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ABSTRACT

Current noisy correspondence learning (NCL) pipelines typically treat correspon-
dence quality as a binary variable, neglecting the abundant category of weakly-noisy
correspondences. Two persistent issues are introduced: (i) over-exclusion, where
partially informative pairs are discarded as negatives, shrinking the effective data
manifold, and (ii) under-alignment, where residual noise from weakly mismatched
pairs propagates through gradient updates, degrading representation fidelity. To
address these challenges, this work pioneers a unified forward–reverse diffusion
framework called “DiffNCL” to explicitly amplify and subsequently purify weakly
noisy correspondences for robust noisy correspondence learning. In the forward
diffusion, synchronized stochastic perturbations inject Gaussian noise into paired
visual–textual embeddings, and step-wise similarities are aggregated to highlight
the diffusion discrepancy of weakly noisy mismatches. During reverse diffusion,
two complementary consistency objectives, i.e., intra-modal structural consistency
and cross-modal semantic consistency, progressively purify and reconstruct weakly
noisy correspondences into high-quality pairs for subsequent training cycles. Ex-
tensive experiments on benchmark datasets, including Flickr30K, MS-COCO, and
Conceptual Captions, are conducted to demonstrate the superiority of DiffNCL over
state-of-the-art baselines for cross-modal retrieval against noisy correspondences.

1 INTRODUCTION

With the exponential growth of multimedia data, cross-modal retrieval (Diao et al., 2021; Cheng et al.,
2022; Fu et al., 2023; Pham et al., 2024; Lin et al., 2024) has emerged as a critical research focus in
both academic and industrial communities. Despite demonstrating significant success across multiple
domains, existing cross-modal approaches face challenges due to real-world datasets frequently
containing noisy correspondences (Huang et al., 2021) arising from non-specialist annotations
or collection from unreliable web sources in practical implementations (Sharma et al., 2018; Jia
et al., 2021). Noisy correspondence, defined as persistent misalignment between semantically paired
modalities, has severely compromised the effectiveness of conventional cross-modal methods that
rely on perfectly aligned image-text pairs (Han et al., 2023; Yang et al., 2023; Qin et al., 2023),
ultimately limiting their real-world applicability.

Noisy correspondences corrupt contrastive training by injecting false negatives and skewing gradient
directions, leading to distorted embeddings and degraded retrieval performance. Conventional
noisy correspondence learning (NCL) remedies (Huang et al., 2021; Qin et al., 2022; Han et al.,
2023; Yang et al., 2023; Ma et al., 2024), e.g., manual data curation (Sharma et al., 2018), strict
negative sampling (Yang et al., 2023), and robust loss functions (Han et al., 2023), effectively remove
extreme misalignments but often over-exclude informative pairs. Objective reweighting (Huang
et al., 2021) and curriculum learning (Qin et al., 2023) offer coarser mitigation by down-weighting or
iteratively filtering noisy samples, yet they still operate on a binary clean-vs-noisy basis. In recent
years, some advanced works (Dang et al., 2024; Duan et al., 2024; Feng et al., 2023; Han et al.,
2024) exploit the memorization effect of deep neural networks, where simple patterns are learned
before fitting noise, to distinguish clean samples from noisy ones. Despite recent advances, a binary
clean-vs-noisy paradigm fails to capture weakly-noisy correspondences—partially aligned pairs that,
despite minor mismatches, carry valuable semantic information. As shown in Figure 1, weakly-
noisy correspondences occupy the gray area between perfectly matched and fully corrupted pairs.
Discarding them wastes rich cross-modal cues, while treating them as clean introduces subtle noise.
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Figure 1: Illustration of weakly-noisy correspondences converted into pseudo-clean by DiffNCL.
Weakly-noisy correspondences are partially aligned cross-modal data that lie between perfectly
matched (clean) and fully corrupted (noisy) pairs, with minor semantic mismatches but valuable
semantic cues. DiffNCL aims to turn these weakly-noisy pairs into high-fidelity pseudo-clean
representations to address over-exclusion and under-alignment issues.

By treating weakly-noisy correspondences as either fully clean or entirely noisy, existing solutions
still suffer two intertwined failures: (i) over-exclusion erases valuable cross-modal cues, narrowing
the data manifold and hampering generalization, while (ii)under-alignment allows misalignments to
contaminate parameter updates, slowing convergence and degrading embedding quality.

To address these challenges, we propose a novel Diffusion-Driven Weakly-Noisy Correspondence
Learning (DiffNCL) framework, that harnesses a forward–reverse diffusion process, i.e., forward
diffusion for discrepancy mining and weakly-noisy pair identification, and reverse diffusion with
consistency constraints for denoising and pseudo-clean representation generation, to robustly mitigate
noisy cross-modal correspondences. In the forward diffusion stage, synchronized Gaussian noise is
injected into visual and textual features following a pre-defined schedule, ensuring the similarities of
cross-modal features reflect distributional differences among clean, weakly-noisy, and noisy instances
in the diffusion flow. For each diffusion step, cosine similarities are computed and aggregated to
derive stability-weighted diffusion discrepancies, enhancing discrimination of weakly-noisy samples.
In the reverse diffusion phase, modality-specific denoisers transform noisy features into pseudo-
clean representations under two consistency objectives, i.e., Intra-modal structural consistency and
Cross-modal semantic consistency. On the one hand, the proposed intra-modal structure consistency
preserves the intrinsic discriminative topology of denoised features and maintains semantic stability
before and after denoising, thus preventing semantic collapse. On the other hand, cross-modal seman-
tic consistency drives denoised features toward the clean manifold while penalizing high similarity
with unrelated original features, thereby inhibiting the propagation of weakly-noisy correspondences.
Through end-to-end training in an end-to-end manner, the reverse diffusion stage maps corrupted
inputs into high-fidelity pseudo-clean representations. By substituting raw noisy features with these
pseudo-clean embeddings in the retrieval objective, DiffNCL achieves robust training that effectively
mitigates weakly-noisy correspondences. The main contributions are summarized as follows:

• Our work pioneers the integration of diffusion dynamics into noisy correspondence learning
by proposing DiffNCL. To the best of our knowledge, this is the first attempt to tackle cross-
modal noisy correspondence learning with a unified forward–reverse diffusion process.

• We design a forward diffusion–based data partitioning strategy that derives diffusion discrep-
ancies by dynamically analyzing feature similarity gradients during a predefined diffusion
schedule and applying stability-weighted fusion to capture evolving visual–textual semantic
distributions, thereby improving data partitioning accuracy in noisy environments.

• We propose a reverse diffusion–based denoising reconstruction paradigm that leverages
dual diffusion consistency constraints, i.e., intra-modal structural and cross-modal semantic
consistency, to iteratively convert weakly-noisy features into high-fidelity pseudo-clean
representations, enhancing the robustness of cross-modal correspondence training.

