
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LFPS: LEARNED FARTHEST POINT SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

The processing of point clouds with deep neural networks is relevant for many
applications, including remote sensing and autonomous driving with LiDAR sen-
sors. To ensure the computational feasibility of point cloud processing, it is crucial
to reduce the cloud’s resolution, i.e., its number of points. This downsampling of
point clouds requires a deep learning model to abstract information, enabling it to
process points within a more holistic context. A traditional technique for reduc-
ing the resolution of a point cloud is Farthest Point Sampling (FPS). It achieves
a uniform point distribution but does not adapt to the network’s learning process.
In contrast, learned sampling methods are adaptive to the network but cannot be
seamlessly incorporated into diverse network architectures and do not guarantee
uniformity. Thus, they can miss informative regions of the point cloud, reducing
their effectiveness for large-scale point cloud applications.
To address these limitations and bridge the gap between algorithmic and learned
sampling methods, we introduce Learned Farthest Point Sampling (LFPS), an in-
novative approach that combines the advantages of both algorithmic and learned
techniques. Our method relies on a novel loss function designed to enforce a uni-
form point distribution. We show by theoretical proof that its minima guarantee
a uniformity comparable to FPS. Furthermore, we extend the loss function to in-
clude information about key points, enabling the network to adaptively influence
point selection while preserving uniform distribution in relevant as well as less rel-
evant regions. In experimental studies, we evaluate the performance of LFPS both
independently and within existing network architectures. Our results (a) show that
LFPS serves as a plug-in alternative for algorithmic sampling methods, particu-
larly as a faster alternative to FPS for large-scale point clouds, and (b) confirm the
enhanced performance of LFPS across various tasks, emphasizing its versatility
and effectiveness.

1 INTRODUCTION

With the expanding use of point clouds generated by sensors across a wide range of applications,
there is growing demand for and interest in developing methodologies that effectively address the
unique challenges posed by these datasets. One key method is downsampling, which plays a critical
role in various applications. It is an essential component of numerous network architectures (Qian
et al., 2022; Qi et al., 2017b; Fang et al., 2024). By reducing computational complexity and resource
demands, downsampling not only accelerates processing times for large-scale point data but also
facilitates the extraction of higher-level features. In the context of machine learning, downsampling
is a fundamental component of network architectures. In 2D computer vision, pooling and strided
convolutions iteratively summarize large image areas into smaller feature maps, improving both
model efficiency and performance by providing a more holistic view of the data. The analogous
principle applies to point-based machine learning networks, where a downsampling method needs
to determine which points to retain as the network progresses through its layers.

Current methods for point-based downsampling can be categorized into standalone algorithmic and
learnable sampling methods. Our objective is to synergize the strengths of both groups by introduc-
ing our universally applicable Learned Farthest Point Sampling (LFPS) method which can be inte-
grated into neural networks that require a downsampling of points. Learned sampling approaches
cannot guarantee full coverage of the entire point cloud, which can be especially problematic for
large-scale point clouds as visible in Fig. 1. In contrast, LFPS achieves a uniform point distribu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Learned sampling with APES (left) compared to LFPS (right). LFPS covers the entire
point cloud while focusing on informative regions, resulting in improved performance.

tion that resembles Farthest Point Sampling (FPS) while retaining the flexibility to prioritize more
informative regions of the point cloud. Our main contributions can be summarized as follows:

• Formulation of a novel loss function derived from the sampling properties of FPS, along
with a theoretical proof that the loss function’s minima correspond to a sampling scheme
with FPS-equivalent characteristics.

• Development of a refined framework that leverages learned sampling, allowing the network
to influence point selection.

• Extensive ablation studies demonstrating that a network trained with the proposed loss
function can attain the predicted minima and illustrating the effectiveness of the underlying
operating principles.

• Experimental evidence showing that LFPS can serve as a seamless replacement of ex-
isting approaches in supervised and unsupervised learning models resulting in improved
performance. Notably, experiments on large-scale point clouds demonstrate improved run-
time efficiency compared to FPS and enhanced accuracy compared to a learned sampling
method.

