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Abstract

To broaden the dissemination of scientific knowledge to diverse
audiences, it is desirable for scientific document summarization sys-
tems to simultaneously control multiple attributes such as length
and empirical focus. However, existing research typically focuses
on controlling single attributes, leaving the compositional control
of multiple attributes underexplored. To address this gap, we intro-
duce CCSBench, the first evaluation benchmark for compositional
controllable summarization in the scientific domain. Our bench-
mark enables fine-grained control over both explicit attributes (e.g.,
length), which are objective and straightforward, and implicit at-
tributes (e.g., conceptual or empirical focus), which are more subjec-
tive and abstract. We conduct extensive experiments using various
large language models (LLMs) under various settings, including
in-context learning, parameter-efficient fine-tuning, and two-stage
modular methods for balancing control over different attributes.
Our findings reveal significant limitations in LLMs capabilities in
balancing trade-offs between control attributes, especially implicit
ones that require deeper understanding and abstract reasoning. 1
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Figure 1: Compositional controllability allows scientific sum-

maries to be tailored to diverse reader needs, addressing spe-

cific reader requirements.
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1 Introduction

Compositional controllability – the ability to generate tailored sum-
maries based on multiple attributes – is essential for scientific doc-
ument summarization systems to effectively communicate research
to diverse audiences. Scientific papers contain complex information,
but different readers have distinct needs and preferences when en-
gaging with this content. For instance, as illustrated in Figure 1, an
NLP beginner may seek a clear, concept-focused explanation, while
a product manager may prioritize a concise summary highlight-
ing the model’s empirical performance. By dynamically adjusting
summaries to align with varying expertise levels and interests,
compositional control ensures that scientific knowledge is more
accessible, relevant, and engaging for a broader audience.

Despite the broad demand for compositional controllability in
scientific summarization, this capability remains largely underex-
plored in controllable text generation research. Most current efforts
focus on using large language models (LLMs) to generate non-
academic texts such as movie reviews [23] and news articles [4],
which are less complex than scientific documents adhering to strict
academic conventions. Preliminary investigations into composi-
tional scientific summarization [8] address only straightforward
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control requirements such as length and keyword inclusion, over-
looking more subtle user requirements such as focus on empirical
aspects. Developing methods for real-world deployment requires
benchmarks that not only incorporate more sophisticated control
attributes but also capture their interplay in a truly compositional
manner, a challenge that remains unresolved.

In this paper, we introduce CCSBench,the first evaluation bench-
mark for compositional scientific summarization that enables fine-
grained control over multiple attributes. Drawing inspiration from
Kahneman’s cognitive theory [18], which distinguishes between the
fast, intuitive “System 1” and the slow, deliberate “System 2” modes
of thinking, CCSBench incorporates both explicit and implicit

control attributes. Explicit attributes (e.g., length) are objective, eas-
ily quantifiable, and straightforward for both LLMs and humans
to process. In contrast, implicit attributes (e.g., empirical focus)
require deeper reasoning and human-like understanding, making
them more challenging for LLMs to control effectively.

As illustrated in Figure 2, CCSBench is structured around two
explicit attributes: (1) length and (2) keyword inclusion, and two
implicit attributes: (3) readability and (4) focus. Length sets the tar-
get word count for the summary, while keyword inclusion ensures
the presence of specific terms in the output. Readability controls
language complexity and accessibility, tailoring the summary for
technical or general audiences. Focus, short for “Empirical Focus
Level”, adjusts the emphasis on empirical evidence versus con-
ceptual aspects, requiring deeper contextual understanding and
abstract reasoning. By dynamically adjusting these attributes, we
curate diverse scientific summaries – such as concise, highly read-
able conceptual explanations – that meet real-world needs and cater
to diverse reader expectations.

We evaluate a diverse set of LLMs on CCSBench, including both
proprietary LLMs and fine-tuned open-source variants. Results
reveal significant limitations in managing trade-offs between con-
trol attributes, particularly due to inadequate abstract reasoning
for implicit attributes. In parameter-efficient fine-tuning (PEFT),
decoder-only models like LLaMA2 [32] and Mistral [17] struggle
with long-term dependencies, while encoder-decoder models like
Flan-T5 [5] adapt more effectively. Further analysis shows that stan-
dard task composition methods, such as AdapterFusion [28], are
unsuitable due to oversimplified adapter aggregation. Our findings
suggest the need for more targeted research on compositionality in
scientific document summarization.

2 Related Work

2.1 Controllable Summarization

Controllable summarization has attracted significant research inter-
est, with efforts focused on guiding summaries using attributes such
as length, topic, keywords, and sentiment. Early work explored the
impact of oracle-provided attributes on summary quality [10, 29].
More recent studies have aimed at controlling individual attributes
like length or keywords [3, 13], but these methods often treat at-
tributes independently, limiting their scalability and effectiveness
in multi-attribute scenarios. MacSum [36] represents a step forward
by supporting multi-attribute control in the news and dialogue do-
mains, where the content is relatively less technical. In contrast,

scientific texts pose unique challenges for controllable summariza-
tion due to their high degree of linguistic precision and domain-
specific complexity. CocoScisum [8] extends control to both length
and keywords within scientific papers but remains constrained to
explicitly defined attributes. Our work, CCSBench, advances the
field by enabling fine-grained control over both explicit and im-
plicit attributes, offering a broader and more nuanced evaluation
framework tailored to scientific summarization.

2.2 LLMs for Scientific Document Processing

Large Language Models (LLMs) have demonstrated remarkable
capabilities across a wide range of scientific document process-
ing tasks, including idea generation [30], literature review synthe-
sis [34], research critique [9], and the production of scientific news
articles [22]. These models also show promise in controllable text
generation [33, 35, 37], though existing work primarily evaluates
them under single-constraint settings (e.g., adjusting formality).
Despite the growing need to tailor scientific content for diverse
audiences, the ability of LLMs to perform compositional control-
lable generation – handling multiple constraints simultaneously
– remains underexplored. To address this gap, we introduce the
CCSBench benchmark, designed to systematically evaluate LLM
performance under multi-attribute control. Our findings highlight
the limitations of current models, particularly in handling implicit,
conceptual attributes such as readability and aspect focus.

