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Abstract
A recent trend in artificial intelligence is the use of
pretrained models for language and vision tasks,
which have achieved extraordinary performance
but also puzzling failures. Probing these models’
abilities in diverse ways is therefore critical to
the field. In this paper, we explore the reliabil-
ity of models, where we define a reliable model
as one that not only achieves strong predictive
performance but also performs well consistently
over many decision-making tasks involving uncer-
tainty (e.g., selective prediction, open set recog-
nition), robust generalization (e.g., accuracy and
proper scoring rules such as log-likelihood on in-
and out-of-distribution datasets), and adaptation
(e.g., active learning, few-shot uncertainty). We
devise 10 types of tasks over 40 datasets in or-
der to evaluate different aspects of reliability on
both vision and language domains. To improve
reliability, we developed ViT-Plex and T5-Plex,
pretrained large model extensions (PLEX) for vi-
sion and language modalities, respectively. Plex
greatly improves the state-of-the-art across relia-
bility tasks, and simplifies the traditional protocol
as it does not require designing scores or tuning
the model for each individual task. We demon-
strate scaling effects over model sizes up to 1B
parameters and pretraining dataset sizes up to 4B
examples. We also demonstrate Plex’s capabili-
ties on challenging tasks including zero-shot open
set recognition, active learning, and uncertainty
in conversational language understanding.1

1Google 2University of Oxford *Work done at Google. Correspon-
dence to: Dustin Tran <trandustin@google.com>.
First Workshop of Pre-training: Perspectives, Pitfalls, and Paths
Forward at ICML 2022, Baltimore, Maryland, USA, PMLR 162,
2022. Copyright 2022 by the author(s).

1 A full version of this paper can be found at
https:/goo.gle/plex-paper. Code for training & evalu-
ation is open-sourced in Uncertainty Baselines (Nado et al., 2021).
Layer and method implementations use Edward2 (Tran et al.,
2018).
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Figure 1. Desiderata for a Reliable model. We propose to si-
multaneously stress-test the “out-of-the-box” model performance
(i.e. the predictive probability distribution p(y|x)) across a suite
of uncertainty, robust generalization, and adaptation benchmarks,
without any customization for individual tasks.

1 Reliability as a Goal for AI
Over the past few years, the deep learning approach to
artificial intelligence (AI) has made significant progress on
benchmark tasks across domains such as computer vision
(Dosovitskiy et al., 2020) and natural language processing
(Raffel et al., 2020; Brown et al., 2020). With this progress,
there is unfettered excitement about the potential of AI to
have a transformative impact. While hypothesizing about
this potential is important, we highlight that the tasks where
deep learning has been most successful have been carefully
devised to fit within narrow boundaries—for example, a
focus on predictive performance with test inputs close to the
data on which the model was trained.

To go beyond these limitations, we argue that the ability of
models to make reliable decisions is critical to the deeper
integration of AI in the real world. Here, we define relia-
bility as the ability for a model to work consistently across
real-world settings. We borrow the term from reliability en-
gineering (Barlow & Proschan, 1975; O’Connor & Kleyner,
2012), a discipline of engineering involving risk assessment,
testability, and fault tolerance. Related nomenclature in-
clude robustness (Russell et al., 2015), safety (Amodei et al.,
2016; Everitt et al., 2018; Hendrycks et al., 2021b), cali-
bration (Dawid, 1982), credibility (D’Amour et al., 2020)
and trustworthiness (Avin et al., 2021), each with their own
broad and intersecting scopes.

https:/goo.gle/plex-paper
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Figure 2. Top row: Examples of Plex’s capabilities in vision: (left) Label uncertainty in ImageNet ReaL-H, demonstrating the ability to
capture the inherent ambiguity of image labels. (middle) Active learning on ImageNet1K, displaying Plex’s label efficiency compared
to a baseline. (right) Zero-shot open set recognition on ImageNet1K vs Places365, showing that Plex can distinguish visually similar
images without finetuning. Bottom row: Examples of Plex’s capabilities in language: (left) Plex enables human+AI collaboration by
improving selective prediction, where the model is given the option to defer a fraction of the test examples to humans. Plex is able to
better identify cases where it is likely to be wrong than the baseline. (middle) Plex is robust while a baseline latches onto spurious features
such as “destination” and “around the world”. (right) Plex enables structured open set recognition. This provides nuanced clarifications,
where Plex can distinguish cases where the request’s domain and vertical are supported but the intent is not.

Desiderata for Reliability The majority of machine learn-
ing research focuses on measures of performance based on
the accuracy on a test set drawn from the same distribution
as the training set, the so-called independent and identically
distributed (i.i.d.) assumption. However, this does not cap-
ture the real-world deployment of AI systems, where often
the testing environment is very different from the training
environment. The emphasis in our paper is on how reliable
an AI system is in such novel scenarios. We posit three gen-
eral categories of desiderata for reliable AI systems: they
should represent their own uncertainty, they should general-
ize robustly to new scenarios, and their learning procedures
should be able to adapt to new data.

