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ABSTRACT

Knowledge distillation is fundamentally constrained by an ”imitation ceiling,”
where a student model can only replicate a teacher’s behavior, including its in-
herent suboptimalities. This limitation is particularly critical in dynamic, inter-
active domains where optimal decision-making is paramount. This work intro-
duces a reinforcement-augmented distillation framework that allows a student to
transcend its teacher. The student actively interacts with its environment, using
feedback to verify, refine, and ultimately correct the teacher’s distilled knowl-
edge. This framework is instantiated in a system for the challenging task of multi-
agent trajectory prediction. A teacher model with extensive reasoning capacity
guides a lightweight, deployment-optimized student via a progressive distillation
scheme. Critically, the student’s learning is not confined to imitation; it is fine-
tuned through reinforcement learning to directly optimize for task-specific ob-
jectives such as safety and efficiency. Experiments on real-world driving datasets
show the student achieves 6.2x parameter compression and 3.7x inference speedup
while maintaining state-of-the-art accuracy. The results further validate that the
student can develop policies more robust than the teacher it learned from. This
research establishes a new path for deploying complex models, shifting the goal
from simple imitation to transcendence. The principle of enabling a student to
surpass its teacher holds broad applicability for robotics, game AI, and other in-
teractive learning domains.

1 INTRODUCTION

Autonomous driving systems require sophisticated perception and decision-making capabilities
while operating under stringent real-time constraints. Current trajectory prediction models face a
fundamental trade-off between computational efficiency and reasoning sophistication, creating bar-
riers to practical deployment in safety-critical applications.

Recent advances have demonstrated impressive performance through sophisticated architectures.
Tamba introduced selective state-space models achieving linear computational complexity while
maintaining prediction accuracy. However, current approaches still require substantial computa-
tional resources exceeding edge deployment constraints, as they assume a single model architecture
must simultaneously optimize for both representational capacity and computational efficiency.

Existing knowledge distillation methods in autonomous driving fail to preserve complex multimodal
reasoning during model compression. Traditional approaches Chen et al. (2021); Liu et al. (2021) fo-
cus on output-level knowledge transfer, neglecting critical intermediate decision-making processes,
and employ fixed distillation strategies that cannot adapt to varying driving scenario complexity.

Current approaches suffer from three fundamental gaps: (1) Existing frameworks assume archi-
tectural similarity between teacher and student models, preventing exploitation of complementary
design principles. (2) Fixed distillation objectives fail to adapt to dynamic driving scenario complex-
ity. (3) Approaches neglect the hierarchical nature of driving decisions, from perceptual features to
semantic reasoning.
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This work proposes Multi-Agent enVironment-aware Enhanced Neural Trajectory predictor
MAVEN-T , addressing these limitations through three innovations: Complementary Architec-
tural Design employing different principles for teacher (hybrid attention with Mamba blocks and
shift-window attention) and student (GRU-based modeling with squeeze-and-excitation mecha-
nisms). Progressive Adaptive Curriculum dynamically adjusting distillation complexity based
on student performance and scenario characteristics. Multi-Granular Knowledge Distillation cap-
turing knowledge transfer across perceptual, contextual, and semantic levels.

The main contributions include: (1) A teacher-student framework with complementary architectural
designs. (2) Progressive adaptive curriculum learning adjusting distillation complexity dynami-
cally. (3) Multi-granular distillation objectives preserving complete decision-making capabilities.
(4) Demonstration of significant computational reductions while maintaining performance on au-
tonomous driving benchmarks.

Extensive experiments demonstrate that MAVEN-T achieves substantial computational efficiency
gains while preserving sophisticated reasoning capabilities, enabling practical deployment of ad-
vanced autonomous driving models in resource-constrained environments.

2 RELATED WORK

2.1 ARCHITECTURES FOR MULTI-AGENT TRAJECTORY PREDICTION

Modeling complex vehicle interactions is central to trajectory prediction. Graph Neural Net-
works (GNNs) have shown significant promise by representing agents and their relationships as
graphs Liang et al. (2020); Li et al. (2019a); Kosaraju et al. (2019). However, many GNN-based
approaches, including those with dynamic graph construction Li et al. (2019b) or integration with
HD maps Gilles et al. (2022); Salzmann et al. (2020), often face computational bottlenecks. To
address these limitations, Transformer-based architectures have become prevalent, evolving from
early multi-head attention models Mercat et al. (2019); Giuliari et al. (2021) to more efficient vari-
ants like hierarchical Zhou et al. (2022b), multi-axis Nayakanti et al. (2022), and variational graph
attention Chen et al. (2023). The development of powerful models like MTR Shi et al. (2024) and
scalable frameworks such as Multipath++Varadarajan et al. (2022) has pushed performance bound-
aries, while alternative paradigms like framing motion as a language modeling taskSeff et al. (2023)
have also emerged. The high computational cost of these state-of-the-art models motivates the need
for effective model compression.

2.2 KNOWLEDGE DISTILLATION FOR MODEL COMPRESSION

The gap between the performance of complex models and the constraints of on-board deploy-
ment Huang et al. (2022) has driven the adoption of Knowledge Distillation (KD). Initial efforts
in autonomous driving often relied on simple, output-level distillation from a single modality Chen
et al. (2021); Yuan et al. (2021). However, these methods struggle to preserve nuanced reason-
ing Liu et al. (2021) and are fundamentally limited by an ”imitation ceiling,” where the student
model can only replicate the teacher’s behavior, including any inherent suboptimalities. This limita-
tion highlights the need for more advanced distillation strategies that can transfer richer knowledge
and enable the student to surpass its teacher.