3 CCSBench Data Curation

3.1 Task Formulation

We formally introduce the task and notation used throughout the
paper. Each example consists of a scientific document 𝐷 accompa-
nied by a set of control signals C = {𝑙𝑒𝑛, 𝑘𝑤, 𝑓 𝑜𝑐𝑢𝑠, 𝑟𝑒𝑎𝑑}, where
𝑙𝑒𝑛 refers to length, 𝑘𝑤 to keywords, 𝑓 𝑜𝑐𝑢𝑠 to empirical focus level,
and 𝑟𝑒𝑎𝑑 to readability. The objective is to generate a summary
𝑆 that adheres to the constraints imposed by C while maintain-
ing narrative coherence and preserving key information from the
original document.

We define the four control attributes for CCSBench as follows:

Length. specifies the desired number of words in the summary,
ranging from concise to detailed, and catering to different audience
needs based on their familiarity with the topic or time constraints.
Length is divided into five bins, each representing a 50-word range
(e.g., Bin 0: 0-50 words; Bin 1: 51-100 words).

Keywords. ensures the inclusion of key terms from the source
document, enabling readers to quickly grasp the core elements and
assess the paper’s relevance. Keywords can be left empty or set as
pre-defined terms to be included in the summary.

Readability. adjusts syntactic complexity and vocabulary tomatch
audience proficiency, making summaries more accessible or tech-
nical. This enhances comprehension and engagement. It has two
levels: [normal, high].

Empirical Focus Level (Focus). adjusts emphasis between empir-
ical results and theoretical contributions, with two levels: [low,
high]. A high empirical focus highlights data-driven aspects like
experiments and results, while a low empirical focus emphasizes
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Explicit 
Attributes

Implicit 
Attributes

Keywords-inclusion (open-ended generation):
...Overall, the study shows that instruction fine-tuning 
enhances performance across various models and 
tasks, particularly in open-ended generation
scenarios…

Non-inclusion: …The results confirm that instruction 
finetuning can significantly improve performance 
across different models, tasks, and evaluations.

Non-technical: This paper focuses on improving 
artificial intelligence (AI) models, specifically language 
models, to better understand and complete tasks they
haven‘t seen before…

Technical: …Flan-PaLM also has improved usability—
for example, it can perform zero-shot reasoning
without prompt engineering or few-shot exemplars… 

Short: This paper advances instruction finetuning by 
scaling models and tasks, integrating chain-of-
thought data, and improving reasoning and 
multilingual abilities... (47 words)

Long: …In this paper we explore instruction finetuning 
with a particular focus on (1) scaling the number of 
tasks, (2) scaling the model size, and (3) finetuning on 
chain-of-thought data… (157 words)

Empirical Focus: …Flan-PaLM 540B instruction-
finetuned on 1.8K tasks outperforms PALM 540B by a
largemargin (+9.4% on average)…

Conceptual Focus: This paper advances instruction 
finetuning by studying its scaling effects and
incorporating chain-of-thought (CoT) data…

Figure 2: Illustration of explicit and implicit control attributes in CCSBench.

Table 1: CCSBench statistics.

Dataset

#Samples / #Docs

Train Val Test

Length 2,400 / 1,561 800 / 705 800 / 698
Keywords 2,029 / 2,029 677 / 677 677 / 677
Readability 2,400 / 1,687 800 / 724 800 / 728
Focus 2,332 / 1,659 779 / 709 768 / 703
Compositional 2,400 / 1,590 800 / 655 758 / 364

theories, frameworks, and broader implications. This control tai-
lors summaries to readers seeking practical insights or conceptual
understanding.

3.2 Dataset

We construct CCSBench based on the arXiv dataset [6], a compre-
hensive collection of scientific documents from the widely used
online preprint repository, arXiv. CCSBench focuses on papers
in Computer Science and Artificial Intelligence. To ensure high-
quality input with minimal noise, we use the introduction and
conclusion sections (I+C) as the input text, a practice validated by
prior research [2, 25] and our empirical analysis in Section 7. Follow-
ing established practices in scientific summarization research [7],
we use abstracts as reference summaries, leveraging their widely
recognized factuality and comprehensiveness [31].

The benchmark comprises four single-attribute control datasets
and one compositional control dataset, each split into training,
validation, and test sets using a 60/20/20 ratio. Dataset statistics are
summarized in Table 1.

3.3 Dataset Construction

The construction of CCSBench involves two main steps: (1) con-
struction of single-attribute control datasets, followed by (2) the
creation of a compositional control dataset.

Single Control Dataset. We begin with KWX [11], a dataset that
provides keywords for each scientific document sourced from arXiv.

From this, we select 3,700 papers in the subjects of Computer Sci-
ence and Artificial Intelligence to form the foundation of our con-
trollable summarization dataset, using their abstracts as natural
reference summaries.

The Keywords dataset, D𝑘𝑤 , is created by filtering out any
keywords from the KWX dataset that do not appear in the abstracts,
ensuring high-quality keywords.

To address the challenge of automatically assessing readability
and focus, we use GPT-4 [27] to assist in generating summaries
related to these two control attributes. We sample 2,000 papers from
our data source, and assign the original abstracts with “normal read-
ability”. GPT-4 rewrites each abstract into a more layman-friendly
version while maintaining the original meaning. These rewritten
abstracts are labeled as “high readability”. Combining these two
types of abstracts, we form the Readability dataset, D𝑟𝑒𝑎𝑑 .

For focus control, we task GPT-4 with identifying the conceptual
and empirical components of each abstract, then rewriting them
separately without altering their meaning. Summaries derived from
conceptual components are labeled as having “low empirical focus,”
while those from empirical components are labeled as having “high
empirical focus”. These summaries form the Focus dataset,D𝑓 𝑜𝑐𝑢𝑠 .

To construct the Length dataset, D𝑙𝑒𝑛 , we sample 4,000 in-
stances from D𝑅𝑒𝑎𝑑 and 𝐷 𝑓 𝑜𝑐𝑢𝑠 . Word counts are rounded to the
nearest 50-word bin to create a length-controllable dataset.