Importantly, the aim for a reliable model is to do well in
all of these areas simultaneously out-of-the-box without
requiring any customization for individual tasks (Figure 1):

1. Uncertainty involves imperfect or unknown information
where it is impossible to exactly describe an existing state
(Ghahramani, 2015). Predictive uncertainty quantifica-

tion allows one to compute optimal decisions (Parmigiani
& Inoue, 2009), and enables practitioners to know when
to trust the model’s predictions, thereby enabling graceful
failures when the model is likely to be wrong. In the latter
case, which is often referred to as selective prediction, the
model may defer its prediction to human experts when it
is not confident.

2. Robust Generalization involves an estimate or forecast
about an unseen event (Abraham & Ledolter, 1983;
Dawid, 1982). The quality of prediction is typically mea-
sured using accuracy (e.g. top-1 error for classification
problems and mean squared error for regression prob-
lems) and proper scoring rules such as log likelihood and
Brier score (Gneiting & Raftery, 2007). In the real world,
we care not only about metrics on new data obtained from
the same distribution the model was trained on (i.i.d.),
but also about robustness, as measured by metrics on
data under out-of-distribution shifts such as covariate or
subpopulation shift.
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3. Adaptation involves probing the model’s abilities over the
course of its learning process. Benchmarks typically eval-
uate on static datasets with pre-defined train-test splits.
However, in many applications, we are interested in mod-
els that can quickly adapt to new datasets and efficiently
learn with as few labeled examples as possible. Exam-
ples include few-shot learning (Ravi & Larochelle, 2017),
where the model learns from a small set of examples;
active learning (Settles, 2009), where the model not only
learns but also participates in acquiring the data to learn
from; and lifelong learning (Thrun, 1998), where the
model learns over a sequence of tasks and must not forget
about relevant information for previous tasks.

Contributions First, we define and evaluate reliability in a
comprehensive fashion. We use 10 types of tasks in order to
capture the three reliability areas—uncertainty, robust gen-
eralization, and adaptation—and so that the tasks measure a
diverse set of desirable properties in each area. Together the
tasks comprise 40 downstream datasets across vision and
natural language modalities: 14 datasets for finetuning (in-
cluding few-shot and active learning-based adaptation) and
26 datasets for out-of-distribution evaluation (Appendix A).

To improve reliability, we develop ViT-Plex and T5-Plex,
building on large pretrained models on vision (ViT (Doso-
vitskiy et al., 2020)) and language (T5 (Raffel et al., 2020))
respectively. We train variants of Plex over multiple model
sizes and pretraining dataset sizes on up to 4 billion exam-
ples. Figure 3 illustrates Plex’s performance on a select
set of tasks comparing to existing state-of-the-art, which
typically use models specialized for that task. Plex greatly
improves the state-of-the-art over the total of 40 datasets.
Importantly, Plex achieves impressive performance across
all tasks using out-of-the box model output without requir-
ing any custom designing or tuning for each individual task.

2 Tasks for Benchmarking Reliability
We evaluate a model’s reliability using 10 types of tasks,
which we define below. We selected a broad suite of 40
downstream datasets under the tasks, each ranging from
several hundred to a million examples; see Appendix A.

Uncertainty: Calibration assesses how well a model’s
predicted confidence is reflected over a population (Dawid,
1982). We compute expected calibration error (Naeini et al.,
2015) on 14 image and 10 text datasets. Selective predic-
tion jointly assesses the predictive performance and quality
of uncertainty estimates of a model, by abstaining from
making predictions on examples for which a model’s predic-
tive uncertainty estimates are above a given threshold and
recording predictive accuracy on the remaining examples.
We compute two metrics, Calibration AUC and Oracle Col-
laborative Accuracy (Kivlichan et al., 2021), on 4 image and
10 text datasets. Open set recognition assesses how well a

model can detect examples belonging to none-of-the train-
ing classes. We use AUROC and experiment with maximum
softmax probability as the detection score. (We use Maha-
lanobis distance for zero-shot open set recognition.) Label
uncertainty is a type of uncertainty inherent in the data
labels. This is a form of irreducible data uncertainty, e.g.
noise, which is considered distinct from uncertainty arising
from the choice over models (Dusenberry et al., 2020b) We
use two datasets: CIFAR-10H (Peterson et al., 2019) and
ImageNet ReaL (Beyer et al., 2020).

Robust Generalization: We assess in-distribution gener-
alization, i.e. how well a model can make predictions after
finetuning, by examining accuracy, negative log-likelihood,
and Brier score on the in-distribution test splits of 5 image
and 3 text datasets. With out-of-distribution data, we as-
sess how robustly a model’s predictions generalize to input
distributions it was not trained on. We use the same metrics
measured for in-distribution, and we investigate 4 types of
out-of-distribution data: covariate shift, semantic (class)
shift, data uncertainty, and subpopulation shift.

Adaptation: Few-shot learning assesses how well a model
can make predictions downstream with only a few training
examples. We use 9 datasets and apply multiple few-shot
settings: 1-shot, 5-shot, 10-shot, and 25-shot (x-shot means
x examples per class). We also evaluate few-shot uncer-
tainty, where we examine calibration, selective prediction,
and open set recognition in the few-shot regime. We use all
9 datasets for few-shot learning in order to evaluate calibra-
tion and selective prediction, and we use those with OOD
datasets (ImageNet and CIFAR-100) for open set recogni-
tion. We also perform zero-shot open set recognition by
using the Mahalanobis distance scoring to detect whether
an input is out-of-distribution based on the model’s repre-
sentation layer. Active learning assesses how well a model
knows what it does not know by selecting informative sam-
ples to label using uncertainty. We assess accuracy over a
total number of acquired examples and apply margin sam-
pling (Settles, 2009) for multi-class uncertainty sampling.

