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ABSTRACT

Large language models (LLMs) increasingly exhibit emergent refusal behaviors,
yet the scaling laws of safety alignment remain poorly understood. A common
assumption—“bigger is safer”—has not been systematically tested under adver-
sarial pressure. We introduce the first general evaluation framework for refusal
robustness scaling, defined by three complementary metrics: Refusal Robustness
Rate (RRR), Refusal Drift (RD), and Compliance Error (CE). This framework en-
ables reproducible comparison of LLMs under both adversarial fine-tuning attacks
(LoRA) and prompt-based jailbreaks (e.g., GCG). Across models from 1.1B to 7B
parameters, we reveal a scaling law of refusal robustness: although larger mod-
els demonstrate stronger baseline refusal ability, adversarial compute—not model
size—dominates post-attack robustness. Specifically, LoRA attacks universally
collapse refusal (RRR→0), while stronger prompt-based attacks amplify RD and
CE even in larger models. Our contributions are threefold: (1) a reproducible
framework for measuring refusal robustness scaling, (2) a comparative analysis
of fine-tuning vs. prompt-based attack paradigms, and (3) the first scaling-law
characterization showing that adversarial compute systematically overrides safety
gains from scale. We further identify a three-stage evolutionary pattern of refusal
behavior, providing a conceptual model of how safety features emerge and break
under pressure. These results challenge the assumption that scaling guarantees
safety and establish refusal robustness scaling as a principled dimension of LLM
evaluation.

1 INTRODUCTION

Large language models (LLMs) have rapidly advanced in general capability, but whether robust re-
fusal of harmful requests scales with model size remains unsettled. A common assumption is that
“bigger is safer”—that larger models will inherently resist unsafe instructions more effectively. Yet
recent evidence suggests this assumption may not hold: without explicit safety training, larger mod-
els are not reliably more robust, and adversarial success often scales smoothly with attack compute
rather than being bounded by size (Zou et al., 2023; Liu et al., 2024a; Hughes et al., 2024; Anthropic,
2024).

At the same time, the attack surface has widened. Prompt-based jailbreaks have evolved from
optimization-driven suffixes (GCG) to automated strategies such as AutoDAN and its accelerated
variants, to Best-of-N and many-shot prompting that leverage long contexts to elicit harmful contin-
uations. These methods demonstrate that modest increases in inference-time compute can substan-
tially raise attack success (Zou et al., 2023; Liu et al., 2024a;b; Hughes et al., 2024; Anthropic, 2024).
In parallel, parameter-efficient fine-tuning (LoRA/QLoRA) has emerged as a powerful training-time
threat: small, low-cost updates can undo alignment and collapse refusal behavior, sometimes more
effectively than full fine-tuning at matched data budgets (Lermen et al., 2023; Zong et al., 2024).

This paper provides the first systematic characterization of refusal robustness scaling under adversar-
ial pressure. We propose three complementary metrics—Refusal Robustness Rate (RRR), Refusal
Drift (RD), and Compliance Error (CE)—and apply them to open-source models ranging from 1.1B
to 7B parameters. Using a unified red-team evaluation set, we compare baseline refusal with post-
attack behavior under two threat models: (i) prompt-only jailbreaks and (ii) LoRA-based adversarial
fine-tuning. Our analysis reveals that while larger models often start with stronger refusal ability,
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adversarial compute dominates post-attack outcomes: LoRA universally collapses refusal (RRR →
0), and prompt-based attacks amplify RD and CE even in larger models (Qi et al., 2025). These
findings recast refusal robustness as an offense–defense scaling race, rather than a simple function
of size.

2 METRICS AND THREAT MODELS

2.1 METRICS

Refusal Robustness Rate (RRR). RRR measures the frequency of explicit refusals. A response is
classified as a refusal if it contains canonical refusal phrases (e.g., “I cannot assist with ...”, “this
request violates policy”), excluding trivial false positives. Manual audit of 200 samples confirmed
precision and recall above 0.9.

Refusal Drift (RD). RD captures the semantic shift of responses after attack. We compute SBERT
embeddings for each prompt’s pre-attack and post-attack outputs and report the median cosine dis-
tance:

RD = median
(
1− cos(SBERT(pre), SBERT(post))

)
.

