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Abstract

In the paper, we study the underdamped Langevin diffusion (ULD) with strongly-
convex potential consisting of finite summation of N smooth components, and
propose an efficient discretization method, which requires O(N + d

1
3N

2
3 /ε

2
3 )

gradient evaluations to achieve ε-error (in
√

E∥·∥22 distance) for approximating
d-dimensional ULD. Moreover, we prove a lower bound of gradient complexity as
Ω(N + d

1
3N

2
3 /ε

2
3 ), which indicates that our method is optimal in dependence of

N , ε, and d. In particular, we apply our method to sample the strongly-log-concave
distribution and obtain gradient complexity better than all existing gradient based
sampling algorithms. Experimental results on both synthetic and real-world data
show that our new method consistently outperforms the existing ULD approaches.

1 Introduction

Sampling is an important research problem in statistics learning with many applications such as
Bayesian inference [1], multi-arm bandit optimization [2], and reinforcement learning [3]. One
of the fundamental problems in these applications is to sample from a high-dimensional strongly-
log-concave distribution. Recently, several Markov chain Monte Carlo (MCMC) based methods
were proposed to solve this problem based on underdamped Langevin diffusion (ULD). This con-
tinuous diffusion process converges to the target distribution exponentially fast. Thus, the methods
approximating a ULD process could be used to sample from the target distribution within certain
accuracy.

Multiple discretization methods have been proposed for approximating ULD. Among them, the
Euler-Maruyama discretization [4] is the simplest one but generates the largest error. Recently the
left point method (LPM) 1 [5] was introduced to fix the gradient term in ULD to be the gradient
at k-th iteration, and then integrate the new linear stochastic differential equation (SDE) with a
small time-interval. Subsequently, Shen and Lee [6] proposed randomized midpoint method (RMM)
with smaller error. There are also discretization schemes based on splitting [7] or Runge-Kutta
method [8, 9]. More recently, Cao et al. [10] derived an information-based complexity lower bound
for simulating a d-dimensional ULD. Under the assumption that the full gradient oracle ∇f(x) is
evaluated at most n times, they show a lower bound for worst-case error by perturbation analysis,
which matches the discretization error upper bound of RMM in the dependence of d and n.

Although the ULD-MCMC methods with full gradient oracle are largely understood, many real-world
applications involve summation form of potential function and large-scale data, which leads to the
need of stochastic gradient methods. The vanilla stochastic gradient methods have been used to
replace full gradient [5]. Albeit the computational cost for each iteration is reduced, the variance of

1Although this method is mostly just denoted as ULD-MCMC, we adopt the name LPM to distinguish it
from other discretization methods. The name comes from the fact that gradient is evaluated at the left point of
the time interval.
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Table 1: Summary of gradient complexity of sampling methods, which is defined as number of
gradient evaluation of ∇fi(x) needed to sample from m-strongly-log-concave distributions up to
ε
√
d/m accuracy in 2-Wasserstein distance where ε ≤ 1 is the target accuracy, d is the dimension.

ULA, LPM, RMM, and ALUM are full gradient methods, therefore, gradient complexities for them
are sample size N times the iteration complexities. Only dependence on d, ε, and N are shown below.
The dependence of batch size b is made clear in Table 3. The dependence of condition number κ is
discussed in Section 7.

Algorithms Gradient complexities

Unadjusted Langevin Algorithm (ULA) [15, 16] Õ(Nε−2)

LPM [17] Õ(Nε−1)

RMM [6] Õ(Nε−
2
3 )

ALUM (Ours) Õ(Nε−
2
3 )

Stochastic Gradient LPM (SG-LPM) [5] Õ(ε−2)

SVRG-LPM [11]2 Õ(N + ε−1 +N
2
3 ε−

2
3 )

CV-ULD [18]3 Õ(N + ε−3)

SVRG-ALUM (Ours) Õ(N +N
2
3 ε−

2
3 )

SAGA-ALUM (Ours) Õ(N +N
2
3 ε−

2
3 )

stochastic gradient is much larger than the discretization error and therefore degenerates the overall
performance. Previous works [11, 12] used stochastic variance reduced gradient (SVRG) [13] and
SAGA [14] instead, but the gradient complexities of these methods are still worse than the full
gradient RMM in terms of dependence on accuracy ε. Thus, there exists a natural question:

What is the optimal ULD-MCMC method with sum-decomposable potential?