2 POINT CLOUD SAMPLING IN DEEP LEARNING APPLICATIONS

There are two primary categories of sampling methods for point clouds. The first category consists
of task-agnostic algorithmic approaches, which aim to sample points either uniformly or with high
efficiency. The second category comprises learned sampling methods, where the selection of points
is based on the network’s preferences and task-specific requirements. The most established algo-
rithmic sampling method is Farthest Point Sampling (FPS), which ensures that the sampled points
are evenly distributed across the point cloud (Eldar et al., 1997). This is achieved by iteratively
selecting the point farthest from the already chosen points. However, FPS is sensitive to outliers,
computationally inefficient for large-scale point clouds, and lacks permutation invariance, as the re-
sults depend on the initial starting point. Of course, FPS is not the only task-agnostic algorithmic
method; it has some competitors. Grid sampling, a faster alternative, generates new points based
on the distribution of points within cells of a predefined grid (Wu et al., 2022). Despite its speed
advantage, grid sampling is also sensitive to outliers, can lead to less uniform distributions, and is
constrained by the grid structure. Random sampling, a conceptually simple method, which is, e.g.,
used by Hu et al. (2019), can exacerbate density imbalances and overlook important points within
the cloud.

Those algorithmic sampling methods have been widely integrated into various network architec-
tures. The pioneering point-based network PointNet (Qi et al., 2017a) processes point clouds in a
single hierarchy, while its successor, PointNet++ (Qi et al., 2017b), learns hierarchical local features
across multiple layers and downsampling stages, employing FPS for its downsampling operations.
KPConv (Thomas et al., 2019) uses a set of learnable kernel points to adaptively process point clouds

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and relies on grid sampling to control input point density, doubling the grid size for downsampling.
Recently, transformer-based architectures like Point Cloud Transformer (PCT) (Guo et al., 2021)
have gained popularity. The basic transformer architecture computes global attention based on pair-
wise relationships between all input tokens, significantly increasing memory and computational
costs. Point Transformer (Engel et al., 2020; Wu et al., 2022) reduces this complexity by apply-
ing local attention to neighboring points, with grid sampling reducing input size. Unsupervised
approaches, such as Point-M2AE (Zhang et al., 2022), a masked autoencoder with hierarchy, and
in-context learning methods (Fang et al., 2024), also utilize FPS for downsampling.

Learned sampling methods, which represent the second major group of sampling approaches, take a
different approach. Dovrat et al. (2019) were among the first to apply deep learning for point cloud
sampling, proposing S-Net, which generates a simplified point cloud optimized for a downstream
task. However, the simplified output is not necessarily a subset of the original point cloud, requiring
post-processing to match each simplified point to its nearest neighbor. SampleNet (Lang et al., 2020)
addresses this issue by introducing a differentiable relaxation of the matching operation. Yang et al.
(2019) leveraged Gumbel Softmax to modify the sampling behavior during training and inference.
The Critical Points Layer (Nezhadarya et al., 2020) offers a permutation-invariant sampling tech-
nique that retains key points based on the maximum feature values produced. APSNet (Ye et al.,
2022) uses attention-based sampling with a simplified PointNet and an LSTM to select the most
informative points, jointly optimizing sampling and task loss during training on point cloud videos.
APES (Wu et al., 2023) is an attention-based method designed for sampling points along the edges
of a point cloud. Meanwhile, Wang et al. (2023) propose a transformer-based sampling technique
LighTN aimed at improving efficiency. ADS (Hong et al., 2023), on the other hand, clusters points
with mean shift clustering before selecting the most informative ones from each cluster. Addition-
ally, Wen et al. (2023) present a method that preserves object geometry by generating a skeleton
as prior knowledge and using it to guide the sampling process. Despite these advancements, task-
adaptive sampling methods face significant challenges when integrated into deep network archi-
tectures as replacements for algorithmic sampling methods. Directly differentiable downsampling
methods, such as S-Net, SampleNet, and LighTN, demonstrate their value in obtaining an initial
simplified point cloud that can be processed more efficiently by existing networks. However, these
methods cannot be seamlessly integrated into network structures because the features at higher lev-
els are typically not derived from point positions, but depend on the features of the previous layer,
making meaningful gradient computation for point positions unattainable. Furthermore, methods
like ADS and APES, which rely on point features from earlier layers, are unsuitable for architec-
tures, where sampling occurs before feature computation, such as in Point-M2AE. Additionally,
none of the learned sampling methods explicitly guarantee a uniform distribution of sampled points,
which can lead to significant information loss, particularly in large-scale point clouds. In all these
scenarios, LFPS provides an effective solution to address these challenges.

3 LEARNING TO SAMPLE FARTHEST POINTS

Below, we first revisit the key properties of FPS and leverage the insights to derive a novel loss
function for training a data-driven sampling method. Finally, we use a theoretical sketch to show
that minimizing this loss function leads to a distribution that maintains FPS’ uniformity guarantees.