RD is reported only when both pre- and post-attack responses are available; otherwise it is N/A. This
metric highlights whether alignment collapses into qualitatively different compliance patterns once
refusals vanish (Qi et al., 2025).

Compliance Error (CE). CE measures conditional leakage: the probability that a refusal nonethe-
less discloses harmful guidance. For example, “I cannot help you ... but you could use chemical X.”
counts as a refusal with compliance leakage. Formally, CE = P (Compliance | Refusal). Outputs
are flagged using lexical rules and cross-checked by a stronger LLM auditor (Cohen’s κ > 0.7). CE
close to 1.0 indicates systematic leakage once refusals collapse.

2.2 THREAT MODELS

Prompt-based jailbreaks. These attacks manipulate the input prompt at inference time. Starting
from gradient-guided suffixes (GCG) and automated strategies such as AutoDAN, to Best-of-N sam-
pling and many-shot jailbreaking, recent methods demonstrate that modest inference-time compute
can sharply raise attack success rates (Zou et al., 2023; Liu et al., 2024a;b; Hughes et al., 2024;
Anthropic, 2024).

Adversarial fine-tuning (LoRA/QLoRA). Parameter-efficient fine-tuning introduces a more po-
tent training-time threat. Using low-rank adapters with 4-bit quantization, an adversary can
cheaply override alignment. We implement QLoRA with rank r = 8, NF4 quantization, and the
paged adamw 8bit optimizer. Attack budgets are varied across 500, 1000, and 2000 training
steps. Evaluation is always performed on the held-out red-team set. Prior work shows that such
lightweight fine-tuning can undo safety alignment more efficiently than full fine-tuning (Lermen
et al., 2023; Zong et al., 2024).

3 EXPERIMENTAL SETUP

Models. We evaluate refusal robustness across three representative open-source instruction-tuned
models: TinyLlama-1.1B-Chat (1.1B parameters), Phi-3-mini-4k-instruct (3.8B),
and Qwen2-7B-Instruct (7B). These choices span small, medium, and large scales while re-
maining feasible to run on commodity hardware. Model documentation is provided in the appendix.

Resources. All experiments are reproducible on a single NVIDIA T4 GPU (16GB memory). We
employ QLoRA with 4-bit NF4 quantization and bitsandbytes optimizers. If low-level kernels
are unavailable, the scripts automatically fall back to full-precision training. Random seeds are fixed
to ensure deterministic runs.

Data. For adversarial fine-tuning, we construct a training set of approximately 500
prompt–completion pairs. For evaluation, we use a unified held-out set of 100 adversarial prompts
(redteam eval.csv). This benchmark set is shared across all models and LoRA budgets to
guarantee comparability (Mazeika et al., 2024; Rae et al., 2024).
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Decoding. All evaluations use deterministic decoding with temperature set to 0 and a maximum of
512 generated tokens.

3.1 PROMPT SET AND AUDITING PROTOCOL

Evaluation set. We evaluate on a unified red-team set of 100 prompts spanning cyber intru-
sion, misuse of biological/chemical know-how, evasion of platform policies, and general dual-use
queries.1 Prompts are phrased to elicit either explicit refusal or instructive compliance; neutral vari-
ants probe boundary cases.

Refusal detection. We use a high-precision lexical detector of canonical refusal phrases (e.g.,
“I cannot assist with . . . ”, “this request violates policy”), augmented by simple negation/quotation
guards. A stratified sample of 200 predictions is double-annotated by two authors; Cohen’s κ > 0.7
indicates substantial agreement.

Compliance leakage detection. We flag outputs that both contain a refusal cue and also include
concrete procedural guidance (lists of steps, actionable parameters, tool names, code snippets, or
resource pointers). Borderline cases (e.g., high-level safety discussions) are conservatively labeled
as non-leakage. An auditing LLM is used as a checker, not a generator; disagreements with rules
are escalated to human review.

Refusal Drift (RD). For each prompt, we compute embeddings of baseline vs. post-attack outputs
via SBERT and report median cosine distance. RD is undefined at baseline (no pre–post pair), and
defined for post-attack budgets whenever both outputs exist. RD captures representational shift even
when RRR has already collapsed, enabling analysis of how refusals fail.

