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Abstract

Magnetic resonance imaging (MRI) is widely used by neurologists to detect brain1

abnormalities such as strokes, tumors, and various forms of dementia, includ-2

ing Alzheimer’s disease. However, accurately diagnosing the different stages of3

Alzheimer’s disease remains a challenge, with nearly one in five patients misdi-4

agnosed due to symptom overlap with other conditions. This paper introduces5

QViSTA, a novel hybrid quantum vision transformer (QViT) model that exploits6

quantum parallelism to improve early diagnosis and differentiation of Alzheimer’s7

disease stages. By integrating quantum variational circuits (VQCs) with vision8

transformers (ViTs), QViSTA addresses the data scalability and computational9

efficiency limitations of classical machine learning models. Using a balanced,10

multi-class dataset of 40,000 MRI images, QViSTA achieved a validation area11

under the receiver operating characteristic (AUC) of 87.86% and a test AUC of12

86.67%, closely matching the performance of a benchmarked classical ViT while13

reducing feature space by 3.18%. Early and accurate detection of Alzheimer’s14

disease is critical, as it allows for timely interventions that can significantly improve15

the quality of life for patients and their caregivers. As more hospitals adopt AI16

for biomedical imaging, QViSTA’s innovative approach could dramatically reduce17

misdiagnosis rates, improve patient outcomes, and reduce costs.18

1 Introduction19

Alzheimer’s disease (AD) is the leading progressive neurodegenerative disorder globally, accounting20

for nearly 70% of all dementia cases. Alzheimer’s leads to cognitive decline and severe memory21

loss. The prevalence of dementia is projected to nearly double every 20 years, reaching 78 million by22

2030 and 139 million by 2050, posing substantial challenges to global healthcare systems and society23

[1, 2]. Despite these statistics, the cause and validated disease-modifying treatments for AD remain24

unknown. Consequently, there is a 20-25% misdiagnosis rate due to overlap with other conditions25

like Lewy body dementia and mild cognitive impairment (MCI) [3, 4].26

Past studies have leveraged artificial intelligence (AI) to address the challenges of early diagnosis27

and differentiation of AD. For instance, Bi et al. [5] developed a deep learning model combining28

transfer learning and multi-task learning to improve the accuracy of Alzheimer’s diagnosis, achieving29

improvements over traditional methods. For a comprehensive review, Zhao et al. [6] provides an30

overview of AI advancements in diagnosing Alzheimer’s. However, these studies primarily focus31

on classical machine learning and deep learning models, which suffer from data scalability and32

computational efficiency limitations. Hence, we introduce QViSTA, a novel hybrid quantum vision33

transformer (QViT) model, to address these challenges.34
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Kim [7] introduced the first quantum machine learning (QML) approach by leveraging a hybrid35

quantum convolutional neural network (QCNN) for Alzheimer’s classification. However, the approach36

was limited to a binary classification task (non-demented and demented images), utilized a small37

dataset, and used CNNs. In contrast, QViSTA handles a multiclassification task to better reflect38

real-world usage in a clinical setting. Additionally, QViSTA employs a larger and balanced dataset to39

leverage the superior performance of hybrid QML models compared to classical models when dealing40

with larger datasets, due to their inherent parallelism and ability to explore vast solution spaces [8].41

Maurício et al. [9] compares CNNs with ViTs, demonstrating that ViTs’ self-attention mechanism42

allows overall image information to be accessible from the surface to the deepest layers and that43

their parameter efficiency provides higher accuracy while using fewer computational resources and44

reduced training time. As QViSTA leverages a hybrid version of a ViT, it can capitalize on the45

strengths of ViTs, making it better suited for image classification tasks.46

2 Methodology47

2.1 Dataset and Preprocessing48

To conduct our multi-class classification experiments, we use the dataset published by uraninjo49

