⇒ZH task. The test sets NIST05 and
NIST06 are merged and divided to 10 bins with equal
size according to the frequency of target word. Bin 1
and Bin 10 denote the most frequent and infrequent bin.

B Pre-training vs Multi-Task learning

Taking DE⇒EN as an example, we visualize loss
curves of our models on the dev set, as shown in
Figure 7. The model without any strategy gets
stuck in a local optima in few updates, causing
loss increase in subsequent training. After we add
CMLM data (complete translations) for multi-task
training, the lowest loss drops from 4.2 to 3.5. The
loss reduces as well for the model using a pre-
training strategy. However, we observe loss in-
crease after 250K update steps, probably due to
catastrophic forgetting during fine-tuning. The LM
ability learned in the pre-training stage deteriorates
in the fine-tuning stage, so the lowest loss of the
model is still higher than modal using the multi-
task training strategy. The combination of NMT-FT
and multi-task strategies ensures stable training and
leads to the lowest loss.

Finally, we visualize the accuracy of each model
under different types of context in the right side of
Figure 7. Two conclusions can be drawn: (1) The

accuracy is basically consistent with the loss perfor-
mance, which again verifies our analysis. (2) The
accuracy curves under different types of context are
consistent too, which proves generalizability of our
optimization strategy. We also perform the same
ablation experiment on the EN⇒ZH model, and
the results are consistent with those of the DE⇒EN
model. The detailed results are in Figure 8.

C Prompt for WLAC

The specific prompt structure can be found in Fig-
ure 9.
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Figure 7: The loss curves and accuracies for DE⇒EN models with different training strategies. All results are
measured on the NT13 dev test.
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Q: Word-Level AutoCompletion (WLAC), which aims to predict a target word given a source sentence, translation
context and a human typed character sequence. To make the task more general in real-world scenarios, the translation
context is made that the left context and right context, which can be empty. The original text is English, the
translation is German.  
Source sentence is "If you can do that , khan said , the public gets more comfortable .".  
left context is "damit , so khan , wäre auch".  
right context is ".".  
human typed character sequence is "be".  
So what's the word that starts with "be"? (It's best to give the answer without explanation.)

A: The word that starts with "be" is "bereit".

Figure 9: The example of ChatGPT prompt about the WLAC task.