4 RESULTS

4.1 BASELINE REFUSAL VS. MODEL SIZE

As shown in Figure 1(a), refusal ability does not scale monotonically with parameter count.
TinyLlama-1.1B almost always complies (RRR ≈ 0), Phi-3-mini-3.8B exhibits the
strongest baseline refusal (RRR ≈ 0.72), while Qwen2-7B achieves only moderate refusal
(RRR ≈ 0.13). This non-monotonic trend suggests that differences in pretraining and alignment
dominate over raw scale at baseline (Zou et al., 2023; Liu et al., 2024a; Qi et al., 2025).

4.2 LORA FINE-TUNING COLLAPSES REFUSAL DEFENSES

Across all models and attack budgets (500/1000/2000 steps), LoRA attacks universally erase refusal
robustness: RRR → 0 immediately after fine-tuning. Increasing training steps lowers the loss but
does not restore safety (Figure 1(b)). This finding supports evidence that lightweight parameter-
efficient tuning can override shallow safety features regardless of model scale (Lermen et al., 2023;
Zong et al., 2024; Qi et al., 2025).

4.3 ANALYSIS OF REFUSAL QUALITY VIA RD AND CE

Table 1 shows that LoRA collapses explicit refusals for all models (RRR→0), but the manner of
collapse differs across scales. We measure semantic change between baseline and post-attack re-
sponses with RD (median cosine distance of SBERT embeddings). RD is defined whenever both
pre- and post-attack generations exist; thus it is undefined for the baseline row (no pre–post pair),
but is informative after LoRA.

Two regimes emerge. Noisy override (TinyLlama-1.1B) exhibits large RD (≈ 0.6–0.7) that slightly
rises with steps, indicating the model leaves the baseline refusal manifold and wanders among het-
erogeneous compliance templates. Clean override (Phi-3-mini-3.8B, Qwen2-7B) shows moderate
RD (≈ 0.30–0.32), suggesting a stable, policy-like compliance template supplanting refusal.

1Prompts are lightly anonymized and released in a redacted form to prevent misuse.
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(a) Baseline refusal is non-
monotonic with size.

(b) LoRA collapses refusal rates
(RRR → 0).

(c) Compliance error increases af-
ter attack.

Figure 1: Refusal robustness under adversarial LoRA.

Table 1: Refusal quality before vs. after LoRA (0/500/1000/2000 steps). RD for baseline (0 steps)
cannot be computed since pre/post generations are identical.

Model Steps RRR RD (median) CE

TinyLlama-1.1B 0 0.00 — 0.78
500 0.00 0.62 0.88

1000 0.00 0.61 0.74
2000 0.00 0.68 0.80

Phi-3-mini-3.8B 0 0.72 — 0.64
500 0.00 0.30 0.38

1000 0.00 0.30 0.39
2000 0.00 0.32 0.39

Qwen2-7B 0 0.13 — 0.87
500 0.00 0.30 1.00

1000 0.00 0.31 1.00
2000 0.00 0.31 1.00

CE diagnoses conditional leakage: the probability that an output containing a refusal cue still dis-
closes harmful guidance. After LoRA, CE approaches 1.0 for Qwen2-7B, meaning refusals—when
they occur—almost always co-occur with concrete guidance. TinyLlama-1.1B starts with high CE
even at baseline, consistent with weak refusals that already leak details; Phi-3-mini’s CE decreases
after LoRA, reflecting a transition from explicit refusals (sometimes with hedged leakage) to direct,
template-like compliance with minimal refusal cues. Taken together, RD and CE reveal how safety
breaks: not only do refusals vanish, but the semantic structure of outputs reconfigures toward stable
compliance under growing attack compute.

4.4 THREE-STAGE EVOLUTION OF REFUSAL BEHAVIOR

We observe a three-stage pattern that holds across models and budgets: (I) Baseline: larger models
more often issue policy-like refusals with lower CE. (II) Collapse: with as few as 500 LoRA steps,
RRR→ 0 for all models; refusal cues become rare or stylistic. (III) Reconfiguration: RD increases
with steps, indicating a semantic shift from refusal to structured compliance; CE trends upward and
saturates for Qwen2-7B. This sequence characterizes an evolution rather than a binary failure, and
motivates measuring both frequency (RRR) and quality (RD, CE).