3.1 CHARACTERIZING FARTHEST POINT SAMPLING

FPS is an iterative procedure that starts from an arbitrary initial point and subsequently selects
points that are maximally distant from the set of already chosen points. This approach is designed
by Eldar et al. (1997) to ensure a relatively even spread of points by maximizing the minimum
distance to the nearest neighbor at each step. While FPS does not necessarily optimize for the mean
nearest neighbor distance or minimize its variance, it does mitigate aliasing artifacts common in
overly regular sampling patterns, particularly in its original context, i.e., image processing. In the
context of point cloud data, given a sufficiently large number of points, this results in similar nearest
neighbor distances for all points, approximating an optimal uniform distribution (see Section 4).

To analyze the uniformity of the distribution of points sampled by FPS, denoted as SFPS, a Voronoi
diagram (VD) is employed. In this framework, points are considered neighbors if, and only if,
they share an edge in the VD. The properties of FPS are formalized with two distance measures:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

xi xj

R R − d(xi, xj)

l̂ i,j

0.00

0.25

0.50

0.75

1.00

Figure 2: The key variable R rep-
resents the radius around a selected
point, within which a newly placed
point incurs a loss value of l̂i,j .

x1 x2

x3

w1 RE w2 RE

w3 RE

l̂ i,j

0.00

0.25

0.50

0.75

1.00

Figure 3: Weighted sampling enables the
use of individually adjusted RE values and
similarity measures l̂i,j for each point, al-
lowing for sampling with variable density.

RM , the maximum distance from a sample point in SFPS to any vertex of the VD, and Rm, the
minimum distance from a sample point to a vertex of the VD. The following theoretical bounds
were established by Eldar et al. (1997):

• For any set of points SFPS the inequality RM ≤ 2 ·Rm holds.

• The pairwise distance between any two points si, sj ∈ SFPS is at least RM .

• The distance between any two neighboring points in SFPS is no more than 2 ·RM .

3.2 A LOSS FUNCTION TO EMULATE FARTHEST POINT SAMPLING

Given those distance bounds, we propose a loss function, denoted as LLFPS(S), to evaluate a sampled
set S by considering each point and its associated neighbor relationships:

LLFPS(S) =
1

|S|
∑
i∈S

l(xi, N
S
i), (1)

where NS
i represents the set of neighbors of point xi within S. We first examine the desired proper-

ties of l(xi, N
S
i) in the continuous case, where points are a direct output of the network’s computa-

tion, and then describe an approach to transfer the loss to the discrete case, where the model can only
select points from a given discrete set P . The function l(xi, N

S
i) should satisfy two key conditions:

First, it should be higher if the average distance to the neighbors is relatively small compared to the
average neighbor distances of the other points. Second, it should reach its minimum when all neigh-
bors are at distance R so that R = 2 ·Rm = 2 ·RM is maximized. Note that R is not known but can
be estimated. The first condition can be formalized by defining a similarity measure as the negative
distance between xi and xj . To satisfy the second condition, we set the similarity measure to zero
for distances equal to or greater than R. This results in the expression max (R− d(xi, xj), 0). See
Fig. 2 for a visual depiction of these parameters. Furthermore, to penalize points that are very close
to xi, we square the similarity measure. Finally, to remain dataset-agnostic, this bounded similarity
can be normalized to be in [0, 1] by dividing by R2. Thus, a possible choice for l(xi, N

S
i) is

l(xi, N
S
i) =

∑
j∈NS

i

l̂i,j where l̂i,j = max

{
1− 1

R
· d(xj , xi), 0

}2

. (2)

However, this loss function can only guide networks that have a direct influence on the position of
the points, meaning when the coordinates are a direct output of the network’s computation. In the
case of discrete point positions that are to be selected, l can only be applied implicitly. Instead,
the network can compute scores for each point and subsequently select the points with the highest
scores. Consequently, we derive a loss function by combining the similarity measure with these

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

predicted scores. Therefore, suppose that there are n = |P | points in the point cloud, each assigned
a predicted score si, from which to sample ⌈n/fd⌉ = |S| points. Here, P denotes the set of points
available for sampling and fd denotes the decrease factor. Further, let Ni ⊂ P denote the neighbor-
hood of xi in the initial point cloud, i.e., before downsampling. Then, for a given point xi ∈ S, there
exist k < n nearest neighbor points xj ∈ Ni. Note that in the discrete case we use k-nearest neigh-
bor relationships instead of neighbor relationships in the context of Voronoi diagrams, as they are
easier to compute and perform better in batches. Assuming the score values lie between 0 and 1 and
the |S| points with the highest scores are to be selected, we propose the following loss function that
effectively distributes the points throughout the k-nearest neighbor graph of P such that the number
of k-nearest neighbors with a high score in each selected point’s neighborhood is minimized.