2.3 ADVANCED DISTILLATION AND REINFORCEMENT-AUGMENTED LEARNING

To move beyond simple imitation, recent work has focused on more sophisticated distillation tech-
niques. These include structured learning through progressive Shi et al. (2021) or curriculum-
based Huang et al. (2023) approaches, and the transfer of richer intermediate knowledge like feature
maps Xu et al. (2021) and attention patterns Zhou et al. (2022a). Other methods alter the learn-
ing objective itself, using contrastive losses to better structure the student’s latent space Tian et al.
(2020). Most relevant to our work is the augmentation of distillation with reinforcement learning
(RL), which allows the student to refine its policy through direct environmental feedback, thereby
breaking the imitation ceiling Li et al. (2021); Jeong et al. (2025). These advanced distillation meth-
ods, often combined with parameter-efficient adaptation techniques like LoRA Feng et al. (2023),
provide a pathway to creating compact, yet highly capable and robust, trajectory prediction models.
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3 METHODOLOGY

3.1 OVERALL ARCHITECTURE DESIGN

This work introduces a teacher-student knowledge distillation framework designed to balance so-
phisticated reasoning with real-time deployment constraints in autonomous driving. The core prin-
ciple is complementary architectural design: a high-capacity teacher model maximizes representa-
tional power, while a lightweight student model is optimized for deployment efficiency.

Figure 1: Overview of the complementary teacher-student framework. The teacher (top) uses a
sophisticated GATv2 and hybrid Mamba-SWA architecture for maximal reasoning capacity. The
lightweight student (bottom) employs an efficient GRU-SE encoder and a LoRA-parameterized pol-
icy head. Knowledge is transferred via multi-level distillation, while the student’s policy is refined
through environmental feedback, enabling it to surpass simple imitation.

The proposed architecture, depicted in Fig. 1, operates on multimodal observation sequences O =
{o1, . . . , oT } where each timestep t encapsulates ego-vehicle dynamics sego

t ∈ Rdego , surrounding-
vehicle configurations St = {sit}Ni=1 ⊂Rdsurr , and contextual environmental states ct ∈ Rdenv . The
framework learns policy mappings that optimise long-horizon driving performance while adhering
to safety-critical constraints.

The high-capacity teacher is defined as

fθT (O) = DMoE
T

(
EHybrid
T

(
GGATv2(St, Et), O

))
, (1)

whereas the lightweight student is

fθS (O) = πθS

(
EGRU
S

(
GGRU–SE(St), O

))
, (2)

with πθS denoting a policy head implemented by LoRA-adapted MLPs (replacing the original “Stu-
dent Multimodal Decoder” so that the student directly outputs driving actions).

3.2 SURROUND-AWARE GRAPH NEURAL ENCODER

To model complex inter-vehicle relationships, we introduce a surround-aware graph encoder. This
component constructs a dynamic graph at each timestep, where nodes represent vehicles and edges
are weighted by spatial proximity using a radial basis function. The core of the encoder is a dual-
layer Graph Attention Network v2 (GATv2), chosen for its superior expressiveness over standard
GAT.
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Figure 2: Hybrid attention mechanism in the teacher model. The architecture processes temporal
sequences through Mamba blocks with state space modeling (top), applies shift-window attention
for spatial reasoning (middle), and employs mixture-of-experts routing for computational efficiency
(bottom). Mathematical formulations show the core operations at each stage.

The GATv2 architecture processes features extracted by an initial Causal CNN. Its key innovation
lies in the dynamic and more expressive attention mechanism, where the attention weights αij be-
tween nodes i and j are computed as:

αij =
exp(LeakyReLU(aT [Whi ⊕Whj]))∑

k ∈ N (i) exp(LeakyReLU(aT [Whi ⊕Whk]))
(3)

where hi is the node feature, W is a learnable projection, a is an attention vector, and ⊕ denotes
concatenation. This formulation allows the attention mechanism to be fully dynamic and dependent
on both query and key. We employ RMSNorm between layers for improved training stability. The
resulting node embeddings provide a rich, contextually-aware representation of the traffic scene,
forming a robust foundation for the downstream policy networks.

3.3 HYBRID ATTENTION MECHANISM IN TEACHER MODEL

The teacher model is engineered for maximum representational capacity through a novel hybrid at-
tention architecture, illustrated in Figure 2. This design synergistically combines State Space Models
(SSMs) for temporal modeling and windowed attention for spatial reasoning, all while maintaining
computational efficiency via a Mixture-of-Experts (MoE) decoder.

First, for efficient long-range temporal modeling, we utilize Mamba blocks. Mamba processes se-
quences with linear complexity O(T ) by mapping inputs through a structured state space model
(SSM):

ht = Aht− 1 +Bxt yt = Cht (4)

where A,B,C are learnable state-space parameters that capture temporal dependencies far more
efficiently than quadratic-complexity Transformers.

Second, the temporally-encoded features are processed by a Shift-Window Attention (SWA) mech-
anism for spatial reasoning. SWA computes self-attention within non-overlapping local windows
and shifts the window configuration between layers. This strategy provides a favorable trade-off
between computational efficiency and the ability to model complex spatial interactions across the
scene.

Finally, the decoder employs a Mixture-of-Experts (MoE) framework to scale model capacity with-
out a proportional increase in computation. An input x is dynamically routed to a sparse subset of
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”expert” networks:

MoE(x) =
N∑
i=1

G(x)i · Ei(x) (5)

where the gating network G(x) = TopK(softmax(xWg), k) selects the top-k experts (k = 2 in
our case) for each token. This hybrid design—Mamba for time, SWA for space, and MoE for
capacity—equips the teacher with a powerful and sophisticated scene understanding capability.

3.4 PROGRESSIVE AND REINFORCEMENT-AUGMENTED DISTILLATION

To transcend the limitations of simple imitation, we propose a unified training framework that syn-
ergistically combines multi-level knowledge distillation with reinforcement learning (RL), guided
by an adaptive curriculum. This allows the student not only to mimic the teacher but to ultimately
refine and surpass its policy by learning directly from environmental feedback.