[10] on Kaggle. This dataset contains 40,384 skull-stripped, pre-augmented MRI images. The50

dataset is categorized into four stages of Alzheimer’s disease: Non-Demented, Very Mildly De-51

mented, Mildly Demented, and Moderately Demented. However, we find a significant class52

imbalance among the labels, which could lead to a biased model. To address this, we apply53

additional augmentations (random flips and 5◦rotations) to upsample underrepresented classes54

to 10,000 images and downsample classes over 10,000 images, ultimately achieving a balanced55

dataset of 40,000 images. To prepare the dataset for model development, we convert the im-56

ages to grayscale to reduce dimensionality and better replicate MRI scans. We further reduce57

the dimensionality of the images to 128 by 128 pixels and normalize them using mean and stan-58

dard deviation normalization. Finally, we perform an 80-10-10 training-validation-test split to run59

our experiments. Sample images from the final dataset(https://www.kaggle.com/datasets/60

aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented) are depicted61

in Figure 1. The codebase for QViSTA can be found in the following GitHub repository:62

https://github.com/3x-dev/QViSTA.

Figure 1: Sample images for each stage of Alzheimer’s from the final dataset.

63

2.2 QViSTA Development64

To develop QViSTA we first leverage a multi-layer perceptron (MLP), described as a composition of65

elementwise non-linearities (activation function) with affine transformations of the data [11].66

The affine transformation is defined as:67

a(x) =Wx+ b,

and the activation function is applied to each component of the output vector a:68

f(x) = σ(a(x)),

where σ denotes the activation function. For our activation function, we use Gaussian Error Linear69

Unit (GeLU) [12], defined as:70

GELU(x) = xΦ(x),

2

https://www.kaggle.com/datasets/aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented
https://www.kaggle.com/datasets/aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented
https://www.kaggle.com/datasets/aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented
https://github.com/3x-dev/QViSTA


Alzheimer’s Severity
Classification

Quantum Vision Transformer
for Alzheimer’s (QViSTA)

MRI Image

Figure 2: QViSTA architecture overview for Alzheimer’s classification.

Apart from MLP, we leverage the main building block of a transformer architecture [13] by taking71

a matrix X ∈ RN×D and transforming it. Each of these layers has two sub-layers: a multi-head72

self-attention mechanism (MHA), the core of the transformer, and a simple MLP:73

Z = X + LayerNorm(MHA(X,X,X)),
74

X ′ = Z + LayerNorm(MLP(Z)).

The attention function is vital, allowing the transformer to focus on specific input patches. The75

attention function is defined as [13]:76

Attention(Q,K, V ) = softmax
(
QKT

√
Dk

)
V,

where Dk is the dimension of the keys.77

The baseline vision transformer [14] divides the image into patches given by N = HW
P 2 and then78

transforms it into patch embeddings:79

z0i = Ex′i + pi
In quantum computing, the fundamental unit of information is the qubit which can exist in a80

superposition state to represent non-binary states. Qubits can be defined with the unit vector |ψ⟩ in81

the Hilbert space C2n .82

A quantum circuit is a series of "gates" to change a qubit state represented by U |ψ⟩ where U is a83

2n × 2n. For QViSTA, we use an Rx gate, which performs a single qubit rotation along the x-axis,84

and the CNOT gate, which operates over two qubits and flips the target qubit only if the first qubit is85

|ψ⟩, represented by the following matrices:86

RX(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
87

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
As with the classical ViT, the image is split into patches linearly embedded with position embeddings88

defined by the patch size. For QViSTA, however, these patches are fed to the Quantum Transformer89

Encoder, which employs VQCs in the multi-head attention (MHA) and multi-layer perceptron (MLP)90

components. An overview of QViSTA’s architecture is depicted in Figure 2191

The configuration of the VQC we use is depicted in Figure 32. Initially, each feature of the vector92

x = (x0, . . . , xn−1) is converted into rotation angles and embedded into the qubits. Subsequently, a93

1The figure is inspired by [14], but has been modified to reflect the architecture for QViSTA.
2The configuration is inspired by [15], but has been modified to reflect the configuration for QViSTA.
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Table 1: Tuned hyperparameters used to define QViSTA’s network.