l(xi, Ni) =
1

k + 1

(1− si)
2 +

∑
j∈Ni

s2j

 . (3)

The second term is essentially the mean squared error (MSE) for the scores assigned to the neighbors
of the selected points, where the error quantifies the extent to which these neighbors are also selected;
ideally, they should not be selected at all and thus should receive a score of 0. This MSE would
be trivially zero if the network predicts a score of 0 for every point, leading to the selection of
points, depending only on the tie breaker rule of the max function. The first term counteracts such
a trivial solution by enforcing the score of the selected points to be 1. However, this does not lead
to a uniform distribution of the selected points when the points in P are not already uniformly
distributed, meaning the nearest neighbor distances between the points in P are not all equal. To
achieve favorable selections in this case as well, the approach for a loss function from Eq. (2) is
combined with that from Eq. (3). By weighting each neighbor’s score according to the similarity
l̂i,j of the neighboring point, closer selected neighbors exert a greater influence on the loss function,
regardless of their ordering. Specifically, a selected neighbor outside the R radius does not increase
the loss function, while in dense regions, the loss is generally higher. Therefore, a network trained
using this loss function implicitly learns to select points distant from each other. Using l̂ from
Eq. (2), this leads to

l(xi, Ni) =
1

k + 1

(1− si)
2 +

∑
j∈Ni

(
sj · l̂i,j

)2

 . (4)

Notice again that the loss – as indicated in Eq. (2) – is calculated based on the k-nearest neigh-
borhood of xi within P , not within S. This distinction does not affect the minimum of Eq. (2), as
non-selected points should be assigned a score of 0 by the network. This approach allows more
points to be included in the loss function calculation, ensuring that they receive a gradient signal.

From a practical standpoint, the choice of the unknown distance R depending on different datasets
poses a challenge. Initial experiments suggest estimating R as RE , defined as the 1st quartile of the
k-nearest neighbor distance for points xi ∈ P , which ensures resilience to outliers. The parameter
k should be chosen such that RE slightly overestimates R (for an appropriate choice of k, see
Section 4.1.2). Although this will lead to a non-zero loss function, there exists a range of values
for RE > R where the theoretical properties of FPS are still satisfied in a minimum of the loss, as
stated in the following theorem.

Theorem For a task in which n points are to be selected from a bounded R2 region defined as
{(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}, let S denote the set of selected points. Given that the
maximum attainable first nearest neighbor distance is R, and with an estimated optimal distance
RE = R + ε, there exists ε > 0 such that the distribution of points in S that minimizes the loss
function LLFPS exhibits the same distance properties as FPS in the two-dimensional continuous
case.

Proof Sketch In Appendix A, we provide the detailed proof for the existence of a range of values
for RE such that minimizing the loss function results in a specific distribution of selected points.
This proof applies to the two-dimensional continuous case, following the proof of the FPS proper-
ties. While this result is derived for a continuous domain, it remains valuable for point clouds that
approximate a manifold. The key idea is to relate the problem of finding the point configuration

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Point distribution obtained by varying the number of channels (left) and number of layers
(right) in the selection network for LFPS (blue), compared to FPS (red) and grid sampling (green).
Points represent the mean distance, and error bars indicate the corresponding standard deviation.
For LFPS, 3 layers and 16 channels are sufficient to achieve performance comparable to FPS.

with minimal loss to the problem of optimal circle packing in two dimensions. The loss reaches
exactly zero, i.e., its minimum, if no point lies within the radius RE of any other point. Therefore,
by drawing a circumcircle with radius RE/2 around each point, it is required that no two circles in-
tersect. This condition makes an optimal configuration equivalent to a solution of the circle packing
problem. If R = RE , the optimal packing of points in a continuous space is achieved through a
hexagonal lattice structure, as this corresponds to the optimal solution to the circle packing problem
(Thue, 1892). In this case, the loss function reaches its minimum value (zero), which reproduces
the distributional properties of FPS. Now, consider the cases where R ̸= RE : If R > RE the loss
function can be minimized through multiple configurations, as the corresponding circles do not need
to be tightly packed, leading to non-unique point distributions. This is undesirable as it may break
the specific properties of FPS, particularly when RE is too small. If R < RE the loss function
cannot reach zero, as no valid configuration allows all points to maintain the desired spacing. For
any configuration that deviates from the optimal hexagonal circle packing, there must be at least one
pair of points positioned closer together than the optimal distance. This further implies that multiple
pairs of points are spaced farther apart due to the squaring of the similarity measure. To formalize
this, we derive a loose upper bound on the possible reduction of the loss for any configuration other
than the hexagonal packing. We consider a packing for which RE is sufficiently close to R such that
all farther-spaced point pairs can again be in hexagonal packing. This upper bound is inserted into
the loss inequality, allowing us to compute the fraction of the reduced distance between the closest
point pair for which the inequality holds. It shows that the inequality only holds for values that fulfill
RM ≤ 2 · Rm. Thus, there must exist a range of values for RE such that the desired properties of
FPS are preserved, even with a loose bound.

