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ABSTRACT

Momentum is known to accelerate the convergence of gradient descent in strongly
convex settings without stochastic gradient noise. In stochastic optimization,
such as training neural networks, folklore suggests that momentum may help
deep learning optimization by reducing the variance of the stochastic gradient
update, but previous theoretical analyses do not find momentum to offer any
provable acceleration. Theoretical results in this paper clarify the role of momentum
in stochastic settings where the learning rate is small and gradient noise is the
dominant source of instability, suggesting that SGD with and without momentum
behave similarly in the short and long time horizons. Experiments show that
momentum indeed has limited benefits for both optimization and generalization
in practical training regimes where the optimal learning rate is not very large,
including small- to medium-batch training from scratch on ImageNet and fine-
tuning language models on downstream tasks.

1 INTRODUCTION

In modern deep learning, it is standard to combine stochastic gradient methods with heavy-ball
momentum, or momentum for short, to enable a more stable and efficient training of neural net-
works (Sutskever et al., 2013). The simplest form is Stochastic Gradient Descent with Momentum
(SGDM). SGDM aims to minimize the training loss L(x) given a noisy gradient oracle G(x), which
is usually realized by evaluating the gradient at a randomly sampled mini-batch from the training set.
Specifically, let γ, β be the learning rate and momentum coefficient, then SGDM can be stated as:

gk ∼ G(xk), mk+1 = βmk + gk, xk+1 = xk − γmk+1, (1)

where gk,mk,xk are the gradient, momentum buffer, and parameter vector at step k.

For typical choices of β ∈ (0, 1), the momentum buffer can be interpreted as an exponential moving
average of past gradients, i.e., mk =

∑k
j=0 β

k−jgj . Based on this interpretation, Polyak (1964;
1987); Rumelhart et al. (1987) argued that momentum is able to cancel out oscillations along high-
curvature directions and add up contributions along low-curvature directions. More concretely, for
strongly convex functions without any noise in gradient estimates, Polyak (1964; 1987) showed that
adding momentum can stabilize the optimization process even when the learning rate is so large
that can make vanilla gradient descent diverge, and thus momentum accelerates the convergence to
minimizers by allowing using a larger learning rate.

In deep learning, however, the random sampling of mini-batches inevitably introduces a large amount
of stochastic gradient noise. In addition to the high-curvature directions causing the parameter to
oscillate back and forth, this large gradient noise can further destabilize training and hinder the use of
large learning rates. Given the aforementioned convergence results that solely analyze the noiseless
case, it remains unclear whether momentum can likewise stabilize the stochastic optimization process
in deep learning. Still, it is intuitive that averaging past stochastic gradients could reduce the variance
of the noise in the updates, as long as the parameter does not move drastically fast at each step.
Several prior studies indeed cited this reduction of noise in SGDM as a possible advantage that
may encourage a more rapid decrease in loss (Bottou et al., 2018; Defazio, 2020; You et al., 2020).
To approach this more rigorously, Cutkosky and Orabona (2019) proposed a variant of SGDM
that provably accelerates training by leveraging the reduced variance in the updates. They further
speculated that the advantage of the original SGDM might be related in some way.
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Nevertheless, for SGDM without any modification, past theoretical analyses in the stochastic opti-
mization of convex and non-convex functions usually conclude with a comparable convergence rate
as vanilla SGD, rather than a faster one (Yan et al., 2018; Yu et al., 2019; Liu et al., 2020; Sebbouh
et al., 2021; Li et al., 2022a). Besides, there also exist simple and concrete instances of convex
optimization where momentum does not speed up the convergence rate of SGD, even though it is
possible to optimize faster with some variants of SGDM (Kidambi et al., 2018). Despite these failures
in theory, it has been empirically confirmed that SGDM continues to stabilize large learning rate
training even in the presence of gradient noise. Kidambi et al. (2018); Shallue et al. (2019); Smith
et al. (2020) observed that for large-batch training, SGDM can successfully perform training with a
large learning rate, in which regime vanilla SGD may exhibit instability that degrades the training
speed and generalization. This naturally raises the following question on the true role of momentum:

Does noise reduction in SGDM updates really benefit neural network training?