3 PLEX: Pretrained Large model Extensions
Plex is the result of an extensive study of the reliability
of large pretrained models and their complementarity with
existing reliability methods. In particular, ViT Plex and T5
Plex use several key ingredients:

• Base Transformer architecture. We adopt the Trans-
former standard of an alternating sequence of attention
and feedforward layers. We build on T5 1.1 (Raffel et al.,
2020) for text as a Transformer in an encoder-decoder
setup where the raw text is tokenized with SentencePiece,
and on Vision Transformer (Dosovitskiy et al., 2020) for
images in an encoder-only setup where the raw images
are effectively tokenized under 32× 32 patches.
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Figure 3. ViT-Plex (left) and T5-Plex (right) evaluated on a highlighted set of reliability tasks. We also display the state-of-the-art for each
task. ViT-Plex and T5-Plex significantly improve state-of-the-art across multiple tasks. Importantly, Plex unifies reliability performance
under one general model for vision and language respectively as opposed to specific techniques for each downstream task.

• Model size. We investigate 3 scales of the model size in
ViT Plex (S, B, L) and 3 scales of the model size in T5
Plex (Small, Base, Large).

• Pretraining dataset size. For vision, we scale pretrain-
ing from ImageNet21K to the JFT web dataset on up to
4B images. This mirrors recent work on scaling vision
models (Zhai et al., 2021; Pham et al., 2021). For lan-
guage, we use the C4 dataset which consists of hundreds
of gigabytes of English text scraped from the web (Raffel
et al., 2020).

• Efficient ensembling. Ensembles and Bayesian neural
nets have shown to be very effective for uncertainty and
robustness (Ovadia et al., 2019; Dusenberry et al., 2020a;
Band et al., 2021). To do so scalably, we use BatchEnsem-
ble (BE) (Wen et al., 2020) and experiment with its use
on both the attention and feedforward layers or on only
the feedforward layer. For faster training, we only apply
BatchEnsemble at a select number of later layers, similar
to mixture of experts models (Riquelme et al., 2021).

• Last layer changes. We experiment with two approaches
that modify the model’s final layer to improve reliabil-
ity, given a fixed representation (a.k.a. deterministic un-
certainty quantification setting (Van Amersfoort et al.,
2020)). First, we use Gaussian process (GP) last-layer,
which improve distance-awareness of the decision sur-
face by increasing uncertainty far away from the training
representations. We use the GP layer implementation
proposed by Liu et al. (2020). In addition, pretraining
uses increasingly noisier datasets with a large number of
output classes, and the ability to model input-dependent
label noise becomes more important. We apply the Het-
eroscedastic (Het) method of Collier et al. (2021).

• What to apply in pretraining versus finetuning. We
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Figure 4. Plex’s performance aggregated across (top) 139 vision
task metrics and (bottom) 54 language task metrics. Compute is
the total # of training days for a single TPUv3 core.

experiment with both pretraining and finetuning for vision
models. Due to compute constraints, we exclusively focus
on the finetuning-only setting for T5-Plex. That is, T5-
Plex models are initialized from the official pretrained T5
checkpoints, and we apply efficient ensembling and last
layer changes during finetuning.

• Few-shot protocol. As an alternative to logistic regres-
sion on the final layer of frozen representations, we ex-
periment with gradient descent over all parameters. We
also experiment with a GP or Heteroscedastic last layer.

4 Summary of Results and Scaling Trends
Figure 3 displays our model’s overall performance com-
paring reliability task performance to existing specialized
state-of-the-art. Here, we validate several takeaways as we
ablate to understand the ingredients behind Plex.
Scaling model size improves reliability. Figure 4 displays
ViT-Plex and T5-Plex over varying model sizes. ViT-Plex
is pretrained with JFT by default; I21K denotes pretraining
on ImageNet21K. We compute a reliability score which is
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Dataset 1M steps 2M steps 4M steps 8M steps

JFT 300M 72.1% 72.9% 73.0% 73.0%
JFT 4B 72.7% 74.4% 74.6% —

Table 1. ImageNet 10-shot accuracy consistently improves with a
larger pretraining dataset.
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Figure 5. Ranking of method ablations over (top) 139 metrics on
vision tasks and (bottom) 54 metrics on language tasks. Each
model has a box plot of rankings (lower is better). Plex’s use of
efficient ensembling and last layer changes ranks best on average.