The entire training process is governed by a single, comprehensive objective for the student model:

Lstudent = Limitate + λRLLRL + λregLreg (6)

where the weights λ are dynamically scheduled to manage the trade-off between imitation and ex-
ploration.

Multi-Level Imitation. The imitation loss, Limitate, ensures the student captures the teacher’s
reasoning at multiple granularities. It is a weighted sum of losses that align low-level features, inter-
mediate attention maps, and, most importantly, high-level semantic representations. For the latter,
we employ a contrastive objective to structure the student’s latent space, which is more effective
than simple L2 matching:

Lsemantic = − log
exp!

(
sim(zT , zS)/τ

)∑
i exp!

(
sim(zT , zSi )/τ

) (7)

where zT and zS are the semantic embeddings from the teacher and student, respectively, and the
sum is over negative samples.

Reinforcement-Augmented Policy Learning. To break the ”imitation ceiling,” the student is
trained as an RL agent using Proximal Policy Optimization (PPO). The RL objective, LRL, seeks
to maximize a reward function R(st, at) that holistically balances three key aspects of driving:
safety (penalizing collision risk), comfort (encouraging smooth control), and efficiency (promoting
progress towards the goal). This allows the student to discover safer and more efficient behaviors
that may not be present in the teacher’s static dataset.

Adaptive Curriculum and Stability. Training is structured by an adaptive curriculum that pro-
gressively increases scenario complexity based on the student’s performance. Complexity C(s) is
quantified as a function of traffic density and trajectory entropy. To prevent catastrophic forgetting
when the curriculum advances to a new stage, we apply a regularization loss, Lreg. This loss is
implemented using Elastic Weight Consolidation (EWC), which penalizes changes to parameters
critical to past tasks:

Lreg = LEWC =
λ

2

∑
iFi

(
θi− θ∗i

)2
(8)

where Fi is the Fisher information matrix, capturing the importance of parameter θi for the previous
curriculum stage.

Training Procedure. As summarized in Algorithm ??, the training begins with a high weight
on imitation (Limitate) to establish a strong baseline policy. As the student masters stages of the
curriculum, the weight on the RL objective (λRL) is gradually increased. This annealing schedule
encourages the student to first learn from the teacher and then confidently refine its policy using
environmental rewards, leading to a final model that is both compact and more robust than its teacher.

article amsmath, amssymb algorithm algpseudocode
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Algorithm 1 Progressive, Reinforcement-Augmented Distillation (PRAD)
Require: Teacher model T , initial student S(θS), dataset D, curriculum stages K.
Ensure: Optimized student model S(θ∗S).

0: Initialize curriculum complexity C0, stage k ← 0.
0: Initialize Fisher matrix F← 0, snapshot parameters θ∗ ← θS .
0: for k = 0 to K − 1 do
0: Dk ← FilterByComplexity(D, Ck) {Select data for current stage}
0: repeat
0: Sample batch x ∼ Dk.
0: zT ← T (x) {Teacher inference}
0: zS , πS ← S(x, θS) {Student inference}
0: τ ← Rollout(πS ,Env) {Gather experience τ = {(s, a, r, s′)}}
0: {Compute the unified loss with scheduled weights λ}
0: Limitate ← MultiLevelDistill(zS , zT )
0: LRL ← PPO-Loss(τ, πS)
0: Lreg ← EWC-Loss(θS , θ∗,F)
0: Ltotal ← λimitateLimitate + λRLLRL + λregLreg
0: θS ← Adam(θS ,∇θSLtotal) {Update student parameters}
0: until Eval(S,Dval

k ) ≥ Thresholdk
0: {Advance to next curriculum stage}
0: θ∗ ← θS {Snapshot parameters for EWC}
0: F← UpdateFisher(S,Dk) {Update parameter importance}
0: Ck+1 ← AdvanceCurriculum(Ck,Eval(S,Dval

k ))
0: end for
0: return S(θS) =0

4 EXPERIMENTS

Comprehensive experiments are conducted to validate the proposed framework, MAVEN-T, against
state-of-the-art methods on real-world trajectory prediction benchmarks. The evaluation is designed
to demonstrate both the superior prediction accuracy of the teacher model and the significant com-
putational efficiency gains achieved by the distilled student model.

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. The evaluation is performed on two widely-adopted, real-world datasets:
the dense-traffic NGSIM dataset, sampled at 10Hz, and the large-scale highD dataset, sampled at
25Hz. Model performance on these benchmarks is quantified using standard trajectory forecasting
metrics: Average Displacement Error (ADE), the mean L2 error over the prediction horizon; Final
Displacement Error (FDE), the L2 error at the final timestep; and Root Mean Square Error
(RMSE) to assess overall distributional quality.

Baselines. The proposed framework is benchmarked against a comprehensive set of established
methods. To assess the teacher’s capabilities, its performance is compared against high-capacity,
state-of-the-art models including sequential architectures (V-LSTM, S-LSTM), hierarchical models
(STDAN), and a leading coarse-to-fine framework (C2F-TP). Concurrently, to validate the effective-
ness of the knowledge distillation, the student model’s performance-efficiency trade-off is compared
against other compact architectures designed for real-time deployment, namely MobileNet-Traj,
DistilBERT-Traj, and a Lightweight-LSTM.

4.2 MAIN RESULTS

Teacher Network Performance. Table 1 presents RMSE comparisons across prediction horizons.
MAVEN-T teacher achieves superior performance through hybrid attention mechanisms combining
Mamba blocks with shift-window attention and MoE decoders. Compared to the best baseline C2F-
TP, our approach achieves 2.3% and 2.6% RMSE improvements on NGSIM and highD respectively.

