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Automated Assessment of the Curliness of
Collagen Fiber in Breast Cancer
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Abstract. The growth and spread of breast cancer tumor are influenced
by the composition and structural properties of collagen in the extracellu-
lar matrix of tumors. Straight alignment of collagen has been attributed
to tumor cell migration, which is correlated with tumor progression and
metastasis in breast cancer. Thus, there is a need to characterize colla-
gen alignment to study its value as a prognostic biomarker. We present a
framework to characterize the curliness of collagen fibers in breast can-
cer images from DUET (DUal-mode Emission and Transmission) studies
on hematoxylin and eosin (H&E) stained tissue samples. Our novel ap-
proach highlights the characteristic fiber gradients using a standard ridge
detection method before feeding into the convolutional neural network.
Experiments were performed on patches of breast cancer images contain-
ing straight or curly collagen. The proposed approach outperforms in
terms of area under the curve against transfer learning methods trained
directly on the original patches. We also explore a feature fusion strategy
to combine feature representations of both the original patches and their
ridge filter responses.

Keywords: Collagen, Deep Learning, Ridge Detection,
Digital Pathology

1 Introduction

Collagen is an abundant structural protein in the extracellular matrix of tis-
sues. In addition to providing structural support, collagen also plays a major
regulatory role in other tissue functions, including cell adhesion, migration, and
proliferation. Recent experimental and clinical studies have shown how the struc-
tural integrity of collagen directly influences the behavior of breast cancer (BCa)
cells and their capacity for metastasis.

Compelling evidence has emerged to show how the structure and alignment
of collagen is correlated with BCa progression and metastasis. Our goal is to use
deep learning to characterize these architectural features by classifying whether
collagen appears straight or curly in BCa images. Therefore, we utilized the
DUET imaging technique (DUal-mode Emission and Transmission) [11], which
focuses on color (spectral) differences in H&E fluorescence to directly highlight
collagen distributions in H&E slides. Compared to existing techniques, DUET
uses readily available H&E slides with the potential to be a better collagen de-
tection tool in clinical settings due to low cost, simplicity, rapid imaging speed,
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and non-destructive effects in tissue samples. See Fig. 1 for examples. Quantita-
tive methods to identify collagen structure orientation patterns in DUET images
have not been explored.

Fig. 1. Example DUET images capturing different collagen fiber patterns. Left: red and
blue contours highlight regions of interest (ROIs). Preliminary annotations are given
to these ROIs. Red circles enclose regions which are dominantly curly. Blue circles
enclose regions which are dominantly straight. Right: Patches were sampled from these
ROIs and are individually annotated by expert annotators. Red boxes enclose curly
patches and blue boxes enclose straight patches. Annotations of individual patches are
correlated to but are not fully consistent with the annotations of ROIs. For example,
a dominantly curly region may contain straight patches.

We present a deep-learning-based automatic method to classify BCa DUET
image patches into two categories, curly and straight, based on given annotations
by our domain expert (Fig. 1). There are two challenges for the direct application
of deep neural networks: First, the amount of training data is relatively limited.
It is insufficient for training a deep neural network classifier from scratch. Second,
the distinct geometry and textural patterns of collagen fiber patches makes it
hard to directly use neural networks trained on other pathology images (mostly
H&E). On the other hand, classic image filters are well designed to characterize
object flow and detect these collagen fiber structures of interests.

Our novel approach combines the strengths of both deep neural networks and
classic image filters. In particular, we leverage classic second-order-derivatives-
based filters that are well-designed for identification of collagen fiber structures.
The identified structures are combined with deep neural nets pretrained on pub-
lic datasets for the best classification of curly vs. straight fiber patterns. We
also explore different existing approaches for feature fusion in order to find the
best strategy for our application. Usage of the classic filters that are well-suited
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to the structure of interest alleviates the demand of training data from deep
networks. Meanwhile, incorporating these filters with pretrained deep nets en-
sures the structural features can be fully leveraged in a data-driven manner.
Inspired by the analogy of the collagen images with “flow” images and the use
of second-order derivative filters for optical flow computation, we experiment
with two stream networks analogous to those successfully applied in video anal-
ysis tasks, where spatial (frames) and temporal information (optical flow) are
aggregated [30,26,10].

In summary, our main contributions are:

1. We present the first deep learning approach to capture orientation patterns
of collagen fibers;

2. We incorporate sophisticated image filters (i.e., ridge detectors) that are very
appropriate for highlighting fiber structures in a two-stream deep learning
framework.

3. We evaluate our methods on a unique cohort of DUET collagen images. We
demonstrate that incorporating these additional structural features will sig-
nificantly improve the generalization performance of the classifier, especially
when there is insufficient training data.

