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Abstract
Astronomical time-series analysis faces a critical
limitation: the scarcity of labeled observational
data. We present a pre-training approach that
leverages physics-informed simulations, signif-
icantly reducing the need for labeled examples
from real observations. Using classifier-based
architectures enhanced with contrastive and ad-
versarial objectives, we create domain-agnostic
models that recognize similar astronomical phe-
nomena across different instrumental contexts
and learn generalizable representations that trans-
fer effectively to downstream tasks. Our mod-
els are trained on simulated astronomical tran-
sients from multiple telescope surveys (ZTF and
LSST), and demonstrate substantial performance
improvements over previous methods in classifi-
cation, redshift estimation, and anomaly detection
tasks when fine-tuned with minimal real data. Re-
markably, our models exhibit effective zero-shot
transfer capabilities, achieving comparable per-
formance on future telescope (LSST) simulations
when trained solely on existing telescope (ZTF)
data. Furthermore, they generalize to entirely
different astronomical phenomena (namely vari-
able stars from NASA’s Kepler telescope) despite
being trained on transient events, demonstrating
cross-domain capabilities.

1. Introduction
Time-series analysis in astronomy often requires substantial
labeled data for supervised learning approaches. Models
have been developed to classify variable stars and transient
events (e.g. Narayan et al., 2018; Muthukrishna et al., 2019;
Rehemtulla et al., 2024), detect anomalies (Perez-Carrasco
et al., 2023; Muthukrishna et al., 2022; Villar et al., 2021),
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and estimate physical parameters like redshift (e.g Qu &
Sako, 2023; Zhang et al., 2024). However, these models are
typically trained for specific instruments or tasks, missing
opportunities to leverage commonalities across astronomical
datasets. Furthermore, they struggle with new telescopes
where labeled data is initially scarce.

Foundation models (FMs) (Bommasani et al., 2022) have
transformed natural language processing and computer vi-
sion by learning generalizable representations from large
quantities of data. However, astronomical data presents
unique challenges: (1) limited publicly available labeled
data compared to other domains; (2) instrument-specific
characteristics that hinder cross-survey generalization; and
(3) complex physical phenomena that require domain exper-
tise to model effectively. Recent works have begun to de-
velop foundation models for astrophysical data (e.g. Parker
et al., 2024; Donoso-Oliva et al., 2023; Smith et al., 2024;
Zhang et al., 2024; Audenaert et al., 2025), but these do
not generalize to zero-shot transfer between different time-
domain surveys. Moreover, existing FMs typically use self-
supervised methods that do not leverage the astronomical
class structure that is fundamental to astronomical under-
standing.

Astronomy has a significant advantage over many domains:
decades of physical understanding encoded in simulations.
Astronomers have developed detailed models of astrophys-
ical phenomena that generate synthetic light curves (e.g.
PLAsTiCC Modelers, 2019). While these simulations do not
perfectly match real observations (Gupta & Muthukrishna,
2025), they effectively encode some domain knowledge that
can bootstrap learning.

Motivated by the success of supervised classifier-based
methods for anomaly detection (Gupta et al., 2024), we
propose a novel approach to learning generalizable repre-
sentations for astronomical time series that:

1. Leverages the latent space of classifiers pretrained on
physics-informed simulations

2. Develops domain-agnostic representations through ad-
versarial and contrastive learning objectives

3. Enables effective downstream task performance with
minimal labeled real data

4. Facilitates zero-shot transfer to new telescopes
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Figure 1. Overview of our simulation-based pre-training methodology. We first pre-train various classifiers and domain-agnostic models
using simulated data. We then evaluate these models on various downstream tasks, including zero-shot estimation for new telescopes.

This approach is particularly valuable for upcoming sur-
veys like the Vera C. Rubin Observatory’s Legacy Survey
of Space and Time (LSST), which will produce millions
of time-series alerts nightly (Ivezić et al., 2019). Having
models ready to analyze LSST data from day one—without
requiring extensive new labeled datasets—would dramati-
cally accelerate scientific discovery. 1

2. Datasets and Benchmarks
We pretrain our models using 151,468 simulated astronom-
ical transients: 87,080 from the Zwicky Transient Facility
(ZTF; Bellm et al., 2018) and 64,388 from LSST, covering
eight astronomical transient classes (see Table 3) generated
using astrophysical models reflecting each telescope’s obser-
vational characteristics (Kessler et al., 2019; Muthukrishna
et al., 2019; Narayan & ELAsTiCC Team, 2023). Each
object is a multi-channel time-series known as a light curve
represented as [λp, ti, fi, ϵi], indicating the passband wave-
length, time since first observation, normalized flux, and
flux error.