To address this question, this paper delves into the training regime where the learning rate is small
enough to prevent oscillations along high-curvature directions, yet the gradient noise is large enough
to induce instability. This setting enables us to concentrate exclusively on the interplay between
momentum and gradient noise. More importantly, this training regime is of practical significance as
in many situations, such as small-batch training from scratch or fine-tuning a pre-trained model, the
optimal learning rate is indeed relatively small (Liu et al., 2019; Malladi et al., 2023).

Main Contributions. In this paper, we present analyses of the training trajectories of SGD with and
without momentum, in the regime of small learning rate. We provide theoretical justifications of a
long-held belief that SGDM with learning rate γ and momentum β performs comparably to SGD
with learning rate γ

1−β (Tugay and Tanik, 1989; Orr, 1996; Qian, 1999; Yuan et al., 2016; Smith et al.,
2020). This finding offers negative evidence for the usefulness of noise reduction in momentum.
Additionally, this also motivates us to reformulate SGDM in Definition 2.3 so SGDM and SGD
perform comparably under the same learning rate η, which in turn simplifies our analysis.

More specifically, given a run of SGDM, we show that vanilla SGD can closely track its trajectory in
the following two regimes with different time horizon:
Regime I. Training with SGD and SGDM for O(1/η) steps where the scaling of gradient noise

covariance can be as large as O(1/η). Specifically, Theorem 3.5 shows that SGD and SGDM
are O(

√
η/(1− β))-close to each other in the sense of weak approximation, where η, β

are the learning rate and momentum coefficient under the notation of Definition 2.3. Our
analysis not only includes the classical result that both SGD and SGDM converge to Gradient
Flow in O(1/η) steps where the stochastic gradient is sampled from a bounded distribution
independent of η, but also covers the regime of applying Linear Scaling Rule (Goyal
et al., 2017), where one decreases the learning rate and batch size at the same rate, so
the noise covariance increases inversely proportional to η, and in this case both SGD and
SGDM converge to a Stochastic Differential Equation. Our results improve over previous
analysis (Yuan et al., 2016; Liu et al., 2018) by avoiding underestimating the role of noise
when scaling down the learning rate, and provide rigorous theoretical supports to the scaling
claims in Smith et al. (2020); Cowsik et al. (2022). Technically we introduce an auxiliary
dynamics yk (??) that bridges SGDM and SGD.

Regime II. Training with SGD and SGDM for O(1/η2) steps for overparametrized models where
the minimizers of the loss connect as a manifold and after reaching such a manifold, the
gradient noise propels the iterates to move slowly along it. Theorem 4.5 shows that SGD
and SGDM follow the same dynamics along the manifold of minimizers and thus have
the same implicit bias. The implicit bias result of SGD is due to Katzenberger (1991); Li
et al. (2021b), but their analysis does not apply to SGDM because its dynamic depends
non-homogeneously on η. Our proof of Theorem 4.5 is highly non-trivial, which carefully
bounds various error terms in the decomposition.

In Section 5, we show empirically that momentum indeed has limited benefits for both optimization
and generalization in practical training regimes, including small- to medium-batch training from
scratch on ImageNet and fine-tuning RoBERTa-large on downstream tasks. We also look into a
large-batch training case on CIFAR-10 where SGDM indeed outperforms vanilla SGD, and show that
reducing training instability induced by high curvature by running an SDE simulation method called
SVAG (Li et al., 2021a) can shrink or eliminate the performance gain.
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Finally, we highlight that our results can also have practical significance beyond just understanding
the role of momentum. In recent years, the GPU memory capacity sometimes becomes a bottleneck
in training large models. As the momentum buffer costs as expensive as storing the entire model,
it has raised much interest in when it is safe to remove momentum (Shazeer and Stern, 2018). Our
work sheds light on this question by formally proving that momentum only provides marginal values
in small learning rate SGD. Furthermore, our results imply that within reasonable range of scales the
final performance is insensitive to the momentum hyperparametrization, thereby provide support to
save the effort in the extensive hyperparameter grid search.

