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Abstract
Mixture of Experts (MoE) architectures have recently

started burgeoning due to their ability to scale model’s capac-
ity while maintaining the computational cost affordable, leading
to state-of-the-art results in numerous fields. While MoE has
been mostly investigated for the pre-training stage, its use in
parameter-efficient transfer learning (PETL) settings is under-
explored. To narrow this gap, this paper attempts to demystify
the use of MoE for PETL of Audio Spectrogram Transformers
to audio and speech downstream tasks. Specifically, we pro-
pose Soft Mixture of Adapters (Soft-MoA). It exploits adapters
as the experts and, leveraging the recent Soft MoE method, it
relies on a soft assignment between the input tokens and ex-
perts to keep the computational time limited. Extensive experi-
ments across 4 benchmarks demonstrate that Soft-MoA outper-
forms the single adapter method and performs on par with the
dense MoA counterpart. We finally present ablation studies on
key elements of Soft-MoA. Our code is available at https:
//github.com/umbertocappellazzo/PETL_AST.
Index Terms: Audio Spectrogram Transformer, Efficient Fine-
tuning, Adapters, Mixture of Experts, Soft Mixture of Adapters

1. Introduction
Large pre-trained audio and speech models have exhibited out-
standing performance when fine-tuned with task-specific data
[1, 2]. A common practice entails the adaptation of the whole
model to each downstream task (i.e., full fine-tuning) [3, 4].
However, this paradigm has two major limitations: 1) adapting
the entire pre-trained model is expensive and usually demands
a significant volume of training data; 2) storing a copy of the
model for each downstream task is unfeasible and impractical.

Given these shortcomings, current research mainly revolves
around learning a small fraction of task-specific parameters,
while keeping the pre-trained model frozen. This approach
is known as parameter-efficient transfer learning (PETL) and
includes several nuances. For example, prompt-tuning meth-
ods [5, 6] introduce trainable task-specific tokens into one or
multiple layers. LoRA [7, 8] uses trainable low-rank matri-
ces to approximate the weight matrices. Adapter-based meth-
ods [9, 10, 11] add lightweight modules (adapters) with bottle-
neck architecture comprising two fully-connected layers. The
adapter can be inserted after both the multi-head self-attention
and fully-connected feed-forward network blocks (Houlsby)
[12], or only after the feed-forward (Pfeiffer) [10]. Adapters
can also be scaled and shifted to modulate the pre-trained fea-
tures [13], or their down/up projections can be shared across
different layers and low-dimensional re-scaling coefficients are
learned [14]. In the speech field, PETL methods have been re-
cently investigated and compared in [15, 16].

Very recently, Mixture of Experts (MoE) models have
shown remarkable results in natural language processing, push-

ing large language models to the limit, facilitating the effective
scaling of Transformers and State Space Models while concur-
rently reducing computational costs [17, 18, 19, 20]. The MoE
paradigm relies on the idea that sub-modular components, the
experts, can specialize in different inputs and scale the model’s
capacity. While most works have focused on the use of MoE
during the pre-training stage, only few works have leveraged
MoE for efficient fine-tuning [18, 21, 22]. In the latter case,
each expert is usually represented by a single adapter, and the
model is referred to as Mixture of Adapters (MoA). However,
these works usually target language-based tasks, whereas pure
audio/speech classification tasks have not been taken into ac-
count before. Therefore, in this paper, we investigate the use of
MoA for the Audio Spectrogram Transformer (AST), a power-
ful foundation model achieving state-of-the-art results on vari-
ous audio/speech tasks [2], and we ask the following question:

(Q) Can we leverage MoAs for the efficient fine-tuning
of AST to audio/speech downstream tasks?