In this paper, we focus on optimal dependence of dimension d, components number N and accuracy
ε in gradient complexity for estimating a ULD process. We answer this question by two parts. We
first provide a novel ULD-MCMC method and derive the corresponding complexity upper bound in
Sections 4 and 5. After that, we analyze the worse case error and show that the lower bound matches
the upper bound in Section 6. The major contributions of our paper can be summarized as follows.

1. We propose a new full gradient ULD-MCMC method, called as AcceLerated ULD method
(ALUM), whose discretization error has the same order dependence on dimension d, step size h
as RMM. Although RMM already has optimal asymptotic complexity in full gradient setting,
ALUM is still of practical interest. Compared with RMM, which uses two gradient evaluations
at each iteration, ALUM uses gradient less frequently and only requires one gradient at each
iteration to achieve constant speedup.

2. We further propose VR-ALUM methods, including SVRG-ALUM and SAGA-ALUM, which
utilize the unbiased variance reduction techniques in ALUM under sum-decomposable setting.
We show that these methods achieve better gradient complexity than all existing gradient based
MCMC approaches. These gradient complexities for sampling from a strongly-log-concave
distribution are compared in Table 1.

3. We derive an information-based lower bound on worst-case error for estimating a ULD process
with only gradient oracle and weighted Brownian motion oracle. We show that in order to
achieve ε approximation accuracy, Ω(N + d

1
3N

2
3 ε−

2
3 ) single component gradient evaluations

are needed. This lower bound matches the upper bound for VR-ALUM in terms of dependence
of dimension d, sample size N , and accuracy ε. Therefore, our VR-ALUM methods are indeed
optimal for estimating a ULD process under sum-decomposable setting.

2In Zou et al. [11], the authors call their method SVR-HMC. However, their method is not based on
Hamiltonian Monte Carlo (HMC), but based on ULD. Their method is just applying SVRG to replace full
gradient in LPM.

3Further explanation and comparison is shown in Appendix A.2.
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2 Related work

Though we mainly use the gradient oracle in this paper, there is also a large body of sampling
algorithms which leverage zeroth order potential value oracle. For example, Metropolis-Hastings
accept-reject step could be used to ensure an MCMC converges to a stationary distribution equal to
the target distribution [19, 20, 21, 22, 23] and the linear convergence can be obtained. For example,
MALA [24, 21, 25], as Metropolis-adjusted ULA, can achieve ε error in total variation distance within
O(d2 log(1/ε)) steps under certain initialization [26]. Note that purely gradient based sampling
algorithms typically only converge sub-linearly because the stationary distribution is different from
the target distribution.

Other diffusion processes could also be used for constructing MCMC. ULA, a discretization of
Langevin diffusion (LD) [27, 24], is the first commonly used gradient-based MCMC. We will provide
an overview for some LD-based and ULD-based methods in Appendix A.1. Later, higher order
diffusion process is also discussed. Although the path is even smoother than ULD, currently it is not
clear whether such higher order smoothness of path could be leveraged to accelerate the convergence
without extra assumptions on potential function. Mou et al. [28] studied third-order diffusion, but
their acceleration requires special structure or high order smoothness of potential. The more general
diffusion process, which converges to the target distribution, was studied in Ma et al. [29].

3 Preliminary

The problem of sampling from a strongly-log-concave distribution involves a probability density
function p∗(x) defined on a real vector space Rd. A corresponding potential function f(x) =
− log(p∗(x)) can be defined such that f(x) is strongly convex. One way to solve this sampling
problem is constructing a Markov chain that converges to a stationary distribution that is the same as
or similar to the target distribution. In Appendix A.1, we introduce several such Markov chains as
discretization of certain continuous stochastic processes, and we roughly analyze discretization error
of these methods with pointing out the bottleneck.

We use Õ(f) = O(f) logO(1)(f) to omit logarithm factor. ∥·∥2 means the Euclidean norm. We
define a norm of random vector as ∥·∥L2 =

√
E∥·∥22. Next, we list our assumptions on potential

f(x).

Assumption 1 (Sum-decomposable). f(x) =
∑N

i=1 fi(x), where integer N is the sample size.

