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ABSTRACT

Though convolutional neural networks (CNNs) have demonstrated remarkable
ability in learning discriminative features, they often generalize poorly to unseen
domains. Domain generalization aims to address this problem by learning from a
set of source domains a model that is generalizable to any unseen domain. In this
paper, a novel approach is proposed based on probabilistically mixing instance-
level feature statistics of training samples across source domains. Our method,
termed MixStyle, is motivated by the observation that visual domain is closely
related to image style (e.g., photo vs. sketch images). Such style information is
captured by the bottom layers of a CNN where our proposed style-mixing takes
place. Mixing styles of training instances results in novel domains being synthe-
sized implicitly, which increase the domain diversity of the source domains, and
hence the generalizability of the trained model. MixStyle fits into mini-batch train-
ing perfectly and is extremely easy to implement. The effectiveness of MixStyle is
demonstrated on a wide range of tasks including category classification, instance
retrieval and reinforcement learning.

1 INTRODUCTION

Key to automated understanding of digital images is to compute a compact and informative feature
representation. Deep convolutional neural networks (CNNs) have demonstrated remarkable ability
in representation learning, proven to be effective in many visual recognition tasks, such as classifying
photo images into 1,000 categories from ImageNet (Krizhevsky et al.,[2012) and playing Atari games
with reinforcement learning (Mnih et al., 2013). However, it has long been discovered that the
success of CNNs heavily relies on the i.i.d. assumption, i.e. training and test data should be drawn
from the same distribution; when such an assumption is violated even just slightly, as in most real-
world application scenarios, severe performance degradation is expected (Hendrycks & Dietterich,
2019; [Recht et al., 2019).

Domain generalization (DG) aims to address such a problem (Zhou et al.| [2021}; Blanchard et al.,
2011; Muandet et al., 2013} |Li et al., 2018a; |Zhou et al.,[2020b; Balaji et al., 2018 |Dou et al., 2019;
Carlucci et al, [2019). In particular, assuming that multiple source domains containing the same
visual classes are available for model training, the goal of DG is to learn models that are robust
against data distribution changes across domains, known as domain shift, so that the trained model
can generalize well to any unseen domains. Compared to the closely related and more widely stud-
ied domain adaptation (DA) problem, DG is much harder in that no target domain data is available
for the model to analyze the distribution shift in order to overcome the negative effects. Instead, a
DG model must rely on the source domains and focus on learning domain-invariant feature repre-
sentation in the hope that it would remain discriminative given target domain data.

A straightforward solution to DG is to expose a model with a large variety of source domains. Specif-
ically, the task of learning domain-invariant and thus generalizable feature representation becomes
easier when data from more diverse source domains are available for the model. This would reduce
the burden on designing special models or learning algorithms for DG. Indeed, model training with
large-scale data of diverse domains is behind the success of existing commercial face recognition or
vision-based autonomous driving systems. A recent work by |Xu et al.[(2021) also emphasizes the
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Figure 1: 2-D t-SNE (Maaten & Hinton, 2008)) visualization of the style statistics (concatenation of
mean and standard deviation) computed from the first residual block’s feature maps of a ResNet-18
(He et al., 2016)) trained on four distinct domains (L1 et al.l [2017)). It is clear that different domains
are well separated.

importance of diverse training distributions for out-of-distribution generalization. However, collect-
ing data of a large variety of domains is often costly or even impossible. It thus cannot be a general
solution to DG.

In this paper, a novel approach is proposed based on probabilistically mixing instance-level feature
statistics of training samples across source domains. Our model, termed MixStyle, is motivated
by the observation that visual domain is closely related to image style. An example is shown in
Fig.[T} the four images from four different domains depict the same semantic concept, i.e. dog, but
with distinctive styles (e.g., characteristics in color and texture). When these images are fed into a
deep CNN, which maps the raw pixel values into category labels, such style information is removed
at the output. However, recent style transfer studies (Huang & Belongie, [2017; [Dumoulin et al.,
2017) suggest that such style information is preserved at the bottom layers of the CNN through
the instance-level feature statistics, as shown clearly in Fig. [ Importantly, since replacing such
statistics would lead to replaced style while preserving the semantic content of the image, it is
reasonable to assume that mixing styles from images of different domains would result in images of
(mixed) new styles. That is, more diverse domains/styles can be made available for training a more
domain-generalizable model.