Compositional Control Dataset. Tomanage the complexity of con-
trolling all four attributes simultaneously, we construct a compo-
sitional control dataset using D𝑟𝑒𝑎𝑑 and D𝑓 𝑜𝑐𝑢𝑠 , denoted as D𝐶𝐶 .
Since readability and empirical focus are already annotated, and
keywords and length can be easily derived as described earlier, each
instance in this dataset is tagged with 2-3 attributes. This allows
us to create both training and validation sets with compositional
control over multiple attributes.

While it is impractical to collect instances covering every at-
tribute combination in the training set, we ensure comprehen-
sive evaluation by constructing a test set that includes all four
attributes. We sample 400 instances from 𝐷 𝑓 𝑜𝑐𝑢𝑠 , where the length,
keywords, and empirical focus levels are pre-determined. Following
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Table 2: Evaluation results validate the high quality of LLM-generated summaries in CCSBench.

Dataset FAC FLU CTRL ROUGE-1 ROUGE-2 ROUGE-L
Readability 0.98 0.93 0.92 53.88 21.81 41.31
Focus 0.91 0.93 0.93 51.25 34.23 41.41

the method used to generate 𝐷𝑟𝑒𝑎𝑑 , we use GPT-4 to rewrite each
summary for high readability, ensuring accessibility for a layman
audience.

3.4 Data Quality Validation

We assess the quality of GPT-4-generated summaries in CCSBench
through automated and human evaluations. First, we compute
ROUGE scores to assess fluency and content accuracy by com-
paring generated summaries with their original counterparts. Next,
we conduct a human evaluation to further verify the summaries’
controllability and overall quality.

We sample 120 documents each from 𝐷𝑟𝑒𝑎𝑑 and 𝐷 𝑓 𝑜𝑐𝑢𝑠 and re-
cruit Amazon Mechanical Turk2 annotators for binary assessments
on three aspects: (1) Factual Consistency (FAC): whether the sum-
mary accurately reflects key points, (2) Fluency (FLU): whether it
is natural and well-written, and (3) Controllability (CTRL): for
Readability, whether the summary is easier to read than the refer-
ence; for Focus, whether empirically-focused summaries emphasize
data collection, experimental setup, and results over conceptual
aspects (details in Appendix B).

Table 2 shows high accuracy scores (>0.9) across all metrics, con-
firming the quality of CCSBench ’s summaries. Rigorous annotator
selection and strong inter-annotator agreement (>0.85, Section 3.5)
further validate these results.

3.5 Reliability of Human Evaluation

We implement rigorous measures to ensure the reliability of human
evaluations. Annotators on Amazon Mechanical Turk are selected
based on strict quality criteria, including a ≥ 98% HIT approval
rate and a minimum of 500 completed HITs, ensuring experienced
and reliable contributors.

To validate annotation reliability, we conduct a pilot study with
20 randomly sampled instances for readability- and focus-controlled
summaries. Each summary is evaluated by two independent anno-
tators, and inter-annotator agreement is calculated. As shown in
Table 3, all agreement scores exceed 0.85, confirming evaluation
consistency. Based on these reliable pilot results, we scale the eval-
uation to two larger sets of 120 randomly sampled instances, each
assessed by a single annotator, as shown in Section 3.4.

Table 3: Inter-annotator agreement scores for assessment

questions on readability (Appendix B.1) and empirical focus

(Appendix B.2).

Q1 Q2 Q3 Q4 Q5
Readability 1.00 0.85 0.95 0.90 -
Focus 0.95 1.00 0.85 0.90 0.95

2https://www.mturk.com/

4 Experimental Setup

4.1 Models

We evaluate a range of closed-source and open-source models
for compositional controllable summarization, including GPT-3.5
[26], GPT-4 [27], GPT-4o [16], LLaMA2 [32], Mistral [17], and Flan-
T5 [5]. For closed-source models, we conduct few-shot experiments
by randomly selecting three demonstrations per test sample. For
open-source models, we explore parameter-efficient fine-tuning
(PEFT) using Low-Rank Adaptation (LoRA)[14] to adapt them to
our dataset. Additionally, we revisit controllable summarization
baselines from the news domain, including hard prompt (HP)[36]
and soft prefix tuning (SP)[20]. Further implementation details,
including training setups, are provided in Appendix A.

4.2 Evaluation Metrics

We evaluate all models based on both summarization quality and
attribute controllability. We employ ROUGE [21] to evaluate the
overall quality. To assess attribute controllability, we employ the
following metrics tailored to each attribute.

Length Control. We measure length controllability using the
Mean Absolute Deviation (MAD) [24], and the Pearson Correlation
Coefficient (PCC) [24], to evaluate the distance between the target
and generated lengths.

Keywords Control. Keyword control is evaluated using the Suc-
cess Rate (SR) [13], which measures the fraction of specified key-
words present in the generated summaries through exact matching
after stemming.

Readability Control. For readability, we calculate the Flesch-Kincaid
Grade Level (FKGL) [19], where a lower score indicates higher
readability. The difference in FKGL scores (𝛿𝐹𝐾𝐺𝐿) between the
high readability setting (𝐹ℎ𝑖𝑔ℎ) and the normal readability setting
(𝐹𝑛𝑜𝑟𝑚𝑎𝑙 ) reflects the model’s ability to control this attribute. A
higher 𝛿𝐹𝐾𝐺𝐿 is desirable.

Empirical Focus Control. For empirical focus, we use GPT-4 to
classify summaries into high or low empirical focus levels. Validated
with 93% accuracy on a manually labeled dataset, GPT-4 predictions
are used to compute the F1 score for each category, assessing the
model’s focus control. Prompt details are provided in Appendix C.

5 Experiments

In this section, we benchmark and compare the compositional
controllability of LLMs on CCSBench, focusing on four control
attributes, which are categorized into explicit control (length, key-
words) and implicit control (focus, readability). As we focus on
evaluating LLM’s capabilities for compositional control, all ex-

periments are conducted on the Compositional dataset (D𝐶𝐶 )
of CCSBench, unless otherwise specified.

https://www.mturk.com/


CCSBench: Evaluating Compositional Controllability in LLMs for Scientific Document Summarization KDD’25 SciSoc LLM Workshop, August 6, 2025, Toronto, ON, Canada

Table 4: Performance comparison of representative language models on CCSBench, evaluating overall quality and four control

attributes. Arch refers to model architectures, with ED for encoder-decoder and DO for decoder-only. Bold numbers indicate

the best performance, while underlined numbers represent the second-best.