an average over all 52 task metrics (see Appendix B for
details). Classical machine learning theory would suggest
that a larger model translates to more overfitting and might
therefore be less reliable as it may be overconfident and
less robust. However, we find that scale improves overall
performance across tasks.
Scaling pretraining dataset size improves reliability. ViT-
Plex L with JFT performs better than ViT-Plex L with
ImageNet-21K (Figure 4). In Table 1, we also perform
an ablation by comparing pretraining on JFT with 300M
examples to JFT with 4B examples. We pretrain on up to
8M steps with batch size 4096, which is up to 8X more
steps than we typically use for pretraining; each result is a
separate run using a tuned learning rate schedule. ImageNet
10-shot accuracy is always better on JFT 4B under the same
number of training steps. The models also converge faster
with the smaller JFT 300M, reaching a performance limit,
whereas JFT 4B keeps improving.
BatchEnsemble improves pretraining. For vision, we run
ablations at the fixed setting of L pretrained with JFT, and we
use both B and L sizes for text, which are highly competitive
settings. Figure 5 displays the ranking across tasks for each

model. Methods are applied either during both pretraining
and finetuning, or only during finetuning given a pretrained
model checkpoint (“BE→Het” means pretraining with BE
and finetuning with Het on top). All the methods displayed
improve over a baseline without ensembling or last layer
changes (None). BatchEnsemble is consistently the best for
pretraining. For T5 on text, Plex L outperforms None L and
also outperforms Plex B; this indicates the benefit of scale
not only in Figure 4’s normalized average score but in their
average ranking.
Last-layer methods improve finetuning. The best ranked
models for the vision and language tasks use all of Plex’s
ingredients: Het on top of a pretrained BE for vision and
GP on top of a BE for language. In particular, for T5-
Plex ablations, BE+GP and BE tend to have the strongest
performance. From more detailed per-dataset analysis in
Appendix E, BE+GP and BE perform well on MNLI and
NaLUE with BE+GP performing slightly better; notably,
they outperform even an expensive deep ensemble baseline
which also performs well on MNLI and NaLUE. BE+GP
outperforms None on Toxic Comments while a Monte Carlo
Dropout baseline performs best on that task.
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man, J., and Mané, D. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565, 2016.

Avin, S., Belfield, H., Brundage, M., Krueger, G., Wang, J.,
Weller, A., Anderljung, M., Krawczuk, I., Krueger, D.,
Lebensold, J., et al. Filling gaps in trustworthy develop-
ment of ai. Science, 374(6573):1327–1329, 2021.

Band, N., Rudner, T. G. J., Feng, Q., Filos, A., Nado,
Z., Dusenberry, M. W., Jerfel, G., Tran, D., and Gal,
Y. Benchmarking bayesian deep learning on diabetic
retinopathy detection tasks. In NeurIPS Datasets and
Benchmarks Track, 2021.

Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gut-
freund, D., Tenenbaum, J., and Katz, B. Objectnet: A
large-scale bias-controlled dataset for pushing the limits
of object recognition models. NeurIPS, 32, 2019.

Barlow, R. E. and Proschan, F. Statistical theory of reliability
and life testing: probability models. Technical report,
Florida State Univ Tallahassee, 1975.
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A Setup and Downstream Datasets

1. Pretrain model

2. Finetune model

3. Evaluate model on multiple 
downstream tasks

Ex: JFT, C4

Ex: ImageNet, NaLUE

Checkpoint

Checkpoint

Ex: ImageNet OOD Calibration,
NaLUE-tail Selective Prediction

Results

Figure 6. An overview of the model and task pipeline. A choice of pretrained model is trained; given the pretrained model’s checkpoint,
we apply a variety of methods for finetuning; finally, given the finetuned checkpoint, we evaluate the model on downstream metrics.

Figure 6 describes our overall experimental setup. We selected a broad suite of 40 downstream datasets under the tasks,
each ranging from several thousand to a million examples. We outline the datasets for each modality.

A.1 Images

We’re motivated to capture datasets spanning natural web images, specialized domains that are likely rare or unseen in large
pretrained models, and with both small and large sizes. To do so, we use 11 datasets which we describe below.

• CIFAR-10 is a dataset of web images with a training set of 50,000 examples and a test set of 10,000 examples (Krizhevsky
et al., 2009). Following Dosovitskiy et al. (2020), we use 99% of the training set for training and 1% for validation.

• CIFAR-100 is a dataset of web images with a training set of 50,000 examples and a test set of 10,000 examples. Following
Dosovitskiy et al. (2020), we use 99% of the training set for training and 1% for validation.

• ImageNet1K is an image dataset organized according to the WordNet hierarchy, with a training set of roughly 1.2 million
examples and a test set of 50,000 examples (Deng et al., 2009). Following Dosovitskiy et al. (2020), we use 98% of the
training set for training and 2% for validation.

• RETINA is a set of benchmarking tasks with training and evaluation datasets containing retina scans exhibiting varying
degrees of diabetic retinopathy, a medical condition that can result in a loss of eyesight (Band et al., 2021). We choose
RETINA as an example of a difficult transfer task, since retina images are meaningfully different from natural web images
used for pretraining. RETINA includes two types of tasks: (i) A “Country Shift” task with an in-distribution evaluation
set and an evaluation set exhibiting covariate shift in the input data and (ii) a “Severity Shift” task with an in-distribution
evaluation set and an evaluation set containing labels not included in the training data, representing more severe types of
diabetic retinopathy than the training labels.

• We use 7 datasets with a range from 1,880 to 8,144 training examples: Describable Textures Dataset (Cimpoi et al., 2014),
UC Merced (Yang & Newsam, 2010), Caltech 101 (Fei-Fei et al., 2004), Oxford-IIIT Pets (Parkhi et al., 2012), Colorectal
Histology (Kather et al., 2016), Caltech-UCSD Birds 200 (Welinder et al., 2010), and Cars196 (Krause et al., 2013).