Concretely, our MixStyle randomly selects two instances of different domains and adopts a prob-
abilistic convex combination between instance-level feature statistics of bottom CNN layers. In
contrast to style transfer work (Huang & Belongiel [2017; [Dumoulin et al.||2017), no explicit image
synthesis is necessary meaning much simpler model design. Moreover, MixStyle perfectly fits into
modern mini-batch training. Overall, it is very easy to implement with only few lines of code. To
evaluate the effectiveness as well as the general applicability of MixStyle, we conduct extensive
experiments on a wide spectrum of datasets covering category classification (Sec. [3.1)), instance re-
trieval (Sec.[3.2), and reinforcement learning (Sec.[3.3). The results demonstrate that MixStyle can
significantly improve CNNs’ cross-domain generalization performanceﬂ

2 METHODOLOGY

2.1 BACKGROUND

Normalizing feature tensors with instance-specific mean and standard deviation has been found
effective for removing image style in style transfer models (Ulyanov et al.l 2016; [Huang & Be-
longiel 2017 Dumoulin et al.|[2017). Such an operation is widely known as instance normalization
(IN, [Ulyanov et al|(2016)). Let x € REXCXHXW pe g batch of tensors, with B, C, H and W

'Source code can be found at https://github.com/KaiyangZhou/mixstyle-release.
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denoting the dimension of batch, channel, height and width, respectively, IN is formulated as

z — p(z)
o(z)

where 7, 3 € R are learnable affine transformation parameters, and zi(z), o(r) € RP*¢ are mean

and standard deviation computed across the spatial dimension within each channel of each instance
(tensor), i.e.

IN(z) = v + 3, (1)

1 H W
M(-r)b,c = W hz_l wzﬂ Th,c,h,ws (2)
and
1 H W
O—(x)b,c — W hz::l wzz:l(xb,c,h,w - M(x)b,c)2~ (3)

Huang & Belongie| (2017) introduced adaptive instance normalization (AdalN), which simply re-
places the scale and shift parameters in Eq. (I)) with the feature statistics of style input y to achieve
arbitrary style transfer:

z — ()

AdaIN(z) = o(y) )

+ p(y)- S

2.2 MIXSTYLE

Our method, MixStyle, draws inspiration from AdaIN. However, rather than attaching a decoder for
image generation, MixStyle is designed for the purpose of regularizing CNN training by perturbing
the style information of source domain training instances. It can be implemented as a plug-and-
play module inserted between CNN layers of, e.g., a supervised CNN classifier, without the need to
explicitly generate an image of new style.

More specifically, MixStyle mixes the feature statistics of two

instances with a random convex weight to simulate new styles. %= [ @ @ @ @ ]
In terms of implementation, MixStyle can be easily integrated .

into mini-batch training. Given an input batch x, MixStyle first 2=l @ @ @ @]
generates a reference batch Z from . When domain labels are  (a) Shuffling batch w/ domain label
given, x is sampled from two different domains 7 and j, e.g.,

x = [2°,27] (z° and 27 have the same batch size). Then, # = [@ @ @ @ ]

is obtained by swapping the position of z* and z7, followed

by a shuffling operation along the batch dimension applied to z= [ @ @ @ @ ]
each batch, i.e. # = [Shuffie(x7), Shuffle(z?)]. See Fig. ) (b) Shuffling batch w/ random shuffle
for an illustration. In cases where domain labels are unknown,

z is randomly sampled from the training data, and % is sim- Figure 2: A graphical illustration
ply obtained by & = Shuffle(z) (see Fig. b))- Fig. E] shows  of how a reference batch is gener-
that sub-domains exist within each domain, so even if two in- ated. Domain label is denoted by
stances of the same domain are sampled, new domain could color.

be synthesized. After shuffling, MixStyle computes the mixed

feature statistics by

Ymiz = Ao(x) + (1 — N)o(Z), %)
where A € R? are instance-wise weights sampled from the Beta distribution, A ~ Beta(a, o) with
a € (0,00) being a hyper-parameter. Unless specified otherwise, we set « to 0.1 throughout this
paper. Finally, the mixed feature statistics are applied to the style-normalized z,

z — p(z)

o()

In practice, we use a probability of 0.5 to decide if MixStyle is activated or not in the forward pass.
At test time, no MixStyle is applied. Note that gradients are blocked in the computational graph
of p(-) and o (). MixStyle can be implemented with only few lines of code. See Algorithm [I}in
Appendix for the PyTorch-like pseudo-code.

MixStyle(z) = Ymix + Bmiz- (7
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Table 1: Leave-one-domain-out generalization results on PACS.

