
Manipulating 3D Molecules in a Fixed-Dimensional
E(3)-Equivariant Latent Space

Zitao Chen1,2∗ Yinjun Jia1∗† Zitong Tian1,3∗ Wei-Ying Ma1 Yanyan Lan1,4,5†

1 Institute for AI Industry Research (AIR), Tsinghua University
2 Department of Computer Science and Technology, Tsinghua University

3 Qiuzhen College, Tsinghua University
4 Beijing Frontier Research Center for Biological Structure, Tsinghua University

5 Beijing Academy of Artificial Intelligence
{chen-zt23,tzt23}@mails.tsinghua.edu.cn

{jiayinjun, maweiying, lanyanyan}@air.tsinghua.edu.cn

Abstract

Medicinal chemists often optimize drugs considering their 3D structures and de-
signing structurally distinct molecules that retain key features, such as shapes,
pharmacophores, or chemical properties. Previous deep learning approaches ad-
dress this through supervised tasks like molecule inpainting or property-guided
optimization. In this work, we propose a flexible zero-shot molecule manipulation
method by navigating in a shared latent space of 3D molecules. We introduce a
Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns
a fixed-dimensional, E(3)-equivariant latent space independent of atom counts.
MolFLAE encodes 3D molecules using an E(3)-equivariant neural network into
fixed number of latent nodes, distinguished by learned embeddings. The latent
space is regularized, and molecular structures are reconstructed via a Bayesian
Flow Network (BFN) conditioned on the encoder’s latent output. MolFLAE
achieves competitive performance on standard unconditional 3D molecule gen-
eration benchmarks. Moreover, the latent space of MolFLAE enables zero-shot
molecule manipulation, including atom number editing, structure reconstruction,
and coordinated latent interpolation for both structure and properties. We further
demonstrate our approach on a drug optimization task for the human glucocorticoid
receptor, generating molecules with improved hydrophilicity while preserving key
interactions, under computational evaluations. These results highlight the flexi-
bility, robustness, and real-world utility of our method, opening new avenues for
molecule editing and optimization. 3

1 Introduction

Structure-guided molecule optimization is a crucial task in drug discovery. Medicinal chemists edit
molecular structures to improve binding affinity, selectivity, and ADMET (absorption, distribution,
metabolism, excretion, and toxicity) properties. These modifications can range from subtle changes,
such as introducing a chlorine [1] or methyl [2], to more extensive transformations like deconstruction
and reconstruction of known ligands [3] or designing chimera molecules that combine beneficial

∗Equal contribution.
†Corresponding author.
3The code is available at https://github.com/MuZhao2333/MolFLAE

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MuZhao2333/MolFLAE

features of different scaffolds [4, 5]. These diversified tasks present exciting opportunities for deep
learning models to accelerate real-world drug design.

Previous generative approaches typically decompose 3D molecule editing into a set of narrowly
defined subtasks. Notable progress has been made in molecular inpainting [6, 7, 8], property-guided
optimization [9, 10], and shape-conditioned regeneration [11]. While effective, these models often rely
on task-specific supervision and architectures, limiting their flexibility and generalizability. Moreover,
not all molecule editing tasks align well with the supervised learning paradigm. For example, adding
substituents may be too trivial to justify training a specialized model, while complex tasks like
scaffold hopping by integrating known actives are often data-scarce for supervised approaches. These
limitations call for a more flexible framework capable of supporting a broad spectrum of molecule
editing tasks in a unified, data-efficient manner.

Previous successes in image editing and style transfer [12, 13, 14] show that latent space navigation
allows for powerful, general-purpose manipulations by perturbing latent vectors. However, 3D
molecule generation presents unique challenges not encountered in image domains. Molecules
consist of variable numbers of atoms, and they exhibit permutation invariance to the atom order
and SE(3)-equivariance to the spatial translation and rotation. These characteristics make latent
space modeling significantly more challenging, and most existing 3D generative models operate
on the product of latent spaces of each atom or functional group [15, 16, 17, 18, 19], resulting in
variable dimensional representations. This variability prohibits common operations on vectors, such
as interpolation or extrapolation, which are common to image generative models.

To address these challenges, we propose MolFLAE (Molecule Fixed Length AutoEncoder), a Varia-
tional AutoEncoder (VAE) for 3D molecules that learns a fixed-dimensional, E(3)-equivariant latent
space, independent of atom counts. Our encoder employs an E(3)-equivariant neural network that
updates a fixed number of virtual nodes initialized with learnable embeddings, transforming them
into fixed-length latent codes for 3D molecules. The latent space is regularized under the standard
VAE framework, and a Bayesian Flow Network (BFN) serves as the decoder, reconstructing full
molecular structures conditioned on latent codes.

Our autoencoder framework supports a wide range of downstream applications. We first demonstrate
that our model can unconditionally generate diverse, valid molecules, achieving competitive perfor-
mance on standard 3D molecular generation benchmarks. More importantly, our fixed-dimensional
latent space enables rich, semantically meaningful manipulations. We show that molecular analogs
can be created with varying atom counts, covering simple substitutions to ring contractions. Molecules
can also be reconstructed on the shape and orientation of other molecules, yielding chemically plau-
sible outputs. Furthermore, interpolating between two latent codes produces chimera molecules
that combine substructures and properties from both parents. Finally, we demonstrate a real-world
application of our method in a drug optimization task targeting the human glucocorticoid receptor.
We design new molecules that preserve the key binding interactions of known actives while achieving
a better balance of potency and hydrophilicity. These results illustrate the flexibility, robustness, and
practical utility of our model, highlighting the promise of latent space manipulation as a powerful
tool for molecular editing and optimization. Our main contributions are:

• We propose a VAE model that learns a fixed-dimensional, E(3)-equivariant latent space
for 3D molecular structures;

• The learned latent space enables a wide range of molecule manipulation tasks, including
analog design, molecule reconstruction, and structure-properties co-interpolation;

• We introduce quantitative metrics to evaluate the disentanglement of spatial and semantic
latent components, as well as the quality of structural and property interpolation.

2 Related Works

Unconditional Generation for 3D Molecules Unconditional 3D molecule generation has achieved
rapid advancements, driven by progress in deep generative models. Early works explored auto-
regressive models to construct molecules atom-by-atom [20, 21]. More recently, inspired by diffusion-
like models [22, 23, 24, 25, 26], models like EDM [15], EquiFM [16], and GeoBFN [17], have sig-
nificantly improved generation quality. VAEs [27] offer an alternative by decoding latent embeddings
into molecules, but modeling 3D molecules is challenging due to variable atom counts and the need

2

Figure 1: The architecture of MolFLAE. 3D molecules are transformed into latent codes and decoded
with BFN. MolFLAE is trained with the recon. loss and the regularization loss of the latent code.

for equivariance of coordinates to rotations and translations. Existing 3D molecular VAEs such as
PepGLAD [19] and UniMoMo [28] have made progress by encoding molecular blocks (e.g., amino
acid residues) into independent latent nodes. This design ensures E(3)-equivariance but has two key
limitations: (1) the number of latent nodes depends on the molecular composition, complicating
cross-sample comparisons and interpolation tasks; and (2) spatial relationships between molecular
blocks are tightly preserved, restricting the flexibility of the latent space for generative modeling,
especially when latent codes are repurposed for tasks like autoregressive modeling by finetuning
LLMs.

A key limitation of most unconditional 3D generative models is that their latent spaces vary in length.
This variability prohibits operations such as interpolation. Consequently, zero-shot molecule editing
becomes non-trivial or even infeasible. To address this, researchers have designed specific models
for molecule editing or constructed fixed-dimensional latent spaces, which will be discussed in the
following sections.

3D Molecule Editing 3D molecule editing has traditionally been divided into several specialized
subtasks. Linker design focuses on connecting fragments to form valid new compounds [6, 7], while
scaffold inpainting involves masking molecule cores and regenerating them [8]. These two tasks share
similarities and can be unified under a mask-prediction framework. However, other editing tasks
are harder to generalize. For example, DecompOpt [29] decomposes ligands into substructures and
trains a diffusion model conditioned on these substructures, enabling deconstruction-reconstruction
of 3D molecules. Another task is property-guided molecule optimization, where molecules are
directly edited to improve specific properties using explicit guidance signals. Approaches such as
gradient-based optimization [9] and classifier-free guidance [10] have been explored to this end.