Method Arch Quality

Explicit Attributes Implicit Attributes

Length Keywords Readability Focus

ROUGE-L ↑ PCC ↑ MAD ↓ SR ↑ F𝑛𝑜𝑟𝑚𝑎𝑙 Fℎ𝑖𝑔ℎ↓ 𝛿𝐹𝐾𝐺𝐿 ↑ F1 ↑
Zero-Shot LLMs

A1 Flan-T5-XL ED 13.49 0.00 1.43 0.44 13.94 13.57 0.37 0.36
A2 Flan-T5-XXL ED 14.25 0.00 1.39 0.46 12.66 12.68 -0.02 0.39
A3 LLaMA2-7B DO 17.10 0.23 1.11 0.75 14.40 14.44 -0.04 0.51
A4 Mistral-7B DO 17.67 0.13 1.16 0.75 12.08 12.44 -0.36 0.48
A5 GPT-3.5 DO 18.05 0.62 0.39 0.95 15.12 15.06 0.06 0.56
A6 GPT-4 DO 19.26 0.84 0.66 0.99 19.12 16.99 2.13 0.71
A7 GPT-4o DO 19.41 0.94 0.09 0.99 16.26 15.38 0.88 0.72
Few-Shot LLMs w/ 3 Demonstrations

A8 GPT-4 DO 19.22 0.77 0.69 0.98 18.77 17.70 1.07 0.68
A9 GPT-3.5 DO 19.05 0.54 0.41 0.77 16.07 16.17 -0.10 0.54
LLMs w/ Parameter-Efficient Fine-Tuning

B1 Flan-T5-XL ED 22.22 0.49 0.55 0.78 13.11 9.37 3.59 0.70
B2 Flan-T5-XXL ED 23.43 0.78 0.27 0.85 14.40 10.78 3.62 0.75

B3 LLaMA2-7B DO 17.75 0.20 1.44 0.77 14.12 13.80 0.32 0.61
B4 Mistral-7B DO 18.21 0.29 1.76 0.83 13.10 12.42 0.68 0.55
Fully Fine-Tuned LLMs

C1 Flan-T5-Large-HP ED 21.36 0.56 0.53 0.86 13.71 10.40 3.31 0.63
C2 Flan-T5-Large-SP ED 20.58 0.63 0.52 0.74 13.47 11.37 2.10 0.57
Two-Stage Modular Methods

D1 Flan-T5-XL-LoraHub ED 14.31 -0.05 2.59 0.55 13.69 13.92 -0.23 0.33
D2 Flan-T5-XL-AdapterFusion ED 17.65 0.04 1.40 0.65 14.31 14.49 0.18 0.41

Implicit vs. Explicit Control. As shown in Table 4, implicit control
proves more challenging than explicit control.

Most models struggle with implicit tasks. For readability, the
𝛿𝐹𝐾𝐺𝐿 score remains below 1 across most models, indicating poor
differentiation between readability levels. While GPT-4 achieves
the highest 𝛿𝐹 of 2.13, its high FKGL score (∼17) suggests it gener-
ates overly complex summaries, failing to improve readability as
intended. Focus control is similarly weak, with most models scoring
around 0.5 F1, and even GPT-4o, the best performer, reaching only
0.72 F1, highlighting limited adaptability.

In contrast, closed-source models excel at explicit control. GPT-
3.5, GPT-4, and GPT-4o achieve strong length and keyword control,
with PCC scores up to 0.94, MAD scores as low as 0.09, and suc-
cess rates consistently exceeding 95%. While open-source models
underperform in length control, LLaMA2-7B and Mistral-7B still
demonstrate strong keyword control.

Effect of Few-Shot Demonstrations. Comparing zero-shot and few-
shot performance of GPT-3.5 and GPT-4, we observe that few-shot
demonstrations do not improve LLM capabilities in this task. This
is likely due to the challenges of processing long sequences, where
the length of scientific documents limits the number of effective
in-context examples. As a result, the context window becomes con-
strained, and overly lengthy prompts reduce model effectiveness.

Effect of PEFT. LoRA fine-tuning improves performance across
all models, though decoder-only (DO) models show only minor
gains in controllability. For example, 𝛿𝐹𝐾𝐺𝐿 values for settings
B3 and B4 remain below 1, indicating minimal differentiation in
readability. Similarly, their length control remains weak, with PCC
values below 0.3, reflecting a low correlation between generated
and target lengths.

In contrast, encoder-decoder (ED) models B1 and B2 achieve
results comparable to or surpassing GPT-4, despite weaker zero-
shot performance. B2, in particular, exhibits strong control over
length and keywords while significantly improving readability and
focus—both implicit attributes. Under high readability constraints,
its FKGL score drops below 11, aligning with a high school reading
level. For focus control, while its F1 score of 0.75 leaves room for
improvement, it still outperforms GPT-4.

Limitations of Decoder-Only Models in Compositional Controllable
Summarization. Our comparison of encoder-decoder models (B1,
B2) and decoder-only models (B3, B4) shows that LLaMA2 and Mis-
tral underperform compared to Flan-T5 under fine-tuning. This dis-
parity likely arises from architectural differences. Encoder-decoder
models like Flan-T5 are optimized for sequence-to-sequence tasks,
where the encoder processes input while the decoder generates
output by attending to the encoded representations. In contrast,
decoder-only models such as LLaMA2 and Mistral handle both
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Figure 3: Average attention across all layers and heads for

the last 10 tokens generated by LLaMA2 over the preceding

1,024 tokens, displayed on a log-log scale. The sharp decline

in attention scores as token distance increases highlights the

model’s difficulty in maintaining focus on distant tokens

within the sequence.

Table 5: Performance comparison of Flan-T5-XXL with LoRA

on single and compositional control tasks.