Assumption 2 (Smoothness). Each function fi is twice differentiable on Rd and there exists a
constant L > 0, such that ∇2fi(x) ≼ L

N I for any x ∈ Rd where I is the identity matrix. It can be
easily verified that f(x) is L-smooth.

Assumption 3 (Strong Convexity). There exists a constant m > 0 such that: f(x) − f(y) ≥
⟨∇f(y),x− y⟩+ m

2 ∥x− y∥22. We define the condition number κ := L/m.

We finally define the 2-Wasserstein distance between distributions. For any pair of probability
measures µ and ν on the same parameter space, a transference plan ζ between µ and ν is a joint
distribution such that the marginal distributions on two sets of coordinates are µ and ν, respectively.
We denote Γ(µ, ν) as the set of all transference plans, and define the 2-Wasserstein distance between
µ and ν as follows:

W 2
2 (µ, ν) = inf

ζ∈Γ(µ,ν)

∫
∥x− y∥22dζ(x, y).

4 AcceLerated ULD-MCMC (ALUM) methods

In this section, we propose a class of AcceLerated ULD-MCMC (ALUM) methods based on approxi-
mation of the continuous ULD process:

dXt = Vtdt, dVt = −∇f(Xt)dt− γVtdt+
√
2γdBt. (1)

The gradient term in the above SDE could be highly non-linear such that closed form solution is
not available. Thus, we propose an estimation of SDE solution at time point h which only requires
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gradient evaluation at one single point:

X
(o)
h = X0 + ψ1(h)V0 − hψ1(h− ah)∇f(X(e)

ah ) + ex,[0,h],

V
(o)
h = ψ0(h)V0 − hψ0(h− ah)∇f(X(e)

ah ) + ev,[0,h],

X
(e)
ah = X0 + ψ1(ah)V0 + ex,[0,ah],

(2)

where the random variable a is uniform random variable in [0, 1], ψi(·) and noise terms ex,[0,h],
ev,[0,h], ex,[0,ah] are defined as follows 4.

ψ0(h) = e−γh, ψ1(h) =
1

γ
(1− e−γh),

ex,[0,h] =
√
2γ

∫ h

0

ψ1(h− s)dBs, ev,[0,h] =
√

2γ

∫ h

0

ψ0(h− s)dBs.

(3)

4.1 Full gradient ALUM

In this subsection, we propose a full gradient ALUM method, which is shown in Algorithm 1.
Specifically, the update rule is obtained by setting x

(o)
k+1,v

(o)
k+1 to X

(o)
h ,V

(o)
h where the ULD starts

from X0 = x
(o)
k ,V0 = v

(o)
k and h is a small step size.

Algorithm 1: Full gradient ALUM Method

Input: Initial point (x(o)
0 ,v

(o)
0 ), parameter γ, iteration

number K, and step size h > 0.
for k = 0 to K − 1 do

Randomly sample ak uniformly from [0, 1];
Generate ex,[0,h],k, ev,[0,h],k, ex,[0,akh],k according to
Appendix A.5;
x
(e)
k = x

(o)
k + ψ1(akh)v

(o)
k + ex,[0,akh],k;

Calculate full gradient ∇f(x(e)
k );

x
(o)
k+1 =

x
(o)
k +ψ1(h)v

(o)
k −hψ1(h−akh)∇f(x(e)

k )+ex,[0,h],k;
v
(o)
k+1 = ψ0(h)v

(o)
k −hψ0(h−akh)∇f(x(e)

k )+ev,[0,h],k;
end for
Output: x(o)

K .

Next, we compare our method with
both RMM and Nesterov’s acceler-
ated gradient method (NAG) which
has been shown optimal for gradient
based optimization. Compared to
RMM: By comparing the formula
in (19) and (2), it is easy to see that
ALUM and RMM differ in one single
term −ψ2(ah)∇f(X0).

Our motivation of dropping this term
is to reduce the computations. By
deleting this term from the algorithm,
only one gradient evaluation at a ran-
domized midpoint is needed at each
iteration. This compares favorably to
the RMM, which requires two gradi-
ent evaluations at each iteration.