While these task-specific methods have demonstrated strong performance, they often lack flexibility
and generality. This raises the question if we can achieve more elegant and general 3D molecule
manipulation by navigating in the latent space. This motivation has led researchers to explore unified,
fixed-length, and semantically meaningful latent spaces for 3D molecules.

Generate 3D Molecules from Fixed-Dimensional Latent Spaces Fixed-length autoencoders for
molecules have been explored through voxel-based models, which discretize 3D space into uniform
grids and apply 3D CNNs [30, 31] or neural fields [32]. While straightforward, these methods
are not E(3)-equivariant and struggle to disentangle semantic features from orientations, making
molecule manipulation in the latent space not flexible. Local-frame-based models [33] represent
conformations with SE(3) invariant features, including distances, bond angles, and dihedrals, making
outputs orientation-agnostic. UAE-3D [34] has proposed a 3D fixed-length latent space by discarding
the inductive bias of geometric equivariance, yet their latent space suffers from similar feature
entanglement problem as voxel-based models. A recent work [35] also constructs fixed-length
autoencoder, but applies global pooling over atom features, discarding spatial information that is
critical for reconstruction and interaction modeling.

3

In contrast, our method preserves equivariance without requiring data augmentation, contains spatial
information, avoids voxelization, and partially disentangles spatial and semantic information which
enables unconditional generation and zero-shot molecule editing.

3 Methodology

We encode a variable-size 3D molecule by concatenating it with a set of learnable virtual nodes and
updating them together via an E(3)-equivariant neural network to obtain fixed-length embeddings.
The regularization loss Lreg comes from an Multi-Layer Perceptron (MLP) predicting the means
and variances to form a variational posterior, from which we sample latent codes that condition a
Bayesian Flow Network (BFN) decoder for reconstruction producing the reconstruction loss Lrecon.
The MolFLAE is trained end-to-end by minimizing

L = Lrecon + Lreg. (1)

We recall the classical Variational AutoEncoder [27] (VAE) in Sec. 3.1 that inspires the above loss.
Then introduce BFN in Sec. 3.2. And we introduce the encoder and decoder of MolFLAE in Sec. 3.3
Sec. 3.4.

3.1 Variational AutoEncoder

Let qθ(z | x) denote the encoder, pϕ(x | z) the decoder, and p(z) the prior distribution of the latent
codes, which is typically chosen as a standard Gaussian. The VAE loss is the negative Evidence
Lower Bound (ELBO):

LVAE(θ, ϕ;x) = Eqθ(z|x) [− log pϕ(x | z)]︸ ︷︷ ︸
reconstruction loss

+DKL (qθ(z | x) ∥ p(z))︸ ︷︷ ︸
regularization loss

(2)

Our training loss Eq. 1 is inspired by the above VAE loss.

3.2 Bayesian Flow Network

The Bayes Flow Network (BFN) [26] incorporates Bayesian inference to modify the parameters
of a collection of independent distributions and using a neural network to integrate the contextual
information. Unlike standard diffusion models [22, 23] that primarily handle continuous data via
Gaussian noise, BFN extends this paradigm to support both continuous and discrete data types,
including categorical variables. This flexibility makes BFN particularly suitable for modeling 3D
molecules [17], where the data naturally consists of mixed modalities of continuous coordinates and
discrete atom types.

Unlike traditional generative models that operate directly on data, BFN performs inference in the space
of distribution parameters. Given a molecule m, the sender distribution pS(y |m;α) transforms it
into a parameterized noisy distribution by adding noise analogous to the forward process in diffusion
models. A brief introduction of BFN can be found in Appendix C.1.

3.3 MolFLAE Encoder

Inspired by the autoencoder in natural languages models [36] who uses of [CLS] tokens for context
compression, we append NZ learnable virtual nodes to the molecule’s point cloud and treat the
concatenation of their final embeddings as our fixed-length latent codes.

We denote the coordinates and atom type feature of the i-th atom in moleculeM by x
(i)
M ∈ R3 and

v
(i)
M ∈ RDM , respectively. The full molecular input and the learnable virtual nodes are represented as
M = [xM ,vM] and Z = [xZ ,vZ]. The virtual nodes are some artificial atoms with the same size
as the real atoms.

We remark that, in order to effectively encode the 3D configuration and chirality of a molecule, the
number of virtual nodes NZ must be at least 4 so that they can form a non-degenerate simplex in 3D
space. To ensure sufficient capacity for capturing complex spatial structures, we set NZ = 10.

4

We employ an E(3)-equivariant neural network ϕθ to jointly encode the original molecular point
cloud and the appended virtual nodes (M,Z). After rounds of update, we discard the embeddings of
M and retain only those of Z as our fixed-length latent representation. In explicit,

(_ , [zx, zh]) = ϕθ ([xM ,vM], [xZ ,vZ]) . (3)

The latent code is denoted as [zx, zh] ∈ RNZ×(3+Df), where zx and zh represent the spatial and
feature components, Df is the embedding dimension of features. Note that we only keep the fixed-
length part of the ϕθ output. So we obtain a fixed-length encoding of the molecules. The network
structure and E(3)-equivariance discussion can be found in the Appendix A.

To regularize the latent space, we adopt a VAE formulation. While the initial output [zx, zh] is
deterministic, this can lead to irregular latent geometry and poor interpolatability. To address this, we
predict a coordinate-wise Gaussian distribution for each latent dimension:

µx = zx, [σ2
x, µh,σ

2
h] = Linear(zh). (4)

The resulting latent posterior is regularized via a KL divergence to a fixed spherical Gaussian prior
N ([0, 0], [varx, varh]I), giving rise to the regularization loss:

Lreg = KL
(
N ([µx,µh], [σ

2
x,σ

2
h])
∥∥ N ([0, 0], [varx, varh]I)

)
, (5)

where varx, varh are two fixed scale parameters. This regularization encourages the latent space to
be smooth and continuous, facilitating interpolation between molecules and improving the robustness
and diversity of samples generated from the prior distribution. In practice, we project (using the
linear layer) the feature embedding zh ∈ RNZ×Df to µh ∈ RNZ×DZ . For notational simplicity,
we continue to denote the sampled latent code from N (µh,σ

2
hI) as zh. The full expression of the

regularization loss is provided in Appendix B.

3.4 MolFLAE Decoder

The encoder defines a Gaussian posterior over the latent space. We sample a latent code (zx, zh) from
this distribution and use it as the conditioning input to the BFN decoder. By comparing the coordinates
and atom type of reconstructed molecule with the original input, we compute the reconstruction loss:

Lrecon = Ln
x + Ln

v . (6)

In our molecular BFN setup, we must jointly model both continuous and discrete aspects of atomic
data. This requires a unified representation that enables neural networks to propagate information
across modalities while maintaining compatibility with Bayesian updates. It is enough to define a
suitable sender distribution pS allowing the additivity of precision [26].

We model continuous atomic coordinates using Gaussian distributions. Given ground-truth coordi-
nates xM and a noise level α = ρ−1, the sender generates a noisy observation by adding isotropic
Gaussian noise:

pS(y
x | xM ;α) = N (yx | xM , α−1I). (7)

For discrete atom types, we model each atom using a categorical distribution over K classes. This
distribution is parameterized by a continuous matrix θv ∈ RNM×K , which is transformed into proba-
bilities via a softmax function. Given the ground-truth atom type matrix evM

= [v
(1)
M , . . . ,v

(NM)
M]T ∈

RNM×K , where each v
(j)
M is the column one-hot vector representing one of the K atom categories,

the sender perturbs it with an artificial Gaussian noise scaled by α′, producing:

pS(y
v | vM ;α′) = N (yv | α′(KevM

− 1), α′KI) (8)

For the initial prior θ0, we follow [26] and adopt standard Gaussian priors for continuous variables
and uniform distributions for categorical ones.