2 Background

Importance of Collagen in Breast Cancer: Brabrand et al. [1] studied the
structure of collagen fibers in intratumoral, juxtatumoral, and extratumoral re-
gions and classified collagen fibers as (1) curly or straight and (2) parallel or not
parallel. They observed that collagen fibers appeared more straight and aligned
at tumor boundaries while tumor cells invade surrounding tissues. In another
study, Carpino et al. [3] observed correlations between the reorganization of col-
lagen and progression. Early in tumorigenesis and during the initial stages of
tumor progression, collagen appears to be mostly curly and dense. As tumorige-
nesis progresses, collagen architecture becomes straight and aligned in parallel
to the tumor boundary. In more advanced stages of tumor progression, collagen
fibers are oriented perpendicular to the tumor boundary. These and other stud-
ies indicate that the structure and alignment of collagen in close proximity of
BCa can be a critical indicator of tumor progression [27,28,4,31,6].

The association between collagen alignment with breast tumor progression
and metastasis underlies the need for quantitative methods to extract and char-
acterize useful information from collagen-tumor relationships. A variety of tech-
niques have been proposed to capture images of collagen fibers in tissue speci-
mens [24,8,2,7]. Collagen fiber orientation may be quantified using Spatial Light
Interference Microscopy (SLIM). Majeed et. al. [20] have used SLIM images
to extract prognostic information from BCa collagen fibers. Second harmonic
generation (SHG) microscopy techniques have been used to localize patterns as-
sociated with collagen fiber extracellular matrix without the need for specialized
stains. Collagen alignment has been characterized by wavelet transform type
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methods [18,19]. These techniques are rather expensive; they require specialized
equipment and are restricted to specific subtypes of collagen fibers. In the clini-
cal setting, trichrome staining is a common collagen staining approach. However,
it is subject to high staining inconsistencies across institutions and even across
different subjects from the same cohort. Furthermore, trichrome stains not only
collagen, but also other undesired tissues [5,16,32].

Image Analysis and Machine Learning Methods: Hand-crafted ridge de-
tectors have been used for several applications, such as for neurite in fluorescence
microscopy images [22], for enhancement of vessel structures [29,12], and for de-
tecting wrinkles on human skin [25]. Hidayat el. al. [14] have leveraged ridge de-
tection for real-time texture boundary detection on natural images. There have
been previous attempts to characterize structure of collagen from a machine
learning perspective using hand-crafted features on spectroscopy images. May-
erich et. al. [21] have classified several types of tissues, including collagen, on a
breast histology dataset of mid-infrared spectroscopy images. This method uses
random forests and features from principal component analysis. [15,23] train
a support vector machine (SVM) classifier using texture features from multi-
photon microscopy images and second-harmonic generation microscopy images,
respectively. The collagen fiber orientation in human arteries in light microscopic
images was explored in [9]. Here, robust clustering and morphological operations
in the color space were first used to identify fiber regions. This was followed by
ridge and valley defections to calculate fiber orientations. Subsequently, region
growing was used to obtain areas of homogenous fiber orientation. However, none
of the previous works have utilized deep learning based methods to characterize
fiber orientations. This is partly owing to the lack of well annotated pathology
datasets. The ability of flow-based approaches to enhance image characteristics
provides us the unique opportunity to leverage such methods in the context
of our problem by fusing them with deep learning methods in a multi-stream
setting.

Two-stream networks have been successfully applied in video analytics tasks,
where spatial (frames) and temporal information (optical flow) are aggregated
as shown in [30,26,10]. Particularly, [26] explores multiple fusion methods of in-
termediate outputs for human action recognition. Lin et al. [17] have introduced
a new application of two-stream networks, where the architecture can model
local pairwise feature interactions in a translationally invariant manner which
is particularly useful for fine-grained categorization. Our methods leverage such
two-stream networks in conjunction with gradient-based operators to build a
curliness classifier on DUET images.

3 Methodology

We first introduce the filtering operations using the ridge filter. Next, we explain
how to combine the ridge filter with deep neural networks in a seamless fashion
in order to train a robust collagen fiber classifier.
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3.1 Ridge Filter for Collagen fiber Structure Detection

Hessian-based filters are well-suited for detection of curvelinear structures in
various biomedical contexts, such as vessels [12], neurons [22], etc. In particular,
we employ a ridge detector. In a 2D image, ridges are the collection of curves on
which the function value remains almost constant along the tangent direction,
and are local maxima along the normal direction. See Fig. 2 for sample input
DUET patches and the ridge detection results. The ridge detector successfully
highlights the fiber structures so that they can be used to distinguish curly
vs. straight patterns.

Fig. 2. A ridge detector is applied to curly and straight patches. From left to right: the
DUET patches of curly structures, their corresponding ridge filter response, the DUET
patches of straight structures, their ridge filter responses. Note the original image is
inverted before the ridge filer being applied.