However, could this method still estimate ULD accurately with only half gradient evaluations?
We firmly answer this question with rigorous error analysis in Theorem 2. Roughly speaking, if we
only consider the error’s dependence on step size h, the answer is yes. In this section, we only give
an intuition of how that is possible.

In Appendix A.1, we show that RMM has very low bias and high variance. Therefore, the bottleneck
is the variance, and increasing the bias slightly would not degenerate the overall performance much if
the bias is not larger than the error introduced by variance. The dropped term −ψ2(ah)∇f(X0) has
norm O(h2), and the coefficient of gradient in Vh is O(h). Thus, the bias introduced in single step is
O(h3) when we use step size h. After accumulating for T/h = O(h−1) iterations, the bias is O(h2),
which still has better dependence on h than the square root of variance O(h3/2).

With increased bias, the complexities of ALUM and some other variants5 still have the same depen-
dence on ε as RMM, the highest order dependence on κ could deteriorate as discussed in Section 7.

Compared to Nesterov’s accelerated gradient (NAG) method: NAG is a gradient based optimiza-
tion method [30]. Based on [31], NAG could be formulated as the following momentum method:

4ex,[0,ah] is obtained by simply substituting h with ah in the definition of ex,[0,h].
5We can drop ex,[0,h],k and ex,[0,akh],k in (2) to derive other variants of ALUM. The bias of these variants

increases to O(h3/2), which is still no larger than the square root of variance. The maximum order dependence
on h is the same, thus the final iteration complexity has the same dependence on ε as RMM.
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xk+1 = xk + ckxk + c′k∇f(x
(e)
k ), vk+1 = ckxk + c′k∇f(x

(e)
k ), x

(e)
k = xk + ckxk . (4)

We can see that the main differences between Algorithm 1 and (4) are coefficients and additional
Gaussian noise terms. The coefficients in NAG are set in a deterministic way. However, the
coefficients in ALUM could be random values from fixed distributions. The additional noise terms in
ALUM come from the Brownian motion term in ULD and are necessary for sampling methods.

Despite the differences, both NAG and ALUM use one gradient at each iteration, and both of them
take a big jump along current momentum direction to calculate the gradient instead of directly
computing the gradient at current iterate.

4.2 Variance-reduced ALUM (VR-ALUM)

In the subsection, we propose variance-reduced stochastic ALUM (VR-ALUM) methods based on
two common unbiased 6 variance-reduced techniques: stochastic variance reduced gradient (SVRG)
[13] and SAGA [14]. VR-ALUM comes from simply replacing all full gradient in Algorithm 1 with
a gradient estimation ∇̃k. We show Algorithm 2 in the Appendix A.6 due to the limit of space.

Next, we briefly introduce these two variance reduction techniques. SVRG utilizes the follow-
ing gradient estimation (Bk is the batch of k-th iteration and b is the batch size): ∇̃SVRG

k =
N
b

∑
i∈Bk

(
∇fi(x(e)∇̃

k ) − ∇fi(x)
)
+

∑N
i=1 ∇fi(x). The full gradient

∑N
i=1 ∇fi(x) and point

x are updated after every τ evaluations of ∇̃SVRG
k . We call the hyperparameter τ as epoch length.

SAGA estimates the gradient in the following way, where ϕi
k+1 is set as x(e)∇̃

k if and only if i ∈ Bk,

otherwise ϕi
k+1 = ϕi

k: ∇̃SAGA
k = N

b

∑
i∈Bk

(
∇fi(x(e)∇̃

k ) − ∇fi(ϕi
k)
)
+

∑N
i=1 ∇fi(ϕi

k). SAGA
does not re-compute but stores the latest gradient information ∇fi(ϕi

k) for each fi. Therefore, SAGA
does not introduce extra gradient evaluation except for initialization, but has much larger storage
requirements.

Both SVRG and SAGA are unbiased, which means EBk
∇̃k = ∇f(x(e)∇̃

k ), where EBk
means

expectation over random batch at k-th iteration. Moreover, both SVRG and SAGA reduce the mean-
squared error of gradient estimation and satisfy bounded MSE property proposed in Appendix B.3.