• Extensive experiments on synthetically and real-world noisy image-text benchmark datasets
demonstrate that DiffNCL outperforms existing robust methods in handling weakly-noisy
correspondences, verifying its effectiveness in suppressing noise interference.
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2 RELATED WORKS

2.1 CROSS-MODAL RETRIEVAL

As a fundamental task in multimedia research, cross-modal retrieval aims to query for the relevant
items across different modalities. Existing cross-modal retrieval methods can be broadly categorized
into two main approaches: 1) Coarse-grained approaches (Fu et al., 2023; Li et al., 2022; Chen
et al., 2021; Li et al., 2019; Faghri et al., 2017), whose goal is to obtain a global feature represen-
tation for each modality and then perform retrieval based on these global features. 2) Fine-grained
approaches (Pham et al., 2024; Cheng et al., 2022; Diao et al., 2021; He et al., 2021; Liu et al.,
2020; Pan et al., 2023; Zhang et al., 2022) was proposed to establish more detailed correspondences
between image and text. Some of these methods (Pham et al., 2024; Cheng et al., 2022; Diao et al.,
2021; He et al., 2021; Liu et al., 2020) construct graphs among intra-modal regions or words and
aggregate local representations to further capture the semantic relationships between modalities.
Despite the progress in recent years, real-world datasets frequently contain noisy correspondences,
which inevitably disrupt the alignment process and complicate the accurate measurement of similarity,
thereby degrading the overall performance of retrieval models.

2.2 NOISY CORRESPONDENCE LEARNING

Noisy correspondence Learning (Huang et al., 2021; Han et al., 2023; Yang et al., 2023; Qin et al.,
2023; 2022; Ma et al., 2024; Dang et al., 2024; Yang et al., 2024; Zhao et al., 2024; Feng et al.,
2023; Zha et al., 2024; Hu et al., 2023; Han et al., 2024; Duan et al., 2024) focused on developing
various robust learning strategies that can handle the modality mismatches. Huang et al. (Huang et al.,
2021) first identified the noisy correspondence problem and introduced the Noisy Correspondence
Rectifier (NCR). NCR and follow-up works (Han et al., 2023; Yang et al., 2023) leverage a small-loss
criterion (Li et al., 2020) to split data into clean and noisy subsets, then apply adaptive prediction
functions for label correction. Instead of using the small-loss criterion, some works have employed
different metrics to measure the uncertainty of image-text pairs, such as geometrical structure
consistency (Zhao et al., 2024), equivariant similarity consistency (Yang et al., 2024), and logits
energy-guided sample filtration (Dang et al., 2024). Besides, (Qin et al., 2023; Hu et al., 2023; Qin
et al., 2022) have tried to build robust loss functions, and (Han et al., 2024; Duan et al., 2024) have
attempted to rematch noisy pairs or assign pseudo-labels to mitigate the adverse effects caused by
noisy correspondences. However, existing research overlooks weakly-noisy correspondences and
causes both over-exclusion of informative pairs and under-alignment.

2.3 DIFFUSION-BASED MODELS

Diffusion models (Jascha et al., 2015; Ho et al., 2020; Austin et al., 2021; Dhariwal & Nichol,
2021; Park et al., 2024; Kang et al., 2024; Jin et al., 2023; Li et al., 2024) have emerged as a
powerful paradigm in generative modeling, characterized by a unique two-stage training process:
a forward diffusion process that gradually corrupts the data with additive noise and a backward
denoising process that reconstructs the original data through iterative refinement learning. Based
on nonequilibrium thermodynamics, these models approximate the data distribution by gradually
removing the injected noise through Markov chain transitions. Traditional diffusion methods (e.g.,
DDPM (Ho et al., 2020)) primarily target unimodal data generation, making it difficult to migrate to
cross-modal retrieval tasks directly. Recent cross-modal works like DiffusionRet (Jin et al., 2023) and
CUMDR (Li et al., 2024) adapt diffusion models to text-video retrieval and text-based person retrieval
by designing denoising networks to learn joint distributions. Despite considerable promise, diffusion
models remain scarcely applied to mitigating noisy correspondences in cross-modal retrieval.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Technically, consider a training dataset D = {(Ii, Ti), yi}Ni=1, where N denotes the data size, (Ii, Ti)
represents an image-text pair, and yi ∈ {0, 1} indicates whether the pair belongs to the same instance.
The objective of the cross-modal retrieval task is to establish associations between image and text
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Figure 2: Illustration of the proposed DiffNCL, which employs two main components, i.e., diffusion
forward for weakly-noisy correspondence identification via synchronized noise injection and diffu-
sion discrepancy calculation, and diffusion reverse for pseudo-clean representation reconstruction
through modality-specific denoising networks and intra/cross-modal consistency constraints.

in an unlabeled test set. Under noisy correspondence scenarios, an unknown subset of D contains
mismatched pairs where (Ii, Ti) is inherently negative but erroneously labeled as yi = 1. Beyond the
widely recognized noisy correspondence problem, an easily overlooked weakly-noisy correspondence
phenomenon can also degrade model performance. To mathematically formulate the weakly-noisy
correspondence, the semantic associations and atomic semantic units are first defined as follows:

Definition 1. Let the visual modality feature space be V and the language modality feature space be
L. For any (v, l) ∈ V × L, define the semantic association function

δ : V × L → {0, 1}, (1)

where δ(v, l) = 1 denotes v and l are semantically associated, and δ(v, l) = 0 indicates their
semantic disconnection.

Definition 2. The visual and language atomic unit set V = {vi}K1
i=0 and L = {lj}K2

j=0 constitutes a
cross-modal pair (V,L), whose association structure is defined by the association matrix as follows:

M = [δ(vi, lj)]K1×K2
∈ {0, 1}K1×K2 . (2)

Finally, the mathematical definition of clean, weakly-noisy (abbreviated as ”weak” in the formula),
and noisy correspondences is given as Definition 3.