3.3 WEIGHTED SAMPLING

To harness the advantages of learned sampling, the loss function can be expanded to guide the net-
work in sampling regions of interest more densely than others. The regions of interest can be any
point-to-importance assignment defined by the user. For example, points with labels that are com-
monly misclassified in semantic segmentation, or more generally, points with higher activations,
can be assigned higher importance values. These importance values are only required during loss
computation and can be decoupled from the actual selection process in the network. Consequently,
even activations from later layers in architectures such as u-net (Ronneberger et al., 2015) can be
utilized to compute importance values, and the selection network must learn to predict which points
will be valuable in subsequent processing steps. This decoupling allows our task-adaptive sampling
strategy to be integrated into architectures, e.g. Point-M2AE, where feature information is unavail-
able at the time of point sampling, in contrast to most other sampling techniques. Let each point xi

be assigned an importance value vi ∈ [0, 1], where 1 denotes high importance and 0 signifies low
importance. While points with higher importance should be sampled with higher probability, the
overall sampling should maintain an even distribution among points with a similar importance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Development of the mean and variance of the first nearest neighbor distance across various
neighborhood sizes k compared with three other algorithmic sampling methods. LFPS achieves its
best performance for 24 ≤ k ≤ 32.

We introduce two methods to influence sampling based on importance values, one updating RE

per point and the other one the neighbor distances. Both methods utilize a weighting function
wi = pu − (pu − pl) · vi. The user-defined parameters pu and pl determine the extent of influence,
with pu setting the upper bound for the weight and pl the lower bound, so pu = pl implies no
influence. In the first method, individual distances are obtained per point with wi ·RE . This enables
the network to densely pack important points without incurring a loss for points that are too close
to each other (see Fig. 3). However, the per-point loss function may increase for unimportant points
that have a selected important point in their neighborhood, leading to a penalty for selecting this
crucial point. To address this, the second method adjusts the neighbor similarities starting from
Eq. (2) with l̂i,j ·wj in the neighborhood of a chosen point. Incorporating these adjustments into the
loss computation yields the overall loss function, where R in Eq. (2) for l̂ is replaced by RE · wi:

LLFPS(S) =
1

|S| · (k + 1)

∑
i∈S

(1− si)
2 +

∑
j∈Ni

(
sj · wj · l̂i,j

)2

 , (5)

4 EXPERIMENTS

While a loss function that ensures an even distribution of selected points is desirable, it does not
guarantee that a network trained with this loss will converge to such a minimum. Therefore, we con-
duct several ablation studies to analyze the behavior of the standalone LFPS module. Subsequently,
we test it within modern deep learning architectures to demonstrate the advantages of learned, well-
distributed sampling. The core structure of our LFPS module is a compact ResNet (He et al., 2016)
characterized by varying layer depths dR and channels per layer cR. In each layer, the point itself,
along with its k-nearest neighbors, is processed. A final layer predicts scores for each point.

4.1 STANDALONE LEARNED FARTHEST POINT SAMPLING

We explore various network configurations in an effort to identify settings that can produce a well-
distributed sampling. These configurations are compared against the distribution of sampled points
generated by FPS, grid and random sampling. The learned sampling strategy is trained for 2 000
steps, each with a batch size of 256.

4.1.1 ESSENTIAL FEATURES FOR LEARNING A UNIFORM DISTRIBUTION

The first configuration involves testing the influence of input information using the S3DIS dataset
(Armeni et al., 2016), with large indoor point cloud scenes. The experiment is conducted with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
pl

p u

0.11 0.13 0.15 0.17

Mean Average
Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
pl

p u

0.002 0.003 0.004 0.005 0.006

Mean
Variance

Figure 6: Varying the upper (pu) and lower (pl) bounds of the weighted sampling in a selection task
for Point-M2AE. The mean nearest neighbor distance and variance of the selected points for each
combination of pu and pl are presented. Excessively high values lead to increased variance, while
overly low values prevent the network from learning an effective configuration.

fixed parameters dR = 2, cR = 16, k = 24, fd = 4, n = 2000, and n = 2000, while varying
the input information: either using point position information alone or combining point position
information with distance information to the nearest neighbors. The results demonstrate that without
the distance information, the network’s performance does not surpass that of random sampling.
Additionally, we examine the impact of the selection network’s depth and width (i.e., the number
of channels), specifically analyzing the mean nearest neighbor distance and its variance (see Fig. 4).
The findings indicate limited improvement in selection quality beyond three consecutive selection
layers, while the number of channels shows only a minor effect, with optimal performance observed
at 16 channels.