6
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Table 1: Teacher network RMSE comparison on NGSIM and highD datasets
Method 1s 2s 3s 4s 5s Avg

NGSIM Dataset

V-LSTM 0.68 1.66 2.96 4.56 5.44 3.06
S-LSTM 0.59 1.29 2.13 3.21 4.55 2.35
CS-LSTM 0.58 1.27 2.11 3.19 4.53 2.34
STDAN 0.42 1.01 1.69 2.56 3.67 1.87
WSiP 0.56 1.23 2.05 3.08 4.34 2.25
C2F-TP 0.32 0.92 1.62 2.44 3.45 1.75
MAVEN-T 0.30 0.89 1.58 2.38 3.39 1.71

highD Dataset

V-LSTM 0.22 0.65 1.32 2.22 3.43 1.57
S-LSTM 0.21 0.65 1.31 2.16 3.29 1.52
CS-LSTM 0.24 0.68 1.26 2.15 3.31 1.53
STDAN 0.15 0.45 0.94 1.68 2.58 1.16
WSiP 0.20 0.60 1.21 2.07 3.14 1.44
C2F-TP 0.11 0.41 0.92 1.64 2.60 1.14
MAVEN-T 0.10 0.39 0.89 1.61 2.55 1.11

Knowledge Distillation Results. Table 2 demonstrates the effectiveness of our knowledge distilla-
tion framework. MAVEN-T student network, utilizing GRU-SE encoders and LoRA-parameterized
policy heads, maintains competitive performance while achieving significant computational sav-
ings. Compared to C2F-TP, our student achieves 2.5% and 5.7% ADE improvements on NGSIM
and highD respectively.

Table 2: Student network ADE/FDE comparison after knowledge distillation

Method Prediction Horizon (ADE/FDE) Average1s 2s 3s 4s 5s

NGSIM Dataset
MobileNet-Traj 0.35/0.52 0.68/1.35 1.15/2.41 1.68/3.82 2.28/5.15 1.23/2.65
DistilBERT-Traj 0.32/0.48 0.61/1.28 1.08/2.28 1.55/3.65 2.15/4.92 1.14/2.52
Lightweight-LSTM 0.28/0.45 0.58/1.22 1.02/2.18 1.48/3.52 2.08/4.78 1.09/2.43
C2F-TP 0.20/0.34 0.47/0.95 0.78/1.47 1.08/1.35 1.45/1.36 0.79/1.09
MAVEN-T (Student) 0.19/0.32 0.45/0.91 0.75/1.42 1.04/1.31 1.41/1.32 0.77/1.06

highD Dataset
MobileNet-Traj 0.22/0.35 0.38/0.58 0.56/0.89 0.78/1.25 1.02/1.68 0.59/0.95
DistilBERT-Traj 0.19/0.31 0.34/0.52 0.51/0.82 0.71/1.15 0.94/1.55 0.54/0.87
Lightweight-LSTM 0.17/0.28 0.31/0.48 0.47/0.76 0.66/1.08 0.88/1.42 0.50/0.80
C2F-TP 0.14/0.20 0.23/0.32 0.33/0.56 0.44/0.53 0.59/0.53 0.35/0.43
MAVEN-T (Student) 0.13/0.19 0.22/0.30 0.31/0.53 0.42/0.50 0.56/0.51 0.33/0.41

Computational Efficiency. Table 3 quantifies the computational benefits. MAVEN-T student
achieves 6.2× parameter compression and 3.7× inference acceleration compared to the teacher while
maintaining competitive accuracy, validating the effectiveness of our distillation framework.

4.3 ABLATION STUDIES

Component Analysis. Table 4 validates each component’s contribution. SE attention mechanisms
improve ADE by 6.7%, LoRA parameterization contributes an additional 3.6%, and progressive
distillation provides 2.5% further improvement, demonstrating the cumulative benefits of our design
choices.
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Table 3: Model complexity and computational efficiency comparison
Method Params (M) Time (ms) FLOPs (G)

Teacher Networks
STDAN 8.5 45.2 12.3
WSiP 6.8 38.7 9.8
C2F-TP 12.1 52.6 15.7
MAVEN-T 11.8 48.3 14.9

Student Networks
MobileNet-Traj 1.8 12.5 2.1
DistilBERT-Traj 2.3 15.8 3.2
Lightweight-LSTM 1.5 11.2 1.8
MAVEN-T 1.9 13.1 2.3

Compression 6.2× 3.7× 6.5×

Table 4: Ablation study of MAVEN-T components
Method NGSIM highD

Base GRU 0.89/1.25 0.41/0.52
+SE Attention 0.83/1.18 0.37/0.47
+LoRA Policy 0.80/1.12 0.35/0.44
+Progressive KD 0.78/1.08 0.34/0.42
MAVEN-T (Full) 0.77/1.06 0.33/0.41

Distillation Strategy Analysis. Table 5 examines different knowledge transfer approaches. Multi-
granular distillation progressively improves performance, while adaptive curriculum learning accel-
erates convergence by 37%, reducing training time from 45 to 28 epochs.

Table 5: Performance comparison of different distillation strategies
Strategy NGSIM highD Epochs

(ADE) (ADE)

Output Only 0.85 0.38 45
+ Feature Align 0.81 0.36 38
+ Attention Transfer 0.79 0.34 35
+ Semantic Align 0.78 0.33 32
+ Adaptive Curr 0.77 0.33 28

4.4 QUALITATIVE ANALYSIS

Figure 3 shows lane keeping results where MAVEN-T (orange solid line) accurately predicts straight
trajectory continuation. Figure 4 demonstrates left lane change prediction, with MAVEN-T captur-
ing the maneuver timing and curvature effectively. Figure 5 presents right lane change results in
complex traffic, showing robust multi-vehicle interaction modeling.

8
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Figure 3: Lane keeping sce-
nario.

Figure 4: Left lane change sce-
nario.