2 PRELIMINARIES

Consider optimizing a loss function L = 1
Ξ

∑Ξ
i=1 Li where Li : Rd → R corresponds to the loss on

the i-th sample. We use θ to indicate parameters along a general trajectory. In each step, we sample a
random minibatch B ⊆ [Ξ], and compute the gradient of the minibatch loss LB = 1

|B|
∑

i∈B Li to
get the following noisy estimate of ∇L(θ), i.e., ∇LB(θ) =

1
|B|

∑
i∈B ∇Li(θ). It is easy to check

that the noise covariance matrix of ∇LB(θ), namely EB(∇LB(θ)−∇L(θ))(∇LB(θ)−∇L(θ))⊤,
scales proportionally to 1

|B| . Motivated by this, Malladi et al. (2022) abstracts ∇LB(θ) as sampled
from a noisy gradient oracle where the noise covariance depends on a scale parameter.
Definition 2.1 (NGOS, Malladi et al. (2022)). A Noisy Gradient Oracle with Scale Parameter
(NGOS) is characterized by a tuple Gσ = (L,Σ,Zσ). For a scale parameter σ > 0, Gσ takes as
input θ and returns g = ∇L(θ) + σv, where ∇L(θ) is the gradient of L at θ, v is the gradient noise
drawn from the probability distribution Zσ(θ) with mean zero and covariance matrix Σ(θ). The
matrix Σ(θ) is independent of the noise scale σ. Slightly abusing the notation, we also use Gσ(θ) to
denote the distribution of g given σ and θ.

In our work we invoke NGOS with different σ for different magnitudes of the learning rate, so that
we can augment the noise level when the learning rates are set smaller. The scaling is discussed after
Lemma 2.4. We now instantiate the SGD and SGDM trajectories under this noise oracle.
Definition 2.2 (Vanilla SGD). Given a stochastic gradient oracle Gσ, SGD with the learning rate
schedule {η̄k} updates the parameters zk ∈ Rd from initialization z0, as

zk+1 = zk − η̄kgk, gk ∼ Gσ(zk). (2)
Definition 2.3 (SGD with momentum/SGDM). Given oracle Gσ, SGDM with the hyperparameter
schedule {(ηk, βk)}, where βk ∈ (0, 1), updates the parameters xk ∈ Rd from (m0,x0), as

mk+1 = βkmk + (1− βk)gk, xk+1 = xk − ηkmk+1, gk ∼ Gσ(xk). (3)

Notice that the formulation of SGDM in Definition 2.3 is different from (1). An easy conversion is
given by rewriting Equation (3) as:

xk+1 = xk − ηk(1− βk)gk + βk
ηk

ηk−1
(xk − xk−1).

Then setting ηk = γ
1−β and βk = β recovers the form of (1). ηk is arguably a more natural

parameterization that is under the same scale of the learning rates of SGD for comparison.

Modeling the gradient noise as an NGOS gives us the flexibility to scale the noise in our theoretical
setting to make the effect of noise non-vanishing in small learning rate training. This is motivated by
the following variant of the standard descent lemma, which highlights noise-induced and curvature-
induced factors that prevent the loss to decrease:
Lemma 2.4 (Descent Lemma for SGD). Given zk, the expected change of loss in the next step is
E[L(zk+1)|zk]− L(zk) =

−η ∥∇L(zk)∥2︸ ︷︷ ︸
descent force

+
1

2
(ση)2 tr((∇2L)Σ(zk))︸ ︷︷ ︸

noise-induced

+
1

2
η2(∇L⊤(∇2L)∇L(zk))︸ ︷︷ ︸

curvature-induced

+o(η2, (ση)2).

When scaling down the learning rate, the descent force scales with O(η) and the noise-induced impact
scales with O(σ2η2), therefore we need to set σ = 1/

√
η to ensure that noises maintain the same

scale of effect across different scales of η. When η → 0 under this scaling, if we consider running
the updates for O(1/η) steps, only the curvature-induced impact is vanishing among the three.
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3 WEAK APPROXIMATION OF SGDM BY SGD IN O(1/η) STEPS

In the following two sections, we will present our main theoretical results on SGDM with small
learning rates. In this section, we show that in O(1/η) steps, SGD approximates SGDM in the sense
of Definition 3.4. The next section studies SGDM over a longer training time (i.e., O(1/η2) steps) to
characterize generalization and finds that the limiting dynamics of SGDM and SGD coincide.

3.1 A WARM UP EXAMPLE: THE VARIANCE REDUCTION EFFECT OF MOMENTUM

Intuitively, momentum makes the SGD update direction less noisy by averaging past stochastic
gradients, which seems at first glance to contradict our result that the distribution of SGD and SGDM
at any time point are approximately the same. However, the apparent discrepancy can be explained
by the following effect: by carrying the noise at a step to subsequent steps, the updates of SGDM
have long-range correlations.