Distribution shift is a common challenge for image problems, and so we cover multiple types for a total of 19 datasets.
Table 2 provides an outline. Most notable, there is little work for evaluating label uncertainty, so we propose a large-scale
dataset which we call ImageNet ReaL-H. ImageNet ReaL recollects human ratings for the original ImageNet test set (Beyer
et al., 2020), and we use its raw data of individual ratings to construct a label distribution representing rater uncertainty for
each image.

1. Covariate shift.

• CIFAR-10: CIFAR-10-C (Hendrycks & Dietterich, 2019).
• CIFAR-100: CIFAR-100-C (Hendrycks & Dietterich, 2019).
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Covariate shift Semantic shift Label uncertainty Subpopulation shift

CIFAR-10 CIFAR-10-C CIFAR-100, SVHN CIFAR-10H SP-CIFAR-10
CIFAR-100 CIFAR-100-C CIFAR-10, SVHN — SP-CIFAR-100
ImageNet1K 7 datasets Places365 ImageNet ReaL-H —
RETINA Country Shift Severity Shift — —

Table 2. Vision datasets for evaluation on distribution shift.

• ImageNet1K: ImageNet-A (Hendrycks et al., 2021c), ImageNet-C (Hendrycks & Dietterich, 2019), ImageNetV2
(Recht et al., 2019), ImageNet-Vid-Robust, YTTB Robust (Shankar et al., 2021), ObjectNet (Barbu et al., 2019),
and ImageNet-R (Hendrycks et al., 2021a).

• RETINA: RETINA’s Country Shift dataset (Band et al., 2021). We train models on images of retinas obtained
from patients in the United States (EyePACS) and evaluate trained models on images of retinas obtained from
patients in India using different collection equipment (APTOS).

2. Semantic (class) shift.

• CIFAR-10: CIFAR-100, SVHN.
• CIFAR-100: CIFAR-10, SVHN.
• ImageNet1K: Places365.
• RETINA: RETINA’s Severity Shift dataset (Band et al., 2021). We train models on images of retinas exhibiting no

worse than mild diabetic retinopathy, and consider a shifted evaluation dataset with images of moderate diabetic
retinopathy or worse. The evaluation data contains features not contained in the training images, such as vitreous
hemorrhages. The motivation for this shift is that images of retinas with more severe retinopathy are relatively scarce
and that it is likely for a model to be trained only on more widely-available images of retinas exhibiting mild cases
of diabetic retinopathy.

3. Label uncertainty. We use CIFAR-10H (Peterson et al., 2019) which captures human uncertainty over labels for
CIFAR-10 dataset. We also construct a larger-scale variant, which we call ImageNet ReaL-H. Individual human ratings
were recollected for the original ImageNet test set, available as raw data from ImageNet ReaL (Beyer et al., 2020), and
we use them to newly construct soft label targets.

4. Subpopulation shift. We use Semantically Partitioned CIFAR-10/100 (Yuan et al., 2022) for vision subpopulation
shift. CIFAR-10/100 test data is partitioned into semantically similar subpopulations, where each subpopulation has
its own data-generating distribution sampled from a meta subpopulation distribution. We aim to improve predictive
performance on tail subpopulations.

A.2 Text

For text, we consider real-world decision making tasks that are known to deploy machine learning models: natural language
inference, toxic comments detection, and conversational language understanding. Natural language inference and toxic
comments are binary classification tasks that map a (pair of) natural language sentences to a binary category: entailment or
no entailment, and toxic or non-toxic, respectively. Conversational language understanding is a task common in chatbot
design, where the model maps a natural language query to a multi-token prediction of user intents: for example, “I want to
order dinner using Uber Eats” → 3-token prediction of (FoodDelivery, Uber, Order).

• For natural language inference, we use the Multi-Genre Natural Language Inference (MNLI) corpus which consists
of 433k sentence pairs from a diverse collection of genres (fiction, government report, news magazine articles, etc.)
(Williams et al., 2017).

• For toxic comments detection, we use the WikipediaTalk corpus (Wulczyn et al., 2017) which is composed of roughly
200k English Wikipedia talk page comments between Wikipedia editors across the world.

• For conversational language understanding, a large-scale corpus for evaluating uncertainty quantification is lacking.
We propose a new dataset Natural Language understanding Uncertainty Evaluation (NaLUE) that is a relabelled and
aggregated version of three large NLU corpuses: CLINC150 (Larson et al., 2019), Banks77 (Zhang et al., 2021) and
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Covariate shift Subpopulation shift Semantic (class) shift

MNLI MNLI-mismatched HANS —
WikipediaTalk CivilComments CivilCommentsIdentity —
NaLUE — NaLUE-tail Standard-OOS, Near-OOS

Table 3. Language datasets for evaluation on distribution shift.

HWU64 (Liu et al., 2021). NaLUE contains 50k+ utterances spanning 18 verticals, 77 domains, and roughly 260 intents.
For this task, the model needs to map each utterance to a 3-token sequence of (vertical name, domain name, intent name).

In terms of data distribution, MNLI has a balanced distribution both across the genre and across the label class. NaLUE
exhibits a slight skewness toward some popular domains for chatbot development (e.g, banking customer service requests).
On the other hand, the toxic comments datasets often exhibit extreme label imbalance. For example, ∼10% of the examples
in Wikipedia Talk Corpus examples have positive labels, since most online content is not toxic (Kivlichan et al., 2021).