Method [ Art Cartoon Photo Sketch Avg
MMD-AAE 75.2 72.7 96.0 64.2 77.0
CCSA 80.5 76.9 93.6 66.8 79.4
JiGen 79.4 75.3 96.0 71.6 80.5
CrossGrad 79.8 76.8 96.0 70.2 80.7
Epi-FCR 82.1 77.0 93.9 73.0 81.5
Metareg 83.7 77.2 95.5 70.3 81.7
L2A-OT 83.3 78.2 96.2 73.6 82.8
ResNet-18 77.0£0.6 759+0.6 96.0+0.1 69.2+0.6 79.5
+ Manifold Mixup 75.6£0.7 70.1£09 93.54+0.7 65.4+0.6 76.2
+ Cutout 749404 749+0.6 959403 67.7+£0.9 783
+ CutMix 74.6+0.7 71.8+0.6 95.6+04 65.3+£08 76.8
+ Mixup (w/o label interpolation) | 74.7£1.0 72.3£0.9 93.0£04 69.2+02 773
+ Mixup 76.840.7 74.9+0.7 95.84+0.3 66.6+0.7 78.5
+ DropBlock 76.4+0.7 75.4+0.7 9594+0.3 69.0+0.3 79.2
+ MixStyle w/ random shuffle 82.3£0.2 79.0+0.3 96.3+0.3 73.8+09 82.8
+ MixStyle w/ domain label 84.1+04 78.8+0.4 96.1+£0.3 75.9+09 83.7

3 EXPERIMENTS

3.1 GENERALIZATION IN CATEGORY CLASSIFICATION

Dataset and implementation details. We choose the PACS dataset (Li et al., |2017), a commonly
used domain generalization (DG) benchmark concerned with domain shift in image classification.
PACS consists of four domains, i.e. Art Painting, Cartoon, Photo and Sketch, with totally 9,991 im-
ages of 7 classes. As shown in Fig.[I] the domain shift mainly corresponds to image style changes.
For evaluation, a model is trained on three domains and tested on the remaining one. Following
prior work (L1 et al., [2019; [Zhou et al.| [2020a), we use ResNet-18 (He et al., 2016) as the classi-
fier where MixStyle is inserted after the 1st, 2nd and 3rd residual blocks. Our code is based on
Dassl.pytorch (Zhou et al.} ZOZOC)EI

Baselines. Our main baselines are general-purpose regularization methods including Mixup (Zhang
et al.,|2018b), Manifold Mixup (Verma et al.,|2019), DropBlock (Ghiasi et al., 2018), CutMix (Yun
et al.,|2019) and Cutout (DeVries & Taylor,[2017), which are trained using the same training parame-
ters as MixStyle and the optimal hyper-parameter setup as reported in their papers. We also compare
with the existing DG methods which reported state-of-the-art performance on PACS. These include
domain alignment-based CCSA (Motiian et al.l 2017) and MMD-AAE (Li et al.| 2018b), Jigsaw
puzzle-based JiGen (Carlucci et al.l 2019), adversarial gradient-based CrossGrad (Shankar et al.
2018)), meta-learning-based Metareg (Balaji et al., [2018) and Epi-FCR (Li et al., [2019), and data
augmentation-based L2A-OT (Zhou et al.| 2020a).

Comparison with general-purpose regularization methods. The results are shown in Table
Overall, we observe that the general-purpose regularization methods do not offer any clear advan-
tage over the vanilla ResNet-18 in this DG task, while MixStyle improves upon the vanilla ResNet-
18 with a significant margin. Compared with Mixup, MixStyle is 5.2% better on average. Recall
that Mixup also interpolates the output space, we further compare with a variant of Mixup in order
to demonstrate the advantage of mixing style statistics at the feature level over mixing images at the
pixel level for DG—following [Sohn et al.| (2020), we remove the label interpolation in Mixup and
sample the mixing weights from a uniform distribution of [0, 1]. Still, MixStyle outperforms this
new baseline with a large margin, which justifies our claim. MixStyle and DropBlock share some
commonalities in that they are both applied to feature maps at multiple layers, but MixStyle signifi-
cantly outperforms DropBlock in all test domains. The reason why DropBlock is ineffective here is
because dropping out activations mainly encourages a network to mine discriminative patterns, but
does not reinforce the ability to cope with unseen styles, which is exactly what MixStyle aims to
achieve: by synthesizing “new” styles (domains) MixStyle regularizes the network to become more

https://github.com/KaiyangZhou/Dassl.pytorch.
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robust to domain shift. In addition, it is interesting to see that on Cartoon and Photo, MixStyle w/
random shuffle obtains slightly better results. The reason might be because there exist sub-domains
in a source domain (see Fig. @(a-c)), which allow random shuffling to produce more diverse “new”
domains that lead to a more domain-generalizable model.