A ridge detector relies on the Hessian matrix of a gray-scale image. At any
point of the image domain, the eigenvalues and eigenvectors of the Hessian corre-
spond to the two principle curvatures and their corresponding directions (called
principle directions). On a point in a ridge, one of the two Hessian eigenvalues
will be close to zero (curvature along the tangent direction), the other will be
negative (curvature along the normal direction). Ridge detectors identify ridge
points based on this principle. Our method is particularly inspired by the one
by Meijering et al. [22].

Our algorithm for ridge detection is illustrated in Fig. 3. At first, the original
DUET image (A) is inverted so that the white pixels correspond to collagen
fibre. Next, the image is smoothed with a Gaussian filter to ensure numerical
stability when computing the second-degree derivatives (B). Next, the Hessian
matrix H is calculated for each pixel in the smoothed image (denoted as I) as
follows

Hi,j =
∂2I

∂xi∂xj
(1)



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#100
ECCV

#100

6 ECCV-20 submission ID 100

where xi and xj are the two dimensions of the image domain. Since the Hessian
matrix is symmetric, its eigenvalues can be computed as

λ1 =
1

2

[
H1,1 +H2,2 + (

√
4H2

1,2 + (H1,1 −H2,2)
2
)

]
, (2)

λ2 =
1

2

[
H1,1 +H2,2 − (

√
4H2

1,2 + (H1,1 −H2,2)
2
)

]
. (3)

We rank the two eigenvalues based on their absolute magnitudes. We call λL
and λH the low and high eigenvalues with respect to the absolute magnitude, or
in short, the low and high eigenvalues. For each pixel, we have

λL = argminλ∈{λ1,λ2}|λ| (4)

λH = argmaxλ∈{λ1,λ2}|λ| (5)

Figures C.1 and C.2 visualize the low and high eigenvalues respectively. We note
that the high eigenvalues can be either positive and negative. The desired ridge
points are the locations whose λH has high absolute magnitude yet negative
sign. To achieve this goal, we normalize λH by setting dividing it by the global
minimal λH . This way, the range of the results can be up to +1. Figure D
shows the results. As we can see, the ridge points have values close to 1. They
correspond to points whose λH has high absolute magnitude yet negative sign.
Finally, we remove irrelevant responses by setting all negative values to zero. See
Figure E for the final filter response.

Fig. 3. A. Raw input patch. B. Input is inverted and smoothed with a Gaussian filter.
C.1 Low eigenvalues λL of Equation 4. C.2 High eigenvalues λH of Equation 5. D. High
eigenvalues λH are divided by its minimum value. E. Final ridge detection results after
the negative values of the previous step are set to zero.
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Fig. 4. A. The input is the raw patch of collagen content. B. The ridge detector is
applied to the raw patch before feeding into the CNN. C. Features of the raw patch
and the ridge detector response are fused for the classification.
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3.2 Convolutional Neural Networks

We explore 3 different settings of training CNNs with ridge filter response as
shown in Fig. 4. All experiments use ResNet [13] models with pre-trained weights
using ImageNet. The backbone network has frozen weights and its output is an
1D-vector of size 512. In the first setting, the input to the CNN are the original
DUET patches. We apply transfer learning by fine-tuning the final layers for two
classes (curly and straight). In the second setting, the ridge detector is applied
to the original DUET patches and is then provided to the CNN for transferred
learning. In the third setting, the original DUET patch and the ridge filter are
both use as input for a pretrained network. The output of the network are high-
level feature representations of the original image and the ridge response. We
fuse these features for the final binary classifier training.

We investigate 4 types of feature fusion strategies. Element-wise product
(Elt-wise prod) is the element-wise multiplication of the elements of two 1D
input vectors and its output has the same size. Similarly, Addition outputs a 1D
vector of same size as the inputs and its elements are the sum of the elements
of the two 1D input vectors. Another method is the concatenation of both 1D
input vectors. Finally, we use the bilinear operation for two-stream networks,
introduced in [17]. It computes the L2-normalized outer product of the two
features as the input feature for the final classifier.

4 Experiments

Dataset and Settings. Six whole slide images (WSIs) of DUET images of
BCa tissue are used to evaluate the proposed method. Our study comprised
images from aggressive early stage breast cancer patients with known 5-year
distant metastasis status. For each WSI, our domain expert selected regions of
interests (ROIs) with strong collagen structures (see the left part of Fig. 1).
Preliminary binary labels are also given to these ROIs (as curly or straight).
Next, non-overlapping patches were sampled from inside these ROIs. The size
of the patches is 400× 400 pixels with a physical resolution of 0.22 microns per
pixel.