Hyperparameter Value
Batch Size 16
Epochs 30
Patch Size 64
Hidden Size 6
Hidden MLP Size 5
Number of Transformer Blocks 6
Number of Attention Heads 3
Optimizer AdamW
Gradient Clipping Norm 1
Learning Rate Scheduler Linear warmup (9K steps: 0 to 10−3); cosine decay (70K steps)

Total number of hyperparameters θ: 25,390 for quantum; 26,224 for classical

layer of single-qubit rotations, parameterized by θ = (θ0, . . . , θn−1), operates on each qubit. These94

parameters are optimized alongside the other model parameters. Following this, a ring of CNOT95

gates is applied to entangle the qubit states, emulating the effect of matrix multiplication. Finally,96

each qubit is measured, and the output proceeds to the subsequent component of the encoder.97

We use Ray Tune [16] to tune the hyperparameters and employ its advanced algorithms, such as98

Population Based Training (PBT) and HyperBand/ASHA [17], to optimize QViSTA for maximum99

robustness and efficiency. Both QViSTA and the classical ViT are trained with the same hyperparame-100

ters for consistent comparison. We use the AdamW optimizer with gradient clipping to ensure stability101

and robustness by preventing large gradients from hindering optimization. A cosine annealing learn-102

ing rate scheduler with warm-up and cosine decay is employed for smooth convergence, particularly103

beneficial for transformer models [18]. A detailed breakdown of the model hyperparameters is shown104

in Table 1.105

To evaluate the performance of QViSTA, we use the Receiver Operating Characteristic (ROC) curve.106

For AD classification, this curve represents the model’s ability to correctly predict a scan (TPR: true107

positive rate) versus its ability to incorrectly predict a scan (FPR: false positive rate). For each epoch108

of each model configuration, we compute the area under the ROC curve (AUC). After all epochs are109

run, we select the parameters from the epoch with the highest validation AUC and re-evaluate them110

on a separate test batch to obtain the final test AUC.111

We use Google’s JAX [19] and Flax [20] libraries to implement and train the classical components of112

QViSTA and the classical baseline (ViT). In addition, we use TensorCircuit [21] to implement, train,113

and execute the VQCs through mathematical simulations on an Intel CPU. TensorCircuit enables114

rapid training of the quantum model, achieving approximately two minutes per epoch.

Figure 3: VQC configuration where Rx denotes rotations around the X-axis.

115

3 Results and Discussion116

QViSTA and the baseline ViT’s AUC scores and confusion matrices are depicted in Figure 4.117
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Figure 4: Images on the right: ROC curves for QViSTA and baseline ViT. The black dashed line
represents the performance of a random classifier. Images on the left: Multiclass label confusion
matrices for QViSTA and baseline ViT.

We find that QViSTA achieved a validation AUC of 87.86% and a test AUC of 86.67%. The baseline118

ViT had a validation AUC of 88.39% and a test AUC of 88.39%. The ROC curve for QViSTA119

indicates that it performs best in classifying Moderate Demented cases with an AUC of 0.96 and120

worst in classifying Very Mild Demented cases with an AUC of 0.70. The ViT follows a similar121

performance pattern, performing best for Moderate Demented cases with an AUC of 0.97 and worst122

for Very Mild Demented cases with an AUC of 0.74.123

Observing the confusion matrices, QViSTA achieves the highest TPR for Moderate Demented124

cases, with 861 correctly identified out of 900. Very Mild Demented cases demonstrate the highest125

misclassification rates, with only 483 correctly identified. In comparison, the baseline ViT also shows126

strong performance in identifying Moderate Demented cases, with 880 correct classifications. Similar127

to QViSTA, the Very Mild Demented cases perform the worst, with only 438 correctly identified128

instances. We believe the models performed better on the Moderate Demented cases as they present129

more pronounced symptoms, leading to higher classification accuracy as the models can more easily130

identify the more significant deviations in the data. Conversely, the models performed poorer on131

Non Demented and Very Mild Demented cases as the subtle differences in symptoms and features132

between these stages make it challenging for the models to differentiate them accurately.133

Both models peak at epoch 30, suggesting an equal rate of convergence. We observed that QViSTA134

performed very similarly to ViT, with a slight difference in test accuracy and slightly higher ROC135

areas for ViT. However, parameter usage seemed to favor QViSTA, placing it as the lighter and136

potentially more efficient of the two. This may imply better use on hospital computers.137
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We believe that the simulation of qubits resulted in significant memory consumption and reduced138

accuracy. While accuracy ended up being slightly lower for QViSTA, the simulation of qubits139

seemed to play a prominent role in the difference. We hypothesize that it is harder for the optimizer140

to find good parameters for these mathematically simulated VQCs, resulting in a slightly lower141

accuracy score for QViSTA. In addition, these simulated VQCs are not able to truly exploit quantum142

parallelism, resulting in naturally inferior robustness compared to a true quantum computer.143