Then we can derive the two loss Ln
x + Ln

v respectively [37]. The total forward pass can be found in
the Algorithm. 2. The inference process is parallel with the general BFN inference but taking two
data modalities into consideration. See Appendix C.4

5

4 Experiments

We train and evaluate MolFLAE on three datasets: QM9 [38], GEOM-Drugs [39] and ZINC-9M (the
in-stock subset of ZINC [40] with 9.3M molecules). QM9 contains 134k small molecules with up
to 9 heavy atoms, and GEOM-Drugs is a larger-scale dataset featuring 430k drug-like molecules.
On both QM9 and GEOM-Drugs experiment, hydrogens are treated explicitly. We use QM9 and
GEOM-Drugs to evaluate MolFLAE in unconditional 3D molecule generation task, and demonstrate
other applications on the more comprehensive large-scale dataset ZINC-9M,where hydrogens are
treated implicitly.

Unconditional Molecule Generation To assess the capability of MolFLAE generate stable, diverse
molecules, we first focus on 3D molecule generation task following the setting of prior works
[15, 16, 17]. We conduct 10,000 random samplings in the latent space, then decode them into
molecules using MolFLAE decoder, subsequently evaluating qualities of these molecules. We sample
the atom number from the prior of the training set as previous works like [15]. Table 1 illustrates
the benchmark results of unconditional generation with MolFLAE. We also provide results on drug-
likeness metrics on GEOM-Drugs in Appendix E, confirming MolFLAE’s outstanding performance
in generating structurally reasonable and drug-like molecules compared to previous methods.

Table 1: Performance comparison of different methods on the QM9 and GEOM-Drugs dataset.

Metrics QM9 GEOM-Drugs
Atom Sta (%) Mol Sta (%) Valid (%) V×U (%) Novelty (%) Atom Sta (%) Valid (%)

Data 99.0 95.2 97.7 97.7 - 86.5 99.9
ENF [41] 85.0 4.9 40.2 39.4 - - -
G-Schnet [42] 95.7 68.1 85.5 80.3 - - -
GDM-AUG [15] 97.6 71.6 90.4 89.5 74.6 77.7 91.8
EDM [15] 98.7 82.0 91.9 90.7 58.0 81.3 92.6
EDM-Bridge [43] 98.8 84.6 92.0 90.7 - 82.4 92.8
GEOLDM [18] 98.9 89.4 93.8 92.7 57.0 84.4 99.3
GEOBFN 50 [17] 98.3 85.1 92.3 90.7 72.9 75.1 91.7
GEOBFN 100 [17] 98.6 87.2 93.0 91.5 70.3 78.9 93.1
UniGEM [44] 99.0 89.8 95.0 93.2 - 85.1 98.4
MolFLAE 50 99.3 90.4 95.9 92.1 77.1 86.9 99.2
MolFLAE 100 99.4 92.0 96.8 88.9 74.5 86.7 99.7

Compared with several baseline models, MolFLAE achieves competitive performance across atom
stability, molecular stability, and validity metrics on both QM9 and GEOM-Drugs dataset, while
requiring fewer sampling steps. These results suggest that our latent space is well-structured,
supporting efficient and reliable molecular generation.

Generating Analogs with Different Atom Numbers First, we probe the smoothness of MolFLAE
decoder to atom numbers by forcing the generation with increased or decreased atom numbers based
on the original latent code. We examine the similarities between generated molecules and original
molecules with MCS-IoU (Maximum Common Substructure Intersection-over-Union). Generated
molecules share similar orientations, shapes and 2D structures with the original input, validating the
desired smoothness. Detailed results are presented in Table 2, and three examples are provided in
Fig. 2 for better illustration.

Table 2: Evaluating 2D similarities between generated analogs and original molecules.

Atom Number -2 -1 0 1 2
MCS-IoU similarity 69.79 76.69 84.08 76.05 69.95

Valid(%) 100.0 99.89 99.76 99.89 99.68
Atom Sta(%) 84.58 83.28 82.48 82.38 82.53

Exploring the disentanglement of the latent space via molecule reconstruction The latent
space of MolFLAE consists of two parts, the E(3)-equivariant component zx and the E(3)-invariant
component zh. Ideally, spatial and semantic features of molecules disentangle spontaneously, with
zx encoding the shape and orientation and zh encodes substructures of molecules.

6

Figure 2: Examples for analog generation with variable atom numbers.

Figure 3: An example for molecule reconstruction with new shape and orientation.

In this section, we explore this disentanglement hypothesis by swapping zx and zh between molecules
and observe decoded molecules. Formally, with two molecules M0 and M1, and their latent

(
z0h, z

0
x

)
and

(
z1h, z

1
x

)
, we decode molecules with

(
z0h, z

1
x

)
(named preserving zh) and

(
z1h, z

0
x

)
(named

preserving zx), respectively.

In experiments, we have observed a partial disentanglement of the MolFLAE latent space. As shown
in Fig. 3, following the disentanglement hypothesis, substructures information of M1 should be able
to be extracted by isolating z1h. As z1h is not sufficient to reconstruct M1, we view it as a deconstructed
molecule. Then, we reconstruct these substructures into the shape and orientation of M0, by decoding
the hybrid latent code

(
z1h, z

0
x

)
. The resulted molecule shares a similar shape and orientation with

M0, indicated by the dash lines in Fig 3. Moreover, it also shares similar substructures as M1 like
amide, chlorobenzyl, sulfamide, indicated by rectangles of corresponding colors.

Quantitatively, we compute the MACCS fingerprint [45] similarity (considering substructure overlap-
ping) and in situ shape similarity (considering shape, orientation and relative position) of 1000 hybrid
molecules

(
z1h, z

0
x

)
and

(
z0h, z

1
x

)
with the original molecule

(
z0h, z

0
x

)
(Table 3). Under the setting of

preserving zx, the shape similarity is significantly higher than the preserving zh (0.394 vs 0.174);
indicating zx indeed encodes shape and orientation information. Similarly, MACCS similarity is

7

higher under the preserving zh setting than the preserving zx setting (0.580 vs 0.421). These results
support that the latent space of MolFLAE is partially disentangled, with zh representing substructure
composition and zx representing shape and orientation.

Table 3: Measuring molecule reconstruction similarities under different settings.

Preserving zx Preserving zh
Metrics MACCS Sim ↓ Shape Sim ↑ Valid(%)(↑) Atom Sta(%)(↑) MACCS Sim ↑ Shape Sim ↓ Valid(%)(↑) Atom Sta(%)(↑)

MolFLAE 0.421 0.394 100.0 85.20 0.580 0.174 100.0 84.62

Latent Interpolation The fixed-dimensional latent space allows flexible manipulation of molec-
ular representations via vector convex combinations. In MolFLAE, the regularization loss further
encourages smooth transitions between latent codes, facilitating continuous transformations be-
tween molecules. Fig. 4 presents the interpolation of three pairs of molecules, indicating smooth
transformations of shape and orientation.

Figure 4: Examples for the latent interpolation between molecules.

To further quantify the quality of interpolation, We evaluate the trend of properties of the intermediate
molecules during the transformation, considering both structural and physical properties (detailed
descriptions are provided in Appendix D). We compute the Pearson correlation coefficient r between
each property value and its corresponding interpolation index (adjusted with the sign of property
difference between the source and target molecule). We also report the associated p-values from the
Pearson significance test to assess the statistical evidence for linear trends. A property is considered
to exhibit significant linear variation along the interpolation trajectory if the null hypothesis of zero
correlation is rejected at the 5% significance level, i.e., if − log p > − log(0.05) ≈ 1.3. Detailed
results are documented in Table 5 and Table 4. We also report the step-wise molecular validity and
atom stability during interpolation in Table 6, which indicates that most intermediate molecules are
valid and stable.

Table 4: Monitoring the trend of structural properties along with molecule interpolations.

Interpo Num
Similarity Preference sp3frac BertzCT QED
Pearson’s r -logp Pearson’s r -logp Pearson’s r -logp Pearson’s r -logp

8 0.9261 3.3346 0.4314 0.8518 0.6537 1.7888 0.5460 1.2128
10 0.9191 4.1340 0.3982 0.9639 0.6344 2.1138 0.5194 1.4228
12 0.9122 4.8476 0.3809 1.0889 0.6281 2.4728 0.5059 1.6216

8

Table 5: Monitoring the trend of physical properties along with molecule interpolations.