Model

Readability Length Keywords Focus

𝛿𝐹 ↑ PCC ↑ MAD ↓ SR ↑ F1 ↑
Single 4.66 0.89 0.23 0.88 0.92
Compositional 3.62 0.78 0.27 0.85 0.75

source and target sequences within the same unidirectional cross-
attention mechanism [12]. As sequence length increases, attention
becomes more diffused, weakening the model’s ability to capture
long-range dependencies—critical for controllable summarization.

To validate this, we analyze LLaMA2’s attention patterns. Fig-
ure 3 shows a sharp decline in attention as token distance increases,
indicating that the model prioritizes recent context while progres-
sively disregarding earlier tokens. This degradation in long-range
attention reduces the model’s ability to maintain focus on control
signals and relevant input, ultimately impairing summarization
quality.

6 Discussion

Comparison of Single-Attribute vs. Compositional Control. The
results in Section 5 reveal the limitations of LLMs in compositional
control. To explore these limitations further, we compare the per-
formance of Flan-T5-XXL fine-tuned on single-attribute tasks (i.e.,
fine-tuned separately on each of the four single-attribute datasets
in CCSBench) with its performance on compositional control (i.e.,
fine-tuned on D𝐶𝐶 as outlined in Section 5).

As shown in Table 5, performance drops significantly when mul-
tiple attributes are controlled simultaneously, suggesting a conflict
between the attributes that limits the model’s compositional con-
trollability.

Bias in LLMs to Prioritize Explicit Attributes. To better understand
inter-attribute conflicts, we randomly select 300 samples from the

test set of D𝐶𝐶 for each attribute. Keeping the other attribute set-
tings unchanged, we modified the specified attribute (e.g., changing
Readability from “normal” to “high”) to create 300 new samples for
each attribute accordingly. Then, we use the same model to gener-
ate the summary. For a given controllability metric, we calculate
the change amplitude (CA) between the control ability before the
attribute value change𝑚 and after the change𝑚𝑛𝑒𝑤 , defined as:

𝐶𝐴 = |𝑚𝑛𝑒𝑤 −𝑚

𝑚
|.

We illustrate the dependencies between attributes in Figure 4, where
each row represents the attribute being changed and each column
represents the attribute being affected. We observe that implicit
attributes are more susceptible to the influence of other attributes
compared to explicit attributes.
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Figure 4: Attribute dependencies reflected by change ampli-

tude (CA) on PCC (length), SR (keywords), 𝛿𝐹𝐾𝐺𝐿 (readabil-

ity), and F1 (focus). Each row represents the attribute being

modified, and each column represents the affected attribute.

Numerical values and color intensity denote the strength of

the dependency.

Specifically, in the case of Flan-T5, readability shows a stronger
dependency on length than vice versa. This indicates that when
controlling both attributes simultaneously, the model tends to pri-
oritize the length constraint. For example, in Case 1 of Table 6, to
shorten the length of the summary, the model omits the original
simple explanation of the term “feature” and replaces it with the
more abstract concept of “descriptor”, making the summary more
concise but harder to understand.

While implicit control requires more abstract reasoning, explicit
control involves clearer and more concrete constraints. This bias
suggests a limitation in the model’s ability to deeply understand
and reason across multiple attributes.

Conflicts Between Readability and Focus. We observe a strong
interaction between focus and readability, indicating that the model
struggles to balance these two attributes. For example, in Case 2 of
Table 6, when the summary emphasizes empirical content, it tends
to use simpler sentence structures and phrases such as “The results
show...” or “something was tested..” along with terms like “effective”.
However, when readability requirements are reduced, the model
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Table 6: Case studies on conflicts between readability and focus controllability. The left column presents unchanged attribute

values, while the right column shows the impact of modifying a specific attribute. Blue text highlights content that satisfies the

control conditions, while red text indicates control failures.

Case 1: Length Against Readability – Shorter Length Results in Unsatisfying Readability

Readability: high

Empirical Focus Level: low

Length Bin: 1 - We are interested in how the human visual system recognizes objects. Inspired by this, we
created a new set of features that include information about gradients in both horizontal and vertical directions,
as well as multi-scale contrast maps. These features are designed to help identify pedestrians in complex scenes.
Length Bin: 0 - We introduce a new set of features inspired by the human visual system, including multi-
direction, multi-scale contrast and statistical multi-channel descriptors. These features are designed to enhance
pedestrian detection performance in various conditions.

Case 2: Readability Affects Focus – Lower Readability Results in Less Empirical Focus

Length Bin: 0
Empirical Focus Level: high

Readability: high - The effectiveness of the proposed human detection method was tested on several images.
The results showed that the method was effective even when the human’s face was not visible, when the head
was partially obscured, or when the subject was far from the camera.
Readability: normal - This paper presents a novel method for detecting human presence in surveillance
videos by analyzing the OMEGA symbol. The proposed method involves identifying the unique signature of
the human head-neck-shoulder region and classifying images as human or non-human based on this signature.

Case 3: Focus Affects Readability – Lower Empirical Focus Results in Lower Readability

Length Bin: 0
Readability: high

Empirical Focus Level: high - We applied our model to a large set of product reviews and achieved an
accuracy of 98.28%, which is comparable to the current state of the art in sentiment classification.
Empirical Focus Level: low - This paper proposes a supervised sentiment classification model based on
the Naive Bayes algorithm. It argues that a simple model can achieve comparable accuracy to state-of-the-art
methods, highlighting the importance of selecting appropriate features and eliminating noise.
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Figure 5: Average attention scores of the fusion layer for each

adapter show a bias toward the focus adapter.

introduces more complex, technical vocabulary, shifting the focus
toward conceptual content.

In practice, when controlling both readability and focus, we
expect the model to prioritize identifying content that aligns with
the specified focus, rather than introducing incorrect content just
to incorporate more technical language. Similarly, in Case 3, when
a lower empirical focus level is set, the model uses more conceptual
terminology, making the summary harder for a lay audience to
understand. This suggests that the model has difficulty maintaining
simple language while describing content with a low empirical
focus.