4 Conclusions and Future Work144

In this paper, we introduced QViSTA, a novel QViT architecture designed for the multi-stage early145

diagnosis of Alzheimer’s. The novelty comes from the application of this architecture for multi-stage146

early Alzheimer’s diagnosis and the introduction of more optimized VQCs specifically designed for147

this task. QViSTA was benchmarked against a classical ViT and used fewer parameters to achieve148

comparable performance. Our results are encouraging and warrant future investigation.149

We aim to advance QViSTA by implementing multimodality with PET scans and genetic data.150

Furthermore, we aim to evaluate more hyperparameter configurations by potentially including other151

quantum-inspired optimization algorithms, such as Quantum Annealing [22]. Finally, we hope to152

leverage true quantum hardware, such as an IBM quantum computer3, for QViSTA and investigate its153

performance under such conditions.154

References155

[1] Dementia, Mar 2023. URL https://www.who.int/news-room/fact-sheets/detail/156

dementia.157

[2] Dementia statistics, Jun 2020. URL https://www.alzint.org/about/158

dementia-facts-figures/dementia-statistics/.159

[3] It’s not always dementia: Top 5 misdiagnoses, Jun 2024. URL https://www.humangood.160

org/resources/senior-living-blog/top-five-dementia-misdiagnoses.161

[4] Thousands are misdiagnosed with dementia every year, Jun 2024. URL https://news.162

umiamihealth.org/en/its-not-always-dementia-heres-what-to-know/.163

[5] Xia-an Bi, Xi Hu, Hao Wu, and Yang Wang. Multimodal data analysis of alzheimer’s disease164

based on clustering evolutionary random forest. IEEE Journal of Biomedical and Health165

Informatics, 24(10):2973–2983, 2020. doi: 10.1109/JBHI.2020.2973324.166

[6] Z. Zhao, J. H. Chuah, K. W. Lai, C. O. Chow, M. Gochoo, S. Dhanalakshmi, N. Wang,167

W. Bao, and X. Wu. Conventional machine learning and deep learning in alzheimer’s disease168

diagnosis using neuroimaging: A review. Frontiers in Computational Neuroscience, 17:1038636,169

2023. doi: 10.3389/fncom.2023.1038636. URL https://doi.org/10.3389/fncom.2023.170

1038636.171

[7] Ryan Kim. Implementing a hybrid quantum-classical neural network by utilizing a variational172

quantum circuit for detection of dementia, 2023. URL https://arxiv.org/abs/2301.173

12505.174

[8] Kamila Zaman, Tasnim Ahmed, Muhammad Abdullah Hanif, Alberto Marchisio, and Muham-175

mad Shafique. A comparative analysis of hybrid-quantum classical neural networks, 2024. URL176

https://arxiv.org/abs/2402.10540.177

[9] José Maurício, Inês Domingues, and Jorge Bernardino. Comparing vision transformers and178

convolutional neural networks for image classification: A literature review. Applied Sciences,179

13(9):5521, 2023. doi: 10.3390/app13095521. URL https://www.mdpi.com/2076-3417/180

13/9/5521.181

[10] uraninjo. Augmented alzheimer mri dataset v2, 2020. URL https://www.kaggle.com/182

datasets/uraninjo/augmented-alzheimer-mri-dataset-v2. Accessed: 2024-06-25.183

3https://www.ibm.com/quantum

6

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://www.humangood.org/resources/senior-living-blog/top-five-dementia-misdiagnoses
https://www.humangood.org/resources/senior-living-blog/top-five-dementia-misdiagnoses
https://www.humangood.org/resources/senior-living-blog/top-five-dementia-misdiagnoses
https://news.umiamihealth.org/en/its-not-always-dementia-heres-what-to-know/
https://news.umiamihealth.org/en/its-not-always-dementia-heres-what-to-know/
https://news.umiamihealth.org/en/its-not-always-dementia-heres-what-to-know/
https://doi.org/10.3389/fncom.2023.1038636
https://doi.org/10.3389/fncom.2023.1038636
https://doi.org/10.3389/fncom.2023.1038636
https://arxiv.org/abs/2301.12505
https://arxiv.org/abs/2301.12505
https://arxiv.org/abs/2301.12505
https://arxiv.org/abs/2402.10540
https://www.mdpi.com/2076-3417/13/9/5521
https://www.mdpi.com/2076-3417/13/9/5521
https://www.mdpi.com/2076-3417/13/9/5521
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset-v2
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset-v2
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset-v2
https://www.ibm.com/quantum