We fine tune and evaluate our pre-trained models on the
following datasets and downstream tasks.

ZTF Real Data (In-Domain): 3,747 labeled transients for
classification (AUROC), redshift estimation (MSE), and
anomaly detection (AUROC, 38 rare objects). Kepler
Real Data (Cross-Domain): 9,501 variable stars for stellar
classification, demonstrating generalization beyond tran-
sients. LSST Simulations (Zero-Shot): 2,596 objects
within ZTF’s redshift range for zero-shot transfer evalu-

1The code used in this work is publicly avail-
able: https://github.com/Rithwik-G/astrofm2.0 and
https://github.com/Rithwik-G/Kepler-FM

ation.

We evaluate under two scenarios: Limited (512 labeled
objects, simulating early survey deployment) and Full
(all available labels). This design addresses the practical
challenge of having effective models ready for new surveys
before extensive expert annotation becomes available.

3. Methods
The first foundation model we propose is a classifier built
using simulated data from both ZTF and LSST, and we
fine-tune this model for downstream tasks on real data. We
further enhance the classifier’s architecture domain-agnostic
models by incorporating additional adversarial and con-
trastive loss components. Fine-tuning a domain-agnostic
model on one domain directly translates to performance on
other domains. More specific training and model informa-
tion can be found in Appendix B.

3.1. Classifier

Neural network classifiers have demonstrated the ability to
capture the underlying structure of astronomical transients
and have been applied to various tasks beyond classifica-
tion (Etsebeth et al., 2023; Walmsley et al., 2022; Gupta &
Muthukrishna, 2025). Motivated by these prior successes,
we propose building a foundation model that is a classifier
trained on data from both ZTF and LSST. Once the classifier
has been trained, we discard the output classification layer,
leaving the penultimate layer as the output of our FM. This
penultimate layer, henceforth referred to as the latent space,
provides meaningful features that exhibit coherent cluster-
ing patterns. Although the classifier successfully learns a
structured representation of transients from a single tele-
scope (Fig. 4 of Gupta et al., 2024), it does not produce
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a domain-agnostic latent space. Appendix C qualitatively
discusses this issue with visualizations of the latent space
(Figures 5 and 6).

3.2. Adversarial Training

To encourage domain-agnostic representations across ob-
servatories, we adopt an adversarial training framework,
inspired by Generative Adversarial Networks (GANs; Good-
fellow et al., 2014). This method promotes the unification
of feature representations for similar transients originating
from different surveys, such as ZTF and LSST. Specifically,
we jointly train a classifier C(Xi), which outputs both class
predictions and provides the intermediate latent representa-
tions, and a discriminator D(Li), which attempts to predict
the observatory domain. The classifier is trained to both clas-
sify the transient correctly and to confuse the discriminator,
thereby learning a latent space that is useful for classifica-
tion yet agnostic to the survey domain. The discriminator,
on the other hand, is trained to distinguish between obser-
vatories using the latent representations. The adversarial
training process is detailed further in Appendix B.2.

3.3. Supervised Contrastive Training

While adversarial training encourages ZTF and LSST tran-
sients to be embedded more closely in the latent space, it
does not explicitly enforce that objects of the same class
should be clustered together. Since we know that class iden-
tity is a strong indicator of similarity, we propose using a
supervised contrastive loss (Khosla et al., 2020). Rather than
relying on data augmentations like traditional contrastive
losses, we treat all samples belonging to the same class as
positive pairs and apply the contrastive objective accord-
ingly. This modification provides a more explicit signal for
class-based alignment and naturally encourages unification
across domains, as long as examples from the same class
are drawn from both surveys. We use the contrastive loss
proposed in Chen et al. (2020) for model pretraining. More
details can be found in Appendix B.3.

Our adversarial and contrastive models are trained to learn
an explicit relationship between ZTF and LSST. This is
useful because once these models are fine-tuned on for a
task on one domain, they can be directly applied to another
domain. However, for downstream tasks on a single survey,
classifiers perform as well as these domain-agnostic models.