Natural language is diverse, fast evolving, and rich in long-tail linguistic phenomena. Therefore out-of-distribution examples,
particularly long-tail subpopulations, are pervasive in the real-world deployment environment. In Table 3, we outline a
total of 7 out-of-distribution challenge sets. Most notably, we construct three new out-of-distribution shifts for NaLUE.
NaLUE-tail contains utterances from 28 low-frequency intents categories in NaLUE. NaLUE Standard-OOS and NaLUE
Near-OOS contain utterances that describe out of the scope services, differing in their closeness in distribution to NaLUE.

• the MNLI-mismatched (Williams et al., 2017) data as the OOD set for NLI, which contains sentence pairs from 5
genres that are distinct from those in MNLI training data.

• the CivilComments corpus (Borkan et al., 2019) as the OOD set for toxic comment prediction, which consists of one
million public comments appearing on approximately 50 English-language news sites across the world.

• HANS (McCoy et al., 2019) eval datasets for NLI, which contains template-generated examples attacking the surface-
level heuristics that the neural models are found to rely on when predicting entailment relationships.

• CivilCommentsIdentity (Borkan et al., 2019) for toxic comments, which is a subset of CivilComments that has explicit
mention of social identities (e.g., muslim, LGBTQ, etc) that the model are often found to generate mispredictions.

• NaLUE-tail dataset for CLU, which is a subset of NaLUE corresponding to utterances from 28 low-frequency intents
categories.

B Details of Overall Reliability Score
In Figure 4, we aggregate all task metrics under a single scalar between 0 and 100. In order to do this, we must normalize all
metrics to be between 0 and 100; we then compute an unweighted average. Most metrics are already bounded between 0 and
100: for example, accuracy, expected calibration error (we do 100−ECE so higher is better), calibration AUC, and AUROC.
The one exception are scoring rules such as log-loss and Brier score. Because the output distributions are discrete, log-loss
has a lower bound of 0 and an upper bound given by the highest entropy distribution (uniform). Therefore we rescale scoring
rule values based on their lower and upper bounds so that they’re now between 0 and 100 and so that higher is better.

C Details of Plex ingredients
In this work, we focus on two domains: images and text. For images, we use a base architecture of Vision Transformer that
performs image classification (Dosovitskiy et al., 2020). For text, we use T5 which uses an encoder-decoder architecture to
treat text problems as text input and text output (Raffel et al., 2020). On top of these architectures, we experiment with the
following methods.

BatchEnsemble (BE). BatchEnsembles (Wen et al., 2020) approximate deep ensembles (Lakshminarayanan et al., 2017),
but reduce their computational and memory costs by sharing weights across the ensemble members. The weight matrix
Wi of any given ensemble member i is written as the Hadamard product of a shared weight matrix W0 and a local rank-1
matrix ris

⊤
i :

Wi = W0 ◦ ris⊤i . (1)
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The vectors r and s are commonly referred to as fast weights.

Unless otherwise stated, Plex applies BE to all layers in the last 2 residual blocks of the network. This idea follows work for
mixture of experts (Riquelme et al., 2021).

Spectral-normalized Neural Gaussian Process (SNGP). Unlike ensemble approaches, SNGP proposed by Liu et al. (2020)
focuses on improving the uncertainty quality of a neural network given a fixed representation (a.k.a. deterministic uncertainty
quantification setting (Van Amersfoort et al., 2020). When applied to a DNN without pretraining, SNGP enhances the DNN
uncertainty property by applying spectral normalization to the hidden weights, and replaces the output layer from a dense
layer to a random-feature Gaussian process (GP) layer. That is, given hidden representations h(x), the GP layer enables
scalable computation of a GP posterior by applying a random feature approximation ϕ to the predictive function and then a
Laplace approximation to the predictive variance:

g(x) ∼ N(logit(x), var(x))

logit(x) = ϕ(x)⊤β, where
ϕ(x) = cos(Wh(x) + b)

var(x) = ϕ(x)⊤(I +ΦTΦ)−1ϕ(x)

where (W , b) are frozen random weights of the random feature embedding ϕ(x) = cos(Wh(x) + b), and Φ⊤Φ =∑
i ϕ(xi)ϕ(xi)

⊤ is the covariance of the random feature embedding estimated using the training data.

Liu et al. (2020; 2022) show that this combined technique improves the model’s awareness of the semantic distance
between the test and train examples on the data manifold, leading to improved performance in calibration and out-of-domain
detection. When applied to a large pretrained DNN, we find it sufficient to only use the last-layer Gaussian process (i.e., omit
the spectral normalization regularization), as the pre-trained embedding has already provided a semantic-distance-aware
representation of the data.

Heteroscedastic last layer (Het). Heteroscedastic last layers are designed to model input-dependent label noise/data
uncertainty (a.k.a. aleatoric uncertainty (Kendall & Gal, 2017)) that is present in the data. We use the Heteroscedastic (Het)
last layer introduced by Collier et al. (2020; 2021) who place a multivariate Gaussian distribution over the logits in a standard
DNN classifier. A low-rank approximation to the K × K covariance matrix (K = number of classes/outputs) is made
when K is large and (Collier et al., 2021) further develop a parameter efficient version of the method with parameterization
inspired by BE to enable scaling to tens of thousands of classes.