Comparison with state-of-the-art DG methods. Overall, MixStyle outperforms most DG meth-
ods by a clear margin, despite being a much simpler method. The performance of MixStyle w/
domain label is nearly 1% better on average than the recently introduced L2A-OT. From a data
augmentation perspective, MixStyle and L2A-OT share a similar goal—to synthesize data from
pseudo-novel domains. MixStyle accomplishes this goal through mixing style statistics at the fea-
ture level. Whereas L2A-OT works at the pixel level: it trains an image generator by maximizing the
domain difference (measured by optimal transport) between the original and the generated images,
which introduces much heavier computational overhead than MixStyle in terms of GPU memory
and training time. It is worth noting that MixStyle’s domain label-free version is highly competitive:
its 82.8% accuracy is on par with L2A-OT’s.

3.2 GENERALIZATION IN INSTANCE RETRIEVAL

Dataset and implementation details. We evaluate MixStyle on the person re-identification (re-ID)
problem, which aims to match people across disjoint camera views. As each camera view is itself
a distinct domain, person re-ID is essentially a cross-domain image matching problem. Instead of
using the standard protocol where training and test data come from the same camera views, we adopt
the cross-dataset setting so test camera views are never seen during training. Specifically, we train a
model on one dataset and then test its performance on the other dataset. Two commonly used re-ID
datasets are adopted: Market1501 (Zheng et al., [2015) and Duke (Ristani et al., |2016; Zheng et al.,
2017). Ranking accuracy and mean average precision (mAP) are used as the performance measures
(displayed in percentage). We test MixStyle on two CNN architectures: ResNet-50 (He et al., 2016)
and OSNet (Zhou et al., 2019). The latter was designed specifically for re-ID. In both architectures,
MixStyle is inserted after the 1st and 2nd residual blocks. Our code is based on Torchreid (Zhou &
Xiang], 2019)E]

Baselines. We compare with three baseline methods: 1) The vanilla model, which serves as a
strong baseline; 2) DropBlock, which was the top-performing competitor in Table 3) Ran-
domErase (Zhong et al., [2020), a widely used regularization method in the re-ID literature (similar
to Cutout).

Results. The results are reported in Table[2] It is clear that only MixStyle consistently outperforms
the strong vanilla model under both settings with considerable margins, while DropBlock and Ran-
domFErase are unable to show any benefit. Notably, RandomErase, which simulates occlusion by
erasing pixels in random rectangular regions with random values, has been used as a default trick
when training re-ID CNNs. However, RandomErase shows a detrimental effect in the cross-dataset
re-ID setting. Indeed, similar to DropBlock, randomly erasing pixels offers no guarantee to improve
the robustness when it comes to domain shift.

3.3 GENERALIZATION IN REINFORCEMENT LEARNING

Though RL has been greatly advanced by using CNNs for feature learning in raw pixels (Mnih et al.,
2013)), it has been widely acknowledged that RL agents often overfit training environments while
generalize poorly to unseen environments (Cobbe et al.|[2019; Igl et al., 2019).

Dataset and implementation details. We conduct experiments on Coinrun (Cobbe et al., [2019),
a recently introduced RL benchmark for evaluating the generalization performance of RL agents.
As shown in Fig. Bfa), the goal in Coinrun is to control a character to collect golden coins while
avoiding both stationary and non-stationary obstacles. We follow |Igl et al.|(2019)) to construct and
train our RL agent: the CNN architecture used in IMPALA (Espeholt et al., |2018) is adopted as
the policy network, and is trained by the Proximal Policy Optimization (PPO) algorithm (Schulman
et al.,2017). Please refer to|lgl et al.|(2019)) for further implementation details. MixStyle is inserted
after the 1st and 2nd convolutional sequences. Training data are sampled from 500 levels while test

Shttps://github.com/KaiyangZhou/deep-person-reid.
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Table 2: Generalization results on the cross-dataset person re-ID task.