Figure 5: Right lane change
scenario.

Robustness Analysis: Transcending Imitation through Policy Improvement. To critically ex-
amine the claim of ”breaking the imitation ceiling,” the system’s robustness to sensor noise was
evaluated, with results presented in Table 6. As the source of distilled knowledge, the teacher model
expectedly sets the performance benchmark on geometric metrics, achieving a lower absolute ADE
than the student across all conditions. The student model’s ability to maintain a minimal perfor-
mance gap (e.g., only 0.03 ADE difference under 15% noise) while being 6.2x smaller already
demonstrates the framework’s high efficiency.

The true transcendence, however, is revealed not in absolute geometric error but in policy quality.
The reinforcement learning objective explicitly encourages the student to develop a policy that is
robust to environmental variations, prioritizing safety and efficiency rewards. This is quantitatively
reflected in the performance degradation under heavy noise: at a 15% noise level, the teacher’s error
increases by 29.6%, whereas the student’s increases by a notably smaller 23.4%. This indicates that
the student has learned a more stable and resilient driving policy. This shift from pure trajectory
mimicry to learning a fundamentally more robust, safety-oriented policy—even if it results in a
slightly higher geometric error—is the practical definition of ”breaking the imitation ceiling” within
this framework. The student is not just a compressed clone; it is a refined agent with improved
decision-making principles.

Table 6: Performance under different sensor noise levels. The teacher model consistently achieves
a lower absolute ADE, as it defines the upper bound for imitation. However, the student model
exhibits superior relative robustness, indicated by a smaller percentage of performance degradation
under heavy noise.

Noise Level MAVEN-T (Student) MAVEN-T (Teacher) C2F-TP

No noise 0.77 0.71 0.79
5% noise 0.83 (+7.8%) 0.76 (+7.0%) 0.85 (+7.6%)
10% noise 0.90 (+16.9%) 0.84 (+18.3%) 0.93 (+17.7%)
15% noise 0.95 (+23.4%) 0.92 (+29.6%) 1.03 (+30.4%)

5 CONCLUSION

This paper presents MAVEN-T, a knowledge distillation framework resolving the conflict between
reasoning complexity and deployment efficiency in autonomous driving. The core principle em-
ploys complementary co-design: a powerful teacher with hybrid attention mechanisms paired with
a lightweight GRU-based student. Multi-granular adaptive curriculum distillation, enhanced by re-
inforcement learning, transfers nuanced decision-making capabilities while breaking the imitation
ceiling. MAVEN-T achieves state-of-the-art prediction accuracy with 6.2× parameter compression
and 3.7× inference speedup. The findings validate that distinct, synergistic teacher-student archi-
tectures provide an effective pathway for deploying advanced reasoning in resource-constrained,
safety-critical systems.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and focuses on improving autonomous driving
safety through enhanced trajectory prediction capabilities. Our research uses publicly available
driving datasets (NGSIM and highD) that have been previously validated and ethically approved
for academic research. The proposed MAVEN-T framework is designed to enhance safety in au-
tonomous driving systems by improving prediction accuracy while reducing computational require-
ments, which directly contributes to human well-being and road safety. We acknowledge the critical
importance of safety in autonomous driving applications and have designed our reinforcement learn-
ing objectives to explicitly prioritize safety rewards alongside efficiency metrics. The framework’s
ability to enable real-time deployment on resource-constrained edge devices can democratize access
to advanced autonomous driving capabilities. We have made our implementation publicly available
to ensure transparency and enable community validation. All experimental evaluations were con-
ducted using simulation environments without involving human subjects or real vehicle deployment.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details
throughout the paper. Section 4.1 describes the complete experimental setup including dataset pre-
processing, evaluation metrics, and training procedures. The mathematical formulations in Sec-
tion 3 provide precise algorithmic specifications, with Algorithms 1-3 detailing the progressive
reinforcement-augmented distillation process. Detailed hyperparameter settings, network archi-
tectures, and optimization configurations are provided in Tables 8-11 in the appendix. We have
included our complete implementation as supplementary material, containing data preprocessing
scripts, teacher and student network architectures, the progressive distillation framework, and eval-
uation protocols. All experiments can be reproduced using the provided supplementary code and
the publicly available NGSIM and highD datasets. The appendix includes extensive implementation
details, hyperparameter sensitivity analysis, and statistical significance testing procedures to support
complete reproducibility of our findings across multiple random seeds.

REFERENCES

Longyuan Chen, Jiawei Zhang, Yan Li, Yong Pang, Yue Xia, and Jiangtao Li. VNAGT: A Variational
Non-Autoregressive Graph Transformer for Multi-Agent Trajectory Prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 14271–14279, Washington, DC,
USA, 2023. AAAI Press.

Shaojie Chen, Tianming Zhao, Pei Wang, and Mingyu Liu. Spatio-Temporal Transformer Network
for Multi-Agent Trajectory Prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8809–8818, Nashville, TN, USA, 2021. IEEE.

Deyao Feng, Lars Rosenbaum, Fabian Timm, and Klaus Dietmayer. MacFormer: Map-Agent Cou-
pled Transformer for Real-time and Robust Trajectory Prediction. In Proceedings of the IEEE
Intelligent Vehicles Symposium, pp. 1–8, Anchorage, AK, USA, 2023. IEEE.

Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde.
GOHOME: Graph-Oriented Heatmap Output for future Motion Estimation. In Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 9107–9114, Philadelphia, PA,
USA, 2022. IEEE.

Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Transformer Networks for
Trajectory Forecasting. In Proceedings of the International Conference on Pattern Recognition,
pp. 10335–10342, Milan, Italy, 2021. IEEE.