To illustrate this, let us consider the case where the stochastic gradients are i.i.d. gaussian as
gk ∼ N (c, I) for a constant vector c. We compare SGD and SGDM trajectories with hyperparameter
ηk = η and βk = β, and initialization z0 = x0 and m0 ∼ N (c, 1−β

1+β I). The single-step updates are

zk+1 − zk = −ηgk ∼ N (−ηc, η2I).

xk+1 − xk = −ηmk+1 = −η(βk+1m0 +

k∑
s=0

βk−s(1− β)gs) ∼ N (−ηc,
1− β

1 + β
η2I).

Therefore, the variance of each single-step update is reduced by a factor of 1−β
1+β , which implies larger

momentum generates a smoother trajectory. Furthermore, measuring the turbulence over a fixed
interval via the path length

∑
k ∥zk+1 − zk∥2 or the loss variation

∑
k |L(zk+1)− L(zk)| indeed

suggests that adding momentum smooths the path.

However, we are usually more interested in tracking the final loss distributions induced by each
trajectory. The distributions of after k steps are

zk ∼ N (z0 − kηc, kη2I);

xk = z0 − ηβ
1− βk

1− β
m0 − η

k−1∑
s=0

(1− βk−s)gs ∼ N
(
z0 − kηc, kη2I − 2βη2

1− βk

1− β2
I

)
.

Notice that the variance of the final endpoint is only different by |2βη2 1−βk

1−β2 | ≤ 2η2

1−β , which is
bounded regardless of k. The variance is increased at rate η2 per step, which is significantly larger
than the per step update variance 1−β

1+β η
2. As such, the turbulence of the path may not faithfully reflect

the true stochasticity of the iterates.

3.2 MAIN RESULTS ON WEAK APPROXIMATIONS OF SGDM

We study the setting where the magnitude of the hyperparameters are controlled. Let η be the scale of
the learning rate so that ηk = O(η). Furthermore, we set an index α ≥ 0 so that the decay rate of the
momentum is controlled as 1− βk = O(ηα). α = 0 corresponds to a constant decay schedule while
α > 0 corresponds to a schedule where we make βk closer to 1 when the learning rates are getting
smaller. More formally, we associate a hyperparameter schedule (ηηk , β

η
k) for each scale η such that

the following assumption is satisfied.
Definition 3.1 (Hyperparameter Schedule Scaling). A family of hyperparameter schedules
{η(n)k , β

(n)
k }k≥1 is scaled by η(n) with index α if there are constants ηmax, λmin and λmax inde-

pendent of n, such that for all n

0 ≤
η
(n)
k

η(n)
< ηmax, 0 < λmin ≤

1− β
(n)
k

(η(n))α
≤ λmax < 1.

We need some boundedness of the initial momentum for the SGDM trajectory to start safely.
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Assumption 3.2 (Boundedness of the Initial Momentum). For each m ≥ 1, there is constant Cm ≥ 0
that E(∥m0∥m2 ) ≤ Cm;

Following Malladi et al. (2022), we further assume that the NGOS satisfies the below conditions,
which make the trajectory amenable to analysis. We say a function g(x) : Rd → Rm has polynomial
growth if there are constants k1, k2 > 0 such that ∥g(x)∥2 ≤ k1(1 + ∥x∥k2

2 ), ∀x ∈ Rd.
Assumption 3.3. The NGOS Gσ = (L,Σ,Zσ) satisfies the following conditions.

1. Well-Behaved: ∇L is Lipschitz and C∞-smooth; Σ1/2 is bounded, Lipschitz, and C∞-smooth;
all partial derivatives of ∇L and Σ1/2 up to and including the third order have polynomial growth.

2. Bounded Moments: For all integers m ≥ 1 and all noise scale parameters σ, there exists a
constant C2m (independent of σ) such that (Ev∼Zσ(θ)[∥v∥

2m
2 ])

1
2m ≤ C2m(1 + ∥θ∥2), ∀θ ∈ Rd.