Definition 3. For any data pair (V,L), Define the strength of its semantic association:

ρ =
1

K1K2

K1∑
i=1

K2∑
i=1

δ(vi, lj),

(V,L) =


clean ⇐⇒ 1 ≥ ρ ≥ Max(

1

K1
,
1

K2
) ⇐⇒ ∀i,∃j, δ(vi, lj) = 1 and ∀j, ∃i, δ(vi, lj) = 1,

weak ⇐⇒ Max(
1

K1
,
1

K2
) > ρ > 0 ⇐⇒ ∃i, ∀j, δ(vi, lj) = 0 and ∃j, ∀i, δ(vi, lj) = 0,

noisy ⇐⇒ ρ = 0 ⇐⇒ ∀(i, j), δ(vi, lj) = 0.
(3)

Analysis: Through the interplay of existential and universal quantifiers, Definition 3 rigorously
defines the necessary and sufficient conditions for complete semantic alignment and misalignment.
Specifically, clean correspondence requires that every visual atomic unit is associated with at least
one linguistic atomic unit, and vice versa, ensuring no isolated units in visual and linguistic semantics.
Noisy correspondence is defined as atomic units of all modalities being completely unrelated, corre-
sponding to entirely mismatched noise pairs in practice. For the weakly-noisy correspondence, at least
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one visual or linguistic unit is fully dissociated from all units of the other modality. Notably, ρ serves
as a global average indicator of cross-modal atomic unit correlation. The threshold Max( 1

K1
, 1
K2

) of
ρ acts as the critical dividing point between clean and weakly-noisy correspondence, determined by
the reciprocal maximum number of atomic units in the two modalities, and essentially represents the
minimum association density for complete cross-modal semantic alignment.

Due to the excellent performance of (Lee et al., 2018; Anderson et al., 2018), V and L can be
regarded as the feature representations Fi and Gi by projecting image and text into a shared space
via two modality-specific encoders EF and EG respectively, i.e., Fi = EF (Ii), Gi = EG(Ti).
Their pairwise similarity S(Fi,Gi) is measured by the similarity reasoning networks. To address the
weakly-noisy correspondence issue, we propose the DiffNCL approach, as visualized in Figure. 2, to
achieve robust cross-modal alignment.

3.2 FORWARD DIFFUSION

To effectively distinguish weakly-noisy correspondence samples, the forward diffusion stage captures
the inherent discrepancies in image-text pairs with different matching degrees in the diffusion flow.

Synchronized noise injection. Inspired by the practice of previous diffusion models (Ho et al.,
2020), with the modality-specific noise scheduling implemented over T diffusion steps, synchronized
Gaussian noises are first injected into visual features Fi, formulated as:

{F t
i }Tt=1,F t

i =
√
αtF t−1

i +
√
1− αtϵ1, (4)

where F0
i = Fi represents the original visual feature, and the noise ϵ1 ∼ N (0, I) is a random

normal vector following the standard Gaussian distribution. The noise scheduling parameter follows
αt = cos2( πt

2T ), which ensures that less noise is added during early diffusion steps, with more noise
gradually introduced as t increases. Such a design helps reveal latent semantic variations within
visual features by adapting the noise level to highlight evolving structural-semantic relationships
across diffusion stages. Similarly, for the textual feature, the noise injection formula is:

{Gt
i}Tt=1,Gt

i =
√

βtGt−1
i +

√
1− βtϵ2, (5)

where G0
i = Gi, ϵ1 ∼ N (0, I), and the noise scheduling parameter for the text modality follows

βt = cos3( πt
2T ). The difference in the power of the cosine function for αt and βt is to account for the

different characteristics of visual and textual data. Since textual data is more sensitive to noise (Qiu
et al., 2022), the cubic-power cosine function for βt results in a slower noise-increasing rate, which
helps prevent over-corruption of the semantic information in the text.

Diffusion discrepancy calculator. Drawing inspiration from prior works (Sokolić et al., 2017;
Fawzi et al., 2018; Ilyas et al., 2019), we posit that sample pairs with varying matching degrees
exhibit divergent similarity trajectories during progressive noising. For a series of noised features
{F t

i ,Gt
i}Tt=1, the diffusion discrepancy Ψi for an image-text pair (Ii, Ti) is defined to measure the

semantic alignment confidence between image-text pairs, i.e.,

Ψi =

T∑
t=1

γt

∥∥∥∥∂ < F t
i ,Gt

i >

∂t

∥∥∥∥2

2

, (6)

where < ·, · > denotes cosine similarity function, and γt = (1−αt)·(1−βt)∑T
t′=1

(1−αt′ )·(1−βt′ )
serves as a

normalization factor, weighting the contribution of each diffusion step. This metric effectively
discriminates clean, weakly-noisy, and noisy samples by quantifying step-wise similarity variations
in cross-modal features within the diffusion flow.

Analysis: For clean samples, the robust features sustaining semantic consistency between modalities
lead to a smaller Jacobian spectral norm (Sokolić et al., 2017), resulting in gentle similarity gradients
in the diffusion process and a lower cumulative value Ψi. In contrast, non-robust features in noisy
samples lack semantic constraints, causing significant fluctuations in similarity gradients upon noise
injection and yielding a higher Ψi, which aligns with the theory in unimodal scenarios that ”non-
robust features are sensitive to perturbations” (Ilyas et al., 2019). For weakly-noisy samples, some
semantically irrelevant features lie in high-curvature regions of the decision boundary (model-sensitive
directions) (Fawzi et al., 2018). As noise is incrementally injected via modality-adaptive scheduling,
once the noise intensity surpasses their sensitivity threshold, similarity gradients surge at specific steps
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due to complex local geometric structures, producing Ψi values between the extremes. This design
of diffusion discrepancies effectively captures the dynamic differences among sample types during
diffusion, providing a theoretical analysis for the effective measurement of clean, weakly-noisy, and
noisy correspondence.

Data partitioning. To effectively identify weakly-noisy correspondences, we propose a hybrid
feature representation Hi combining both sample-wise InfoNCE loss ℓi and the aforementioned
diffusion discrepancy Ψi, rather than relying solely on the memorization effect, expressed as:

Hi = [ℓi, ζ ·Ψi)], (7)

where ζ = 1
2 (E[σ(−ℓAi )] + E[σ(−ℓBi )]) serves as dynamic weight for regulating the influence of Ψi.

Here, E and σ(·) denote the expectation and sigmoid function, respectively. The ℓi is defined as:

ℓi = ℓinfo(Fi,Gi) =− log
exp(S(Fi,Gi)/τ)

exp(S(Fi,Gi)/τ) +
∑N

j ̸=i exp(S(Fi,Gj)/τ)

− log
exp(S(Fi,Gi)/τ)

exp(S(Fi,Gi)/τ) +
∑N

j ̸=i exp(S(Fj ,Gi)/τ)

(8)

Next, we fit the hybrid features of all training data by using a three-component Gaussian Mixture
Model (GMM), modeling the probability distributions of clean, weakly-noisy, and noisy samples, i.e.,

p(Hi|θ) =
∑K

k=1
ξkϕ(Hi|µk,Σk), (9)

where ξk, satisfying
∑

ξk = 1, represents the mixture coefficient, ϕ(Hi|k) is the probability density
of the k-th component, and K = 3 is set to divide samples into three groups. To avoid self-reinforcing
errors and error accumulation, we adopt a co-training paradigm with consensus division. The posterior
probability of the i-th pair belonging to the clean set is calculated as:

PA
i =

ξcϕ(HA
i |µc,Σc)∑K

k ξAk ϕ(HA
i |µA

k ,Σ
A
k )

, PB
i =

ξcϕ(HB
i |µc,Σc)∑K

k ξBk ϕ(HB
i |µB

k ,Σ
B
k )

, (10)

where the superscripts A and B represent the corresponding models in co-training, and subscript
c indicates the clean component of GMM. Through a consensus mechanism of the dual model
prediction results, samples are divided into three categories, defined by mask matrices M c

i ,M
w
i ,Mn

i
to indicate whether the i-th sample belongs to the clean, weakly-noisy, or noisy set:

M c
i = (argmax PA

i = kAc ) ∧ (argmax PB
i = kBc ),

Mn
i = (argmax PA

i = kAn ) ∧ (argmax PB
i = kBn ),Mw

i = ¬(M c
i ∨Mn

i ),
(11)

where kc = argminkµk, kn = argmaxkµk, and the remaining kw are the corresponding clean, noisy,
and weakly-noisy components of GMM.