Interpo Num
Labute ASA TPSA LogP MR

Pearson’s r -logp Pearson’s r -logp Pearson’s r -logp Pearson’s r -logp
8 0.9067 4.6366 0.5711 1.3783 0.5400 1.2363 0.8467 3.5188
10 0.9041 5.7687 0.5620 1.6533 0.5216 1.4533 0.8388 4.3350
12 0.8939 6.8567 0.5425 1.8572 0.4925 1.6259 0.8255 5.1216

Table 6: Step-wise Validity and Atom Stability during interpolation.

Interpo Num Metrics Step
1 2 3 4 5 6 7 8 9 10 11 12

8 Valid(%) 99.90 99.90 99.90 100.0 99.90 100.0 100.0 100.0
Atom Sta(%) 82.23 82.95 84.17 84.57 84.21 83.74 83.10 82.63

10 Valid(%) 100.0 99.90 99.90 99.80 99.80 100.0 100.0 100.0 99.80 99.90
Atom Sta(%) 82.23 82.75 83.53 84.07 84.36 84.35 84.16 84.17 82.78 82.67

12 Valid(%) 99.90 100.0 99.90 100.0 100.0 100.0 100.0 100.0 99.90 99.90 100.0 99.80
Atom Sta(%) 82.39 82.50 83.76 83.67 83.92 84.65 84.20 84.50 84.27 83.00 82.84 82.57

Applying MolFLAE to optimize molecules targeting the human glucocorticoid receptor (hGR)
To assess the real-world utility of our method, we applied our method to optimize drug candidates for
the hGR, which requires balancing hydrophobic-interaction-centric binding with aqueous solubility.
The hGR is a key target for anti-inflammatory, and our optimization starts from two known actives.
AZD2906 is a potent hGR modulator but is poorly soluble [46], while BI-653048 is more soluble
but less potent [47]. To showcase the performance of our model, We computationally evaluate
the potency and hydrophilicity with Glide docking and QikProp CLogPo/w from the Schrodinger
Suite, where lower docking scores indicate better potency, and lower CLogPo/w values indicate
better hydrophilicity. These computational metrics align with real-world properties of AZD2906
and BI-653048. AZD2906 has a docking score of -13.16 and a high CLogPo/w of 5.61, whereas
BI-653048 shows a better CLogPo/w of 3.90 but a weaker docking score of -10.62 (Fig. 5B and C).
These results facilitate the computational evaluation of MolFLAE generated molecules.

To explore trade-offs, we blended these two molecules in latent space using 90% AZD2906 and 10%
BI-653048, generating 100 candidates. The top 10 molecules outperformed BI-653048 in docking
score, and 8 also improved hydrophilicity (CLogPo/w) compared to AZD2906. These candidates
preserved AZD2906’s binding shape while introducing polar groups for better solubility. Sample 34,
for instance, it retained key pharmacophores of AZD2906 and BI-653048 for interacting with the
receptor (indicated by colored rectangles for each pharmacophore), achieving a balanced property
with its docking score of -11.15 and CLogPo/w of 3.75 (Fig. 5F). Moreover, its docking pose closely
matched both its generated conformation (RMSD = 1.35 Å) and AZD2906’s crystal structure (Fig. 5D
and E), representing the advantage of explicitly modeling of 3D coordinates by MolFLAE. These
results highlight our method’s potential for meaningful molecular optimization and drug design.

5 Conclusion and Future Works

In this work, we present MolFLAE, a flexible VAE framework for manipulating 3D molecules within
a fixed-dimensional, E(3)-equivariant latent space. Our method demonstrates strong performance
across multiple tasks, including unconditional generation, analog design, substructure reconstruction,
and latent interpolation. We further validate the real-world utility of MolFLAE through a case study
on generating drug-like molecules targeting the hGR, balancing potency and solubility.

Beyond the reported experiments, MolFLAE naturally extends to a wider range of tasks. For example,
molecule inpainting can be achieved by encoding discontinuous fragments and decoding to larger
atom sets. Structural superposition can be achieved efficiently via the weighted Kabsch algorithm on
latent nodes, avoiding the high complexity of atom-wise bipartite matching. These applications are
exemplified in Fig 6, and a deeper exploration is left for future work due to space constraints.

While MolFLAE demonstrates strong performance across multiple tasks, there remains room for
improvement in the disentanglement and interpretability of its latent space. We hypothesize that
better disentanglement can be achieved by enforcing the invariance of semantic latent zh to molecular

9

conformational changes or other non-rigid perturbations. Future works may explore incorporating
self-contrastive objectives to better capture chemical semantics with latent representations.

In summary, our results highlight the versatility of MolFLAE and its promise as a general-purpose
framework for 3D molecule generation and editing. This work opens new directions for exploring the
broader applications of fixed-dimensional, E(3)-equivariant latent spaces in molecular modeling.

Figure 5: Applying MolFLEA to optimizing AZD2096 targeting the hGR. A, the cystal structure of
AZD2096 in complex with hGR. B, C, and F, 2D structures of AZD2096, BI-653048, and sample
34, with their docking score and CLogPo/w. D, the docking pose of sample 34. E, comparing the
docking pose of sample 34 with AZD2096 and its generated pose before docking.

Figure 6: Exemplifying the application of MolFLAE to molecule inpainting and superposition.

10

Acknowledgements

This work is supported by Beijing Academy of Artificial Intelligence and Beijing Frontier Research
Center for Biological Structure Fundings.

References
[1] Debora Chiodi and Yoshihiro Ishihara. “magic chloro”: Profound effects of the chlorine atom

in drug discovery. Journal of Medicinal Chemistry, 66(8):5305–5331, 2023. PMID: 37014977.

[2] Heike Schönherr and Tim Cernak. Profound methyl effects in drug discovery and a call for new
c-h methylation reactions. Angewandte Chemie International Edition, 52(47):12256–12267,
2013.

[3] J. Henry Blackwell, Iacovos N. Michaelides, and Floriane Gibault. A perspective on the strategic
application of deconstruction–reconstruction in drug discovery. Journal of Medicinal Chemistry,
0(0):null, 0. PMID: 40324045.

[4] Tingting Chen, Jiafu Leng, Jun Tan, Yongjun Zhao, Shanshan Xie, Shifang Zhao, Xiangyu
Yan, Liqiao Zhu, Jun Luo, Lingyi Kong, and Yong Yin. Discovery of novel potent covalent
glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment
of triple-negative breast cancer. Journal of Medicinal Chemistry, 66(14):10036–10059, 2023.
PMID: 37452764.

[5] Kunyu Shi, Jifa Zhang, Enda Zhou, Jiaxing Wang, and Yuxi Wang. Small-molecule receptor-
interacting protein 1 (rip1) inhibitors as therapeutic agents for multifaceted diseases: Current
medicinal chemistry insights and emerging opportunities. Journal of Medicinal Chemistry,
65(22):14971–14999, 2022. PMID: 36346971.

[6] Ilia Igashov, Hannes Stärk, Clément Vignac, Victor Garcia Satorras, Pascal Frossard, Max
Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion models
for molecular linker design, 2022.

[7] Jiaqi Guan, Xingang Peng, PeiQi Jiang, Yunan Luo, Jian Peng, and Jianzhu Ma. Linkernet:
Fragment poses and linker co-design with 3d equivariant diffusion. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[8] Shicheng Chen, Odin Zhang, Chenran Jiang, Huifeng Zhao, Xujun Zhang, Mengting Chen,
Yun Liu, Qun Su, Zhenxing Wu, Xinyue Wang, Wanglin Qu, Yuanyi Ye, Xin Chai, Ning
Wang, Tianyue Wang, Yuan An, Guanlin Wu, Qianqian Yang, Jiean Chen, Wei Xie, Haitao Lin,
Dan Li, Chang-Yu Hsieh, Yong Huang, Yu Kang, Tingjun Hou, and Peichen Pan. Deep lead
optimization enveloped in protein pocket and its application in designing potent and selective
ligands targeting LTK protein. Nat. Mac. Intell., 7(3):448–458, 2025.