Model Market1501—Duke Duke—Market1501
ode mAP RI RS RIO | mAP RI R5 RIO
ResNet-50 103 354 503 564 | 204 452 636 709
+ RandomErase 143 278 426 49.1 | 161 385 568 645
+ DropBlock 182 332 49.1 563 | 197 453 621 69.1

+ MixStyle w/ random shuffle | 23.8 422 588 648 | 241 515 694 762
+ MixStyle w/ domain label 234 433 589 0647 | 247 53.0 709 77.8

OSNet 259 447 59.6 654 | 240 522 675 7747
+ RandomErase 20.5 362 523 593 | 224 49.1 66.1 730
+ DropBlock 23.1 415 565 625 | 217 482 654 713

+ MixStyle w/ random shuffle | 27.2 48.2 62.7 684 | 27.8 58.1 740 81.0
+ MixStyle w/ domain label 273 475 620 67.1 | 290 582 749 809
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Figure 3: (a) Coinrun benchmark. (b) Test performance in unseen environments. (c) Difference
between training and test performance.

data are drawn from new levels of only the highest difficulty. As domain labels are difficult to define,
we use the random shuffle version of MixStyle. Our code is built on top of [Igl et al. (2019)E|

Baselines. Following Igl et al.| (2019)), we train strong baseline models and add MixStyle on top of
them to see whether MixStyle can bring further improvements. To this end, we train two baseline
models: 1) Baseline, which combines weight decay and data augmentationﬂ 2) IBAC-SNI (the
A = 0.5 version), the best-performing model in Igl et al.| (2019) which is based on selective noise
1njection.

Results. The test performance is shown in Fig. B(b). Comparing Baseline (blue) with Base-
line+MixStyle (orange), we can see that MixStyle brings a significant improvement. Interestingly,
the variance is also significantly reduced by using MixStyle, as indicated by the smaller shaded areas
(for both orange and red lines). These results strongly demonstrate the effectiveness of MixStyle in
enhancing generalization for RL agents. When it comes to the stronger baseline IBAC-SNI (green),
MixStyle (red) is able to bring further performance gain, suggesting that MixStyle is complemen-
tary to IBAC-SNI. This result also shows the potential of MixStyle as a plug-and-play component
to be combined with other advanced RL methods. It is worth noting that Baseline+MixStyle itself
is already highly competitive with IBAC-SNI. Fig. B{c) shows the generalization gap from which
it can been seen that the models trained with MixStyle (orange & red) clearly generalize faster and
better than those without using MixStyle (blue & green).
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Figure 4: 2-D visualization of flattened feature maps (top) and the corresponding style statistics
(bottom). res1-4 denote the four residual blocks in order in a ResNet architecture. We observe that
resl to res3 contain domain-related information while res4 encodes label-related information.

Table 3: Ablation study on where to apply MixStyle in the ResNet architecture.

(a) Category classification on PACS. (b) Cross-dataset person re-1D.
Model Accuracy Model mAP
ResNet-18 79.5 ResNet-50 19.3
+ MixStyle (resl) 80.1 + MixStyle (resl) 22.6
+ MixStyle (resl12) 81.6 + MixStyle (res12) 23.8
+ MixStyle (res123) 82.8 + MixStyle (res123) 22.0
+ MixStyle (res1234) 75.6 + MixStyle (res1234) 10.2
+ MixStyle (res14) 76.3 + MixStyle (res14) 11.1
+ MixStyle (res23) 81.7 + MixStyle (res23) 20.6

3.4 ANALYSIS

Where to apply MixStyle? We repeat the experiments on PACS (category classification) and the
re-ID datasets (instance retrieval) using the ResNet architecture. Given that a standard ResNet model
has four residual blocks denoted by res1-4, we train different models with MixStyle applied to
different layers. For notation, res1 means MixStyle is applied after the first residual block; res12
means MixStyle is applied after both the first and second residual blocks; and so forth. The results
are shown in Table[3] We have the following observations. 1) Applying MixStyle to multiple lower-
level layers generally achieves a better performance—for instance, res12 is better than resl on
both tasks. 2) Different tasks favor different combinations—res12 3 achieves the best performance
on PACS, while on the re-ID datasets res12 is the best. 3) On both tasks, the performance plunges
when applying MixStyle to the last residual block. This makes sense because res4 is the closest
to the prediction layer and tends to capture semantic content (i.e. label-sensitive) information rather
than style. In particular, res4 is followed by an average-pooling layer, which essentially forwards
the mean vector to the prediction layer and thus forces the mean vector to capture label-related
information. As a consequence, mixing the statistics at res4 breaks the inherent label space. This
is clearer in Fig.[4} the features and style statistics in res1-3 exhibit clustering patterns based on
domains while those in res4 have a high correlation with class labels.