5 Theoretical analysis

We provide non-asymptotic upper bounds on sampling error and discretization error for our methods,
including full gradient ALUM and VR-ALUMs. The proof is shown in Appendix B. Throughout
this section, we assume W2(p0, p

∗) = O(1)
√
d/m when deriving asymptotic results. This means

the initialization is not too far away from the target distribution, and can be achieved under multiple
setting as discussed in Appendix A.7.

5.1 Convergence analysis of full gradient ALUM

Recall that ALUM can be used for solving two different but related problems: strongly-log-concave
sampling and approximating the ULD. We show the upper bound for sampling error in Theorem 1
and the upper bound for approximation error in Theorem 2 separately.
Theorem 1. Suppose Assumptions 1 to 3 hold. Given an initial distribution p0(x), we initialize ALUM
with random x

(o)
0 based on probability p0 and random v

(o)
0 from standard Gaussian distribution.

Assume L = 1 and let γ = 2, pk be the distribution of x(o)
k and p∗ be the target distribution. Assume

we use step size h ≤ m
22 . After running the ALUM for k iterations, we have the following upper

bound of sampling error in 2-Wasserstein distance:

W2(pk, p
∗) ≤ 2(1− mh

4
)kW2(p0, p

∗) + 12

√
h3d

m
. (5)

6The reason we choose unbiased variance reduction instead of biased one is that bias accumulates quicker
than variance, therefore generates higher overall error.
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Table 2: Iteration complexities for full gradient ALUM on both sampling and approximation problem.
Problem Accuracy Step size h Iteration complexity

Sampling ε
√
d/m in W2 h = O(min(ε

2
3 ,m)) Õ(max(κ/ε

2
3 , κ2))

Approximating ε in L2 h = O(min(m
2
3 ε

2
3 d−

1
3 ,m)) O(max(Tκ

2
3 ε−

2
3 d

1
3 , Tκ))

Theorem 2. With same assumptions and setup in Theorem 1, we consider Xkh which comes from a
continuous ULD starting from the same position as x(o)

0 with probability 1. We have the following
upper bound of discretization error:

∥x(o)
k −Xkh∥L2

≤ 38

√
h3

m
W2(p0, p

∗) + 31

√
h3d

m
. (6)

Remark 1. The assumption L = 1 actually does not limit the availability of the algorithm. For any
function f(x) with L ̸= 1, we can define another function f ′(x′) = f( 1√

L
x′) which satisfies L = 1.

ALUM with step size h ≤ m
22L and initial momentum from the standard Gaussian distribution can

be used to sample x′ from the distribution p′(x′) ∝ exp(−f ′(x′)). The sample x from distribution
p(x) ∝ exp(−f(x)) could be obtained by a transform x = 1√

L
x′. This is essentially the same as

directly incorporating L into ULD process as in Appendix A.3.

Thus, we can derive the iteration complexity for both problems. For sampling problem, we define
the iteration complexity as the number of iterations K needed to achieve W2(pK , p

∗) ≤ ε
√
d/m

with certain step size h. For approximating the ULD at a given time point T , we define the iteration
complexity as the number of iterations K needed to achieve ∥x(o)

K − XT ∥L2 ≤ ε with step size
h = T/K. The results are shown in Table 2. Detailed derivations can be found at Appendix A.8.

5.2 Convergence analysis of variance-reduced ALUM (VR-ALUM)

We show the upper bound for sampling error in Theorem 3 and the upper bound for discretization
error in Theorem 4 separately.
Theorem 3. With same assumptions in Theorem 1, we use SVRG-ALUM with epoch length τ =
⌈N/b⌉ or SAGA-ALUM. We introduce an extra assumption h3 ≤ 1

2304cb
3mN−2. We have the

following upper bound of sampling error in 2-Wasserstein distance.

W2(pk, p
∗) ≤ 2(1−mh

4
)kW2(p0, p

∗)+92

√
h3

m

√
c
N

b
3
2

W2(p0, p
∗)+(12+57

√
c
N

b
3
2

))

√
h3d

m
. (7)

The constant c is defined as c = 1 for SVRG-ALUM and c = 2 for SAGA-ALUM.
Theorem 4. With the same assumptions in Theorem 3, we consider Xkh which comes from a

continuous ULD starting from the same position as x(o)∇̃
0 with probability 1. We have the following

upper bound of discretization error.