3.4. Downstream Tasks

Fine Tuning Foundation Models To fine-tune our
classifier-based foundation models for regression and classi-
fication tasks, we attach a multi-layer perceptron (MLP) to
the penultimate neural network layers of our models. Nor-
mally, we would then freeze the initial model and fine-tune

just the MLP, but this hyperparameter setup does not work
effectively for all tasks. Further details on how we fine-tune
can be found in Appendix B.4 and in the released code.

Baselines and Our Models When evaluating our models
for downstream tasks, we compare them with models trained
directly on a downstream task (No Pretraining). This
is largely how models for real data have been trained in past
research. We propose three foundation models for evalu-
ation: a Classifier, an Adversarial model, and a
Contrastive model, all trained on both ZTF and LSST
data. We evaluate these three methods of pretraining on
various downstream and zero-shot tasks. While our FMs
are trained on ZTF and LSST, we also evaluate pretraining
Classifiers on telescopes individually. In Table 1, we
clearly disambiguate which dataset the model used for pre-
training. In Table 2, Classifier refers to our proposed
foundation model trained on both ZTF and LSST data.

4. Results
We evaluate our foundation models on multiple downstream
tasks using both real observational data and simulated data
from different telescopes. Our experiments demonstrate
that pretraining on physics-informed simulations provides
substantial improvements over training from scratch, with
particularly strong results for cross-survey generalization.
Further analysis can be found in Appendix D.

4.1. Downstream Performance on Real Astronomical
Data

As seen in Table 1, our classifier-based foundation models
outperform previous baseline methods trained directly on
numerous tasks. Overall, these models achieve better perfor-
mance than state-of-the-art (SoTA) no pretraining methods
for astronomical tasks on real data. We also see performance
improvements for tasks from the Limited to Full testing
scenarios, which makes sense as more data for fine-tuning
should result in better performance. This also indicates that
the simulations used for pretraining do not perfectly reflect
real data, which we further discuss in Appendix D.2.

Surprisingly, our models also improve performance on tasks
on Kepler Data, even though Kepler data is not given to
the model during pretraining. Kepler specifically looks for
periodic transient events, in comparison to the supernova
transients from ZTF and LSST. We find this to be similar to
how LLMs perform well on tasks they were not trained on.

4.2. Cross-Survey Generalization: Zero-Shot Inference
for LSST

Our contrastive and adversarially trained models are de-
signed to be domain-agnostic and understand relationships
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Model ZTF Real Data Kepler Real Data Simulations (Redshifting)
(Pretraining Data) Classification Redshift (×102) AD Classification ZTF LSST

Limited Full Limited Full Limited Full Full Full Full
Previous Work 0.637 0.853 0.602 0.385 0.498 0.527 0.901 0.079 0.289
No Pretraining ±0.005 ±0.013 ±0.005 ±0.031 ±0.013 ±0.027 ±0.003 ±0.022 ±0.018
Classifier 0.875 0.904 0.491 0.387 0.605 0.596 0.028 0.252
ZTF ±0.020 ±0.012 ±0.010 ±0.036 ±0.025 ±0.008 ±0.003 ±0.004
Classifier 0.879 0.910 0.479 0.382 0.622 0.616 0.968 0.026 0.177
ZTF and LSST ±0.011 ±0.013 ±0.006 ±0.039 ±0.018 ±0.036 ±0.006 ±0.002 ±0.008
Contrastive 0.886 0.914 0.487 0.373 0.584 0.576 0.946 0.028 0.191

±0.026 ±0.005 ±0.003 ±0.017 ±0.018 ±0.028 ±0.021 ±0.002 ±0.013
Adversarial 0.844 0.853 0.520 0.419 0.559 0.546 0.925 0.030 0.197

±0.016 ±0.012 ±0.004 ±0.042 ±0.024 ±0.077 ±0.015 ±0.003 ±0.014
Performance Metric AUROC AUROC MSE MSE AUROC AUROC AUROC MSE MSE

Table 1. Foundation model performance on various tasks. We train five different foundation models and fine-tune each of them five times.
We report the mean and standard deviation of these recorded results. The final three model rows are the main contributions of this work
and the first row is the current baseline and often the SoTA. The best performance is bolded for each task.