Can Two-StageModularMethods Address Inter-Attribute Conflicts?
To address these trade-offs, we explore two-stage approaches where
single-attribute control is learned in the first stage, and balancing

multiple attributes is fine-tuned in the second stage. Specifically,
we implement LoRAHub [15], which assigns a fixed weight to each
LoRA module; and AdapterFusion [28], which utilizes an attention
layer to learn how to focus on different attribute modules. However,
results in Table 4 show that neither AdapterFusion nor LoRAHub
achieves meaningful controllability, with both producing poor sum-
maries, as reflected in their low ROUGE scores. We believe this
failure stems from the overly simplistic integration mechanisms,
which are insufficient for learning the complexities required for
compositional control, resulting in incoherent outputs.

We further probe the limitations of AdapterFusion by analyzing
the model’s attention differences across various attributes in over
the entire test set, as shown in Figure 5. The model exhibits a bias
toward the focus module, suggesting that the attention mechanism
struggles to adjust its emphasis on different attributes based on
varying control requirements. This interference between modules
ultimately degrades the model’s overall performance.

7 Discussion on Input Choice for

Compositional Controllable Scientific

Document Summarization

Obtaining high-quality summaries is key to effective scientific doc-
ument summarization. To this end, we investigate the effects of
using only the introduction and conclusion sections (I+C) versus
the full scientific document as input for compositional controllable
scientific document summarization.

CCSBench adopts the I+C sections as input, a choice supported
by prior research demonstrating its effectiveness over full-document
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Table 7: Comparison of GPT-4o’s performance on the first 200 samples of CCSBench. I+C: using introduction and conclusion

sections as input; Full: using the retrieved full texts as input. Detailed descriptions of metrics are provided in Section 4.2.

Method Quality

Explicit Attributes Implicit Attributes

#Tokens
Length Keywords Readability Focus

ROUGE-L ↑ PCC ↑ MAD ↓ SR ↑ F𝑛𝑜𝑟𝑚𝑎𝑙 Fℎ𝑖𝑔ℎ↓ 𝛿𝐹𝐾𝐺𝐿 ↑ F1 ↑
Full 21.15 0.98 0.06 0.98 16.55 16.10 0.45 0.67 6.78k
I+C (ours) 20.84 0.96 0.06 0.99 15.87 15.37 0.50 0.72 1.61k

summarization [2, 25]. This effectiveness likely stems from the
challenges language models face in maintaining coherence and
relevance over long contexts. As CCSBench aims to foster effec-
tive general scientific summarization rather than produce in-depth
analyses, the I+C sections provide a concise yet comprehensive
representation of a paper’s key elements, including task definitions,
prior limitations, methodologies, and main findings [31]. Thus, our
CCSBench aligns with the established I+C practice in the field.

With recent LLMs such as GPT-4o [16] supporting extended con-
text windows of up to 128k tokens, an open question arises: Can
these models overcome long-context challenges in process-

ing full scientific documents for compositional controllable

summarization? To explore this, we conduct experiments on the
first 200 samples of CCSBench, retrieving their full documents and
comparing GPT-4o’s summarization performance using introduc-
tion and conclusion sections (I+C) versus full-text input (Full).

The results, presented in Table 7, indicate that I+C outperforms
Full in keyword preservation, readability, and focus while maintain-
ing comparable performance on other metrics. Notably, I+C attains

comparable performance while consuming only 23.7% of the

tokens required for Full, validating its effectiveness and prac-

ticality for compositional controllable scientific document

summarization.

8 Conclusion

We introduce CCSBench, the first benchmark for evaluating com-
positional controllable scientific summarization. Integrating both
explicit (length, keyword inclusion) and implicit (readability, empir-
ical focus) attributes, CCSBench provides a structured framework
for assessing LLMs’ ability to generate controlled, contextually ap-
propriate scientific summaries. Our extensive experiments establish
concrete LLM baselines and reveal significant limitations in compo-
sitional controllability, emphasizing the need for further research.
We identify key challenges, including trade-offs between attributes
and difficulties in handling implicit control, while also outlining
potential directions for improvement. By providing actionable in-
sights into LLMs’ strengths and limitations in this challenging task,
we offer a foundation for advancing the field.

Limitations and Future Work

Empirical results on CCSBench highlight key challenges in LLMs’
ability to handle compositional controllable scientific summariza-
tion. While our findings show that fine-tuning smaller models (e.g.,

Flan-T5) can achieve performance comparable to GPT-4 across mul-
tiple metrics and provide deeper insights into failure cases, further
research is needed to better understand and resolve observed inter-
actions between control attributes.

Currently, CCSBench focuses on scientific documents in English.
Expanding this framework to support multilingual scientific sum-
marization is a promising direction for future work. Additionally,
while CCSBench is designed for effective general communication,
more granular summarization – addressing the need for in-depth
analysis, such as detailed experimental setups and side observations
– remains an important area for exploration. Specifically, extending
our framework and methodology to full scientific documents using
datasets like LimGen [9] could provide valuable insights into more
comprehensive and nuanced summarization strategies.
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A Experimental Setup

A.1 Models

Recent advancements in large-scale generative language models
based on transformers, such as GPT [1], have significantly improved
performance on various natural language processing tasks. Given
their widespread use and strong baseline performance, we select a
range of large language models to evaluate their ability to perform
compositional controlled summarization.

In our experiments, we focus on a variety of model architec-
tures, including encoder-decoder models like the Flan-T5 series,
decoder-only models such as LLaMA [32] and Mistral [17], and
open-source large models like GPT-4 [27]. Additionally, we eval-
uate their parameter-efficient fine-tuning (PEFT) versions to as-
sess whether parameter-efficient fine-tuning enhances their abil-
ity to handle controlled summarization tasks. Moreover, we also
revisit previously established baselines in the news domain for con-
trolled summarization, namely hard prompt (HP, 36) and soft prefix
tuning (SP, 20) approaches on smaller models. We fine-tune each
of these models using our compositional control dataset, specif-
ically designed to test their ability to handle multiple attributes
simultaneously. Across these models, we explore various objectives,
yielding multiple model variants tailored for controlled summa-
rization. These configurations allow us to comprehensively study
the strengths and limitations of different architectures and tuning
strategies when applied to compositional summarization tasks, as
described in further detail below.