∥x(o)∇̃
k −Xkh∥L2

≤ (38 + 92
√
c
N

b
3
2

)

√
h3

m
W2(p0, p

∗) + (31 + 57
√
c
N

b
3
2

)

√
h3d

m
. (8)

Remark 2. Theorems 1 to 4 are specializations of more general results in Appendix B.1, where full
gradient, SVRG and SAGA are unified under the framework of bounded MSE property that is defined
in Appendix B.3. A unified approach not only simplifies the proof, but also indicates that our analysis
could easily generalize to other gradient estimations that satisfy bounded MSE property.

Similar to the full gradient case, we derive the iteration complexity K in Appendix A.9. Moreover,
we define gradient complexity as the number of single component gradient evaluation ∇fi(x) needed
to achieve certain accuracy. We show the results in Table 3 and add the derivations in Appendix A.9.
We finally simplify the result by only considering the dependence of d, N , b, and ε.

Corollary 1. When b ≤ O(N
2
3 ), the gradient complexity of SAGA-ALUM and SVRG-ALUM for

sampling problem is Õ(N +N
2
3 ε−

2
3 ) and their gradient complexity for ULD approximation problem

is O(N + d
1
3N

2
3 ε−

2
3 ).
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Table 3: Gradient complexity for SAGA-ALUM and SVRG-ALUM.
Problem Accuracy Gradient complexity

Sampling ε
√
d/m in W2 Õ(N + (bκ+N

2
3κ

4
3 )(1 + ε−

2
3 ) + bκ2

Approximating ε in L2 O(N + T (κb+ κ
1
3N

2
3 ) + Tκ

2
3 d

1
3 ε−

2
3 (b+N

2
3 ))

6 Information-based complexity

We first declare our setup for the problem class and accessible information. Then we show information-
based lower bound for approximation error and oracle complexity. The proof is shown in Appendix C.

6.1 Setup

Class of possible potential functions: We denote the class of possible potential functions as U =

U(d,N,m,L) = {(f1, . . . , fN )|∇2fi(x) ≼ (L/N)I,mI ≼ ∇2
∑N

i=1 fi(x) and ∥Ep∗ [X]∥2 ≤√
d/m} where 0 < m < L and p∗(X) ∝ exp(−

∑N
i=1 fi(X)).

Besides Assumptions 1 to 3 used in the previous sections, we introduce a new assumption that the
target distributions have mean in a ball of constant radius around the origin. This is necessary because
the lower bound could be arbitrarily large if the mean is far away from the initialization point.

Solution mapping: We denote the probability space for Brownian motion in the ULD process as
(M,Σ,P). Then, the true solution of ULD process starting from the origin 0 at time T can be denoted
as the solution mapping XT : (ω,U) ∈ (M× U) 7→ XT (ω,U) ∈ Rd.

Gradient oracle: For a given set of potential functions U = (f1, . . . , fN ), the single component
gradient oracle is ΥU : (i,x) ∈ [N ]× Rd 7→ ∇fi(x) ∈ Rd.

Brownian oracle: We assume the Brownian motion at a given time t > 0 could be evaluated with
oracle Bt(ω) ∈ Rd for any event ω ∈ M. We further assume that the weighted Brownian motion is
also admissible. B(θ)

t (ω) =
∫ T

0
eθsdBs(ω).

Deterministic algorithm: A deterministic algorithm starts from empty information I0 = (). At i-th
step, one oracle and corresponding parameters are picked by certain procedure. If the gradient oracle
is picked, the algorithm will generate an index i and a point x. If the weighted gradient oracle is
picked, the parameters are order θ for weighted Brownian motion and time t. The picked oracle and
parameters are represented by ϕi(Ii). The evaluation result is represented by Υ(ϕ(Ii), ω, U) where
ω ∈ M and U ∈ U . The picked oracle, parameters, and result will be stored as new information,
hence Ii+1 = (Ii, ϕ(Ii),Υ(ϕ(Ii), ω, U)).

We consider deterministic algorithms that stop at n-th step. The final estimation is generated with a
mapping Y (In) ∈ Rd. We expect Y (In) to be as close as possible to true solution XT (ω,U).

We denote a deterministic algorithm as a mapping A from M× U to Rd and A(ω,U) = Y (In) for
some ϕ and Y . The family of all such algorithms is denoted by ADet

n .