To answer the above research question (Q), we study the
MoA’s adoption for PETL of AST on four popular audio and
speech benchmarks. Specifically, we propose to adapt a recent
sparse version of MoE called Soft-MoE [23] to our PETL set-
ting, whereby each expert only handles a small number of slots
that are the result of a weighted combination of all input tokens.
We call it Soft-MoA, and we compare it with the standard sin-
gle adapter approach and with the dense version of MoA that
requires each adapter to process all the input tokens (we refer to
it as Dense-MoA). By doing this, we are able to scale the num-
ber of adapters while keeping the computational cost limited as
well as updating only a small fraction of parameters, thus lever-
aging the strengths of both the MoE and PETL paradigms. We
empirically show that both Soft and Dense MoA outperform the
single adapter approach, both for the Pfeiffer and Houlsby con-
figuration, leading to accuracy improvement of up to 2.5%; also,
Soft-MoA attains performance parity with Dense-MoA while
drastically trimming down the training cost. Finally, we fur-
ther demonstrate the effectiveness of Soft-MoA by carrying out
extensive ablation experiments revealing that ❶) both Soft and
Dense-MoA gains over the single adapter strategy are more ev-
ident when fewer parameters are available, ❷) Soft-MoA is ro-
bust to “expert imbalance”, thus ensuring that all experts are
involved in the learning process, and ❸) Soft-MoA attains the
best performance accuracy when few slots (1/2) and several ex-
perts are used rather than the opposite case as multiple slots tend
to learn redundant information.

2. Methodology
In this section, we first give a brief recap of the AST model and
the standard single adapter approach. In section 2.3, we present
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Figure 1: (a) For each AST layer, the Soft/Dense MoA blocks are inserted parallel to MHSA (Pfeiffer) or parallel to both MHSA
and FFN sub-layers (Houlsby). (b) Illustration of Dense-MoA, whereby each expert contribution, scaled by the router’s distribution
(thickness of the arrows), is summed to produce the final output. (c) In Soft-MoA, each expert only processes a subset of slots (here 2),
and each slot accepts as input a weighted combination of all input tokens (thickness of the arrows). Note that the trainable parameters
are represented by dashed blocks. Best viewed in color.

the details of the Dense-MoA and Soft-MoA approaches.

2.1. AST model recap

The Audio Spectrogram Transformer (AST) is an attention-
based model that achieves state-of-the-art results on various au-
dio and speech tasks [2, 24]. The AST model receives as input
audio spectrograms that are patchified and then a linear pro-
jection is applied to each patch. This results in a sequence of
L tokens of size d = 768, which we refer to as X ∈ RL×d.
AST comprises 12 attention layers, each of which is composed
of two sub-layers: a multi-head self-attention (MHSA) and a
fully-connected feed-forward (FFN) module.

2.2. Adapters

Adapters are light subnetworks that are inserted into every layer
of the AST model. To keep the parameters limited, adapters ex-
ploit a bottleneck architecture. The input sequence of hidden di-
mension d is first down-projected into a low-dimensional space
with size r (the bottleneck dimension), and then up-projected
back to the original dimension d. A non-linear activation func-
tion is also applied in-between the two fully-connected layers.

While the bottleneck adapter is the most common design,
recent works have also explored convolution-based adapters
mainly for vision tasks (e.g., Convpass) [25, 26]. In addition to
this, adapters usually follow a Pfeiffer [10] or Houlsby [12] con-
figuration: the former places the adapter parallel or sequentially
to the MHSA or FFN sub-layer, whereas the latter includes the
adapter on both sub-layers.

2.3. Dense and Soft MoA

Dense-MoA. It encompasses a set of N “expert” adapters
E1, . . . EN and a router network R that learns the optimal dis-
tribution over the adapters for a given input sequence. In its
simplest form [27, 18], the router is a dense fully-connected
layer with weights W ∈ Rd×N followed by a softmax func-
tion that takes as input the sequence X and merges the output
of each adapter using the gating scores g1, . . . gN to yield the
output sequence Y:

gi = R(X)i = softmax(XW), (1)

Y =

N∑
i=1

gi · Ei(X). (2)

If all the N adapters take part in the computation of the output
of a given input (scaled by the router’s distribution), then we
refer to this as Dense-MoA (alternatively we can think of this
as ensemble MoA). Whereas this approach would cater to exact
computation of gradients and end-to-end-learning, it would also
incur a substantial increase in computational costs since each
input token is computed by every expert rather than a single
expert. To circumvent the above issue, we propose to adapt a
recent method called Soft Mixture of Experts [23] to our PETL
setting where each expert is an adapter, and we call it Soft-MoA.
Note that in our setting only the adapters are actually learned
whilst the backbone model is frozen.