3.3 REVERSE DIFFUSION

Given a batch of features B = {FT
i ,GT

i |Mw
i = 1}Bi=1 with T -step noised and B batch size, reverse

diffusion aims to reconstruct the semantic correlation features through a series of denoising steps.

Modality-specific denoising. Aiming to recover the salient areas of features and eliminate most
noise, a series of bottleneck-structured mapping networks MF = {Mt

F}Tt=1 and MG = {Mt
G}Tt=1

are designed to project cross-modal features into a more compact representation space:

Mt
F (F̂ t−1

i ; θ) = LN
(
F̂ t−1

i +W t
↓ReLU(W t

↑ · F̂ t−1
i )

)
,

Mt
G(Ĝt−1

i ; θ) = LN
(
Ĝt−1
i +W t

↓ReLU(W t
↑ · Ĝt−1

i )
)
,

(12)

where θ denotes the parameters of the projection networks, LN represents the layer normalization,
and W t

↓ ∈ Rd×h and W t
↑ ∈ Rh×d (h < d) are learnable weights. Additionally, modality-specific

cross-model attention is employed to reconstruct cross-modal association semantics, ensuring that
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the final denoised features contain only clean correspondences, which can be expressed as:

F̂ t
i = Mt

F (F̂ t−1
i ) + ρ1 · softmax

(
Q(Mt

F (F̂
t−1
i )) ·K(Mt

G(Gi))√
d

)
· V (Mt

G(Gi)),

Ĝt
i = Mt

G(Ĝt−1
i ) + ρ2 · softmax

(
Q(Mt

G(Ĝ
t−1
i )) ·K(Mt

F (Fi))√
d

)
· V (Mt

F (Fi)),

(13)

where Q,K, V are linear projections, and ρ1, ρ2 are learnable scaling factors. Notably, once the
denoising network is sufficiently trained, the final denoised outputs F̂i = F̂0

i and Ĝi = Ĝ0
i can be

utilized as the pseudo-clean representations to participate in subsequent model training.

Intra-modal structure consistency. The intra-structure consistency loss preserves the intrinsic
discriminative structure of each modality by enforcing feature reconstruction between the original
and denoised representations by element-wise L2 constraints, formulated as:

Lintra =
1

B

∑B

i=1

∥∥∥F̂i −Fi

∥∥∥2
2
+

1

B

∑B

i=1

∥∥∥Ĝi − Gi

∥∥∥2
2
. (14)

Minimizing this loss ensures that the denoising process retains modality-specific structural informa-
tion, preventing over-alignment that could erase critical intra-modal discriminative patterns.

Cross-modal semantic consistency. Aiming to align the denoised features in the semantic space, the
cross-semantic consistency objective employs a contrastive learning framework, which encourages
the model to associate reconstructed features with their corresponding pairs while distinguishing
them from non-matching instances:

Lcross = − 1

B

B∑
i=1

log
exp(< F̂i, Ĝi > /τ)∑B

j=1

(
exp(< F̂i,Gj > /τ) + exp(< Fj , Ĝi > /τ

) . (15)

Specifically, the numerator strengthens the similarity of the target pair via exponential operation,
treating the reconstructed (F̂i, Ĝi) pair as a pseudo-clean instance to be pulled closer. The denominator
is designed to prevent the reconstructed feature F̂j from mismatching other original text features
{Gk}Bk=1 and to prevent the reconstructed text feature Ĝj from mismatching other original image
features {Fk}Bk=1. The overall consistency objective combines intra- and cross-modal losses:

Lconsistency = Lintra + Lcross. (16)

3.4 ROBUST CROSS-MODAL RETRIEVAL

Furthermore, we also propose a robust contrastive loss Lrobust, innovatively leveraging the visual
and textual pseudo-clean features F̂ and Ĝ obtained from diffusion reverse for robust cross-modal
retrieval learning. This loss eliminates the interference of noisy correspondences, formulated as:

Lrobust =
1

2B

B∑
i=0

(
ℓinfo(F̂i,Gi) + ℓinfo(Fi, Ĝi)

)
, (17)

where ℓinfo(·) defined in Equation 8, and B denotes the batch size. Based on the above analyses,
the comprehensive training objective of our proposed method encompasses a combination of robust
cross-modal retrieval loss and diffusion consistency loss, i.e.,

Ltotal = Lrobust + Lconsistency. (18)

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Following previous studies (Huang et al., 2021), three widely used benchmark datasets, i.e.,
Flickr30K (Young et al., 2014), MS COCO (Lin et al., 2014), and Conceptual Captions (Sharma
et al., 2018), are introduced in the experiments. Detailed descriptions are given in the Appendix. For
evaluation, the recall at K (R@K) metric is used to evaluate the retrieval performance. Specifically,
R@K measures the proportion of relevant items retrieved from the top K results. In our experiments,
we report R@1, R@5, R@10 results of image-to-ext and text-to-image retrieval. The sum of these
three recalls, i.e., rSum, is utilized to evaluate the overall performance following (Huang et al., 2021).
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Table 1: Experiment results on CC152K and Flickr30K. The best results are marked in bold.
CC152K Flickr30K

Image→Text Text→Image Image→Text Text→Image
Methods R@1 R@5 R@10 R@1 R@5 R@10 rSum R@1 R@5 R@10 R@1 R@5 R@10 rSum

SCANECCV’18 30.5 55.3 65.3 26.9 53.0 64.7 295.7 36.3 69.3 80.5 24.4 54.1 67.0 331.6
NCRNIPS’21 39.5 64.5 73.5 40.3 64.6 73.2 355.6 42.3 71.1 82.3 31.0 59.0 70.7 356.4
DECLMM’22 36.2 63.6 73.2 37.1 63.6 73.7 347.4 59.3 84.8 90.9 42.3 69.0 78.3 424.7
RCLTPAMI’23 38.3 63.0 70.4 39.2 63.2 72.3 346.4 58.9 84.7 89.8 39.5 64.1 73.5 400.5
BiCroCVPR’23 39.7 64.6 72.6 39.2 65.0 74.1 355.2 59.1 82.8 89.1 40.4 67.7 76.6 415.7
L2RMCVPR’24 39.5 66.2 76.0 41.8 65.9 74.9 364.3 59.9 85.6 91.2 43.8 70.4 79.9 430.8