Randomized algorithm: We consider another probability space (M̃, Σ̃, P̃) as the source of ran-
domness. A randomized algorithm A with n steps is a mapping from M× M̃× U to Rd such that
A(·, ω̃, ·) ∈ ADet

n for any ω̃ ∈ M̃. The family of all such randomized algorithms is denoted by An.

Worst error of algorithms: We care about the following worst-case error for any possible algorithms:

e2A,U := inf
A∈A

sup
U∈U

Eω∈PEω̃∈P̃∥XT (ω,U)−A(ω, ω̃, U)∥22 (9)

We always assume T > 0 to avoid trivial cases.

6.2 Lower bounds

We first provide lower bounds on worst-case estimation error.
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Theorem 5. When n < N which means that gradient evaluation number is less than components
number, we have e2An,U ≥ dC1, where C1 is positive and independent of d, N , and n.

The above theorem is based on the fact that no algorithm can accurately estimate the global minimum
point of the sum of quadratic potentials

∑N
i=1 fi(x) with information from only N − 1 components.

Theorem 6. When the gradient evaluation number n is a multiple of N , we have e2An,U ≥ dC2
N2

n3 ,
where C2 is positive and independent of d, N , and n.

The method we use to prove the above theorem is to show that an algorithm that uses a limited
number of gradient evaluations cannot distinguish a class of perturbed quadratic functions.

Next, we use the above lower bounds on error to derive a lower bound on gradient complexity.

Corollary 2. For small enough target accuracy ε such that ε2 < dC1, in order to achieve eAn,U ≤ ε,
the minimum number of single component gradient oracle evaluations is Ω(N + d

1
3N

2
3 ε−

2
3 ).

This lower bound matches the upper bound in Corollary 1 which indicates that gradient complexity
of variance-reduced ALUM for estimating a ULD is optimal in the dependence of d, components
number N , and approximation accuracy ε.

7 Optimality

In this section, we discuss in what sense our ALUM is optimal (or not), and point out possible
improvements for future work.

Optimal for approximating problem: ALUM can be used for two tasks: (1) estimating a ULD
process, (2) sampling from a strongly-log-concave distribution. ALUM is only optimal for the first
task, and is not necessarily optimal for the second one. For example, we see in Section 5 that there
exists a logarithm factor in the gradient complexity for sampling problem. We believe some proper
adaptive step size method could cancel that extra term.

Dependency on κ: ALUM is only optimal on the dependence of d, N , ε, but not optimal in κ
dependence. Actually both our method and our analysis may not be optimized for the dependence of
κ. Currently, there is no information-based lower bound with clear dependence on condition number
κ, therefore no matter how good the dependence on κ is, it is not sufficient to say it is optimal. For
sampling problem, it is believed that O(min(κ, d2)) is the “natural barrier” [6] for iterations needed
for achieving W2 ≤ ε

√
d/m with ε = 1/2. Currently, the best dependence on κ is achieved by

RMM with O(κ7/6). For ALUM, the maximum dependence is O(κ2). This dependence is worse for
two reasons. First, the analysis is not optimized for κ. Based on the analysis of bias and variance
in Appendix A.10, we conjecture that the dependence could be improved to O(κ3/2). Second, the
method is not optimized for κ. We save one extra gradient compared to RMM, at the price of a
slightly increased bias. This degenerates the dependence of κ.

Despite the max dependence order being larger than 1, in the high-precision regime, when ε is small
enough, the term κ/ε

2
3 is dominant, therefore, both full-gradient ALUM and full-gradient RMM

achieve O(κ) dependence.

We note the complexity for VR-ALUM increases the dependence of κ to κ4/3 in high-precision
regime. We conjecture that this is an artifact of error-based analysis compared to momentum-based
analysis, and could be improved by some tighter analysis.

Assumptions: Finally, we point out that our method and analysis are based on Assumptions 1 to 3
and the gradient oracle. It is natural to obtain better algorithm by introducing new assumptions or
new oracle.