Soft-MoA. Rather than feeding all input tokens to each ex-
pert, Soft-MoA passes a different weighted soft combinations of
all input tokens to each expert. Unlike other sparse techniques
like Top-k [28] whereby only the k experts that are assigned the
highest router’s probability are activated, Soft-MoA provides
fully-differentiable operations, better training stability, and im-
munity to “token dropping” and “expert imbalance” issues [23].
In practice, each adapter processes p slots, and each slot has a
corresponding d-dimensional vector of parameters. These pa-
rameters are denoted by Φ ∈ Rd×(N·p). The input slots, X̃, are
computed as the convex combination of all the L input tokens:

X̃ = D⊤X, Di,j =
exp((XΦ)i,j∑L

h=1 exp((XΦ)h,j)
. (3)

D is called the dispatch weights and corresponds to applying a
softmax along the columns of XΦ. At this point, each adapter
processes the corresponding slots: Ỹi = E⌊i/p⌋(X̃i). Finally,
the output tokens Y are the result of a convex combination of
all (N · p) slots:

Y = CỸ, Ci,j =
exp((XΦ)i,j∑N·p

h=1 exp((XΦ)i,h)
. (4)

The matrix C is referred to as the combine weights, and is
equivalent to applying a softmax over the rows of XΦ.

We provide an overview of Soft and Dense MoA in Figure
1. Finally, for our experiments, following [15] that show that in-
serting the adapter in parallel achieves better performance than



Table 1: Performance evaluations of Dense and Soft-MoA on 4 benchmarks for the Pfeiffer configuration. We report the top-1 accuracy
for each dataset, the average over the four datasets (Avg), and the average train step time in milliseconds (Time).

Method # params ESC-50 US8K GSC FSC Avg Time (ms)

Full FT 85.5M 87.48 84.31 97.31 93.29 90.07 645
Linear 9-40K 75.85 77.93 41.78 27.52 55.77 226
BitFit 102K 86.05 82.17 85.51 63.85 79.40 513
DPT 230K 86.52 83.67 89.18 68.60 81.99 561
Pref-T 221K 82.93 81.39 83.46 55.75 75.88 529
LoRA 221K 86.45 83.83 93.61 76.00 84.97 525
Bottleneck Adapter
Single 470K 88.65 83.36 93.53 78.19 85.93 513
D-MoA 14 535K 89.55 84.30 93.89 82.43 87.54 1689
S-MoA 14 535K 89.08 84.88 93.91 82.48 87.59 626
Convpass Adapter
Single 491K 87.93 83.38 93.47 77.62 85.60 515
D-MoA 14 535K 89.30 84.32 93.70 83.52 87.71 1727
S-MoA 14 535K 88.43 84.29 93.36 80.36 86.61 638

sequentially, we place the MoA block parallel to the MHSA
layer only (i.e., Pfeiffer) or parallel to both the MHSA and
FFN layers (i.e., Houlsby). The number of slots p is an hyper-
parameter, and we elaborate on its optimal value on Section 3.3.

3. Experiments and Discussion
3.1. Implementation Details

For our experiments, we mainly follow the implementation de-
tails of [15] to provide a fair comparison.

Datasets. We evaluate the PETL methods on three au-
dio/speech downstream classification tasks. (1) Audio clas-
sification: we use the ESC-50 and UrbanSound8K (US8K)
datasets. ESC-50 [29] consists of 2, 000 5-second-long en-
vironmental audio recordings of 50 classes. US8K [30] in-
cludes 8, 732 labeled sound excerpts of urban sounds from 10
classes. (2) Keyword spotting: Speech Commands V2 [31]
has 105, 829 1-second recordings of 35 speech commands. (3)
Intent classification: Fluent Speech Commands (FSC) [32] in-
cludes 30, 043 English utterances spanning 31 classes.

PETL baselines. We include two traditional fine-tuning
strategies: full fine-tuning (Full-FT), which finetunes the full
pre-trained AST model; and linear probing, which only fine-
tunes the classification head. Following [15] we include some
common PETL baselines: BitFit [33], deep prompt-tuning
(DPT) [5], prefix-tuning (Pref-T) [6] and LoRA [7]. For the
analysis of MoA, we take into account both Bottleneck [12] and
Convpass [34] adapters. We report Dense and Soft-MoA (D/S-
MoA) with 14 or 7 adapters for the Pfeiffer and Houlsby con-
figuration, respectively, and we compare them with the standard
implementation using a single adapter per layer (Single).