Pretraining Redshifting Data LSST MSEZTF LSST

D
ir

ec
t No Pretraining No Yes 0.0750± 0.0252

No Pretraining Yes Yes 0.0614± 0.0033
Classifier Yes Yes 0.0579± 0.0061

Z
er

o-
sh

ot

No Pretraining Yes No 0.1869± 0.0127
Classifier Yes No 0.1035± 0.0081
Contrastive Yes No 0.0727± 0.0056
Adversarial Yes No 0.0744± 0.0063
Contrastive kNN Yes No 0.0854± 0.0040

Table 2. Performance of various models for LSST redshift estima-
tion. Performance is reported as the mean and standard deviation
of training five different FMs and five iterations of fine-tuning each
of them. Our zero-shot methods achieve similar performance to
previous methods directly trained on redshifting LSST. We find
no benefit to training with both the contrastive and adversarial
objective.

between different telescopes in their latent space. To lever-
age this learned relationship, we first fine-tune our FM on
a downstream task for ZTF and then evaluate this model’s
zero-shot performance on LSST. Importantly, we freeze the
entire FM to preserve the learned relationship between the
surveys during pretraining. If our FM is indeed encoding
a unified latent space, the zero-shot performance on LSST
should improve as we train on ZTF. When evaluating LSST
redshifting in the zero-shot setting, we restrict the evaluation
to LSST light-curves in the same redshift range as ZTF. This
decision is discussed further in Appendix A.1.

As seen in Table 2, domain-agnostic FMs fine-tuned only
ZTF redshifting data (simulated time-series with correspond-
ing redshift measurements) work exceptionally well when
repurposed to redshift simulated LSST transients. We com-
pare these zero-shot methods to previous baseline methods
that do not involve pretraining and our proposed method
involving pretraining (similar to the fine-tuning done for
Table 1). Models trained on both ZTF and LSST redshift-
ing data (Rows 2 and 3 of Table 2) are first fine-tuned to
redshift ZTF and then to redshift LSST. We describe the k
Nearest Neighbors (kNN) zero-shot estimation method in
Appendix E. Overall, our domain-agnostic models achieve

the performance of baseline methods trained directly on
LSST without any LSST data and significantly improve the
performance of previous zero-shot methods.

Table 2 further reiterates that pretraining on adjacent do-
mains and tasks produces SoTA models. The best model for
this redshift estimation task outside the zero-shot scenario
is a pretrained classifier fine-tuned on both ZTF and LSST
redshifting data, essentially incorporating two tasks across
two domains.

5. Conclusion
The shift from manual discovery to data driven discovery has
motivated the development for machine learning in many
scientific domains. Effective foundation models can expe-
dite this process, and to build such models for astronomy,
we propose leveraging existing physics-informed simula-
tions. Training specialized classifiers on human-generated
simulated data proves to be an effective way to incorporate
domain expertise into these models. Fine-tuning our models
for tasks on real data achieves SoTA performance on nu-
merous downstream tasks and has excellent zero-shot task
performance. We believe that the development of founda-
tion models for astronomy is the next major step in expedit-
ing discovery and we hope that this work facilitates future
research in the development of FMs for science through
supervised training.

We see numerous promising research directions for future
work. Incorporating unlabeled data in model fine-tuning
could yield better results by better exposing models to the
structure of real data after being pretrained. Further, differ-
ent methods of supervision could help models extract more
meaningful information from physics-informed simulations.
In conclusion, our work aims to bridge the gap between
past research for machine learning for astronomy, with the
current era of discovery necessitating the development of
models that leverage all that we know for novel tasks.
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A. Task Descriptions
In this section, we describe each downstream task in detail.

1. Training Data (Supernova data)

(a) Classification (Sims): Simulated time series with
corresponding class labels from ZTF (Muthukr-
ishna et al., 2019; PLAsTiCC Modelers, 2019)
and LSST (Narayan & ELAsTiCC Team, 2023).
This task is only used for training our FMs.

2. Supernova Data Downstream Tasks (in domain)

(a) Classification (Real Data): Real time series from
ZTF data with corresponding class labels (Re-
hemtulla et al., 2024). This task is evaluated using
the macro-averaged Area under the ROC Curve
(AUROC).

(b) Anomaly Detection: Real time series from ZTF
with anomalous objects labeled (Rehemtulla et al.,
2024). This task is also evaluated using the macro-
averaged AUROC metric, treating anomaly detec-
tion (AD) as a binary classification task. Models
are not provided any anomalous data during train-
ing to emulate real-world AD.

(c) Redshift Estimation (Real Data): Real time se-
ries from ZTF with corresponding spectroscopic
redshifts (Rehemtulla et al., 2024). This task is
evaluated using the mean squared error (MSE).