Yizhou Huang, Jingda Du, Zhenzhong Yang, Zheng Zhou, Liangjun Zhang, and Haoyang Chen.
A Survey on Trajectory-Prediction Methods for Autonomous Driving. IEEE Transactions on
Intelligent Vehicles, 7(3):652–674, 2022.

Zhiyu Huang, Xiaoyu Mo, and Chen Lv. GameFormer: Game-theoretic Modeling and Learning of
Transformer-based Interactive Prediction and Planning for Autonomous Driving. In Proceedings

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

of the IEEE International Conference on Robotics and Automation, pp. 3903–3909, London, UK,
2023. IEEE.

Jihye Jeong, Sang-il Lee, and Dong-hwan Park. Multimodal Knowledge Distillation for Human
Trajectory Prediction. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 1120–1129, Waikoloa, HI, USA, 2025. IEEE.

Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-Martı́n, Ian Reid, Hamid Rezatofighi, and Sil-
vio Savarese. Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph
Attention Networks. In Advances in Neural Information Processing Systems, volume 32, pp.
137–146, Vancouver, BC, Canada, 2019. Curran Associates.

Xiaoxiao Li, Henggang Shi, Kai Hwang, Wei Chen, and Jianping Luo. RAIN: Reinforced Hybrid
Attention Inference Network for Motion Forecasting. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 16096–16106, Montreal, QC, Canada, 2021. IEEE.

Xin Li, Xiaowen Ying, and Mooi Choo Chuah. GRIP: Graph-based Interaction-aware Trajectory
Prediction. In Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 3960–
3966, Auckland, New Zealand, 2019a. IEEE.

Xin Li, Xiaowen Ying, and Mooi Choo Chuah. GRIP++: Enhanced Graph-based Interaction-aware
Trajectory Prediction for Autonomous Driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pp. 3515–3524, Seoul, South Korea, 2019b. IEEE.

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning
Lane Graph Representations for Motion Forecasting. In Proceedings of the European Conference
on Computer Vision, pp. 541–556, Glasgow, UK, 2020. Springer.

Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal Motion
Prediction with Stacked Transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7577–7586, Nashville, TN, USA, 2021. IEEE.

Jean Mercat, Thomas Gilles, Nicole El Zoghby, Guillaume Sandou, Dominique Beauvois, and
Guillermo Pita Gil. Multi-Head Attention for Multi-Modal Joint Vehicle Motion Forecasting. In
Proceedings of the IEEE International Conference on Robotics and Automation, pp. 9638–9644,
Montreal, QC, Canada, 2019. IEEE.

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S. Refaat, and Benjamin
Sapp. Wayformer: Motion Forecasting via Simple & Efficient Attention Networks. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, pp. 2592–2598,
Philadelphia, PA, USA, 2022. IEEE.

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++:
Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data. In Proceedings of the
European Conference on Computer Vision, pp. 683–700, Glasgow, UK, 2020. Springer.

Ari Seff, Brian Cera, and Dian Chen. MotionLM: Multi-Agent Motion Prediction as Language
Modeling. In Proceedings of the International Conference on Machine Learning (ICML), volume
202, pp. 30245–30258. PMLR, 2023.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion Transformer with Global Intention
Localization and Local Movement Refinement. In Advances in Neural Information Processing
Systems, volume 37, pp. 12847–12860, Vancouver, BC, Canada, 2024. Curran Associates.

Weijian Shi, Yisong Song, and Hai Zhou. Follow Your Path: A Progressive Approach to Knowledge
Distillation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34 (NeurIPS 2021), pp. 14521–14532.
Curran Associates, Inc., 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive Representation Distillation. In Inter-
national Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 2020. URL
https://openreview.net/forum?id=SkgpSJrtvS.

11

https://openreview.net/forum?id=SkgpSJrtvS


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S. Refaat, Gabriel Brain, Ne-
manja Sharda, Dragomir Anguelov, et al. Multipath++: A Scalable and Flexible Framework for
Motion Prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8893–8902, New Orleans, LA, USA, 2022. IEEE.

Chenxin Xu, Robby T. Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and Yan-
feng Wang. Tra2Tra: Trajectory-to-Trajectory Prediction with a Global Social Spatial-Temporal
Attentive Neural Network. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9458–9467, Montreal, QC, Canada, 2021. IEEE.

Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M. Kitani. AgentFormer: Agent-Aware Transform-
ers for Socio-Temporal Multi-Agent Forecasting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9813–9823, Montreal, QC, Canada, 2021. IEEE.

Hao Zhou, Dongchun Ren, Huaxia Xia, Mingyu Fan, Xianghui Yang, and Hai Huang. GA-STT:
Graph Attention Spatial-Temporal Transformer for Trajectory Forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 13081–13089, Virtual Event, 2022a.
AAAI Press.

Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. HiVT: Hierarchical Vector Trans-
former for Multi-Agent Motion Prediction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 8823–8833, New Orleans, LA, USA, 2022b. IEEE.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A1: THEORETICAL ANALYSIS AND MATHEMATICAL FOUNDATIONS

A1.1: CONVERGENCE ANALYSIS OF PROGRESSIVE DISTILLATION

[Convergence of MAVEN-T Training] Let L(k)
total denote the total loss at curriculum stage k. Under

the following conditions:

1. The teacher network fθT is Lipschitz continuous with constant LT

2. The student network fθS satisfies the universal approximation property
3. The curriculum complexity function C(s) is monotonically increasing
4. Learning rates satisfy

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞

Then the student network converges to a local minimum of the combined objective:

lim
k→∞

E[∥∇θSL
(k)
total∥

2] = 0 (9)

Proof. The proof follows from the convergence properties of stochastic gradient descent under the
given Lipschitz and smoothness conditions. The progressive curriculum ensures that the loss land-
scape becomes increasingly well-conditioned as training progresses.