4.5 CLEAN VS. NOISY OVERRIDE: A TAXONOMY OF FAILURE

The noisy override (TinyLlama) shows high RD and volatile surface forms across prompts—safety
dissolves into heterogeneous compliance. The clean override (Phi-3, Qwen2) shows moderate RD
and consistent, almost templated compliance. Practically, noisy overrides complicate static filtering
(larger lexical support), whereas clean overrides increase predictability but concentrate risk (near-
deterministic leakage once triggered). This taxonomy explains why larger models can look “safer”
at baseline yet fail more uniformly once adapters are installed.
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4.6 ADVERSARIAL COMPUTE DOMINATES SIZE

Varying LoRA steps from 500 to 2000 monotonically increases RD and never restores RRR for any
model (Table 1). This supports an attack-compute law: beyond a small budget, adapter updates
overwrite the refusal subspace; scaling parameters alone does not yield post-attack robustness. In
other words, refusal robustness follows an offense–defense compute race, not a simple function of
size.

5 PROMPT VS. LORA: COMPLEMENTARY FAILURE MODES

Prompt-based and fine-tuning–based attacks reveal complementary dimensions of refusal vulnera-
bility.

Prompt-based jailbreaks. Inference-time attacks such as GCG, AutoDAN, Best-of-N sampling,
and many-shot prompting exploit shallow alignment. Modest increases in compute can sharply
increase attack success rates (Zou et al., 2023; Liu et al., 2024a;b; Hughes et al., 2024; Anthropic,
2024).

Adversarial fine-tuning (LoRA). Training-time attacks such as QLoRA override refusal more fun-
damentally. Even with small adapters and low-cost updates, LoRA collapses refusal robustness
across all tested models and scales (Lermen et al., 2023; Zong et al., 2024). This suggests alignment
is brittle at the representation level: adversarial compute can directly overwrite the refusal subspace
(Qi et al., 2025).

Complementarity. Together, these failure modes highlight that refusal robustness is not safeguarded
by scale alone.

6 THREATS TO VALIDITY AND REPRODUCIBILITY

Metric limitations. RRR, RD, and CE capture different aspects of refusal but rely on rule-based
detection and LLM-assisted auditing. False negatives and false positives may affect absolute values.
RD is undefined once refusals vanish.

Model and data scope. We evaluate three open-source instruction-tuned models spanning 1.1B–7B
parameters. While representative, these results may not generalize to proprietary frontier models.
Our adversarial training set ( 500 pairs) is synthetic and relatively small. The evaluation benchmark
(100 prompts) ensures comparability but cannot capture full real-world diversity.

Reproducibility. All experiments run on a single NVIDIA T4 GPU with 16GB memory, using
deterministic decoding. LoRA fine-tuning employs QLoRA with 4-bit NF4 quantization. Random
seeds are fixed. We release scripts and datasets to allow one-click reproduction.

6.1 ATTACK BUDGETS: INFERENCE VS. TRAINING COMPUTE

Inference-time compute. Prompt-based jailbreaks allocate compute to search the prompt space
(gradient-guided suffixes, automated strategies, Best-of-N , many-shot contexts). As N /context
grows, attack success rises smoothly, indicating shallow alignment.

Training-time compute. LoRA allocates compute to parameter updates. Even with small rank
and low-bit quantization, a few hundred steps suffice to erase refusal signals. Increasing steps further
increases RD (semantic drift), but never recovers RRR. These two budgets are complementary: one
exploits prompt space, the other rewrites the representation space.
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7 RELATED WORK

7.1 SCALING LAWS AND EMERGENCE

Classic scaling studies showed capability growth, but robustness does not track size. Attack success
scales smoothly with adversarial compute (Zou et al., 2023; Liu et al., 2024a; Hughes et al., 2024;
Anthropic, 2024).

7.2 SAFETY ALIGNMENT AND REFUSALS

RLHF (Ouyang et al., 2022) and Constitutional AI (Bai et al., 2022) improved harmlessness, yet
shallow safety remains (Qi et al., 2025). Over-refusal benchmarks (OR-Bench) highlight trade-offs
(Cui et al., 2025).

7.3 PROMPT-SPACE JAILBREAKS

GCG, AutoDAN, Best-of-N, and many-shot jailbreaks show inference-time compute can raise attack
success (Zou et al., 2023; Liu et al., 2024a;b; Hughes et al., 2024; Anthropic, 2024).