(d) Redshift Estimation (Sims): Simulated time series
from ZTF (Muthukrishna et al., 2019; PLAsTiCC
Modelers, 2019) and LSST (Narayan & ELAs-
TiCC Team, 2023) with corresponding spectro-
scopic redshifts. This task is evaluated similarly
to the last one using the MSE. We note that this
task does not share any data with the training task
that also uses simulated data.

(e) Zero-shot Redshift Estimation (Sims): Special
testing scenario of the above task. The training
data includes ZTF and evaluation is performed
zero-shot on LSST data. This task is evaluated
using the MSE.

3. Periodic Data Downstream Tasks (out of domain)

(a) Periodic Classification (e.g. Audenaert et al.,
2021): Real time series from Kepler (Audenaert
et al., 2021) with corresponding class labels. This
task is evaluated using the macro-averaged AU-
ROC metric.

For most benchmarks on real data, we propose two scenarios.
The Limited scenario limits the amount of data available
for fine-tuning to simulate the development process for new
telescopes where labeled data will not be readily available.

In this scenario, the rest of the data is provided without
labels. We choose to limit this scenario to 512 labeled
objects for each task which is the amount of data that can
be labeled in a few months on new telescopes. Due to
the high variability in selecting such a small number of
samples, we evaluate over 5 randomly selected Limited
data samples. Incorporating unlabeled data into the model
fine-tuning process is beyond the scope of this work, but we
hope that future researchers explore ways to accomplish this.
The Full mode includes all data. The zero-shot redshift
and Kepler benchmarks do not include the Limited testing
scenario, the latter is an out-of-domain benchmark that is
not a direct target for our FMs.

A.1. Simulated Tasks

Table 3 shows the number of objects per supernova class in
our datasets. The supernova classes are described further
in previous work (Gupta et al., 2024; Muthukrishna et al.,
2022). The classification tasks are used for pretraining and
redshift task is used for downstream zero-shot evaluation.
Because classification is used for pretraining, we ensure that
there is no overlap between the data for both tasks. The
LSST zero-shot redshift estimation task restricts evaluation
to light curves that are in the ZTF redshift range. We do this
because, as seen in Fig. 2, LSST will observe a far greater
range of redshifts. The goal of this work is to leverage exist-
ing data for future models, and the current prior only exists
for data from ZTF. Thus, we find it reasonable to perform
zero-shot evaluation solely on LSST. Evaluating in this man-
ner also seems to limit the applicability of these zero-shot
models, however astronomers may know the rough redshift
range of an object and thus can choose to use these models
when they see fit.

A.2. ZTF Real Data

Table 4 shows the number of light curves from each class in
our dataset of real ZTF light curves. We define anomalies
to be transients from any of the following classes: TDE, Ca-
rich, ILRT, LBV, LRN, SLSN-I, SLSN-II, SN Ia-91T, SN
Ia-91bg, SN Ibn, SN Ic-BL, SN Icn, and TDE. These objects
are specifically chosen because of their low observation rates
and limited human understanding.

Fig. 3 shows the redshift distribution in our dataset of real
ZTF objects. This redshift range is similar to that of the
simulated ZTF data as seen in 2 [top]. Unlike with the sim-
ulated redshift estimation task, we do not use any real light
curves for pretraining and reserve them solely for evaluation.
Thus, all tasks on ZTF real data share a roughly identical
pool of observed objects. Further information about the real
ZTF data used in this work can be found in (Rehemtulla
et al., 2024).
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Figure 2. The range of redshifts for objects in our datasets. After fine-tuning a domain-agnostic FM to estimate redshifts for ZTF objects,
we evaluate its zero-shot LSST performance only using transients in the ZTF range.

Task SNIa SNIa-91bg SNIax SNIb/c SNII TDE SLSN-I AGN Total
ZTF Classification 9436 10663 10681 6769 31193 9260 10451 8627 87080

LSST Classification 8427 6079 8298 7664 9465 9686 6947 7822 64388
ZTF Redshifting 967 1140 1124 702 3213 932 1053 869 10000

LSST Redshifting 1236 1238 1226 1286 1248 1279 1253 1234 9990
Zero-shot LSST 265 273 535 258 333 215 446 271 2596

Table 3. The amount of simulated labeled data pairs available for the different tasks on simulated data. There is no overlap between the
data in the classification tasks and the redshifting tasks. The zero-shot scenario for LSST only includes transients from LSST which are in
the redshift range of ZTF.