Each of these extracted patches are annotated by the domain annotator as
curly, straight, mixed, and insufficient signal. We discard patches of mixed type
or insufficient signal. The remaining ones are used for training and validation.
5 WSIs and 1 WSI were used to create the training set and validation set,
respectively. The distribution of the patches is shown in Table 1.

The ResNet-family networks were trained using the Adam optimizer for 100
epochs with a learning rate of 0.001. Input patches were resized to 224 × 224
pixels. We followed standard data augmentation regimes such as a 0.5 probability
of horizontally and vertically flipping as well as random rotation of the input by
up to 20 degrees. For the ridge detection step, we use a σ value of 5 as smoothing
factor in the Gaussian filter before computing the Hessian matrix.
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Table 1. Distribution of 400 × 400 patches

Training Validation

Curly 1037 314

Straight 1018 418

Quantitative Results. For our binary classification problem, we evaluated
the area under the ROC Curve (AUC). We compare the 3 pipelines of Fig. 4
and the results are presented in Table 2. We observe that when the networks
were trained with the output of the ridge detector, they achieve higher AUC
than when the networks were trained directly on raw patches. Furthermore, we
explore 4 different methods to aggregate the outputs of as shown in part C. of
Fig. 4. In this setting, the addition of the outputs of the CNN is the only method
that can boost the AUC performance on most of the networks.

Although the feature fusion methods do not seem to achieve significantly
higher accuracy, we suspect it is due to the insufficient training data. When
scaling up to a larger cohort, we expect the feature fusion network will achieve
higher accuracy and become the best choice in practice.

Table 2. Results (AUC) after fine-tuning the ResNet models using raw patch only,
ridge response only, and feature fusion result. The latter case has 4 ways of combining
the intermediate outputs of the CNN.

Network Raw
Ridge

σ = 5

Raw + Ridge

Elt-wise prod Bilinear Concatenation Addition

ResNet-18 0.7365 0.8467 0.7027 0.7545 0.8055 0.8148

ResNet-34 0.7415 0.8235 0.8321 0.8100 0.8129 0.8423

ResNet-50 0.7400 0.8352 0.8391 0.7582 0.8446 0.8624

ResNet-101 0.7774 0.8432 0.7677 0.7988 0.8199 0.8463

Average 0.7489 0.8372 0.7854 0.7804 0.8207 0.8415

Table 3 shows how the smoothing factor (σ) of the ridge filter affects the
AUC performance of the ResNet models that were fine-tuned on patches with a
ridge filter applied before feeding into the network as shown in part B. of Fig. 4.
On average, the ResNet networks benefit the most when σ was 5, so we used
this value for our experiments.

Qualitative results. The network with highest AUC from the previous section
is used to predict the degree of curliness as a heatmap on the annotated regions
of interest. We run inference on the non-overlapping patches from inside the
regions of interest and we save the output of the softmax layer for the “curly”
class. On the left side of Fig. 5, preliminary annotations of the regions of interest
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Table 3. Results (AUC) of the fine-tuned ResNet models when the input of the CNN
is the output of the ridge detector. σ is the smoothing factor of the ridge detector.

Ridge Filter

Network σ = 1 σ = 3 σ = 5 σ = 7

ResNet-18 0.6968 0.8151 0.8467 0.8402

ResNet-34 0.7202 0.7934 0.8235 0.8231

ResNet-50 0.7589 0.8289 0.8352 0.8354

ResNet-101 0.7383 0.8179 0.8432 0.8203

Average 0.7286 0.8138 0.8372 0.8298

are depicted for a WSI. The red boundary regions correspond to areas with
dominating curliness and the blue boundary regions are dominantly straight.
The predicted heatmap is shown on the right side of Fig. 5 and each pixel
represents the likelihood of curliness of a patch of 400× 400 pixels. We observe
high consistency between patchwise prediction of our model and the preliminary
labels of ROIs. On the bottom of Fig. 5, we also included a magnification of a
sub-region of the WSI.

5 Conclusion

In an effort to optimize the research and clinical opportunities of tumor associ-
ated collagen as a predictive and prognostic biomarker, it is imperative to first
localize the collagen content and then characterize the degree of curliness to
further elucidate the relationship of collagen structure with tumor progression
and metastasis. We present a quantitative approach that identifies characteristic
collagen architecture in a unique dataset of BCa DUET images. Rather than
learning to estimate collagen patterns using standard deep learning approaches
directly on the DUET images, we enhance the images using ridge detectors and
incorporate the filter responses using a feature-fusion strategy. Our work pro-
vides a novel and promising direction for research in digital pathology that can
both further our understanding of BCa biology and meaningfully impact clinical
management. Our results show that certain primitives can be enhanced in the
pre-analytical steps, which can then help in providing additional architectural
information about tissue samples. This can then be further integrated with other
types of digital pathology analyses like automated tumor and TIL detection and
characterization of different immunohistochemical (IHC) stains.
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