4.1.2 INFLUENCE OF THE DISTANCE PARAMETER

The second analysis investigates the impact of the chosen RE on the sampling performance and
examines how well the theoretically predicted range of possible values for RE aligns with the values
observed empirically. To this end, we test the important parameter k, which also determines RE in
the loss function, while keeping the initial analysis configuration fixed at dR = 2 and cR = 16, and
varying k in the range from 8 to 50. As illustrated in Fig. 5 and theoretically predicted, there is a
range for k (approximately 24 to 32) where the distribution of FPS is most closely approximated.
Similar results are observed for other datasets (see Appendix B).

4.1.3 IMPACT OF THE WEIGHTING PARAMETERS

Third, we investigate the effect of the weighted sampling parameters pu and pl, while keeping the
remainder of the initial configuration fixed. For this experiment, we employ pre-sampled point
clouds obtained by FPS from the ModelNet dataset. For the point-to-importance assignment, we
use the sum of the normalized activations per point from the upward pass of a fully trained Point-
M2AE model. We test all combinations of pl from 0.1 to 2.0 and pu from pl to 3.0 in increments
of 0.1, whereas setting pu < pl would reverse the importance of the points. After 2 000 training
steps, we report the average mean and variance of the first nearest neighbor distances of the selected
points over the last 100 steps (see heat maps in Fig. 6). The theoretically predicted range for the
continuous two-dimensional setting is visible along the diagonal, where pu = pl, meaning that the
selection model does not differentiate between important and unimportant points. Excessively high
values lead to an increased variance in nearest neighbor distances, while overly low values result in
the model failing to learn the task effectively. The optimal configuration should aim for a moderate
variance to avoid large gaps in the point cloud, and maintain an adequate average distance to prevent
redundant information from overly similar points. In general, the greater the difference between

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PC LFPS FPS Grid

Figure 7: Qualitative comparison of different sampling strategies. The left column shows the point
cloud (PC) color-coded by the cumulative activations each point receives from Point-M2AE. For
each sampling method, brighter colors indicate denser regions. While FPS and LFPS initially appear
similar, subtle differences emerge in regions with high and low activations. Specifically, in the last
row, FPS sampled numerous points between the stool’s legs – an area of low importance – whereas
LFPS effectively avoided these unnecessary points.

pu and pl, the more the model is compelled to discern which points are important. Based on these
observations, we suggest setting pu = 2.4 and pl = 2.2.

4.1.4 TIME COMPLEXITY

In addition to the adaptability of LFPS compared to FPS, our method demonstrates significantly
improved computational efficiency for large-scale point clouds. Specifically, the time complexity
of LFPS is O(n), excluding the k-nearest neighbor computations, which are generally required
for network operations regardless. Even when including the k-nearest neighbor computations and
employing an optimized CUDA implementation of FPS, the execution time for sampling 25 000
points from 100 000 points is approximately 5 seconds for FPS, whereas LFPS achieves this in only
46 milliseconds.

4.2 REPLACING ALGORITHMIC SAMPLING METHODS IN MODERN NETWORK
ARCHITECTURES

To demonstrate the performance of LFPS, we integrate it into recent deep learning architectures
by replacing grid sampling in Point Transformer V2 and FPS in Point-M2AE, both in the last
sampling layer. Since simpler sampling tasks are expected to show that LFPS outperforms FPS
but not necessarily other learned sampling methods, this complex setting offers a more com-
pelling evaluation of our model’s performance. Our approach demonstrates its true advantages

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Performance ((m)IoU in %) of the Point Transformer V2 experiments on the S3DIS dataset,
comparing grid sampling (PTv2), LFPS (PTv2LFPS) and APES (PTv2APES).

model al
l

ce
ili

ng

flo
or

w
al

l

co
lu

m
n

w
in

do
w

do
or

ta
bl

e

ch
ai

r

so
fa

bo
ok

ca
se

bo
ar

d

cl
ut

te
r

PTv2 68.3 91.8 98.5 85.8 28.8 60.6 71.5 81.4 92.1 63.0 75.2 83.4 55.7
PTv2LFPS 70.2 92.7 98.5 84.5 33.0 60.8 80.8 82.3 92.3 72.3 77.0 79.4 59.3
PTv2APES 63.2 89.9 98.6 81.3 44.8 56.8 49.3 77.3 88.9 52.3 67.5 65.3 49.6

in scenarios where other sampling strategies are not integrable or struggle to handle challeng-
ing point cloud properties, such as large-scale data. To take advantage of the potential improve-
ments from weighted sampling, we use the activations from the network’s upward pass, assigning
higher importance to points with stronger activations. We set the sampling network parameters as
dR = 3, cR = 32, k = 32, pu = 2.4, pl = 2.2, and compare our results against those obtained by
the reference implementation.