*https://github.com/microsoft/IBAC-SNI.
>We do not use batch normalization (loffe & Szegedy, 2015) or dropout (Srivastava et al., [2014) because
they are detrimental to the performance, as shown by |Igl et al.|(2019).
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Figure 5: Evaluation on the hyper-parameter o on (a) PACS, (b) person re-ID datasets and (c)

Coinrun. In (b), M and D denote Market1501 and Duke respectively.

Mixing vs. replacing. Unlike the AdaIN formulation, which com-
pletely replaces one style with the other, MixStyle mixes two styles
via a convex combination. Table 4] shows that mixing is better than
replacing. This is easy to understand: mixing diversifies the styles
(imagine an interpolation between two data points).

Random vs. fixed shuffle at multiple layers. Applying MixStyle
to multiple layers, which has been shown advantageous in Table 3]
raises another question of whether to shuffle the mini-batch at dif-
ferent layers or use the same shuffled order for all layers. Table 3]
suggests that using random shuffle at different layers gives a better
performance, which may be attributed to the increased noise level

Table 4: Mixing vs. replacing.

Accuracy (%)
Mixing 82.8+0.4
Replacing 82.1£0.5

Table 5: Random vs. fixed
shuffle at multiple layers.

Accuracy (%)

82.8+0.4
82.4+0.5

Random
Fixed

that gives a better regularization effect.

Sensitivity of hyper-parameter. Recall that « is used to control the shape of Beta distribution,
which has a direct effect on how the convex weights A are sampled. The smaller « is, the more
likely the value in A is close to the extreme value of O or 1. In other words, a smaller « favors
the style statistics in Eqs. (3) & (6) to be dominated by one side. We first evaluate o on PACS.
Fig.[5[a) shows that with « increasing from 0.1 to 0.4, the accuracy slides from 82.8% to 81.7%.
However, further increasing o does not impact on the accuracy. Therefore, the results suggest that
the performance is not too sensitive to «; and selecting o from {0.1,0.2,0.3} seems to be a good
starting point. We further experiment with « € {0.1,0.2,0.3} on the re-ID datasets and the Coinrun
benchmark. Figs.[5(b) & (c) show that in general the variance for the results of different values is
small. Therefore, we suggest practitioners to choose « from {0.1,0.2,0.3}, with & = 0.1 being a
good default setting.

For more analyses and discussions, please see Appendix [A.2]

4 RELATED WORK

Domain generalization, or DG, studies out-of-distribution (OOD) generalization given only source
data typically composed of multiple related but distinct domains. We refer readers to |[Zhou et al.
(2021) for a comprehensive survey in this topic. Many DG methods are based on the idea of aligning
features between different sources, with a hope that the model can be invariant to domain shift given
unseen data. For instance, L1 et al.| (2018b)) achieved distribution alignment in the hidden represen-
tation of an autoencoder using maximum mean discrepancy;|Li et al.|(2018c) resorted to adversarial
learning with auxiliary domain classifiers to learn features that are domain-agnostic. Some works
explored domain-specific parameterization, such as domain-specific weight matrices (L1 et al.,[2017)
and domain-specific BN (Seo et al.,2020). Recently, meta-learning has drawn increasing attention
from the DG community (Li et al.l 2018a; Balaji et al., 2018; Dou et al., [2019). The main idea
is to expose a model to domain shift during training by using pseudo-train and pseudo-test do-
mains, both drawn from source domains. Data augmentation has also been investigated for learning
domain-invariant models. [Shankar et al.|(2018)) introduced a cross-gradient training method (Cross-
Grad) where source data are augmented by adversarial gradients obtained from a domain classifier.
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Gong et al.|(2019) proposed DLOW (for the DA problem), which models intermediate domains be-
tween source and target via a domainness factor and learns an image translation model to generate
intermediate-domain images. Very recently, Zhou et al.|(2020a)) introduced L2A-OT to learn a neu-
ral network to map source data to pseudo-novel domains by maximizing an optimal transport-based
distance measure. Our MixStyle is related to DLOW and L2A-OT in its efforts to synthesizing
novel domains. However, MixStyle differs in the fact that it is done implicitly with a much simpler
formulation leveraging the feature-level style statistics and only few lines of extra code on top of a
standard supervised classifier while being more effective. Essentially, MixStyle can be seen as fea-
ture-level augmentation, which is clearly different from the image-level augmentation-based DLOW
and L2A-OT.