DiffNCL 40.7 68.3 77.4 42.8 68.9 76.6 374.7 67.6 88.9 94.1 47.3 74.3 83.0 455.2

Table 2: Experiment results on Flickr30K and MS-COCO. The best results are marked in bold.
Flickr30K MS-COCO

Image→Text Text→Image Image→Text Text→Image
Noise Methods R@1 R@5 R@10 R@1 R@5 R@10 rSum R@1 R@5 R@10 R@1 R@5 R@10 rSum

20%

SCANECCV’18 58.5 81.0 90.8 35.5 65.0 75.2 406.0 62.2 90.0 96.1 46.2 80.8 89.2 464.5
NCRNIPS’21 75.0 93.9 97.5 58.3 83.0 89.0 496.7 76.6 95.6 98.2 62.5 89.3 95.3 517.5
DECLMM’22 74.5 92.9 97.1 53.6 79.5 86.8 484.4 75.6 95.1 98.3 59.9 88.3 94.7 511.9
RCLTPAMI’23 74.2 91.8 96.9 55.6 81.2 87.5 487.2 77.0 95.5 98.1 61.3 88.8 94.8 515.5
BiCroCVPR’23 76.5 93.1 97.4 58.1 82.3 88.5 495.9 76.6 95.4 98.2 61.3 88.8 94.8 515.1
L2RMCVPR’24 76.5 93.7 97.3 55.5 81.5 88.0 492.5 78.4 95.7 98.3 62.1 89.1 94.9 518.5

DiffNCL 77.4 93.8 96.8 58.5 83.4 89.5 499.4 77.6 96.1 98.5 62.2 89.7 95.4 519.5

40%

SCANECCV’18 26.0 57.4 71.8 17.8 40.5 51.4 264.9 42.9 74.6 85.1 24.2 52.6 63.8 343.2
NCRNIPS’21 68.1 89.2 94.8 51.4 78.4 84.8 467.4 76.6 95.6 98.2 61.0 88.9 94.9 515.2
DECLMM’22 72.7 92.3 95.4 53.4 79.4 86.4 479.6 75.6 95.5 98.3 59.5 88.3 94.8 512.0
RCLTPAMI’23 71.3 91.1 95.3 51.4 78.0 85.2 472.3 73.9 94.9 97.9 59.0 87.4 93.9 507.0
BiCroCVPR’23 74.6 92.7 96.2 55.5 81.1 87.4 487.5 75.1 95.9 98.3 59.8 89.1 94.9 513.1
L2RMCVPR’24 75.8 93.2 96.9 56.3 81.0 87.3 490.5 75.2 94.8 98.1 59.4 87.8 94.1 509.4

DiffNCL 75.7 92.6 96.9 56.7 82.0 88.3 492.3 76.8 95.1 98.4 61.2 89.0 95.2 515.7

60%

SCANECCV’18 13.6 36.5 50.3 4.8 13.6 19.8 138.6 29.9 60.9 74.8 0.9 2.4 4.1 173.0
NCRNIPS’21 13.9 37.7 55.5 11.0 30.1 41.4 184.6 0.1 0.3 0.4 0.5 1.0 1.0 2.4
DECLMM’22 65.2 88.4 94.0 46.8 74.0 82.2 450.6 73.0 94.2 97.9 57.0 86.6 93.8 502.5
RCLTPAMI’23 71.3 91.1 95.3 51.4 78.0 85.2 472.3 73.9 94.9 97.9 59.0 87.4 93.9 507.0
BiCroCVPR’23 67.6 90.8 94.4 51.2 77.6 84.7 466.3 73.9 94.7 97.9 58.7 87.0 93.8 506.0
L2RMCVPR’24 70.0 90.8 95.4 51.3 76.4 83.7 467.6 75.4 94.7 97.9 59.2 87.4 93.8 508.4

DiffNCL 71.7 90.0 95.5 53.0 78.6 86.0 474.8 74.9 94.9 98.1 59.5 87.8 94.5 509.7

4.2 COMPARISON WITH STATE-OF-THE-ARTS

In our experiments, we conduct a comprehensive comparison with the state-of-the-art methods,
including SCAN (Lee et al., 2018), NCR (Huang et al., 2021), DECL (Qin et al., 2022), RCL (Hu
et al., 2023), BiCro (Yang et al., 2023), and L2RM (Han et al., 2024). To ensure a fair comparison,
the SGR model is adopted as the backbone in the compared methods.

Evaluation on Real-World Noisy Correspondence. Quantitative results from evaluations on the
CC152K dataset are reported to validate scenarios involving real-world noisy correspondences.
As shown in Table 1, DiffNCL outperforms baseline models by a considerable margin, achieving
an overall rSum with a 10.4% performance improvement compared to the second-best L2RM.
Significantly, our DiffNCL yields an improvement of 1.0% R@1, 2.1% R@5, 1.4% R@10 for image-
to-text retrieval, and 1.0% R@1, 3.0% R@5, 1.7% R@10 for text-to-image retrieval than the second-
best method, consistently highlighting its robustness and effectiveness in handling real-world noisy
correspondence. Compared with synthetic noisy correspondence, our method demonstrates superior
adaptability to real-world noise environments, indicating that: i) the weakly-noisy correspondence
issue is particularly pronounced under real-world scenarios; ii) DiffNCL effectively mitigates the
challenges posed by weakly-noisy correspondences.

Evaluation on Synthetic Weakly-Noisy Correspondence. To further study the robustness of the
DiffNCL method in the weakly-noisy correspondence environment, we conducted synthetic noise
experiments on the Flickr30K dataset with 50% weakly-noisy and 40% noisy correspondence to
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Table 3: Ablation studies on Flickr30K with 20% noise. w/ denotes ”with”.
Image→Text Text→Image

Method R@1 R@5 R@10 R@1 R@5 R@10 rSum

Base 75.3 93.0 97.1 57.3 82.9 88.9 494.6
Base w/ FD 76.0 93.2 96.7 57.6 83.0 89.1 495.6
Base w/ RD 76.2 93.7 97.6 57.6 83.3 89.4 497.8

DiffNCL 77.4 93.8 96.8 58.5 83.4 89.5 499.4

simulate the complex real-world cross-modal retrieval scenarios. In particular, the weakly-noisy
correspondence are generated by randomly replacing several words in a sentence at a specific weakly-
noisy ratio. The comparative results are summarized in Table 2. We can observe that all methods
suffer from varying degrees of performance degradation under the influence of weakly-noisy data.
Nonetheless, the proposed method consistently achieves significant performance compared to all
robust baselines. Specifically, our DiffNCL yields an improvement of 7.7% R@1, 3.3% R@5, 2.9%
R@10 for image-to-text and 3.5% R@1, 3.9% R@5, 3.1% R@10 for text-to-image retrieval than the
second-best method, respectively.