We evaluate three versions of Point Transformer V2 on the S3DIS dataset: the original architecture
(PTv2), one incorporating LFPS (PTv2LFPS), and another utilizing the initially introduced sampling
method APES (PTv2APES), which can be directly integrated into the transformer architecture. The
results can be seen in Table 1. PTv2LFPS improves the performance of the sophisticated network
from 68.3 % mean intersection over union (mIoU) to 70.2 % mIoU. Notably, the performance on
challenging object classes, such as column, door, and sofa, has improved due to the preferential
sampling of informative points. As shown in Fig. 1, the APES module in PTv2APES tends to over-
sample high-interest points, while entirely disregarding regions of the point cloud with lower scores.
Consequently, this leads to a significant decrease in performance, especially for flat classes such as
door and board, which lack many edge points and are therefore detected with lower accuracy.

Point-M2AE is trained in an unsupervised manner on ShapeNet (Chang et al., 2015), and its perfor-
mance is evaluated based on the expressiveness of the codeword using a linear SVM on ModelNet.
Replacing FPS with LFPS in this network improves accuracy, even on this challenging unsupervised
learning task, to 92.8 %, compared to 92.4 % achieved by the reference implementation. For a quali-
tative comparison of the subtle yet meaningful differences in point selection between FPS and LFPS
in Point-M2AE, as well as the notable differences between LFPS, grid, and random sampling, see
Fig. 7. This comparison illustrates how our selection process can highlight important regions, while
maintaining a similar point cloud coverage to FPS.

5 CONCLUSION

In this paper, we introduced LFPS, based on the first density-aware sampling loss function that har-
monizes the strengths of traditional algorithmic sampling with the adaptability of learned techniques
for point cloud processing. LFPS thus addresses the shortcomings of existing methods by integrating
the uniformity of FPS with the data-specific learning capability of deep networks, ensuring balanced
and efficient point selection. Our approach is grounded in a rigorous theoretical framework that es-
tablishes its similarity to FPS while LFPS is still able to focus on important regions. LFPS was tested
within two existing network architectures, namely Point-M2AE, Point Transformer V2 serving as
exemplars for a broad range of applications, demonstrating seamless integration and substantial im-
provements in runtime and accuracy. Additionally, LFPS proves highly effective for large-scale
point cloud tasks, improving both computational efficiency and performance. Beyond improving
runtime and accuracy, LFPS demonstrates the potential to generalize across different domains and
tasks, including supervised and unsupervised learning, making it a versatile tool for further advance-
ments in point cloud processing and broader 3D data applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Sil-
vio Savarese. 3D Semantic Parsing of Large-Scale Indoor Spaces. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1534–1543, 2016. doi:
10.1109/CVPR.2016.170.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012,
Stanford University, Princeton University, Toyota Technological Institute at Chicago, 2015.

Oren Dovrat, Itai Lang, and Shai Avidan. Learning to Sample. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2755–2764, June 2019.
doi: 10.1109/CVPR.2019.00287.

Yonina C. Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y. Zeevi. The farthest point
strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–
1315, 1997. doi: 10.1109/83.623193.

Nico Engel, Vasileios Belagiannis, and Klaus C. J. Dietmayer. Point Transformer. IEEE Access,
9:134826–134840, 2020. URL https://api.semanticscholar.org/CorpusID:
226227046.

Zhongbin Fang, Xiangtai Li, Xia Li, Joachim M. Buhmann, Chen Change Loy, and Mengyuan Liu.
Explore in-context learning for 3D point cloud understanding. In Proceedings of the 37th Inter-
national Conference on Neural Information Processing Systems. Curran Associates Inc., 2024.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R. Martin, and Shi-Min Hu.
PCT: Point cloud transformer. Computational Visual Media, 7(2):187–199, April 2021. ISSN
2096-0662. doi: 10.1007/s41095-021-0229-5.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Cheng-Yao Hong, Yu-Ying Chou, and Tyng-Luh Liu. Attention Discriminant Sampling for Point
Clouds. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14383–
14394, 2023. doi: 10.1109/ICCV51070.2023.01327.