Generalization in deep RL has been a challenging problem where RL agents often overfit training
environments, and as a result, perform poorly in unseen environments with different visual patterns
or levels (Zhang et all 2018a). A natural way to improve generalization, which has been shown
effective in (Cobbe et al.,|2019; |[Farebrother et al.,2018), is to use regularization, e.g., weight decay.
However, [Igl et al.| (2019) suggested that stochastic regularization methods like dropout and batch
normalization (which uses estimated population statistics) have adverse effect as the training data in
RL are essentially model-dependent. As such, they proposed selective noise injection (SNI), which
basically combines a stochastic regularization technique with its deterministic counterpart. They
further integrated SNI with information bottleneck actor critic (IBAC-SNI) to reduce the variance
in gradients. Curriculum learning has been investigated in (Justesen et al., 2018) where the level of
training episodes progresses from easy to difficult over the course of training. (Gamrian & Goldberg
(2019) leveraged the advances in GAN-based image-to-image translation (Liu et al., 2017) to map
target data to the source domain which the agent was trained on. [Tobin et al. (2017) introduced
domain randomization, which diversifies training data by rendering images with different visual
effects via a programmable simulator. With a similar goal of data augmentation, [Lee et al.| (2020)
pre-processed input images with a randomly initialized network. Very recent studies (Laskin et al.,
2020; Kostrikov et al.,|2020) have shown that it is useful to combine a diverse set of label-preserving
transformations, such as rotation, shifting and Cutout. Different from the aforementioned methods,
our MixStyle works at the feature level and is orthogonal to most existing methods. For instance,
we have shown in Sec. [3.3]that MixStyle significantly improves upon IBAC-SNL

5 CONCLUSION

We presented a simple yet effective domain generalization method, termed MixStyle. MixStyle
mixes the feature statistics of two instances to synthesize novel domains, which is inspired by the
observation in style transfer work that the feature statistics encode style/domain-related information.
Extensive experiments covering a wide range of tasks were conducted to demonstrate that MixStyle
yields new state-of-the-art on three different tasks.
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A APPENDIX

A.1 PSEUDO-CODE OF MIXSTYLE

Algorithm[I| provides a PyTorch-like pseudo-code.

Algorithm 1 PyTorch-like pseudo-code for MixStyle.

# x: input features of shape (B, C, H, W)

# p: probabillity to apply MixStyle (default: 0.5)

# alpha: hyper-parameter for the Beta distribution (default: 0.1)

# eps: a small value added before square root for numerical stability (default: le-6)

if not in training mode:
return x

if random probability > p:
return x

B = x.size(0) # batch size

mu = x.mean(dim=[2, 3], keepdim=True) # compute instance mean

var = x.var(dim=[2, 3], keepdim=True) # compute instance variance

sig = (var + eps).sqrt() # compute instance standard deviation

mu, sig = mu.detach(), sig.detach() # block gradients

x_normed = (x - mu) / sig # normalize input

lmda = Beta(alpha, alpha).sample((B, 1, 1, 1)) # sample instance-wise convex weights

if domain label is given:

# in this case, input x = [x"1, x"]]
perm = torch.arange(B-1, -1, -1) # inverse index
perm_j, perm_i = perm.chunk(2) # separate indices

perm_j = perm_j[torch.randperm(B // 2)] # shuffling

perm_1i = perm_i[torch.randperm(B // 2)] # shuffling

perm = torch.cat ([perm_j, perm_i], 0) # concatenation
else:

perm = torch.randperm(B) # generate shuffling indices

mu2, sig2 = mu[perm], sig[perm] # shuffling
mu_mix = mu * lmda + mu2 * (1 - lmda) # generate mixed mean
sig_mix = sig x Imda + sig2 * (1 - lmda) # generate mixed standard deviation

return x_normed » sig_mix + mu_mix # denormalize input using the mixed statistics
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Table 7: Test results on the source domains on PACS. A: Art. C: Cartoon. P: Photo. S: Sketch.

Method | CPS APS A,C,S ACP | Avg
Vanilla 99.494+0.03 99.47+0.04 99.38£0.02 99.654+0.03 | 99.50
MixStyle | 99.55+0.02 99.54+0.01 99.47+0.03 99.68+0.03 | 99.56

Table 8: Leave-one-domain-out generalization results on Digits-DG.