[9] Keyue Qiu, Yuxuan Song, Jie Yu, Hongbo Ma, Ziyao Cao, Zhilong Zhang, Yushuai Wu,
Mingyue Zheng, Hao Zhou, and Wei-Ying Ma. Empower structure-based molecule optimization
with gradient guidance, 2025.

[10] Alex Morehead and Jianlin Cheng. Geometry-complete diffusion for 3d molecule generation
and optimization. ArXiv, 2023.

[11] Keir Adams, Kento Abeywardane, Jenna Fromer, and Connor W. Coley. ShEPhERD: Diffusing
shape, electrostatics, and pharmacophores for bioisosteric drug design. In The Thirteenth
International Conference on Learning Representations, 2025.

[12] Peiye Zhuang, Oluwasanmi O Koyejo, and Alex Schwing. Enjoy your editing: Controllable
{gan}s for image editing via latent space navigation. In International Conference on Learning
Representations, 20221.

[13] Qiucheng Wu, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin, Yang
Zhang, and Shiyu Chang. Uncovering the disentanglement capability in text-to-image diffusion
models. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1900–1910, 2023.

11

[14] Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding
the latent space of diffusion models through the lens of riemannian geometry. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[15] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pages 8867–8887. PMLR, 2022.

[16] Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[17] Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma.
Unified generative modeling of 3d molecules with bayesian flow networks. In The Twelfth
International Conference on Learning Representations, 2024.

[18] Minkai Xu, Alexander S. Powers, Ron O. Dror, Stefano Ermon, and Jure Leskovec. Geometric
latent diffusion models for 3d molecule generation. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research, pages 38592–38610. PMLR, 2023.

[19] Xiangzhe Kong, Yinjun Jia, Wenbing Huang, and Yang Liu. Full-atom peptide design with
geometric latent diffusion. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[20] Youzhi Luo and Shuiwang Ji. An autoregressive flow model for 3d molecular geometry
generation from scratch. In International Conference on Learning Representations, 2022.

[21] Niklas W. A. Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of
3d point sets for the targeted discovery of molecules. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
7564–7576, 2019.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[23] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[24] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[25] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[26] Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian
flow networks, 2023.

[27] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[28] Xiangzhe Kong, Zishen Zhang, Ziting Zhang, Rui Jiao, Jianzhu Ma, Wenbing Huang, Kai Liu,
and Yang Liu. Unimomo: Unified generative modeling of 3d molecules for de novo binder
design. In Forty-second International Conference on Machine Learning, 2025.

12

[29] Xiangxin Zhou, Xiwei Cheng, Yuwei Yang, Yu Bao, Liang Wang, and Quanquan Gu. Decom-
popt: Controllable and decomposed diffusion models for structure-based molecular optimization.
In The Twelfth International Conference on Learning Representations, 2024.

[30] Tomohide Masuda, Matthew Ragoza, and David Ryan Koes. Generating 3d molecular structures
conditional on a receptor binding site with deep generative models. CoRR, abs/2010.14442,
2020.

[31] Pedro O. Pinheiro, Joshua Rackers, joseph Kleinhenz, Michael Maser, Omar Mahmood, An-
drew Martin Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi. 3d molecule generation by
denoising voxel grids. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[32] Matthieu Kirchmeyer, Pedro O. Pinheiro, and Saeed Saremi. Score-based 3d molecule gen-
eration with neural fields. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[33] Robin Winter, Frank No’e, and Djork-Arné Clevert. Auto-encoding molecular conformations.
ArXiv, abs/2101.01618, 2021.

[34] Yanchen Luo, Zhiyuan Liu, Yi Zhao, Sihang Li, Kenji Kawaguchi, Tat-Seng Chua, and Xiang
Wang. Towards unified latent space for 3d molecular latent diffusion modeling, 2025.

[35] Tianxiao Li, Martin Renqiang Min, Hongyu Guo, and Mark Gerstein. 3d autoencoding diffusion
model for molecule interpolation and manipulation, 2024.

[36] Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Conference on
Learning Representations, 2024.

[37] Yanru Qu, Keyue Qiu, Yuxuan Song, Jingjing Gong, Jiawei Han, Mingyue Zheng, Hao Zhou,
and Wei-Ying Ma. MolCRAFT: Structure-based drug design in continuous parameter space. In
Forty-first International Conference on Machine Learning, 2024.

[38] Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 08 2014.

[39] Simon Axelrod and Rafael Gómez-Bombarelli. GEOM: energy-annotated molecular conforma-
tions for property prediction and molecular generation. CoRR, abs/2006.05531, 2020.

[40] John J. Irwin, Khanh G. Tang, Jennifer Young, Chinzorig Dandarchuluun, Benjamin R. Wong,
Munkhzul Khurelbaatar, Yurii S. Moroz, John Mayfield, and Roger A. Sayle. Zinc20—a free
ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and
Modeling, 60(12):6065–6073, 2020. PMID: 33118813.

[41] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling.
E(n) equivariant normalizing flows. In NeurIPS, pages 4181–4192, 2021.

[42] Niklas W. A. Gebauer, Michael Gastegger, and Kristof T. Schütt. Symmetry-adapted generation
of 3d point sets for the targeted discovery of molecules. CoRR, abs/1906.00957, 2019.

[43] Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. In NeurIPS, 2022.

[44] Shikun Feng, Yuyan Ni, Lu yan, Zhi-Ming Ma, Wei-Ying Ma, and Yanyan Lan. UniGEM:
A unified approach to generation and property prediction for molecules. In The Thirteenth
International Conference on Learning Representations, 2025.

[45] Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse. Reoptimization
of mdl keys for use in drug discovery. Journal of Chemical Information and Computer Sciences,
42(6):1273–1280, 2002. PMID: 12444722.

13

[46] Martin Hemmerling, Karl Edman, Matti Lepistö, Anders Eriksson, Svetlana Ivanova, Jan Dah-
mén, Hartmut Rehwinkel, Markus Berger, Ramon Hendrickx, Matthew Dearman, Tina Jelles-
mark Jensen, Lisa Wissler, and Thomas Hansson. Discovery of indazole ethers as novel, potent,
non-steroidal glucocorticoid receptor modulators. Bioorganic & Medicinal Chemistry Letters,
26(23):5741–5748, 2016.

[47] Christian Harcken, Doris Riether, Pingrong Liu, Hossein Razavi, Usha Patel, Thomas Lee,
Todd Bosanac, Yancey Ward, Mark Ralph, Zhidong Chen, Donald Souza, Richard M. Nel-
son, Alison Kukulka, Tazmeen N. Fadra-Khan, Ljiljana Zuvela-Jelaska, Mita Patel, David S.
Thomson, and Gerald H. Nabozny. Optimization of drug-like properties of nonsteroidal gluco-
corticoid mimetics and identification of a clinical candidate. ACS Medicinal Chemistry Letters,
5(12):1318–1323, 2014.

[48] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Conference
on Learning Representations, 2022.

[49] Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, JUN ZHOU, and Chongxuan Li.
Unifying bayesian flow networks and diffusion models through stochastic differential equations.
In Forty-first International Conference on Machine Learning, 2024.

[50] Steven H. Bertz. The first general index of molecular complexity. Journal of the American
Chemical Society, 103(12):3599–3601, 1981.

[51] G. Richard Bickerton, Gaia V. Paolini, Jeremy Besnard, Sorel Muresan, and Andrew L. Hopkins.
Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2):90–98, February 2012.

[52] Paul Labute. A widely applicable set of descriptors. Journal of Molecular Graphics and
Modelling, 18(4):464–477, 2000.

[53] Peter Ertl, Bernhard Rohde, and Paul Selzer. Fast calculation of molecular polar surface area as
a sum of fragment-based contributions and its application to the prediction of drug transport
properties. Journal of Medicinal Chemistry, 43(20):3714–3717, 2000. PMID: 11020286.

[54] Scott A. Wildman and Gordon M. Crippen. Prediction of physicochemical parameters by atomic
contributions. Journal of Chemical Information and Computer Sciences, 39(5):868–873, 1999.

14

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We do claim our contributions and scope in the abstract and the last part of
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

Justification: We discuss the limitations of our work in the Discussion and Conclusion part.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work includes no theoretical analysis.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give the expiriment details in Appendix. A B C and hyperparameters in
Appendix. G.