Training Details. For all experiments we use the AST
model pre-trained on ImageNet-21K [35] and AudioSet [36]
provided by the Huggingface Transformers library [37]. The
model has around 85.5 million parameters, and the hidden size
is 768. Please refer to [15] for the training details of the base-
lines (LoRA, DPT etc.). For MoA experiments, we use AdamW
optimizer with cosine annealing scheduler and weight decay set
to 0.1. For the ESC-50 and US8K datasets, we run 5-fold and
10-fold cross validation as suggested in the original papers. Ex-
cept US8K that does not provide a validation set by default, for
the others we set the hyper-parameters using the validation set.

Table 2: Results of D/S-MoA for the Houlsby configuration. The
number of parameters coincides with Pfeiffer as we still use 14
adapters split equally between MHSA and FFN layers.

Method ESC-50 US8K GSC FSC Avg

Bottleneck Adapter
Single 88.00 82.80 91.75 78.71 85.32
D-MoA 7 87.33 83.78 94.11 82.64 86.97
S-MoA 7 87.13 83.77 93.67 81.41 86.50
Convpass Adapter
Single 87.15 82.75 92.55 77.79 85.06
D-MoA 7 87.31 83.77 93.20 82.26 86.63
S-MoA 7 88.13 83.87 92.69 81.69 86.60

3.2. Main Results and Discussion

Table 1 presents the performance comparisons between the sin-
gle adapter approach and Soft/Dense MoA, as well as some
other common PETL methods. The single adapter approach has
bottleneck dimension equal to 24, whereas Soft/Dense-MoA in-
clude 14 adapters, each with bottleneck dimension 1, and one
slot is used for each adapter. From table 1 we observe that both
MoAs outperform the single adapter, leading to up to 2.5 %
performance improvement on average for the Bottleneck case,
while for Convpass we notice that Soft-MoA is slightly worse
than Dense-MoA, but still better than the single adapter. In gen-
eral, the biggest gain is obtained with the FSC dataset (up to 5.5
and 7.6 %). Indeed, FSC is the more challenging dataset as it
includes longer speech audio data, thus we argue that multiple
adapters can specialize in learning different information, and
consequently leading to better performance. We also notice that
the GSC dataset does not benefit much from the use of MoA
architecture. We surmise that a single adapter already achieves
very competitive performance and so the use of multiple smaller
adapters is not helpful. Another pivotal aspect is the extra com-
putational cost brought by MoAs, estimated as the average train
step time in milliseconds. Whereas Dense-MoA incurs a con-
siderable increase in time (more than 3x with respect to the sin-
gle adapter), S-MoA, instead, requires only a limited extra time,
while guaranteeing on-par performance.

Finally, we test Soft-MoA’s efficacy for the Houlsby con-
figuration, where the MoA block is also inserted parallel to the
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Figure 2: (Left). The accuracy trend as more parameters are used. (Middle). The effect of the number of adapters given a fixed
parameters budget. (Right). Adapters contribution to the output tokens for various layers. Results reported for FSC.

FFN sub-layer. Table 2 confirms the superiority of both MoAs
over the single adapter.

3.3. Ablation Studies

We now conduct some ablation studies to evaluate the effec-
tiveness of Soft-MoA under different settings. We focus on the
Pfeiffer Bottleneck configuration, and on the FSC dataset.

Increasing the Parameters Budget. We examine the
methods’ behaviour as we increase the number of trainable pa-
rameters. For the single adapter, we increase the parameters by
making the bottleneck dimension r larger, while for MoAs we
keep it to 1 and we increase the number of adapters. From Fig-
ure 2 (Left) we observe that Soft-MoA outperforms the single
adapter, although when more and more parameters are available
the two methods tend to achieve similar results, thus showing
that using a single adapter is a good alternative when scaling
the number of parameters is sustainable.

Few-big vs Many-small Adapters. We now investigate
how the MoA methods scale with respect to the number of
adapters N . Regardless of N , we fix the number of learn-
able parameters to around 900K to have a fair comparison. In
this way, we want to figure out if having more adapters with
a smaller bottleneck dimension is better than having a few but
“bigger” (in terms of parameters) adapters. The Figure 2 (Mid-
dle) shows that Dense-MoA, due to its intrinsic dense structure,
reaches the peak performance when N = 7, and then adding
more adapters does not lead to additional improvement. On the
contrary, Soft-MoA depends heavily on N , and only when this
number is large enough does it attain good performance. This
trend is in line with that of the original Soft MoE paper [23].