Evaluation on Synthetic Noisy Correspondence. We further investigate the robustness of our
DiffNCL approach in the synthetic noisy correspondence environment. To analyze the performance
and robustness of all baselines under different noise rates, we adopt 20%, 40%, and 60% synthetic
noise on the training sets of Flickr30k and MS-COCO to simulate noisy correspondence. For the
results of MS-COCO, we report the average on 5 folds of 1K test images. The test results are
presented in Table 2. Specifically, on the Flickr30K dataset, DiffNCL achieves an overall rSum with
various noise ratios improvement of 7.0%, while on the MS-COCO dataset, the overall rSum increases
by 2.8%. This demonstrates that the proposed DiffNCL outperforms robust baselines including NCR,
DECL, RCL, BiCro, and L2RM across most evaluation metrics, indicating its superior robustness
to the challenge of modal mismatch in cross-modal retrieval. Additionally, comparison results of
MS-COCO 5K are provided in the supplementary material.

4.3 ABLATION STUDY

Effect on Forward Diffusion. To investigate the impact of forward diffusion, we design the variation,
i.e., ”Base w/ FD”, which denotes that (i) the diffusion discrepancy calculator is incorporated to
get per-sample diffusion discrepancies, (ii) and feeds these discrepancies to GMM for enhancing
the discrimination capability. The comparison results in Table 3 demonstrate that the diffusion
forward stage effectively improves the ability to identify different samples, causing a performance
improvement of rSum by 1.0%, indicating its enhancement of model robustness.

Effect on Backward Diffusion. “Base w/ RD” variant is designed to investigate the impact of reverse
diffusion, which means that (i) the modality-specific denosing net with the diffusion consistency loss
is introduced to the Base model, (ii) and the denoised pseudo-clean representations are replacing
the original noisy features to compute robust cross-modal retrieval loss. The comparison results
in Table 3 indicate that introducing the reverse diffusion stage effectively makes a performance
improvement of rSum by 3.2%, revealing that the original noisy correspondences are effectively
reconstructed into pseudo-clean correspondences, thereby enhancing the robustness of the model.

5 CONCLUSION

In this paper, we presented Diffusion-Driven Weakly-Noisy Correspondence Learning (DiffNCL), the
first unified forward–reverse diffusion framework tailored to mitigate weakly-noisy correspondences
in cross-modal retrieval. By leveraging a novel forward diffusion mechanism to mine and amplify
subtle distributional discrepancies, DiffNCL accurately separates clean, weakly-noisy, and strongly
noisy pairs—thereby alleviating both over-exclusion and under-alignment. The reverse diffusion
stage further transforms corrupted features into high-fidelity pseudo-clean embeddings under dual
consistency constraints, enabling robust cross-modal supervision without discarding informative
samples. Our framework not only delivers significant gains in retrieval accuracy and robustness but
also opens new avenues for integrating diffusion dynamics into multimodal representation learning.
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A EXPERIMENTAL SETTINGS

A.1 DATASET DESCRIPTIONS

To validate the effectiveness of our approach, we conduct experiments on three widely used benchmark
datasets for cross-modal retrieval, described as follows: Specifically, collected from the Flickr website,
Flickr30K contains 31,000 images with 5 corresponding captions. We use 1,000 image-text pairs for
validation, 1,000 for testing, and 29,000 for training. MS-COCO includes 123,287 images with five
captions each. Following the data partition in (Lee et al., 2018), 5,000 images are used for modal
validation, 5,000 for model testing, and the rest 113,287 for model training. Conceptual Captions is
a large-scale dataset with 3%˜20% real-world correspondence noise. Using a subset of Conceptual
Captions named CC152K, which is split by (Huang et al., 2021), contains 150,000 image-text pairs
for training, 1,000 pairs for validation, and 1,000 pairs for testing.

A.2 IMPLEMENTATION DETAILS

The proposed DiffNCL is a general and robust framework that can be easily extended to cross-modal
retrieval methods to mitigate noisy correspondence. To ensure fair comparisons, we employed
the SGR model as the backbone, with all settings of the main experiments consistent with NCR.
Specifically, the Adam optimizer was exclusively used, with the batch size set to 128 and an initial
learning rate of 0.0002. Moreover, all temperature parameters involved in the experiments were
fixed at 0.07. To avoid self-reinforcing errors and error accumulation, the co-training strategy was
adopted during training. For the Flickr30K dataset, the model underwent 5 warm-up epochs, while
10 warm-up epochs were applied to the COCO and CC152K datasets. Post-warm-up training epochs
were set to 40, 20, and 40 for the Flickr30K, COCO, and CC152K datasets, respectively. During
inference, the averaged prediction from models A and B was used.

A.3 TRAINING PIPELINES

Algorithm 1: The training pipeline of our DiffNCL
Input: A training cross-modal dataset D, image-text matching model S(θ1), diffusion denoising

network R(θ2);
Output: Trained models S(θ1) and R(θ2)

1 Initialize the training parameters θ1 and θ2 and all the hyper-parameters;
2 for each epoch do
3 for F ,G in D do
4 for t = 1 to T do
5 Add sync Gaussian noise to F ,G;
6 Calculate and aggregate per-step cosine similarity;
7 end
8 Obtain the per-sample diffusion discrepancy;
9 Obtain the per-sample loss;

10 end
11 Feed discrepancies and losses into 3-component GMM;
12 Split D into clean subset Dc, wealy-noisy Dw and noisy subset Dn;
13 for F ,G in Dc do
14 Obtain similarities via S(F ,G);
15 Compute the retrieval loss;
16 end
17 for F ,G in Dw,Dn do
18 Reconstruct pseudo-clean features via F̂ , Ĝ = R(F ,G);
19 Obtain similarities via S(F̂ , Ĝ);
20 Compute the robust and consistency loss;
21 end
22 Obtain overall loss L;
23 θ1, θ2 = Optimizer([θ1, θ2],L)
24 end
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B BROADER EXPERIMENTS

B.1 COMPUTATIONAL COMPLEXITY

Table 4: Computational results of different components
Components GFLOPs Parameters(M) Per Iteration Wall-Clock Time(S)

Backbone 180.1 18.11 0.4236
Diffusion Net (Training only) 123.4 8.400 0.0273

Table 5: Computational results of backbone and diffusion module
Methods Ref. Parameters(M) Per Epoch Wall-Clock Time(Minute)

SGR AAAI’18 18.11 20.47
NCR (baseline) NeurIPS’21 36.22 30.20
DECL-SGRAF MM’22 36.22 32.06
DECL-SGR MM’22 18.11 17.49
L2RM CVPR’24 18.13 29.52

DiffNCL Ours 42.52 38.68

To analyze the computational complexity of our DiffNCL, we conducted quantitative analyses of
FLOPs and wall-clock time, as shown in Table 4 and Table 5. It’s common and well known that the
diffusion process introduces additional computational overhead, primarily due to the repeated feature
transformations across T steps. To address this, we implemented several optimizations: reducing
the diffusion step count to T = 4(achieved remarkable performance), adopting parameter sharing
in modality-specific denoising networks, and using lightweight bottleneck structures to minimize
redundant computations. The experimental results show that while the diffusion process introduces
increases in FLOPs, the actual training wall-clock time increases merely.