Task SNIa SNIb/c SNII Anomaly Total
Classification 771 (107) 2828 (350) 148 (12) 0 3747

Redshift Estimation 771 (107) 2828 (350) 148 (12) 0 3747
Anomaly Detection 771 (107) 2828 (350) 148 (12) 0 (38) 3785

Table 4. The amount of real labeled data pairs available for the different LSST and ZTF tasks used in this work. The Limited versions
of these tasks use a random sample of 512 objects. The number in parenthesis represents the amount of data provided in the evaluation
set.
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Figure 3. Redshift distribution for our dataset of real ZTF objects

A.3. Zero-Shot LSST Redshifting

The motivation behind zero-shot prediction is to directly
reuse our understanding of ZTF to train models for LSST.
Thus, when we evaluate zero-shot FM performance, we
restrict the evaluation to LSST light-curves in the same
redshift range as ZTF. LSST will observe a much broader
redshift range than ZTF (as seen in Fig. 2) and its imperative
to maximize discovery from all new transients. However,
it is unreasonable to expect that zero-shot models will be
able to perform well on data that is outside the range of
prior telescopes; to build more general models, fine-tuning a
pretrained FM (as done in Table 1) or using transfer learning
(Gupta & Muthukrishna, 2025) is a better option.

A.4. Kepler Tasks

We take the labeled Kepler (Koch et al., 2010; Borucki
et al., 2010) light curve training set of variable stars from
(Audenaert et al., 2021). There are eight different classes,
ranging from stochastic to periodic variability. The number
of light curves per class is shown in Table 5. Detailed class
descriptions of each class can be found in Audenaert et al.
(2021).

Each of the light curves consists 1024 roughly evenly spaced
brightness measurements at a 30 minute sampling rate. Be-
cause ZTF and LSST have a much lower sampling rate and
fewer measurements per time series, we bin the Kepler light
curves by taking mean of every five consecutive observa-
tions, resulting in 205 measurements per light curve. This
more closely matches the number of measurements in our
pretraining sample.

B. Model and Training Details
B.1. Classifier Training

Our neural network classifier is trained to take a vector of
telescope observations as input, with each row being a dis-
tinct observation in the form [λp, ti, fi], where λp represents

the median passband wavelength of the observation, ti rep-
resents the time since the first observation in days, and fi
represents the flux (measured brightness) of the event. We
scale the flux by dividing the measured fluxes by 500, a
value chosen close to the mean of our various datasets. This
limited preprocessing allows for the usage of our models
in real time, however real-time evaluation is beyond the
scope of this work. This input method (Huang et al., 2023;
Gupta et al., 2024; Gupta & Muthukrishna, 2025) and specif-
ically allows for the usage of the same model across surveys,
something not facilitated by many previous input methods.

B.2. Adversarial Training Algorithm

Our adversarial pretraining is summarized in Algorithm
1. Here, Xi denotes the input light curve, ci is its class
label, and Oi ∈ {ZTF,LSST} indicates the observatory.
The latent representation is extracted as Li = CL(Xi),
where CL is the penultimate layer of the classifier. The
categorical cross-entropy loss is denoted by H(p, q), where
p is a predicted distribution and q is a target one-hot vector.

Algorithm 1 Adversarial Training
Require: Dataset {(Xi, ci, Oi)}Ni=1: light curves, class la-

bels, and observatory labels
Require: Classifier C, Discriminator D

1: Initialize C and D with random weights
2: repeat
3: // Step 1: Train the discriminator
4: Freeze the classifier C
5: For each sample, compute latent representation Li =

CL(Xi)
6: Compute discriminator loss:

LD = H(D(Li), Oi)

7: Update D to minimize LD

8: // Step 2: Train the classifier
9: Freeze the discriminator D

10: Compute classifier loss with adversarial objective:

LC = H(C(Xi), ci)−H(D(CL(Xi)), Oi)

11: Update C to minimize LC

12: until convergence

B.3. Contrastive Training Algorithm

For our supervised contrastive loss, we use the contrastive
objective proposed in Chen et al. (2020) for model pretrain-
ing. It is formally defined as follows:

ℓi,j = − log
exp (sim (Li,Lj) /τ)∑2N

k=1 ⊮[k ̸=i] exp (sim (Li,Lk) /τ)
(1)
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Task Aperiodic Constant Contact DSCT BCEP Eclipse GDOR SPB Instr RR CEP Solar
Kepler Classification 831 1000 2260 772 974 630 1171 63 1800

Table 5. The number of labeled data pairs available for each Kepler task used in this work.

where: Li,Lj are the latent representations from the clas-
sifier, sim(Li,Lj) denotes cosine similarity: sim(a,b) =

a·b
∥a∥∥b∥ , τ > 0 is a temperature parameter that scales the
similarity scores, and the loss is computed for all pairs (i, j)
where Xi and Xj share the same class label.