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Agathoniki Trigoni,
and A. Markham. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11105–11114, 2019. doi: 10.1109/CVPR42600.2020.01112.

Itai Lang, Asaf Manor, and Shai Avidan. SampleNet: Differentiable Point Cloud Sampling. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7578–7588, June 2020. doi: 10.1109/CVPR42600.2020.00760.

Ehsan Nezhadarya, Ehsan Taghavi, Ryan Razani, Bingbing Liu, and Jun Luo. Adaptive Hierarchical
Down-Sampling for Point Cloud Classification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020. doi: 10.1109/CVPR42600.2020.
01297.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017a. doi: 10.1109/CVPR.2017.16.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. In Neural Information Processing Systems, 2017b.
URL https://api.semanticscholar.org/CorpusID:1745976.

11

https://api.semanticscholar.org/CorpusID:226227046
https://api.semanticscholar.org/CorpusID:226227046
https://api.semanticscholar.org/CorpusID:1745976

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Abed Al Kader Hammoud, Mohamed
Elhoseiny, and Bernard Ghanem. PointNeXt: Revisiting PointNet++ with Improved Training and
Scaling Strategies. ArXiv, abs/2206.04670, 2022. URL https://api.semanticscholar.
org/CorpusID:249538578.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), volume 9351 of LNCS, pp. 234–241. Springer, 2015. doi: https://doi.org/
10.1007/978-3-319-24574-4 28. URL http://lmb.informatik.uni-freiburg.de/
Publications/2015/RFB15a. (available on arXiv:1505.04597 [cs.CV]).

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J. Guibas. KPConv: Flexible and Deformable Convolution for Point Clouds. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6410–6419, 2019. URL
https://api.semanticscholar.org/CorpusID:121328056.

Axel Thue. Om nogle geometrisk taltheoretiske Theoremer. Naturforskermöde, pp. 352–353, 1892.
URL https://www.biodiversitylibrary.org/page/3389075.

Xu Wang, Yi Jin, Yigang Cen, Tao Wang, Bowen Tang, and Yidong Li. LighTN: Light-weight
Transformer Network for Performance-overhead Tradeoff in Point Cloud Downsampling. IEEE
Transactions on Multimedia, pp. 1–16, 2023. doi: 10.1109/TMM.2023.3318073.

Cheng Wen, Baosheng Yu, and Dacheng Tao. Learnable Skeleton-Aware 3D Point Cloud Sam-
pling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 17671–17681, 2023. doi: 10.1109/CVPR52729.2023.01695.

Chengzhi Wu, Junwei Zheng, Julius Pfrommer, and Jürgen Beyerer. Attention-Based Point Cloud
Edge Sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5333–5343, June 2023. doi: 10.1109/CVPR52729.2023.00516.

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point Transformer V2:
Grouped Vector Attention and Partition-based Pooling. Advances in Neural Information Process-
ing Systems, 35:33330–33342, 2022. doi: 10.5555/3600270.3602685.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920, 2015. doi:
10.1109/CVPR.2015.7298801.

Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou, and Qi Tian.
Modeling Point Clouds With Self-Attention and Gumbel Subset Sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3318–3327.
IEEE, jun 2019. doi: 10.1109/CVPR.2019.00344.

Yang Ye, Xiulong Yang, and Shihao Ji. APSNet: Attention Based Point Cloud Sampling. The 33rd
British Machine Vision Conference (BMVC), 2022.

Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin Zhao, Dong Wang, Yu Qiao, and Hong-
sheng Li. Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-
training. Advances in neural information processing systems, 35:27061–27074, 2022. doi:
10.5555/3600270.3602232.

12

https://api.semanticscholar.org/CorpusID:249538578
https://api.semanticscholar.org/CorpusID:249538578
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://api.semanticscholar.org/CorpusID:121328056
https://www.biodiversitylibrary.org/page/3389075

	Introduction
	Point Cloud Sampling in Deep Learning Applications
	Learning to Sample Farthest Points
	Characterizing Farthest Point Sampling
	A Loss Function to Emulate Farthest Point Sampling
	Weighted Sampling

	Experiments
	Standalone Learned Farthest Point Sampling
	Essential Features for Learning a Uniform Distribution
	Influence of the Distance Parameter
	Impact of the Weighting Parameters
	Time complexity

	Replacing Algorithmic Sampling Methods in Modern Network Architectures

	Conclusion
	Proving Property Equivalence Between LFPS and FPS
	K-Nearest Neighbor Experiments Across Various Datasets