Guidelines:

16

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will release our codes to reproduce the main experiment soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give the expiriment details in Appendix. A B C and hyperparameters in
Appendix. G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments follow standard deep learning practice and do not report
statistical error bars or significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide our computer resources in Appendix. G.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper does conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the potential impact of our work in Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We have discussed the Safeguards of our work in Appendix H.

19

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are properly cited in the main text. Their licenses and terms of use
are respected in accordance with the original distribution terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will provide a new validation set splitted from ZINC-9M, along with our
code of latent molecule manipulation experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

20

paperswithcode.com/datasets

Answer: [NA]
Justification: We do not do such research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not do such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM on such important parts.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Neural Network Details

We adopt the network structure of MolCRAFT [37] as our E(3)-Equivariant graph neural network
(GNN) backbone. Originally designed to model interactions between ligand and protein pocket atoms,
the network distinguishes between update nodes u (whose coordinates are updated) and condition
nodes c (which provide contextual information and the coordinates are not updated).

A.1 Neural Network Architecture

To align with our autoencoder framework, we adapt this formulation by assigning roles to nodes
based on the encoding or decoding stage. In the encoder, the update nodes correspond to the virtual
nodes, while the condition nodes are the atoms of the input ground truth molecule. Conversely, in the
decoder, the update nodes are the molecular atoms being generated, and the condition nodes are the
latent codes produced by the encoder.

To be convenient, we concatenate the spatial part and feature part of the update nodes
[xupdate,vupdate] and condition nodes [xcondition,vcondition] with writing xℓ = [xℓ

update,x
ℓ
condition] and

hℓ = [vℓ
update,v

ℓ
condition], where the superscript represents the ℓ-th layer of ϕ, 0 ≤ ℓ ≤ L. The Initial

hidden embedding h0 is obtained by an MLP embedding layer that encodes the atom feature [h]. No
embedding layer for the atom spatial coordinates. The construction of ϕθ is alternately updating the
atom feature embeddings h and coordinates x as

h ℓ+1
i = h ℓ

i +
∑

j∈V(i)
j ̸=i

fh
(
d ℓ
ij , h

ℓ
i , h

ℓ
j , eij ; θh

)
, (9)

x ℓ+1
i = x ℓ

i +
∑

j∈V(i)
j ̸=i

(
x ℓ
i − x ℓ

j

)
fx
(
d ℓ
ij , h

ℓ+1
i , h ℓ+1

j , eij ; θx
)
1update. (10)

Here, V(i) is the neighbors of i, who could have information communication to i. We choose the k
nearest nodes from i. d ℓ

ij = ∥x ℓ
i − x ℓ

j ∥2 denotes the Euclidean distance between atoms i and j at
layer ℓ, and eij encodes whether the pair (i, j) belongs to the update nodes, condition nodes, or the
connection between them. The indicator 1update ensures that coordinate updates are only applied to
update nodes, keeping the positions of condition nodes fixed.

A.2 E(3)-Equivariance Discussion

In molecular modeling, it is essential that the learned distribution over update nodes be invariant
to translations, reflections, and rotations of the condition nodes. This E(3)-invariance reflects a
fundamental inductive bias in molecular systems [15, 48]. Since SE(3) is a subgroup of E(3), any
E(3)-equivariant model is also SE(3)-equivariant. While some prior works (e.g., [37, 7]) adopt the
term SE(3), others (e.g., [15]) use E(3), which more accurately describes the symmetry of their
networks. We follow the latter to avoid ambiguity.

The full Euclidean group in R3, denoted E(3), consists of rigid-body transformations of the form
T (x) = Rx+ t, where R ∈ R3×3 is a orthogonal matrix and t ∈ R3 is a translation vector.

If we pre-align the condition nodes by centering them at their center of mass (i.e., eliminating the
translational degree of freedom), then the resulting likelihood becomes E(3)-invariant under the
following condition:

Proposition A.1 (Proposition 4.1 in [37]). Let T ∈ E(3) denote a rigid transformation. If the
condition nodes are centered at zero and the parameterization Φ(θ, c, t) is E(3)-equivariant, then
the likelihood is invariant under T :

pϕ(T (u) | T (c)) = pϕ(u | c).

This property ensures that the decoder’s predictions respect the underlying geometric symmetries
of molecular structures, which is crucial for both sample quality and spatial information learning of
latent codes.

22

A.3 Encoder Network

In the encoder network, the update nodes are the virtual nodes while the condition nodes are the input
ground truth molecule.

Before passing into the network, we apply a linear layer to embed the one-hot atom features vM ∈
RNM×DM into a continuous feature space RNM×Df , where Df denotes the embedding dimension.
The virtual node features are initialized as learnable parameters in the same embedded space RNZ×Df

and are only defined at the embedding level. Their initial spatial positions are set to zero.

After L layers of message passing, the output of the Network ϕθ is given by

ϕθ ([xM ,vM], [xZ ,vZ]) = ([x̃M , ṽM], [x̃Z , ṽZ]) = (_, [zx, zh]) , (11)

where only the virtual node outputs [zx, zh] are retained as the final latent code. Since the coordinate
updates are designed to be E(3)-equivariant at each layer, the entire encoder ϕθ is equivariant by
construction.

Importantly, we do not apply a softmax projection to convert feature embeddings into one-hot vectors.
Instead, we preserve the continuous representations to retain richer information for downstream
generation.

Then we apply a VAE layer to furtherly encode the latent code to a Gaussian distribution. See
Appendix B.

A.4 Decoder Network

The decoder follows a mirrored architecture, where the update nodes correspond to the generated
molecule, and the conditioning nodes are the latent virtual codes. Similar to the encoder, we discard
the outputs corresponding to the latent nodes and retain only the decoded molecule representations for
final output. The atom number NM is to be known beforehand. We can sample it from the training
set prior when doing unconditional generation [15] or edit it in generating analogs with different
atom numbers.

B VAE Details

We adopt the regularization loss to regularize the latent space. Given the deterministic initial output
[zx, zh], we predict a coordinate-wise Gaussian distribution for each latent dimension:

µx = zx, [σ2
x, µh,σ

2
h] = Linear(zh). (12)

where we assume isotropic variance for 3D coordinates (i.e., each atom shares a scalar variance across
x, y, z), while the feature dimensions zh are assigned independent variances per entry. This design
ensures that the latent distribution preserves equivariance in the spatial domain while maintaining
expressiveness in the feature domain.

In practice, we project (using the linear layer) the feature embedding zh ∈ RNZ×Df to µh ∈
RNZ×DZ . For notational simplicity, we continue to denote the sampled latent code fromN (µh,σ

2
hI)

as zh.

The resulting latent posterior is regularized via a KL divergence to a fixed spherical Gaussian prior
N ([0, 0], [varx, varh]I), giving rise to the regularization loss:

Lreg = KL
(
N ([µx,µh], [σ

2
x,σ

2
h])
∥∥ N ([0, 0], [varx, varh]I)

)
, (13)

where varx, varh are two fixed scale parameters. Since the KL-divergence between two Gaussian
distribution Pi ∼ N (µi, σ

2
i), i = 1, 2 is

DKL(P1∥P2) = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
. (14)

23

Hence the regularization loss is Lreg = L(h)
KL + L(x)

KL, where

L(h)
KL =

NZ×DZ∑
i=1

1

2

(
µ2
i + σ2

i

varh
− log σ2

i − 1

)
, (15)

L(x)
KL =

NZ×3∑
i=1

1

2

(
µ2
i + σ2

i

varx
− log σ2

i − 1

)
. (16)

This regularization encourages the latent space to be smooth and continuous, facilitating interpolation
between molecules and improving the robustness and diversity of samples generated from the prior
distribution.

C BFN details

C.1 A Brief Introduction to Bayes Flow Network

BFN can be interpreted as a communication protocol between a sender and a receiver. The sender
observes the ground-truth molecule m and deliberately adds noise to obtain a corrupted version
y, which is transmitted to the receiver. Given the known precision level (e.g., α from a predefined
schedule β(t)), the receiver performs Bayesian inference and leverages a neural network to incorporate
contextual information, producing an estimate of m. The communication cost at each timestep is
defined as the KL divergence between the sender’s noising distribution and the corrupted output of
the receiver’s updated belief. By minimizing this divergence across timesteps, the receiver learns
to approximate the posterior and generate realistic samples from prior noise using the same learned
inference process.