The total supervised contrastive loss is computed by sum-
ming ℓi,j over all valid positive pairs in a batch. This encour-
ages latent vectors from the same class to be close together,
while implicitly pushing apart representations from other
classes.

Our contrastive pretraining is summarized in Algorithm 2.
We set τ = 0.5 similar to the default set in previous work
(Chen et al., 2020).

Algorithm 2 Supervised Contrastive Training
Require: Training set {(Xi, ci)}Ni=1; light curves, class

labels
Require: Classifier C, temperature parameter τ

1: Initialize C with random weights
2: repeat
3: Compute classification loss

LC = H(C(Xi), ci)

4: Compute latent representations Li = CL(Xi)
5: Initialize total contrastive loss LSCL ← 0, counter

M ← 0
6: for each anchor sample i ∈ {1, . . . , N} do
7: Let P (i) = {j ̸= i : cj = ci}
8: for each j ∈ P (i) do
9: Compute pairwise contrastive loss:

ℓi,j = − log
exp (sim (Li,Lj) /τ)∑
k ̸=i exp (sim (Li,Lk) /τ)

10: Accumulate loss: LSCL ← LSCL + ℓi,j
11: Increment counter: M ←M + 1
12: end for
13: end for
14: Compute mean contrastive loss: LSCL ← LSCL/M
15: Compute total loss: L ← LSCL + LC

16: Update C to minimize L
17: until convergence

B.4. Fine-Tuning

B.4.1. GENERAL TASKS

We usually freeze the entire model when fine-tuning for
downstream tasks. However, freezing the initial model does
not work effectively for novel domains (most notably Ke-
pler). Thus, when applying our foundation model to novel
data, we unfreeze the initial neural network layers to assist in
domain generalization. These techniques are motivated by
past research done in transfer learning and they have been
shown to improve performance (Gupta & Muthukrishna,
2025).

B.4.2. ANOMALY DETECTION

For anomaly detection, which is neither a regression or clas-
sification task, we use a classifier-based approach (Gupta
et al., 2024), where a classifier is trained on a set of normal
data. The penultimate layer of this classifier is then used as
a latent space for anomaly detection and an isolation forest
(Liu et al., 2008) is trained using this latent space to detect
anomalies. This method has state-of-the-art (SoTA) perfor-
mance for anomaly detection on real data2 (Perez-Carrasco
et al., 2023; Gupta et al., 2024).

B.5. Architecture Details

Our FMs are built with a recurrent neural network archi-
tecture containing Gated Recurrent Units (GRU; Cho et al.,
2014). We chose to use GRUs because they are shown to be
more effective than RNNs and have quicker training times
than LSTMs (Chung et al., 2014). Further, neural network
and GRU-based models have worked effectively in training
past models for time-domain astronomy (e.g. Boone, 2019;
Gupta et al., 2024; Muthukrishna et al., 2019). The provided
code has more details describing the exact architecture.

When fine-tuning our FMs on downstream tasks for real data,
we freeze the foundation model and leave the MLP unfrozen.
When training on tasks from new observatories, we further
unfreeze the initial layers. These decisions were based on
rough hyperparameter searches. More precise tuning is
beyond the scope of this work and the main contributions
stand as long we remain consistent across different model
types. The provided code also has more details on which
layers are frozen.

2This dataset uses human-defined features extracted from light
curves. However, they are not standardized across telescopes and
thus we opt to use raw time series for our models.
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We train and fine-tune our models using the Adam optimizer
(Kingma & Ba, 2017) and stop training when the validation
loss has not decreased for 5 epochs. Our classifier-based,
adversarial, and contrastive models take roughly 10, 20, and
45 minutes to converge on a standard V100 GPU respec-
tively. The final experiments required an estimated 15-25
GPU hours, however ideation and experimentation required
considerably more.

Fig. 4 shows the training loss as a function of epoch for our
models. Contrastive and adversarial models end at a worse
cross-entropy loss but are able to simultaneously optimize
for more complex loss functions. All models perform well
on downstream tasks, as seen in Table 1, which shows that
there is no clear metric to predict how well an FM will
perform on downstream tasks. This opens up future research
to use different techniques to achieve better performance.