Naming of different methods We apply these modifications either during both pretraining and finetuning, or only during
finetuning given a pretrained model checkpoint. None refers to the baseline without ensembling or last layer changes.
“None→GP” means standard pretraining (without any modifications) and just applying GP layer during finetuning. “BE”
means using BE during both pretraining and finetuning. “BE→Het” means pretraining with BE and finetuning with Het on
top.

D Related Work
Prior work has investigated a variety of approaches to improve narrower definitions of reliability. From the literature, several
overarching dimensions arise (Tran et al., 2020)—such as the importance of model and data size (e.g. pretraining); model
inductive biases (e.g. architecture and data augmentation); and the combination of multiple models (e.g. ensembles and
Bayesian neural networks). There is not yet an understanding of how these dimensions interact (and within current literature,
it is no surprise that there are contradicting messages) and which of these dimensions provide complementary benefits. We
investigate how each of these dimensions improve reliability and how they can be “composed” to maximize performance.

Modern AI is trending towards training a single large model on a large data set, known as pretraining, and then applying
the model to a wide variety of related downstream tasks (Radford et al., 2021; Brown et al., 2020; Thoppilan et al., 2022;
Kolesnikov et al., 2020). This often improves over task-specific state-of-the-art in predictive performance, with many
considering such large scale models to represent a “paradigm shift” in ML (Bommasani et al., 2021). Large-scale pre-trained
models have also significantly improved state-of-the-art on narrower tasks such as accuracy and calibration under covariate
shift, see (Minderer et al., 2021; Hendrycks et al., 2019a;b) (as well as (Bommasani et al., 2021, Section 4.8) for additional
references) and open set recognition (cf. (Fort et al., 2021; Ren et al., 2021)). Given these initial promising results, we
use large-scale pre-trained models as a building block for investigating reliability. However, large models can be compute
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None B Het B GP B BE B Plex B MCD B DE B DE-GP B
Task Split Score

MNLI

In-domain
calibration 0.381 0.384 0.372 0.401 0.388 0.416 0.383 0.4

generalization 0.938 0.949 0.944 0.949 0.948 0.946 0.938 0.95
select. pred. 0.961 0.971 0.968 0.973 0.973 0.973 0.961 0.975

OOD
calibration 0.391 0.401 0.393 0.413 0.394 0.41 0.388 0.416

generalization 0.937 0.948 0.941 0.949 0.948 0.946 0.938 0.95
select. pred. 0.959 0.971 0.966 0.973 0.973 0.972 0.96 0.975

Subpopulation
calibration 0.451 0.434 0.454 0.443 0.401 0.474 0.443 0.418

generalization 0.749 0.766 0.762 0.791 0.788 0.739 0.764 0.798
select. pred. 0.811 0.824 0.842 0.87 0.871 0.831 0.826 0.885

NaLUE

In-domain
calibration 0.498 0.484 0.512 0.464 0.486 0.471 0.487 0.494

generalization 0.939 0.932 0.94 0.935 0.94 0.938 0.942 0.944
select. pred. 0.936 0.935 0.932 0.938 0.938 0.932 0.937 0.938

OOS, Near detection 0.706 0.673 0.719 0.768 0.716 0.766 0.721 0.771
OOS, Standard detection 0.964 0.957 0.992 0.998 0.991 0.994 0.973 0.998

Subpopulation
calibration 0.518 0.511 0.553 0.514 0.519 0.466 0.513 0.514

generalization 0.866 0.846 0.869 0.87 0.873 0.858 0.871 0.882
select. pred. 0.862 0.82 0.828 0.845 0.856 0.829 0.861 0.851

Toxic
Comments

In-domain
calibration 0.459 0.462 0.46 0.461 0.471 0.442 0.459 0.465

generalization 0.888 0.89 0.899 0.889 0.895 0.904 0.885 0.892
select. pred. 0.936 0.938 0.94 0.938 0.94 0.941 0.936 0.939

OOD
calibration 0.425 0.427 0.438 0.423 0.447 0.413 0.426 0.421

generalization 0.82 0.817 0.818 0.81 0.816 0.831 0.817 0.818
select. pred. 0.86 0.857 0.855 0.85 0.855 0.862 0.86 0.852

Subpopulation
calibration 0.415 0.405 0.421 0.412 0.428 0.405 0.416 0.4

generalization 0.806 0.803 0.804 0.795 0.801 0.814 0.801 0.803
select. pred. 0.831 0.828 0.828 0.821 0.826 0.835 0.83 0.823

Table 4. Comparison of method performance between uncertainty methods. Black: Best. Dark Grey: Second. Light Grey: Third.

intensive, which warrants revisiting existing recipes; for instance, vanilla deep ensembles, which work well in previous
benchmarks (Ovadia et al., 2019; Gustafsson et al., 2020; Band et al., 2021), might be computationally expensive. Hence, we
focus on scalable modifications to large models such as efficient ensembles and last-layer variants, detailed in Appendix C.