[11] Juergen Schmidhuber. Annotated history of modern ai and deep learning. arXiv preprint184

arXiv:2212.11279, 2022. URL https://arxiv.org/abs/2212.11279. Technical Report185

IDSIA-22-22.186

[12] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https:187

//arxiv.org/abs/1606.08415.188

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,189

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-190

tion Processing Systems 30 (NIPS 2017), 2017. URL https://proceedings.neurips.cc/191

paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.192

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,193

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,194

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image195

recognition at scale. arXiv preprint arXiv:2010.11929, 2021. URL https://arxiv.org/196

abs/2010.11929.197

[15] Marçal Comajoan Cara, Gopal Ramesh Dahale, Zhongtian Dong, Roy T. Forestano, Sergei198

Gleyzer, Daniel Justice, Kyoungchul Kong, Tom Magorsch, Konstantin T. Matchev, Katia199

Matcheva, and Eyup B. Unlu. Quantum vision transformers for quark–gluon classification.200

Axioms, 13(5):323, May 2024. ISSN 2075-1680. doi: 10.3390/axioms13050323. URL201

http://dx.doi.org/10.3390/axioms13050323.202

[16] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion203

Stoica. Tune: A research platform for distributed model selection and training, 2018. URL204

https://arxiv.org/abs/1807.05118.205

[17] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion206

Stoica. Tune: A research platform for distributed model selection and training. arXiv preprint207

arXiv:1807.05118, 2018. URL https://arxiv.org/pdf/1807.05118.208

[18] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv209

preprint arXiv:1608.03983, 2016. URL https://arxiv.org/pdf/1608.03983. University210

of Freiburg.211

[19] Google Research. Jax: Autograd and xla. https://github.com/google/jax, 2023. Ac-212

cessed: 2023-06-26.213

[20] Google Research. Flax: A neural network library and ecosystem for jax. https://github.214

com/google/flax, 2023. Accessed: 2023-06-26.215

[21] Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun, Hao Yu, Xing-Han216

Yang, Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-Kong Lee, Yi-Cong Zheng, Shao-Kai217

Jian, Hong Yao, Chang-Yu Hsieh, and Shengyu Zhang. Tensorcircuit: a quantum software218

framework for the nisq era. Quantum, 7:912, February 2023. ISSN 2521-327X. doi: 10.22331/219

q-2023-02-02-912. URL http://dx.doi.org/10.22331/q-2023-02-02-912.220

[22] Hadi Salloum, Hamza Shafee Aldaghstany, Osama Orabi, Ahmad Haidar, Mohammad Reza221

Bahrami, and Manuel Mazzara. Integration of machine learning with quantum anneal-222

ing. Advanced Information Networking and Applications, pages 338–348, 2024. doi:223

10.1007/978-3-031-57870-0_30. URL https://www.researchgate.net/publication/224

379781610_Integration_of_Machine_Learning_with_Quantum_Annealing.225

7

https://arxiv.org/abs/2212.11279
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
http://dx.doi.org/10.3390/axioms13050323
https://arxiv.org/abs/1807.05118
https://arxiv.org/pdf/1807.05118
https://arxiv.org/pdf/1608.03983
https://github.com/google/jax
https://github.com/google/flax
https://github.com/google/flax
https://github.com/google/flax
http://dx.doi.org/10.22331/q-2023-02-02-912
https://www.researchgate.net/publication/379781610_Integration_of_Machine_Learning_with_Quantum_Annealing
https://www.researchgate.net/publication/379781610_Integration_of_Machine_Learning_with_Quantum_Annealing
https://www.researchgate.net/publication/379781610_Integration_of_Machine_Learning_with_Quantum_Annealing

	Introduction
	Methodology
	Dataset and Preprocessing
	QViSTA Development

	Results and Discussion
	Conclusions and Future Work