C. Qualitative Latent Space Analysis
Fig. 5 and 6 show a UMAP (McInnes et al., 2020) visu-
alization of the penultimate layer of our neural network
classifiers. As seen, contrastive and adversarial models help
unify the distributions of ZTF and LSST in the latent space
down to the class level.

D. Further Analysis
D.1. Adversarial vs. Contrastive Loss

Incorporating the specialized training techniques proposed
in this work does not improve model performance on down-
stream tasks (Table 1), which makes sense because the spe-
cialized loss functions are not designed for direct down-
stream tasks. In the case of the adversarial loss, however,
we see a significant decrease in performance. We believe
this is because the adversarial model lacks direct supervi-
sion and is forced to learn an implicit relationship between
the two telescopes while training, whereas the contrastive
model is given an explicit relationship through the super-
vised contrastive loss.

On zero-shot tasks, the adversarial and contrastive models
outperform a classifier, showing that the unification in the
latent space is indeed meaningful. The contrastive model
slightly outperforms the adversarial model, similar to Table
1, and we think this is again due to the increased supervi-
sion provided during model training. Training with both
losses simultaneously also does not improve performance
in comparison to a purely contrastive model.

D.2. Performance on Simulations

We observe that fine-tuned performance on real-data lags the
performance on the same tasks for simulations. In the red-
shift task for real data, our best model achieves an R2 score

of 0.431± 0.053, while the same metric for simulations is
0.580 ± 0.011. Models can leverage these physics-based
simulations as effective starting points but still require la-
beled real data to perform well. This gap between real data
and simulations is why there is a significant performance
gap between the Limited and Full evaluation scenarios.
In other words, models trained on simulations need to be
fine-tuned on real data to work well.

D.3. Anomaly Detection

Anomaly detection is the only task in which we do not see
a performance improvement from the Limited to Full
settings (Table 1). By definition, anomalies are objects that
astronomers find interesting. By using human-defined sim-
ulations to pretrain FMs, they are naturally equipped to
detect specifically what humans find interesting. The gap
between simulations and real data is what anomaly detection
pipelines are trying to fill. Further analysis of anomaly de-
tection specifically is out of the scope of this work, however
we hope that future researchers analyze the nature of this
task and how domain expertise can be incorporated into it.

D.4. Are Classifiers the Best Foundation Models?

For our Classifier foundation models, we find that clas-
sification performance (as AUROC or crossentropy) is an
effective metric for model selection, i.e. better performing
classifiers perform better on downstream tasks. However,
this method of model selection does not generalize to our
domain-agnostic FMs (most notably the contrastive model).
These models perform worse on the classification objective
because they optimize for a more complex loss function (as
seen in Fig. 4). However, they still perform well on down-
stream tasks, as noted in Table 1. This result shows that
there is significant room for growth and that novel methods
could incorporate information not captured by the models
described in this work. Ultimately, this line of research does
not end with classifiers.

For example, while we believe that supervised training is a
promising direction for foundation models, at some point
the complexity of physics-informed simulations may render
it difficult to directly incorporate this information into deep
learning models. Thus, using unsupervised methods along-
side class-based supervision in model pretraining is also
an important research direction. This is one of the many
ways we see scientific foundation models expanding beyond
classifiers with more complex pretraining methods.

E. kNN Zero-Shot Estimation
Aside from fine-tuning an MLP, we also evaluate using
a k Nearest Neighbors approach for zero-shot estimation
(Zhang et al., 2024; Parker et al., 2024). To perform zero-
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Figure 4. Loss as a function of training epoch for each FM in this work.

Figure 5. UMAP representations of the final layer of each foundation model. As seen, both the contrastive and adversarially trained
models are able to unify LSST and ZTF transients into the same latent space, unlike a classifier which has distinct clusters.
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Figure 6. UMAP representations of the final layer of each foundation model only for a single class of supernova (Type II). As seen, both
the contrastive and adversarially trained models are able to unify LSST and ZTF transients even at a class level.

shot redshift estimation for an LSST object, we first find the
k = 100 closest ZTF embeddings to the LSST light curve
embedding in the latent space. Then, we use the distance-
weighted average of the corresponding redshifts to estimate
the final redshift of the LSST object. As seen in Table 2,
this zero-shot estimation method performs worse than using
a directly trained MLP.
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