Many higher order integrators [8, 9] leverage higher order smoothness assumption to reduce discretiza-
tion error. Assumptions on structure of potential [28] have also been shown to make acceleration
possible together with high order diffusion process. Apart from the gradient oracle, many Metropolis-
adjusted algorithms [24, 26] leverage zeroth-order oracle to achieve linear convergence. Second order
oracle [17] has also been incorporated into estimating ULD.
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8 Experiments
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(b) Logistic regression on australian dataset

Figure 1: Trajectory error for different algorithms7. The vertical lines are the error bar. FG means
full gradient, SG means stochastic gradient.

In this section, we compare different algorithms for estimating a ULD process on both Gaussian
model and Bayesian logistic regression model. For the Gaussian model, the potential is defined as:

fi(x) =
1

2N
(di − x)⊤Σ−1(di − x) , (10)

where di and Σ is generated randomly to satisfy d = 5,N = 100,m = 1 and L = 10. For logistic
regression model, the potential is:

fi(x) =
m

2N
∥x∥22 +

N∑
i=1

log(1 + exp(−yia⊤
i x)) , (11)

where m is set such that κ = 104 and yi, ai are data points in australian dataset from LIBSVM [32].

We calculate the trajectory error which is defined as 1
K

∑K
i=1

√
∥xk − x′

k∥22 + ∥vk − v′
k∥22, where

xk and vk are generated by ALUM, VR-ALUMs or other algorithms. x′
k and v′

k come from a
reference path that is very close to true solution. We specify how we generate this reference path in
Appendix D.1. The reason for us to average the error along the path instead of just reporting error at
the final iterate is that we need more data points to reduce the variance.

Figure 1 shows the error for ALUM, LPM, and RMM with full gradient, stochastic gradient, SVRG
and SAGA.8 The detailed setup can be found in Appendix D.2. We summarize the messages in
Figure 1 as follows:

• SAGA-ALUM achieves the best efficiency in the sense that with same number evaluations of
single component gradient ∇fi(x), SAGA-ALUM has smaller discretization error than any
other algorithms. Results on more dataset are shown in Appendix D.3.

• Variance reduced algorithms constantly outperform full gradient algorithm of the same type by a
large margin.

• For full gradient method, the discretization error of ALUM and RMM has similar asymptotic
dependence on gradient evaluation number, and they are better than LPM. This phenomenon
will be shown clearer in Figure 2.

• ALUM achieves constant acceleration compared to RMM by saving one gradient evaluation per
iteration.

7Most of the error bars are too small to be visible. The SG-ALUM and SG-LPM highly overlap.
8Currently there is no theoretical result for RMM with stochastic gradient, SVRG or SAGA. We also didn’t

provide a theoretical result for ALUM with stochastic gradient. However, this doesn’t prevent us from evaluating
them experimentally.
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Figure 2: Discretization error of full gra-
dient methods on australian dataset.9

We also show the relationship between discretization error
and step size in Figure 2. Only full gradient method are
shown here due to the limit of space, and more results for
VR-ALUMs are shown in Appendix D.4.

Our analysis in Theorem 2 gives upper bound of discretiza-
tion error of ALUM as O(h3/2). Figure 2 shows that our
analysis is tight. Moreover, the discretization error of
ALUM is almost the same as RMM. Due to the fact that
ALUM requires only half gradient evaluations per step
than RMM, ALUM achieves better efficiency.
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Figure 3: Discretization error for SVRG-ALUM and SAGA-
ALUM with different batch sizes on australian dataset.

Next, we discuss the effect of batch
size. According to our theory in
Corollary 1, our method is not sen-
sitive to this hyperparameter intro-
duced by SAGA or SVRG when
batch size is relatively small, as
the gradient complexity remains the
same for b = O(N2/3). We verify
that in Figure 3, where the sampling
efficiency is almost same for small
batch sizes, and only deteriorate for
very large batch size. We give fur-
ther discussion on why our method
is not sensitive to step size in Ap-
pendix D.5.

Finally, we apply ALUM and VR-ALUMs to sample from a target distribution in Appendix D.6.

9 Conclusion

In this paper, we propose a class of MCMC methods for finite sum form of strongly-convex potential.
Our methods are proven to be optimal in the sense that the discretization error has the best possible
asymptotic dependence on dimension, number of potential summands, and number of gradient
evaluations. Experiments on both synthetic and real data verify the superior performance of our
algorithm. We also discuss possible improvements for future work.
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