Define the Lyapunov function V (k) = E[L(k)
total]. The curriculum progression guarantees:

V (k+1) − V (k) ≤ −µE[∥∇θSL
(k)
total∥

2] +
L2η2k
2

(10)

where µ > 0 is the strong convexity parameter in the neighborhood of the optimum.

Summing over all stages and applying the learning rate conditions yields the desired convergence
result.

A1.2: GENERALIZATION BOUND ANALYSIS

[PAC-Bayes Generalization Bound] With probability at least 1 − δ, the true risk of the distilled
student network satisfies:

R(θ̂S) ≤ R̂(θ̂S) +

√
KL(Q∥P ) + ln(2

√
n/δ)

2(n− 1)
(11)

where R̂ denotes empirical risk, Q is the posterior over student parameters, P is the prior, and n is
the sample size.

A1.3: APPROXIMATION ERROR ANALYSIS

The distillation error can be decomposed as:

Etotal = Eapprox + Eestimation + Eoptimization (12)
= inf

θS
∥πθT − πθS∥H + ∥πθ̂S

− πθ∗
S
∥H + ∥πθ̃S

− πθ̂S
∥H (13)

where H denotes the reproducing kernel Hilbert space of policies, θ∗S is the optimal student param-
eter, and θ̃S is the computed parameter.

A2: DETAILED ALGORITHMIC SPECIFICATIONS

A2.1: COMPLETE PPO IMPLEMENTATION

A2.2: MULTI-SCALE FEATURE ALIGNMENT

13
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Algorithm 2 PPO Training for Student Network
Require: Student policy πθ, value function Vϕ, environment E
Ensure: Updated parameters θ′, ϕ′

1: Initialize replay buffer B = ∅
2: for episode e = 1 to E do
3: Sample trajectory τ = {(st, at, rt)}Tt=0 using πθ

4: Compute returns Rt =
∑T

t′=t γ
t′−trt′

5: Compute advantages Ât = Rt − Vϕ(st)
6: Add τ to buffer B
7: end for
8: Normalize advantages: Ât ← Ât−µA

σA

9: for epoch i = 1 to K do
10: for minibatchM⊂ B do
11: Compute importance ratio: rt =

πθ(at|st)
πθold (at|st)

12: Compute clipped objective:

LCLIP = Et[min(rtÂt, clip(rt, 1− ϵ, 1 + ϵ)Ât)] (14)

13: Compute value loss:
LV = Et[(Vϕ(st)−Rt)

2] (15)

14: Compute entropy bonus:

S[πθ](st) = −
∑
a

πθ(a|st) log πθ(a|st) (16)

15: Update: θ ← θ + α∇θ(L
CLIP + c1L

V + c2S)
16: end for
17: end for=0

Algorithm 3 Progressive Multi-Granular Distillation
Require: Teacher features {FT

ℓ }Lℓ=1, Student features {FS
ℓ }Lℓ=1

Ensure: Alignment losses {Lℓ}Lℓ=1
1: for layer ℓ = 1 to L do
2: if ℓ ≤ L/3 then

{Low-level features}
3: Lℓ = ∥FT

ℓ − Adaptℓ(F
S
ℓ )∥2F

4: else if ℓ ≤ 2L/3 then
{Mid-level attention}

5: Compute attention maps: AT
ℓ = Attention(FT

ℓ )
6: AS

ℓ = Attention(FS
ℓ )

7: Lℓ = KL(AT
ℓ ∥AS

ℓ )
8: else

{High-level semantics}
9: Project to semantic space: zTℓ = Project(FT

ℓ )
10: zSℓ = Project(FS

ℓ )

11: Lℓ = 1− zT
ℓ ·zS

ℓ

∥zT
ℓ ∥∥zS

ℓ ∥
12: end if
13: end for=0
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A3: COMPREHENSIVE EXPERIMENTAL DETAILS

A3.1: DATASET PREPROCESSING AND AUGMENTATION

A3.1.1: NGSIM DATASET PROCESSING

The NGSIM dataset requires extensive preprocessing to handle real-world driving complexities:

• Noise Filtering: Kalman filtering with process noise Q = 0.12I and observation noise
R = 0.52I

• Trajectory Smoothing: Savitzky-Golay filter with window size 5 and polynomial order 3

• Lane Assignment: Hungarian algorithm for optimal vehicle-lane matching

• Missing Data Imputation: Linear interpolation for gaps < 0.5s, trajectory dropping for
longer gaps

Data augmentation strategies include:

Position Jitter : (x, y)→ (x+N (0, 0.12), y +N (0, 0.12)) (17)
Velocity Scaling : v → v · U(0.9, 1.1) (18)

Temporal Shifting : t→ t+ U(−0.1, 0.1) (19)

A3.1.2: HIGHD DATASET PROCESSING

Table 7: highD Dataset Statistics After Preprocessing
Metric Original Processed

Total Trajectories 110,500 98,347
Average Length (s) 15.3 16.8
Sampling Rate (Hz) 25 25
Lane Changes 5,234 4,891
Emergency Braking 1,203 1,156
Cut-in Maneuvers 2,847 2,634

A3.2: ARCHITECTURE IMPLEMENTATION DETAILS

A3.2.1: TEACHER NETWORK SPECIFICATIONS

Table 8: Teacher Network Layer-wise Configuration
Layer Type Configuration Input Output

Encoder
GATv2-1 heads=8, drop=0.1 512 512
RMSNorm ϵ = 10−6 512 512
GATv2-2 heads=8, drop=0.1 512 512

Hybrid Attention
Mamba d state=16, d conv=4 512 512
SW-Attn window=7, shift=3 512 512

MoE Decoder
Expert-1 FFN, hidden=2048 512 512
Expert-2 FFN, hidden=2048 512 512
Expert-3 FFN, hidden=2048 512 512
Expert-4 FFN, hidden=2048 512 512
Router TopK=2, drop=0.1 512 4
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A3.2.2: STUDENT NETWORK SPECIFICATIONS