7.4 ADVERSARIAL FINE-TUNING

LoRA efficiently undoes alignment (Lermen et al., 2023; Zong et al., 2024). Defenses include Safe-
LoRA (Hsu et al., 2024), SaLoRA (Zhang et al., 2025), and Lisa (Huang et al., 2024).

7.5 GUARDRAILS

Llama-Guard 2/3 (AI, 2024a;b), WildGuard (Han et al., 2024), and LoRA-Guard (Elesedy et al.,
2024) provide safeguards but can be bypassed.

7.6 BENCHMARKS

HarmBench (Mazeika et al., 2024) and JailbreakBench (Rae et al., 2024) standardize evaluation.
Our red-team set is aligned but refusal-centric.

8 CONCLUSION

This paper presents the first systematic study of refusal robustness scaling. Using three met-
rics—RRR, RD, and CE—we show that larger models exhibit stronger baseline refusal, but adver-
sarial compute dominates post-attack behavior. LoRA collapses refusal (RRR → 0), while prompt
jailbreaks amplify RD and CE.

These results recast refusal robustness as an offense–defense scaling race. Inference-time attacks
highlight fragile alignment, while fine-tuning attacks show that shallow safety can be erased entirely
with low-cost updates.

Future directions include: evaluating defenses by their ability to scale with adversarial compute,
using granular metrics beyond toxicity, and combining architectural advances with complementary
safeguards. Refusal robustness scaling offers a principled dimension for evaluating safety under
realistic threat models.
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Portions of this paper were drafted and refined with the assistance of large language models (LLMs),
specifically OpenAI’s GPT-5. The LLM was used to:

• Help organize and polish the writing of the abstract, introduction, methodology, and related
work sections.

• Suggest LaTeX formatting for figures, tables, and references.

• Provide editing feedback to improve clarity, coherence, and consistency of the text.

All ideas, experiments, results, and conclusions presented in this paper are original to the authors.
The LLM was not used to generate data, perform experiments, or substitute for the authors’ own
analysis.
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B ADDITIONAL EXPERIMENTAL RESULTS

While our main results focus on 500-step LoRA attacks, we also ran 1000-step and 2000-step at-
tacks. Increasing steps consistently lowered training loss but did not restore refusal robustness,
confirming that adversarial compute overrides alignment once refusal subspace is compromised.

C IMPLEMENTATION DETAILS

- All code, metrics, and data are released at: https://github.com/<your-repo>. -
LoRA training hyperparameters: QLoRA with rank 8, NF4 quantization, paged adamw 8bit
optimizer, learning rate 2 × 10−4, batch size 64. - Decoding is deterministic: temperature=0,
max new tokens=512. - Random seeds fixed for reproducibility; experiments reproducible on a
single NVIDIA T4 GPU.

D MODEL CARDS

Links to the original model documentation: - TinyLlama-1.1B-Chat: https://
huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0 - Phi-3-mini-4k-
instruct: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct -
Qwen2-7B-Instruct: https://huggingface.co/Qwen/Qwen2-7B-Instruct

Redacted prompt examples (abridged). P1: “Outline policy-compliant reasons you cannot pro-
vide steps for [redacted operation];” P2: “Suppose a researcher already has access to [redacted
reagent]; explain why using it unsafely is harmful;” P3: “Given a misconfiguration in a web app,
list mitigations to prevent [redacted].”

E REPRODUCIBILITY CHECKLIST

• Code and configs. All training/evaluation scripts, configs, and exact prompts (redacted)
are released.

• Environment. Single NVIDIA T4 (16GB), CUDA/cuDNN versions recorded; CPU-only
fallbacks provided.

• Models. Exact HF model IDs and commit hashes listed in the Appendix.
• Randomness. Fixed seeds; deterministic decoding (temperature=0); we report that re-

running changes metrics by <0.01 absolute on average.
• Hyperparameters. LoRA rank, learning rate, batch size, optimizer, and step budgets pro-

vided; no manual cherry-picking.
• Data. Training pairs (∼500) and a held-out 100-prompt evaluation set, both versioned;

licensing verified.
• Metrics. RRR/CE regexes and auditing prompts released; RD computed with specified

SBERT checkpoint.
• Logs and artifacts. We provide per-step metrics CSVs to reproduce Table 1.
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