B.2 HYPERPARAMETER SENSITIVITY

We have conducted additional hyperparameter sensitivity experiments, including noise schedule, dif-
fusion step, warm-up epoch, and clustering approach, and provided detailed guidelines for adaptation.

Analysis of noise schedule. We systematically evaluated different noise scheduling strategies as
shown in the Table 6. The key validation results show that the proposed configuration achieves
optimal performance, demonstrating the effectiveness of the modality-specific noise scheduling
design. Moreover, the performance remains robust across variations in composition, indicating the
stability of our DiffNCL method.

Table 6: Evaluation results of various noise scheduling combinations under 20% noise ratio on
Flickr30K dataset. * denotes the configuration we selected.

Image→Text Text→Image
Schedule combination R@1 R@5 R@10 R@1 R@5 R@10 rSum

α = Linear, β = Linear 74.5 93.3 96.6 58.1 83.4 89.7 496.1
α = cos2, β = Linear 75.7 94.1 97.6 58.1 83.0 88.6 497.1
α = Linear, β = cos3 74.4 93.3 96.9 57.4 83.2 89.2 494.4
α = cos3, β = cos2 75.1 94.1 96.9 58.2 83.2 89.7 497.2
α = cos2, β = cos2 74.8 93.7 97.6 58.4 83.4 89.5 497.3
α = cos3, β = cos3 77.1 93.6 96.9 58.3 83.3 89.7 498.9
α = cos2, β = cos3* 77.4 93.8 96.8 58.5 83.4 89.5 499.4
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Analysis of diffusion step. We evaluated the impact of diffusion steps in Table 7, which suggest
that removing the diffusion module led to a significant performance degradation, yielded consistent
performance, within which consistent performance is achieved; and T = 4 balanced computational
cost and effectiveness with good performance.

Table 7: Evaluation results of different diffusion steps under 20% noise ratio on Flickr30K dataset. *
denotes the configuration we selected.

Image→Text Text→Image
T -step R@1 R@5 R@10 R@1 R@5 R@10 rSum

T = 0 75.3 93.0 97.1 57.3 82.9 88.9 494.6
T = 2 76.2 94.0 96.9 58.0 83.3 89.2 496.8
T = 4* 76.6 93.9 97.6 58.5 83.0 89.4 499.1
T = 8 74.8 94.0 97.6 58.0 83.5 89.5 497.4
T = 16 75.4 94.7 97.3 58.8 83.9 90.5 500.6
T = 20 76.0 93.1 97.5 58.3 83.7 89.9 498.5

Analysis of warm-up epoch. We investigated the impact of warm-up epochs on model convergence
in Table 8. Practical guidelines regarding warm-up epochs are as follows: 5 epochs are recommended
as they provide an optimal balance between convergence and efficiency, even without warm-up, the
method maintains competitive performance, and extended warm-up may lead to slight degradation.

Table 8: Evaluation results of various warm-up epochs under 20% noise ratio on Flickr30K dataset. *
denotes the configuration we selected.

Image→Text Text→Image
Training warm-up R@1 R@5 R@10 R@1 R@5 R@10 rSum

epoch = 0 74.3 94.1 97.5 58.4 83.2 89.1 496.6
epoch = 5* 76.6 93.9 97.6 58.5 83.0 89.4 499.1
epoch = 10 76.3 93.2 97.4 58.3 83.3 89.3 497.7
epoch = 15 73.8 94.5 97.2 58.2 83.0 89.3 496.0

B.3 BACKBONE GENERALIZATION

To evaluate the generalization of DiffNCL across diverse architectural configurations—including inte-
gration with large-scale pre-trained models and adaptation to dedicated cross-modal backbones—we
conduct a series of experiments to verify its robustness, adaptability, and noise resilience. The results,
supported by Table 9 (MS-COCO 5K) and Table 10 (Flickr30K), demonstrate that DiffNCL maintains
superior performance across different architectural setups, validating its architecture-agnostic design.

Integration with Pre-trained Model CLIP. We first assess DiffNCL’s compatibility with CLIP
Radford et al. (2021), a renowned large-scale pre-trained model trained on 400 million web-collected
image-text pairs. Experimental results show that CLIP exhibits significant performance drops when
fine-tuned with noisy data. For example, CLIP (ViT-B/32) has a zero-shot rSum of 361.6, but this
plummets to 236.3 after fine-tuning. Even the larger ViT-L/14 variant sees its fine-tuning rSum drop
to 289.4, far below its zero-shot performance (400.4). Importantly, by integrating DiffNCL with
CLIP (ViT-B/32) (denoted as “DiffNCL+CLIP”), we observe a dramatic performance boost. On
MS-COCO 5K under 20% noise, DiffNCL+CLIP achieves an rSum of 451.8, with Image→Text
R@1 (62.7%) and Text→Image R@1 (48.2%) reaching the highest among all variants, highlighting
its ability to enhance pre-trained models’ resistance to noisy correspondences.

Adaptation to Dedicated Cross-Modal Backbones. To further validate DiffNCL’s adaptabil-
ity to specialized cross-modal architectures, we test it with two dedicated backbones (SAF and
SGRAF)Diao et al. (2021); Huang et al. (2021) under 60% high noise (a challenging scenario for
most methods) on the Flickr30K dataset. Experimental results show that DiffNCL consistently
outperforms state-of-the-art methods across both backbones, demonstrating its generality and adapt-
ability. For the SAF backbone, DiffNCL-SAF achieves an rSum of 468.6, surpassing DECL-SAF and
BiCro-SAF by 10.2 and 11.6, respectively, while the R@1 metric of 67.9% and 51.6% outperforms
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the second-best by 1.8% and 3.8%. For the SGRAF backbone, DiffNCL achieves an rSum of 480.6,
outperforming L2RM-SGRAF and BiCro-SGRAF by 13.0 and 14.3. Notably, the R@1 metric of
DiffNCL leads significant margins by, while the R@1 metric of 71.8% and 54.4% outperforms the
second-best by 1.8% and 2.2%. The superior performance of DiffNCL across different backbones
validates its architecture-agnostic design, as it effectively enhances noise resilience through integrat-
ing diffusion dynamics for weakly-noisy detection and pseudo-clean representation reconstruction,
establishing it as a general solution for robust cross-modal retrieval tasks.