E Summarization of Language Results
We first compare the performance across types of uncertainty methods, fixing the architecture size to T5-base. We compare
performances in prediction, uncertainty calibration, and human-model collaboration, across all datasets (MNLI, NaLUE
and Toxic Comments) and all splits (In-domain, OOD, and tail-population). Table 5 reports the full results, and Figure 7
summarizes the rankings of uncertainty methods under each type of population shift (in-domain v.s. OOD v.s. tail-
population). Among all methods, DE+GP, Plex (i.e., BE+GP), BE, and MC Dropout tend to have the strongest performance.
In particular, DE+GP almost always dominates the other methods on MNLI and NaLUE, and remains competitive in the
case of label imbalance (i.e., Toxic Comments). However, DE+GP is an expensive method that costs x10 more in memory
and compute and therefore is not competitive in scale (a more thorough analysis is in ??). On the other hand, among the
more efficient, single-model methods, BE and Plex perform well on MNLI and NaLUE (notably, outperform the most
expensive DE), while MCD stands out in the Toxic Comments. The above observations suggest that, when the training
example has a simple distribution, quantifying output-layer uncertainty alone is sufficient to attain strong performance.
However, when there are pathologies in the data distribution (e.g., extreme label imbalance), quantifying the uncertainty
within the model’s intermediate representations (e.g., via some form of perturbation like BE) becomes important.

We then investigate how a model’s uncertainty performance is impacted by the architecture size. For model size scaling, we
evaluate Plex, None, and MC Dropout, the three best-performing and efficient methods in the previous study. We evaluate
the performance of each method under three progressively larger architectures: T5 S, T5 B, and T5 L, and observe how the
behavior changes across the method and with respect to the architecture size. Table 5 reports the full results, and Figure 8
summarizes the rankings of uncertainty methods organized by the sizes of the architecture. As shown, comparing across
architecture sizes, we see a larger architecture almost always leads to stronger performance in collaborative performance.
This trend remains largely consistent even when out-of-distribution.
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None S MCD S Plex S None B MCD B Plex B None L MCD L Plex L
Task Split Score

MNLI

In-domain
calibration 0.399 0.406 0.364 0.381 0.416 0.388 0.39 0.404 0.394

generalization 0.924 0.927 0.913 0.938 0.946 0.948 0.963 0.964 0.965
select. pred. 0.953 0.959 0.942 0.961 0.973 0.973 0.982 0.985 0.985

OOD
calibration 0.398 0.396 0.367 0.391 0.41 0.394 0.418 0.411 0.406

generalization 0.924 0.93 0.911 0.937 0.946 0.948 0.963 0.965 0.967
select. pred. 0.953 0.96 0.94 0.959 0.972 0.973 0.983 0.986 0.987

Subpopulation
calibration 0.555 0.56 0.514 0.451 0.474 0.401 0.417 0.45 0.447

generalization 0.648 0.619 0.59 0.749 0.739 0.788 0.817 0.807 0.803
select. pred. 0.747 0.717 0.677 0.811 0.831 0.871 0.875 0.896 0.876

NaLUE

In-domain
calibration 0.507 0.48 0.498 0.498 0.471 0.486 0.486 0.453 0.496

generalization 0.942 0.932 0.937 0.939 0.938 0.94 0.931 0.928 0.944
select. pred. 0.937 0.926 0.929 0.936 0.932 0.938 0.93 0.922 0.935

OOS, Near detection 0.71 0.756 0.689 0.706 0.766 0.716 0.692 0.733 0.781
OOS, Standard detection 0.968 0.992 0.999 0.964 0.994 0.991 0.956 0.991 0.991

Subpopulation
calibration 0.528 0.462 0.499 0.518 0.466 0.519 0.518 0.466 0.492

generalization 0.878 0.854 0.851 0.866 0.858 0.873 0.843 0.83 0.871
select. pred. 0.864 0.836 0.84 0.862 0.829 0.856 0.835 0.801 0.835

Toxic
Comments

In-domain
calibration 0.455 0.445 0.478 0.459 0.442 0.471 0.448 0.451 0.436

generalization 0.879 0.898 0.863 0.888 0.904 0.895 0.886 0.906 0.89
select. pred. 0.932 0.938 0.919 0.936 0.941 0.94 0.936 0.944 0.942

OOD
calibration 0.423 0.412 0.425 0.425 0.413 0.447 0.432 0.417 0.459

generalization 0.81 0.823 0.807 0.82 0.831 0.816 0.823 0.837 0.816
select. pred. 0.85 0.851 0.838 0.86 0.862 0.855 0.865 0.869 0.863

Subpopulation
calibration 0.409 0.404 0.412 0.415 0.405 0.428 0.426 0.403 0.46

generalization 0.795 0.806 0.786 0.806 0.814 0.801 0.809 0.822 0.805
select. pred. 0.82 0.824 0.803 0.831 0.835 0.826 0.837 0.842 0.838

Table 5. Comparison of method performance between architecture sizes. Black: Best. Dark Grey: Second. Light Grey: Third.
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Figure 7. T5-Plex model’s ranking comparison between different uncertainty methods and across different evaluation datasets. IND:
in-domain. OOD: out-of-domain. SUB: subpopulation shift. ALL: aggregated performance across all datasets.
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Figure 8. T5-Plex model’s ranking comparison between architecture sizes and across different evaluation datasets. IND: in-domain. OOD:
out-of-domain. SUB: subpopulation shift. ALL: aggregated performance across all datasets.
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