Zero-shot (ZS). In our simplest setting, we evaluate the composi-
tional controllability already learned by large language models due
to pretraining on large-scale corpora. In this setting, the models are
not fine-tuned on any portion of our compositional control dataset.
Instead, they must generate summaries for the test set based solely
on the representations learned during pretraining.

At test time, the model receives the input document along with
a set of control signals (𝑑𝑜𝑐, 𝑙𝑒𝑛, 𝑓 𝑜𝑐𝑢𝑠, 𝑘𝑤, 𝑟𝑒𝑎𝑑) and generates the
summary accordingly. The prompt template we used can be found
in the Appendix C.

Parameter-efficient Fine-tuning (PEFT). Because the pretraining
domains of large language models are broad and cover diverse tex-
tual sources, we investigate whether adapting these models to the
specific data distribution of our compositional control dataset can
enhance their ability to handle multi-attribute summarization for
scientific documents. In this setting, we apply parameter-efficient
fine-tuning (PEFT) to these models, which allows us to adapt these
large models to our task without updating all of their parame-
ters. In this setting, we leverage the widely-used PEFT technique
LoRA (Low-Rank Adaptation, Hu et al. [14]), which inserts low-
rank trainable matrices into the model’s architecture. The doc-
ument with the golden summary and four controlled attributes
(𝑑𝑜𝑐, 𝑠𝑢𝑚𝑚𝑎𝑟𝑦, 𝑙𝑒𝑛, 𝑓 𝑜𝑐𝑢𝑠, 𝑘𝑤, 𝑟𝑒𝑎𝑑) is the input to the model.

Hard Prompt (HP). Following Zhang et al. [36], in the hard prompt
setting, we provide the model with explicit instructions regarding
the desired control attributes by using a structured prompt format.
Each control attribute is formatted as "Attribute: Value", where “At-
tribute” refers to one of the specified control dimensions, such as

"Length", "Focus", "Keywords", or "Readability", and “Value” rep-
resents the target value for that attribute (e.g., "Noramal", "High",
etc.).

Soft Prefix (SP). In this setting, we prepend external trainable
parameters-referred to as "prefixes"-to each layer of the summa-
rization model to exert fine-grained control over the generation
process. For controlling each attribute value, we assign𝑚 prefix em-
beddings for the respective attribute, where𝑚 is a hyperparameter
representing the length of the prefix. For instance, for controlling
summary readability with a "High" specification, we assign a series
of embeddings 𝐸𝑅𝑒𝑎𝑑 :ℎ𝑖𝑔ℎ = [𝑒1

𝑅𝑒𝑎𝑑 :ℎ𝑖𝑔ℎ, ..., 𝑒
𝑚
𝑅𝑒𝑎𝑑 :ℎ𝑖𝑔ℎ], where each

𝑒
𝑗
𝑖
is a vector of the same dimensionality as the model’s word em-

beddings. For implementation details, readers may refer to Li and
Liang [20].

A.2 Implementation Details

We use PyTorch and the Huggingface library to implement all the
models. The experiments are conducted on 2 A40 GPUs. We choose
1e-4 as the learning rate for all PEFT models and the max epoch is
set to 20. For hard prompt and soft prefix tuning, we largely follow
the same training and inference setups as in Zhang et al. [36]. In
all of our experiments, we run each model once.

A.3 Evaluation Metrics

Here we introduce different metrics in detail.

Length Control. For length controllability evaluation, we adopt
(1) the Mean of Absolute Deviation (MAD, 24) of length codes
of system-generated summaries and the references, measuring
their length distance; and (2) the Pearson Correlation Coefficient
(PCC, 24) between the generated length and the input length bin.

Readability Control. For evaluating readability controllabiltiy,
we calculate the Flesch-Kincaid Grade Level (FKGL, 19) for each
document under both high and normal readability settings. A lower
FKGL score indicate higher readability. We use 𝛿𝐹 to represent the
difference in FKGL scores between the two categories. A larger
𝛿𝐹𝐾𝐺𝐿 indicates a greater distinction in readability, which in turn
reflects stronger control over readability by the model.

Keywords Control. For evaluating keyword controllability, we use
the Success Rate (SR, 13), namely the fraction of keywords actually
occurring in the output summaries. We calculate SR employing
exact matching after stemming.

Empirical Focus Level Control. Since focus is difficult to distin-
guish using simple rules, we opt to use an LLM evaluator for iden-
tification. For the generated summaries, we instruct GPT-4o to
determine whether they are more conceptual-focused or empirical-
focused. We experiment with various instruction patterns and val-
idate the approach on the manually annotated dataset, achieving
a best accuracy of 93%. Next, we use the categories predicted by
GPT-4o as the labels for the generated summaries and calculate the
F1 score for each category. A higher F1 score indicates stronger
control over the focus attribute. Prompt details can be found in
Appendix C.
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B Human Evaluation Details

As described in Section 3.3, we employed human evaluators to assess
the quality of GPT-generated summaries (regarding Readability and
Focus) in CCSBench.

The evaluations were conducted via Amazon Mechanical Turk
(MTurk)3, with participants compensated at a rate of USD $0.60 per
Readability case and USD $0.75 per Focus case. We clearly stated
during recruitment that the collected data would be used solely for
research purposes. The human evaluation process has received IRB
approval from the authors’ institution.

B.1 Instructions for Readability Evaluation

Instructions to MTurk Annotators. Read the two scientific sum-
maries and evaluate their facuality, readability and fluency.

[Summary 1]
[Summary 2]

Questions for MTurk Annotators. Q1: Do the two summaries agree
on the main points? (Yes / No)

Q2: Which summary is more readable? (Summary 1 / Summary
2)

Q3: Is Summary 1 written in natural and fluent language? (Yes /
No)

Q4: Is Summary 2 written in natural and fluent language? (Yes /
No)

B.2 Instructions for Focus Evaluation

Instructions to MTurk Annotators. Read the two scientific sum-
maries and the reference abstract, evaluate their factuality, focus
and fluency.

Definition:
The empirical-focused summary emphasizes the experimental,

data-driven aspects of a study. It highlights data collection, experi-
mental settings, performance metrics and concrete results obtained
from the research, especially when it comes to statistics and data.