C.1.1 Training of BFN

Concretely, at each communication step ti, the sender perturbs m using the Sender distribution
(adding noise distribution) pS(yi | m;αi) to produce a noisy latent yi, analogous to the forward
process in diffusion models. The receiver then reconstructs (using Bayes updates and Neural
Networks) m̂ via the Output distribution:

pO(m̂ | yi; θ) = Φ(θi−1, z, ti), (17)

where Φ is a neural network which is expected to reconstruct the sample m̂ given the Bayes-updated
parameters θi−1, conditioning code z and time ti. Then re-applies the same noising process to obtain
the receiver distribution pR(yi | θi−1, z; ti) = Em̂∼pO

pS(yi | m̂;αi). The training objective is to
minimize the KL divergence KL(pS∥pR) at each step, encouraging consistency between sender and
receiver.

In practice, we use Gaussian for Continuous data and categorical distribution for discrete data.
Therefore Bayesian updates has closed form. The details can be found in the Appendix C.3. Bayesian
update distribution pU stems from the Bayesian update function h,

pU (θi | θi−1,m,z;αi) = Eyi∼pS
δ (θi − h(θi−1,yi, αi)) , (18)

where δ(·) is Dirac delta distribution. This expectation eliminates the randomness of the sent sample
from the sender.

According to the nice additive property of accuracy [26], the best prediction of m up to time ti is the
Bayesian flow distribution pF which could be obtained by adding all the precision parameters:

pF (θi |m, z; ti) = pU (θi | θ0,m, z;β(ti)), where β(ti) =
∑
j≤i

αj . (19)

Therefore, the training objective for n steps is to minimize:

Ln(m, z) = Ei∼U(1,n) Eyi∼pS , θi−1∼pF
DKL(pS ∥ pR). (20)

24

C.1.2 Inference of BFN

During inference, the sender is no longer available to provide noisy samples to help the receiver
improve its belief. However, as training minimizes DKL(pS ∥ pR). Thus, we can reuse the same
communication mechanism by iteratively applying the learned receiver distribution pR to generate
samples.

Given prior parameters θ0, accuracies α1, . . . , αn and corresponding times ti = i/n, the n-step
sampling procedure recursively generates θ1, . . . ,θn by sampling x′ from pO(· | θi−1, z, ti−1), y
from y ∼ pR(· | θi−1, z, ti−1, αi), then setting θi = h(θi−1, z,y), and pass the result to the neural
network. The final sample is drawn from pO(· | θn, z, 1).
This recursive procedure enables BFN to generate molecule from a simple prior, guided solely by the
learned receiver network and the latent codes. see Algorithm. 1

However, explicitly sampling x′ from pO(· | θi−1, z, ti−1), particularly for discrete data could
introduce unnecessary noise and impair the stability of the generation process. Instead, following
[37, 49], we directly operate in the parameter space, avoiding noise injection from sampling and
enabling a more deterministic and efficient inference. See Algorithm. 3

Algorithm 1: Inference of General Bayes Flow Networks
Input: Initial prior parameter θ0, noise schedule {αi}ni=1, timestep grid {ti = i/n}ni=1,

conditioning latent code z
Output: Final molecular sample xfinal

for i = 1 to n do
Sample x′ ∼ pO(· | θi−1, z, ti−1)
Sample y ∼ pR(· | θi−1, z, ti−1, αi)
Update latent state: θi ← h(θi−1, z,y)
Apply the network: θi ← Φ(θi, z, ti)

Sample final output: xfinal ∼ pO(· | θn, z, 1)

C.2 MolFLAE Reconstruction Loss

BFN can be trained by minimizing the KL-divergence between noisy sample distributions. BFN
allows training in discrete time and continuous time, and for efficiency we adopt the n-step discrete
loss.

Given the ground truth molecule m = [x,v] and its latent code z, we can have the reconstruction loss

Lrecon = Ln
x + Ln

v . (21)

The above two summands are coordinates loss and atom type loss:

• Since the atom coordinates and the noise are Gaussian, the loss can be written analytically
as follows:

Ln
x = DKL

(
N (x, α−1

i I)
∥∥N (x̂(θi−1, z, t), α

−1
i I)

)
=

αi

2
∥x− x̂(θi−1, z, t)∥2 (22)

• The atom type loss can also be derived by taking KL-divergence between Gaussians [26],
assuming DM is the number of atom types, NM is the number of the atom :

Ln
v = lnN

(
yv
∣∣αi(DMev − 1), αiDMI

)
−

NM∑
d=1

ln

(
DM∑
k=1

pO(k | θ; t)N
(
·(d)
∣∣αi(DMek − 1), αiDMI

))
(23)

25

Together with two training losses, we can summarize the forward pass. In practice, we
use reconstruction and regularization loss weights to get the final loss, see Table. 10

Algorithm 2: Forward Pass of MolFLAE
Input: MoleculeM = (xM ,vM), Number of Virtual nodes NZ

Output: Reconstruction loss Lrecon, Regularization Lreg
Introduce NZ virtual nodes:
Z = [xZ ,vZ]

E(3)-equivariant encoding:(
_, [zx, zh]

)
← ϕθ

(
(M,Z)

)
VAE parameterisation:

µx ← zx, [σ2
x, µh,σ

2
h]← Linear(zh)

Get regularization loss Lreg (Eq. 5)
Sample latent code:

z← [µx,µh] + [σx,σh]⊙ ϵ, ϵ ∼ N (0, I)

BFN decoding (Alg. 3):
m̂← BFNDecode

(
z
)

Get reconstruction loss Lrecon (Eq. 6)
return Lrecon, Lreg

C.3 Bayes Updating Function for Molecular Data

Continuous coordinates The receiver observes the noisy input yx and the corresponding noise level
α. Starting from a prior parameterized by θx

i−1 = {µi−1, ρi−1}. According to Bayes’ rule, it updates
its belief by the bayes updating function h(θx

i−1,y
x, αi) = (µi, ρi) :

ρi = ρi−1 + αi (24)

µi =
ρi−1µi−1 + αiy

x

ρi
(25)

Discrete atom types Upon receiving the noisy signal yv and the noise factor α′
i, the receiver updates

its belief by applying the Bayes formula with the previous parameters θv
i−1. The Bayes updating

function is:

h(θv
i−1,y

v, α′
i) :=

ey
v ⊙ θv

i−1∑K
k=1 e

yv
k(θv

i−1)k
(26)

where ⊙ denotes element-wise multiplication.

C.4 MolFLAE Decoding Process

In the inference phase of BFN, it is in principle possible to draw samples from the receiver distribution
to perform Bayesian updates. However, explicitly sampling such intermediate variables—particularly
for discrete data—can introduce unnecessary stochasticity and impair the stability of the generation
process. Instead, following [26, 49], we directly operate in the parameter space, avoiding noise
injection from sampling and enabling a more deterministic and efficient inference.

To implement this approach, we define γ(t) := β(t)
1−β(t) . Let m̂ = [x̂, v̂] denote the neural network’s

output at a given step, where v̂ represents the continuous (pre-softmax) logits for atom types.
Instead of sampling noisy observations explicitly, we directly use m̂ to update the parameters for
the next iteration, thereby bypassing the stochastic sampling step in the standard Bayesian update
θi = h(θi−1,y, α).

Under this formulation, the Bayes Flow parameter updates simplify to:

pF (µ | x̂, z; t) = N (µ | γ(t) x̂, γ(t)(1− γ(t)) I) (27)

pF (θv | v̂, z; t) = EN (yv|β(t)(Kev̂−1), β(t)K I) [δ (θ
v − softmax(yv))] (28)

26

Here, the continuous coordinates are updated using a closed-form Gaussian posterior, while the
discrete atom types are updated via an expected categorical distribution induced by a softmax over
noisy logits. In practice, this expectation is approximated with a single Monte Carlo sample.

Throughout the generation process, updates are performed entirely in the parameter space, avoiding
noisy sampling steps—except for the final decoding stage, where an actual molecular structure is
drawn from the output distribution.