Across both large-scale pre-trained models (CLIP) and dedicated cross-modal backbones (SAF,
SGRAF), DiffNCL consistently enhances performance—even under high noise levels. Its core
advantage lies in leveraging diffusion dynamics to mine weak-noise discrepancies and reconstruct
pseudo-clean features, enabling architecture-agnostic noise resilience. This validates DiffNCL’s
generalization as a universal solution for robust cross-modal retrieval tasks.

Table 9: Experiment results on MS-COCO 5K.
Image→Text Text→Image

Noise Ratio Methods R@1 R@5 R@10 R@1 R@5 R@10 rSum

0%, Zero-Shot CLIP (ViT-L/14) 58.4 81.5 88.1 37.8 62.4 72.2 400.4
CLIP (ViT-B/32) 50.2 74.6 83.6 30.4 56.0 66.8 361.6

20%, Fine-tune
CLIP (ViT-L/14) 36.1 61.3 72.5 22.6 43.2 53.7 289.4
CLIP (ViT-B/32) 21.4 49.6 63.3 14.8 37.6 49.6 236.3
DiffNCL+CLIP 62.7 86.4 92.8 48.2 76.1 85.3 451.8

Table 10: Experiment results under 60% noise ratio on Flickr30K.
Image→Text Text→Image

Method R@1 R@5 R@10 R@1 R@5 R@10 rSum

DECL-SAF 66.4 88.1 93.6 49.8 76.1 84.4 458.4
BiCro-SAF 67.1 88.3 93.8 48.8 75.2 83.8 457.0
L2RM-SAF 66.1 88.8 93.8 47.8 74.2 82.2 452.9

DiffNCL-SAF 67.9 90.7 95.0 51.6 77.8 85.6 468.6
DECL-SGRAF 69.4 89.4 95.2 52.6 78.8 85.9 471.3
BiCro-SGRAF 67.6 90.8 94.4 51.2 77.6 84.7 466.3
L2RM-SGRAF 70.0 90.8 95.4 51.3 76.4 83.7 467.6

DiffNCL-SGRAF 71.8 91.5 95.5 54.4 80.2 87.2 480.6

B.4 COMPREHENSIVE WEAKLY-NOISY EXPERIMENTS

Figure 3 demonstrates the results in comprehensive weakly-noisy experiments. As the proportion of
weak noise increases from 20% to 50% and the noise ratio rises from 20% to 60%, the model exhibits
significant robustness for both image-to-text and text-to-image retrieval. Specifically, DiffNCL
maintains relative stability in recall rates as the weak-noise proportion increases. Notably, in complex
scenarios with 50% weak noise and 60% noise, it still maintains a certain retrieval accuracy. This
highlights the robust capabilities in accurately capturing semantic associations and resisting noise
under diverse noise of DiffNCL.

B.5 CASE STUDY

To further reveal the actual effect of the model in different cross-modal retrieval cases, we visualize
several results of the top-5 retrieved instances on the CC152K dataset. As shown in Figure 4, we
can observe the following conclusions: (i) Cross-modal retrieval results across diverse scenarios
exhibit the model’s remarkable performance. In unambiguous contexts like “people waiting
for the bus in a snowstorm” and “a single tropical palm tree...sunny blue sky”, the model achieves
high GT similarity scores (0.9972 and 0.9875), demonstrating its ability to capture core semantic
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Figure 3: Illustration of experiment results under comprehensive noisy settings.

1. people waiting for the bus in snow storm 
(GT, 0.9972)
2. hundreds benefit from latest stuff the bus 
(0.7090)
3. men and women made signs and stood out 
in the snow to protest (0. 6435)
4. shoppers struggle through the heavy snow
(0.6368)
5. cars cover in snow on a parking lot in the 
residential area during snowfall (0.5739)

1. single tropical palm tree on a windy day , 
with summer sunny blue sky as copy space 
and outdoor background (GT, 0.9875)
2. view of palm tree leaning over a tropical 
beach (0.7975)
3. fir tree useful as a background (0. 7602)
4. under the tree with presents galore (0.4873)
5. the sun in the sky above water and a 
silhouette of trees and scrub (0.4348)

man on the 
stump playing 
guitar in forest

Query Image Top-5 Retrieved Texts and Similarity Query Text Top-5 Retrieved Images and Similarity

1. news gathering car remained ,parked 
outside house (GT, 0.8839)
2. automotive industry business named one of 
the best global brands (0.8095)
3. automobile model at the new location (0. 
7022)
4. automobile model check out why everyone 
loves automobile model (0.6805)
5. parking garage gets tested with the cars of 
the construction workers (0.6627)

1. (GT, 0.9343)

2. (0.8916)

4. (0.6508)

3. (0.6824)

5. (0.5567)

aerial view of a 
car driving on a 
country road in 
between fields 
with a large 
river on side 1. (GT, 0.9953)

2. (0.8292)

4. (0.6650)

3. (0.7677)

5. (0.5102)

a blue painted 
wooden boat 
moored by the 
side

1. (GT, 0.6518)

2. (0.5812)

4. (0.4318)

3. (0.5166)

5. (0.4265)

Figure 4: Illustration of Top-10 returned results for cross-modal retrieval. The pair-wise similarity is
in brackets, and “GT” denotes the ground-truth.

associations and align features accurately. (ii) The model maintains robust retrieval stability in
cases involving complex multi-element queries. Non-GT results are ranked by semantic relevance,
such as “river”, “fields”, illustrating its ability to handle composite scenes with multiple visual/textual
elements and prioritize relevant features over noise—even when faced with less relevant outliers
such as “parking garage”. (iii) Across all scenarios, non-GT results are consistently ordered by
semantic relatedness. Irrelevant entries, such as “fir tree” for a tropical palm query or “automobile
industry business” for a parked news car image, receive lower similarity scores. This highlights the
model’s ability to distinguish and rank cross-modal pairs based on semantic relevance, underscoring
its generalizable capacity to organize retrievals by content rather than superficial keyword matches.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this research, LLMs were used only as a general-purpose writing aid, without playing any role
in core research ideation or technical processes. The use of LLMs was limited to polishing English
academic expression, without altering any technical content. All LLM-assisted revisions were strictly
verified by the author team to ensure accuracy, scientific rigor, and no misconduct. The author team
takes full responsibility for the paper’s content. LLMs are not contributors, ineligible for authorship,
and not listed as authors.
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