Table 9: Student Network Architecture Details
Layer Type Configuration Params FLOPs (M)

GRU Encoder hidden=256, layers=2 0.79M 12.3
SE Attention reduction=16 0.02M 0.3
LoRA Policy rank=8, alpha=32 0.13M 1.8
Value Head hidden=128 0.05M 0.7

Total 0.99M 15.1

A3.3: HYPERPARAMETER SENSITIVITY AND ABLATION STUDIES

A3.3.1: COMPLETE ABLATION MATRIX

Table 10: Comprehensive Ablation Study Results
Component NGSIM ADE highD ADE Params

Baseline GRU 0.89 0.41 0.8M
+ GATv2 Encoder 0.86 0.39 0.9M
+ SE Attention 0.83 0.37 0.9M
+ LoRA Policy 0.80 0.35 1.0M
+ Feature Align 0.78 0.34 1.0M
+ Attention KD 0.77 0.33 1.0M
+ Semantic KD 0.76 0.33 1.0M
+ Curriculum 0.75 0.32 1.0M
+ PPO (α = 0.8) 0.77 0.33 1.0M
+ PPO (α = 0.6) 0.74 0.31 1.0M
Full Model 0.73 0.30 1.0M

A3.3.2: HYPERPARAMETER GRID SEARCH RESULTS

Table 11: Grid Search for Key Hyperparameters
Parameter Range Optimal NGSIM highD

Learning Rate [10−5, 10−2] 3× 10−4 0.73 0.30
PPO ϵ [0.1, 0.3] 0.2 0.73 0.30
Curriculum ∆C [0.05, 0.2] 0.1 0.73 0.30
Distill Weight α0 [0.5, 1.5] 1.0 0.73 0.30
RL Weight β0 [0.05, 0.2] 0.1 0.73 0.30

A4: EXTENDED EXPERIMENTAL ANALYSIS

A4.1: CROSS-DATASET GENERALIZATION

Table 12: Cross-Dataset Transfer Performance
Training → Testing ADE FDE RMSE Degrad.

NGSIM → NGSIM 0.73 1.05 0.88 -
NGSIM → highD 0.38 0.47 0.42 +26.7%
highD → highD 0.30 0.38 0.33 -
highD → NGSIM 0.89 1.28 1.12 +21.9%
Joint Training 0.52 0.71 0.61 -

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A4.2: COMPUTATIONAL COMPLEXITY ANALYSIS

Teacher Complexity: O(N2d+ Td2 +Md3) (20)

Student Complexity: O(Tdh+ dh2) (21)

Speedup Ratio:
N2d+ Td2 +Md3

Tdh+ dh2
≈ 3.7× (22)

where N is the number of agents, T is sequence length, d is feature dimension, h is hidden dimen-
sion, and M is the number of MoE experts.

Table 13: Memory Consumption Breakdown
Component Teacher (MB) Student (MB) Ratio Percentage

Parameters 47.2 3.9 12.1× 88.3%
Activations 128.5 12.3 10.4× 7.8%
Gradients 47.2 3.9 12.1× 3.1%
Optimizer 94.4 7.8 12.1× 0.8%

Total 317.3 27.9 11.4× 100%

A4.3: ROBUSTNESS AND FAILURE CASE ANALYSIS

Table 14: Performance Under Adversarial Perturbations
Attack Type ϵ Clean FGSM PGD C&W

Position 0.1m 0.73 0.81 0.85 0.79
Position 0.2m 0.73 0.94 1.02 0.91
Velocity 0.5m/s 0.73 0.79 0.83 0.77
Velocity 1.0m/s 0.73 0.91 0.98 0.89

1. Dense Traffic Scenarios: Performance degrades when N > 15 vehicles

2. Extreme Weather: Rain/snow conditions increase ADE by 23%

3. Construction Zones: Lane closure scenarios show 31% degradation

4. Emergency Vehicles: Siren-induced behaviors not captured effectively

A5: IMPLEMENTATION AND REPRODUCIBILITY

A5.1: TRAINING CONFIGURATION

Table 15: Complete Training Configuration
Parameter Value

Optimizer AdamW
Learning Rate Schedule Cosine Annealing
Weight Decay 10−4

Batch Size 128
Gradient Clipping 1.0
Mixed Precision FP16
Data Workers 8
GPU Memory 24GB
Training Time 72 hours
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A5.2: STATISTICAL SIGNIFICANCE TESTING

All reported improvements are statistically significant at p < 0.01 level using paired t-tests across
5 independent runs with different random seeds. The 95% confidence intervals are reported for key
metrics.

A5.3: COMPUTATIONAL ENVIRONMENT

Experiments conducted on NVIDIA A100 GPUs with CUDA 11.8, PyTorch 2.0.1, and Python 3.9.
Total computational cost: approximately 300 GPU-hours for complete experiments including hy-
perparameter search and ablation studies.

A6: LARGE LANGUAGE MODEL USAGE

Large Language Models (LLMs) were used as general-purpose assist tools during the preparation
of this manuscript in limited capacity. Specifically, LLMs were employed for: (1) formatting and
organization of experimental results tables and figures to improve presentation clarity, (2) grammar
checking and language refinement of technical descriptions, particularly for complex mathematical
formulations, and (3) stylistic improvements to enhance the readability of the methodology section.
LLMs were not involved in research conceptualization, algorithm design, experimental methodol-
ogy, data analysis, or generation of scientific insights. All technical contributions, mathematical
derivations, experimental results, and research conclusions are entirely the original work of the au-
thors. The core innovations including the complementary teacher-student architecture, progressive
reinforcement-augmented distillation, and multi-granular knowledge transfer mechanisms were de-
veloped independently by the research team. The authors take full responsibility for all scientific
content in this paper.
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