Algorithm 3: Decoder: sampling Molecules conditioned on latent code

Input: Network Φ, latent code z ∈ RNZ(3+DZ), total steps N , number of atoms NM , number of
types DM , noise levels σ1, β1

Output: Sampled molecule [x̂, v̂]
/* Define update function */
Function update(x̂ ∈ RNM×3, v̂ ∈ RNM×DM , β(t), β′(t), t ∈ R+):

γ ← β(t)
1−β(t)

µ ∼ N (γx̂, γ(1− γ)I)
yv ∼ N (yv | β′(t)(DMev̂ − 1), β′(t)DMI)

θv ← [softmax((yv)(d))]NM

d=1
return µ,θv

/* Initialize parameters */

µ← 0, ρ← 1, θv ←
[

1
DM

]
NM×DM

for i = 1 to N do
t← i−1

n
Sample x̂, v̂ ∼ pO(µ,θ

v, z, t)
Update latent: µ,θv ← update(x̂, v̂, σ1, β1, t)

/* Final sampling */
Sample x̂, v̂ ∼ pO(µ,θ

v, z, 1)
return [x̂, v̂]

D Molecules Property Metrics

Following the setup of EDM[15], in our unconditional generation experiments, we employed the
following metrics to evaluate the quality of generated molecules:

Atom Stability: Proportion of atoms with valid bond counts.

Molecular Stability: Proportion of molecules where all atoms are stable.

Validity: Proportion of molecules with RDKit-parsable SMILES.

Novelty: Proportion of molecules whose SMILES are not in the training set.

Uniqueness: Proportion of unique molecules in the generated set.

In our interpolation experiments, to fully assess the chemical and physical properties of intermediary
molecules generated during interpolation, we employed the following metrics:

Similarity Preference: Defined as follows:

Similarity Preference =
St − Ss

St + Ss

where St and Ss denote the Tanimoto similarity (calculated using MACCS fingerprints [45]) to the
target and source molecules.

sp3frac: Represents the proportion of sp3-hybridized carbon atoms in a molecule relative to the total
number of carbon atoms.

BertzCT [50]: A topological index based on a molecule’s structure, considering factors like atomic
connectivity, ring size, and number.

27

QED [51]: Evaluates the similarity of a molecule to known drug molecules by considering multiple
physicochemical properties.

Labute ASA [52]: Measures the surface area of each atom in a molecule in contact with the solvent,
reflecting the molecule’s solvent interaction ability.

TPSA [53]: A value calculated based on a molecule’s topological structure and atomic polarity, used
to predict solubility and biological membrane penetration.

logP [54]: The logarithm of the partition coefficient of an organic compound between octanol and
water, indicating the hydrophobicity of a molecule.

MR [54]: Measures a molecule’s ability to refract light, related to factors like polarizability, molecular
weight, and density.

E Results on drug-likeness metrics on GEOM-Drugs

To provide a more comprehensive evaluation, we conduct experiments on the GEOM-Drugs dataset
with additional drug likeness metrics, where MolFLAE showed significant improvements over
existing baselines. The results are summarized in Table 7. It should be noted that we were unable to
locate open resources for GeoBFN’s checkpoints on GEOM-Drugs, so experiments on GeoBFN were
not conducted.

In details, we sample 10,000 molecules from each model with their default settings, obtaining atom
positions and types, and then inferred bond types using OpenBabel. We then fix the bond order using
Schordinger due to some bugs in OpenBabel. The final molecules are then be evaluated using RDKit
for the following metrics: QED, SA, Lipinski, and Strain Energy.

Table 7: Comparison of models on QED, SA, Lipinski and Strain Energy on GEOM-Drugs dataset.

Metrics QED (↑) SA (↑) Lipinski (↑) Strain Energy (↓)
Data 0.64 0.84 4.80 80.19
EDM 0.36 0.59 4.26 705.2
GeoLDM 0.40 0.63 4.31 446.1
UniGEM 0.36 0.63 4.24 490.4
MolFLAE 0.60 0.75 4.75 84.66

F Ablation Study

We conduct ablation experiments on three key design choices of MolFLAE: the presence of the
regularization loss, the feature embedding dimension DZ , and the number of virtual nodes NZ . All
models are evaluated using 100-step decoding. Unless otherwise noted, all hyperparameters follow
the configuration in Table 10.

Table 8 summarizes the results on QM9. Each row varies only one component while keeping all other
settings fixed.

We do ablation on Regularization loss, embedding dimension DZ and length of latent codes NZ .
Our decoder uses 100 steps for sampling. And the MolFLAE means the same hyperparameters as
in Table 10. The following three experiments keeps the same settings except for the marked one.
Removing the regularization loss leads to a drop in molecular stability and novelty, suggesting that

Table 8: Ablation study, performance comparison of different model config on QM9.

Model Config (steps=100) Atom Sta (%) Mol Sta (%) Valid (%) V×U (%) Novelty (%)
MolFLAE 99.39 92.01 96.81 88.94 74.49
w/o Regularization Loss 98.73 85.01 97.82 86.43 66.04
DZ = 16 98.90 87.05 93.09 94.19 70.32
NZ = 5 99.21 89.24 96.60 73.21 61.54

latent smoothness is crucial for robust generation. Reducing the latent dimensionality (DZ = 16)

28

or the number of latent nodes (NZ = 5) also impacts overall performance, particularly in terms of
novelty and reconstruction fidelity.

Moreover, as our iterative decoding process is a little complex, we tried to simplify it to a one-step
decoding variant. However, this approach failed to generate any valid molecules.

G Hyper-parameter Settings

Hyperparameters for training on QM9, GEOM-DRUG and ZINC-9M are listed in Table 10. We
followed prior works in the choice of network structure, and carried out ablation study to determine
the number of latent codes introduced.

Table 9: Training costs.

Dataset GPUs Time Max Epoch
GEOM-DURG 4 Nvidia A100s(80G) 6 days 15

QM9 4 Nvidia A100s(80G) 16h 250
ZINC-9M 8 Nvidia A800s(80G) 3 days 25

Table 10: Hyperparameters for training.

Parameter Value or description

Train/Val/Test Splitting
6921421/996/remaining data for GEOM-DRUG

9322660/932/remaining data for ZINC-9M
100000/17748/remaining data for QM9

Batch size 100 for GEOM-DRUG,200 for ZINC-9M,400 for QM9

Optimizer Adam
β1 0.95
β2 0.99
Lr 0.005
Weight decay 0

Learning rate decay policy ReduceLROnPlateau
Learning rate factor 0.4 for GEOM-DRUG, 0.6 for QM9 and ZINC-9M
Patience 3 for GEOM-DRUG, 10 for QM9 and ZINC-9M
Min learning rate 1.00E-06

Embedding dimension Df 128
Head number 16
Layer number 9
k (knn) 32
Activation function ReLU

NZ 10
DZ 32
varx 100
varh 1
Reconstruction loss weight 1
Regularization loss weight 0.1

H Broader Impacts and Safety Discussion

Our work develops an autoencoder model for molecular design, which has potential positive societal
impact in areas such as drug discovery, materials science, and green chemistry by enabling the

29

efficient generation of candidate molecules with desired properties. However, we acknowledge that
it may also be misused, for instance to generate harmful or toxic compounds. While our model is
trained and evaluated on general-purpose datasets without any bias toward hazardous compounds,
we emphasize that any downstream deployment should include domain-specific safeguards, such as
toxicity filters and expert oversight.

30

	Introduction
	Related Works
	Methodology
	Variational AutoEncoder
	Bayesian Flow Network
	MolFLAE Encoder
	MolFLAE Decoder

	Experiments
	Conclusion and Future Works
	Neural Network Details
	Neural Network Architecture
	E(3)-Equivariance Discussion
	Encoder Network
	Decoder Network

	VAE Details
	BFN details
	A Brief Introduction to Bayes Flow Network
	Training of BFN
	Inference of BFN

	MolFLAE Reconstruction Loss
	Bayes Updating Function for Molecular Data
	MolFLAE Decoding Process

	Molecules Property Metrics
	Results on drug-likeness metrics on GEOM-Drugs
	Ablation Study
	Hyper-parameter Settings
	Broader Impacts and Safety Discussion