The conceptual-focused summary emphasizes the theoretical
and innovative aspects of a study. It highlights the motivation, the
challenge, the underlying theoretical framework, the description of
the proposed method or algorithm, and broader implications of the
research.

Empirical-focused Example: This study evaluates the perfor-
mance of a modified CRF-based POS tagging system for Manipuri,
incorporating new features and the Reduplicated Multiword Ex-
pression (RMWE) feature. The experiment shows that the new
CRF system achieves a Recall of 78.22%, Precision of 73.15%, and
F-measure of 75.60%. With the inclusion of RMWE as a feature,
the results improve to a Recall of 80.20%, Precision of 74.31%, and
F-measure of 77.14%.

Conceptual-focused Example: This paper provides an in-depth
overview of the updated feature selection approach in CRF for
Manipuri POS tagging. It highlights the significance of optimal
feature selection in enhancing CRF performance and discusses the
introduction of new features, including the Reduplicated Multi-
word Expression (RMWE), which is crucial for accurately tagging
Manipuri language POS due to its rich occurrence of RMWE.

3https://www.mturk.com/

[Abstract]
[Summary 1]
[Summary 2]

Questions for MTurk Annotators. Q1: Does Summary 1 agree with
the reference Abstract on the main points? (Yes / No)

Q2: Does Summary 2 agree with the reference Abstract on the
main points? (Yes / No)

Q3: Which summary is more empirically-focused? (Summary 1 /
Summary 2)

Q4: Is Summary 1 written in natural and fluent language? (Yes /
No)

Q5: Is Summary 2 written in natural and fluent language? (Yes /
No)

C Prompt Templates

C.1 Readability Data Construction

"""
# System
You are a NLP expert. Please help me paraphrase some scientific

summaries according my requests.

# Instruction
Please paraphrase this abstract for middle school students with-

out using metaphors and without including information that cannot
be obtained directly from the original abstract: {abstract}

"""

C.2 Focus Data Construction

"""
# System
You are a NLP expert. Please help me analyze some scientific

abstracts.

# Instruction for focus identification
Can you identify the empirical content and conceptual content

of the following abstract? If the abstract is obviously predominated
by only one type of information, the other part can be ’None’.

Definition:
The empirical content emphasizes the experimental, data-driven

aspects of a study. It highlights data collection, experimental set-
tings, performance metrics and concrete results obtained from the
research, especially when it comes to statistics and data.

The conceptual content emphasizes the theoretical and inno-
vative aspects of a study. It highlights the underlying theoretical
framework, the description of the proposed method or algorithm,
and broader implications of the research.

Abstract: {abstract}

# Output (Extracted by functions)
{"Empirical Content": output1, "Conceptual Content": output2}

# Instruction for paraphrasing

https://www.mturk.com/
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If neither part is ’None’, please paraphrase the empirical con-
tent and the conceptual content into a separated empirical-focused
abstract and a separated conceptual-focused abstract respectively.
Both abstracts should be coherent and fluent without including
information that can’t be inferred directly in the original abstract.
If either part is ’None’, take the input abstract and ’None’ as the
two output abstracts. Note that the difference between empirical
focus and conceptual focus lies on the content rather than language
expression.

# Output (Extracted by functions)
{"Empirical Summary": output3, "Conceptual Summary": out-

put4}
"""

C.3 Focus Evaluation

"""
# System
You are a NLP expert. Please help me analyze some scientific

abstracts.

# Instruction
Helpme decidewhether this abstract is more empirically-focused

or more conceptually-focused. The output should be ’empirical’ or
’conceptual’.

Definition:
The empirically-focused abstract emphasizes the experimental,

data-driven aspects of a study. It highlights data collection, experi-
mental settings, performance metrics and concrete results obtained
from the research, especially when it comes to statistics and data.

The conceptually-focused abstract emphasizes the theoretical
and innovative aspects of a study. It highlights the motivation, the
challenge, the underlying theoretical framework, the description of
the proposed method or algorithm, and broader implications of the
research.

Abstract: {abstract}

"""

C.4 Zero-Shot LLM Experiments

"""
# System
You are an expert summarizer who can generate summaries with

specific controls.

# Instruction
Your task is to create a summary of the given scientific document

with the following controls:

Length: The summary should fit in the specified word counts.
Keywords: Include the following keywords in the summary: [list

of keywords]
Readability: Ensure the summary is either highly readable for

laymen (high) or not specifically optimized for readability (normal).

Empirical Focus Level: Make the summary has high empirical
focus level (high) by emphasizing the experimental, data-driven
aspects of a study. It highlights data collection, experimental set-
tings, performance metrics and concrete results obtained from the
research, especially when it comes to statistics and data; or low
empirical focus level (low) the theoretical and innovative aspects of
a study. It highlights the motivation, the challenge, the underlying
theoretical framework, the description of the proposed method or
algorithm, and broader implications of the research.

Document: {doc}

# Control signals
Length: 0-50 words
Keywords: "multi-scale"
Readability: high
Empirical Focus Level: high

# Output
Summary:
"""

C.5 Few-Shot LLM Experiments

"""
# System
You are an expert summarizer who can generate summaries with

specific controls.

# Instruction
Your task is to create a summary of the given scientific document

with the following controls:

Length: The summary should fit in the specified word counts.
Keywords: Include the following keywords in the summary: [list

of keywords]
Readability: Ensure the summary is either highly readable for

laymen (high) or not specifically optimized for readability (normal).
Empirical Focus Level: Make the summary has high empirical

focus level (high) by emphasizing the experimental, data-driven
aspects of a study. It highlights data collection, experimental set-
tings, performance metrics and concrete results obtained from the
research, especially when it comes to statistics and data; or low
empirical focus level (low) the theoretical and innovative aspects of
a study. It highlights the motivation, the challenge, the underlying
theoretical framework, the description of the proposed method or
algorithm, and broader implications of the research.

# Examples
Examples:

Document: {doc1}
{ctrl1}
Summary: {summary1}

Document: {doc2}
{ctrl2}
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Summary: {summary2}

Document: {doc3}
{ctrl3}
Summary: {summary3}

# To generate
Document: {doc}

Length: 0-50 words
Keywords: "multi-scale"
Readability: high
Empirical Focus Level: high

# Output
Summary:
"""
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