Adapters Contribution to the Output Tokens and Spe-
cific Classes. By design, the computation of the final output to-
kens depends on a linear combination of all the adapters’ slots.
We want to verify whether all adapters contribute to the output
sequence. We fix one slot per adapter and consider 7 adapters,
and we approximate the contribution of each adapter by aver-
aging their coefficients in the linear combinations for all output
tokens. We average over all the batches of the test set and report
the adapter contribution for different layers in Figure 2 (Right).
We see that some adapters have a bigger impact than others,
but all of them contribute to the final output tokens. There-
fore, Soft-MoA does not suffer from the expert imbalance is-
sue, namely few adapters monopolize the output contribution
while the others are overshadowed, an issue that affects other
routing strategies like Top-k [28, 23]. In addition to this, we
compute the contribution of each adapter to each class. To do
this, for each sample of each class, we compute the contribu-
tion of each adapter and then we average over the total number
of samples per class (for this reason the sum of each row of
the heatmap does not sum to 1). We observe from Figure 3

N/p Acc

2/14 78.52
4/6 80.26
6/4 81.65
8/3 82.36

12/2 83.24
24/1 82.87

Table 3: Optimal trade-
off between the number
of adapters N and slots p.
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that some adapters specialize more for some classes than others
(adapter 0 has a high contribution for classes 26-29, adapter 1
for classes 7, 20-22). We also see that the adapter with ID 5 has
a strong contribution for several classes.

Optimal Trade-off between Slots and Adapters. The
number of slots p is an important hyper-parameter of Soft-MoA,
thus we examine its optimal value. We notice that if we set the
number of slots equal to the number of tokens L, Soft-MoA
boils down to Dense-MoA, so it is crucial to keep p small. For
our experiments, depending on the dataset, L is between 100
and 500, and setting p up to 14 is a reasonable choice. We re-
port the results for FSC in Table 3 and we see that, with the same
number of trainable parameters, having more adapters with few
slots brings better results than having few adapters but many
slots. We speculate that this happens because multiple slots cor-
responding to the same adapter might have a tendency to learn
similar concepts and become redundant, whereas using more
adapters ends up learning more diverse information.

4. Conclusion
In this paper, we propose Soft Mixture of Adapters to efficiently
fine-tune the AST model on various audio/speech downstream
tasks. Soft-MoA relies on multiple adapters that take as input
a soft convex combination of all the input tokens, thus reduc-
ing the computational cost of the dense counterpart. Exten-
sive experiments on 4 benchmarks show that Soft-MoA per-
forms on par with Dense-MoA, and it outperforms the single
adapter strategy, confirming itself as a strong method also for
parameter-efficient transfer learning settings. To strengthen our
analysis, we carry out ablation studies revealing that Soft and
Dense MoA provide bigger gains over the single adapter when
the parameters budget is limited. We also show that Soft-MoA
scales better with the number of adapters and that it is sufficient
to use only 1 or 2 slots to achieve the optimal performance.
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“Adapterfusion: Non-destructive task composition for transfer
learning,” Proceedings of EACL, 2021.

[11] S. Jie, H. Wang, and Z.-H. Deng, “Revisiting the parameter effi-
ciency of adapters from the perspective of precision redundancy,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 17 217–17 226.

[12] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly,
“Parameter-efficient transfer learning for nlp,” in International
Conference on Machine Learning. PMLR, 2019, pp. 2790–2799.

[13] D. Lian, D. Zhou, J. Feng, and X. Wang, “Scaling & shifting your
features: A new baseline for efficient model tuning,” Advances
in Neural Information Processing Systems, vol. 35, pp. 109–123,
2022.

[14] W. Dong, D. Yan, Z. Lin, and P. Wang, “Efficient adaptation of
large vision transformer via adapter re-composing,” Advances in
Neural Information Processing Systems, 2023.

[15] U. Cappellazzo, D. Falavigna, A. Brutti, and M. Ravanelli,
“Parameter-efficient transfer learning of audio spectrogram trans-
formers,” arXiv preprint arXiv:2312.03694, 2023.

[16] T.-H. Lin, H.-S. Wang, H.-Y. Weng, K.-C. Peng, Z.-C. Chen,
and H.-y. Lee, “Peft for speech: Unveiling optimal placement,
merging strategies, and ensemble techniques,” arXiv preprint
arXiv:2401.02122, 2024.

[17] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary,
C. Bamford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna,
F. Bressand et al., “Mixtral of experts,” arXiv preprint
arXiv:2401.04088, 2024.
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