Method | MNIST MNIST-M  SVHN SYN [ Avg
JiGen 96.5 61.4 63.7 74.0 73.9
CCSA 95.2 58.2 65.5 79.1 74.5
MMD-AAE 96.5 58.4 65.0 78.4 74.6
CrossGrad 96.7 61.1 65.3 80.2 75.8
L2A-OT 96.7 63.9 68.6 83.2 78.1
CNN 95.8£0.3 58.8+0.5 61.7+0.5 78.6+0.6 | 73.7
+ Mixup w/o label interpolation | 93.7£0.6  55.24+1.0 61.6£09 744408 | 71.2
+ Manifold Mixup 92.7+£04 53.1+0.8 64.44+0.2 76.840.5 | 71.7
+ CutMix 949+£0.2 50.1+0.5 64.1+£0.9 78.1+0.7 | 71.8
+ Mixup 94.24+0.5 56.5+£0.8 63.3+£0.7 76.7+0.6 | 72.7
+ Cutout 95.8£0.4 58.44+0.6 61.94+0.9 80.6+£0.5 | 74.1
+ DropBlock 96.2£0.1 60.5+0.6 64.1+:0.8 80.2+0.6 | 75.3
+ MixStyle (ours) 96.5+0.3  63.5+0.8 64.7+£0.7 81.24+0.8 | 76.5

A.2 FURTHER ANALYSIS

MixStyle between same-domain instances.

We are interested 1n.kn'ow1ng if mixing styles Table 6: Investigation on the effect of mixing
between same-domain instances helps perfor-  styles between same-domain instances.

mance. To this end, we sample each mini-batch

from a single domain during training when us- Accuracy (%)
ing MixStyle. The results are shown in Table 6] ResNotis 95
where we observe that mixing styles between + MixStyle w/ same-domain 0.4
same-domain instances is about 1% better than + MixStyle w/ random shuffle 82 8
the baseline model. This suggests that instance- + MixStyle w/ domain label 83.7

specific style exists. Nonetheless, the perfor-
mance is clearly worse than mixing styles be-
tween instances of different domains.

Performance on source domains. To prove that MixStyle does not sacrifice the performance on
seen domains in exchange for gains on unseen domains, we report the test accuracy on the held-out
validation set of the source domains on PACS in Table [

Results on Digits-DG and Office-Home. In addition to the experiments on PACS (in Sec. @])
we further evaluate MixStyle’s effectiveness on two DG datasets, namely Digits-DG (Zhou et al.,
2020a) and Office-Home (Venkateswara et al.l |2017). Digits-DG contains four digit datasets (do-
mains) including MNIST (LeCun et al.,|{1998), MNIST-M (Ganin & Lempitsky,[2015), SVHN (Net-
zer et al.l [2011) and SYN (Ganin & Lempitsky, 2015). Images from different digit datasets differ
drastically in font style, stroke color and background. Office-Home is composed of four domains
(Artistic, Clipart, Product and Real World) with around 15,500 images of 65 classes for home and
office object recognition. The results are shown in Tables [§]and [0] where no domain labels are used
in MixStyle. Similar to the results on PACS, here we observe that MixStyle also brings clear im-
provements to the baseline CNN model and outperforms all general-purpose regularization methods
on both Digits-DG and Office-Home. Compared with more sophisticated DG methods like L2A-OT,
MixStyle’s performance is comparable, despite being much simpler to train and consuming much
less computing resources.
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Table 9: Leave-one-domain-out generalization results on Office-Home.

Method | Artistic Clipart Product  Real World | Avg
JiGen 53.0 47.5 71.5 72.8 61.2
CCSA 59.9 49.9 74.1 75.7 64.9
MMD-AAE 56.5 47.3 72.1 74.8 62.7
CrossGrad 58.4 494 73.9 75.8 64.4
L2A-OT 60.6 50.1 74.8 77.0 65.6
ResNet18 589+0.3 49.4£0.1 743£0.1 76.2+0.2 | 64.7
+ Manifold Mixup 56.2+£04 46.3+0.3 73.6+0.1 752402 | 62.8
+ Mixup w/o label interpolation | 57.0£0.2 48.7+£0.2 714+06 74.5+£04 | 62.9
+ Cutout 57.8+£0.2 48.1£0.3 739+0.2 75.8+0.3 | 63.9
+ CutMix 57.940.1 48.3+03 745+0.1 75.6+04 | 64.1
+ DropBlock 58.0+£0.1 48.1+0.1 743£0.3  75.9+04 | 64.1
+ Mixup 58.240.1 49.340.2 74.7£0.1 76.1+0.1 | 64.6
+ MixStyle (ours) 58.7£0.3 534402 74240.1 759+0.1 | 65.5
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