Besides, to rigorously discuss the closeness between dynamics of different algorithms, we introduce
the following notion of approximation between two discrete trajectories, inspired by (Li et al., 2019).
Definition 3.4 (Order-γ Weak Approximation). Two families of discrete trajectories xη

k and yη
k

are weak approximations of each other, if there is ηthr > 0 that for any T > 0, any function h of
polynomial growth, and any η ≤ ηthr, there is a constant Ch,T independent of η such that,

max
k=0,...,⌊T/η⌋

|Eh(xη
k)− Eh(yη

k)| ≤ Ch,T · ηγ .

Weak approximation implies that xη
k and yη

k have similar distributions at any step k, and specifically
in the deep learning setting it implies that both training (or testing) curves are similar. Given the
above definitions, we are ready to establish our main result.
Theorem 3.5 (Weak Approximation of SGDM by SGD). Fix the initial point x0 , α ∈ [0, 1),
and an NGOS satisfying Assumption 3.3. Consider the SGDM update xη

k with hyperparameter
schedule {ηk, βk}k≥1 scaled by η with index α, noise scaling σ ≤ η−1/2 and initialization (m0,x0)
satisfying Assumption 3.2, then xη

k is an order-(1− α)/2 weak approximation (Definition 3.4) of the
trajectories zη

k with initialization zη
0 = x0, noise scaling σ and an averaged learning rate schedule

(η̄k =
∑∞

s=k ηs
∏s

τ=k+1 βτ (1− βk)).

Specifically, for a constant schedule where (ηk = η, βk = β) and η̄k = η, SGD and SGDM with the
same learning rate weakly approximate each other with distance O(

√
η/(1− β)).

The theorem shows that when the learning rate has a small scale η and the momentum is constant
(e.g., 0.9), then the trajectory of SGDM and SGD will be close in distribution over O(1/η) steps,
when the gradient noise is amplified at a scale no more than η−1/2. Specifically when we consider
the limit η → 0, then the trajectories of SGDM and SGD will have the same distribution. Following
(Li et al., 2019), the limiting distribution can be described by the law of the solution Xt to an SDE
dXt = −λt∇L(Xt)dt+ λtΣ

1/2(Xt)dWt for some rescaled learning rate schedule λt.

Our theorem requires α ∈ [0, 1), and the approximation grows weaker as α approaches 1. When
α = 1, the two trajectories are no longer weak approximations of each other, and their trajectories
will have different limiting distributions. Furthermore, when α > 1, yet another behaviour of the
SGDM trajectory occurs over a longer range of O(η−

1+α
2 ) steps. This is often undesirable in practice

as optimization is slower.

4 THE LIMIT OF SGDM AND SGD ARE IDENTICAL IN O(1/η2) STEPS

In this section, we follow the framework from (Li et al., 2021b) to study the dynamics of SGDM when
the iterates are close to some manifold of local minimizers of L. Former analyses (e.g., (Yan et al.,
2018)) suggest that SGDM and SGD will get close to a local minimizer in O(1/η) steps, at which
point the loss function plateaus and the trajectory follows a diffusion process near the local minimizer.
If the local minimizers form an manifold in the parameter space, then the diffusion accumulates into
a drift within the manifold in O(1/η2) steps. (Li et al., 2021b) shows that the drift induces favorable
generalization properties after the training loss reaches its minimum under certain circumstances.
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Therefore, we hope to study the generalization effect of SGDM by investigating its dynamics in such
a regime. In particular, we show that when η → 0 the limiting diffusion of SGDM admits the same
form as that of SGD, thus suggesting that momentum provides no generalization benefits.

4.1 PRELIMINARIES ON MANIFOLD OF LOCAL MINIMIZERS

We consider the case where the local minimizers of the loss L form a manifold.
Assumption 4.1. L is smooth. Γ is a (d −M)-dimensional submanifold of Rd for some integer
0 ≤ M ≤ d. Moreover, every x ∈ Γ is a local minimizer of L, satisfying ∇L(x) = 0 and
rank(∇2L(x)) = M .

We consider a neighborhood OΓ of Γ that is an attraction set under ∇L. Specifically, we define the
gradient flow under ∇L by ϕ(x, t) = x−

∫ t

0
∇L(ϕ(x, s))ds for any x ∈ Rd and t ≥ 0. We further

define gradient projection map associated with ∇L as Φ(x) := limt→∞ ϕ(x, t) when the limit exists.
Formally, we make the following assumption:
Assumption 4.2. For any initialization x ∈ OΓ, the gradient flow governed by ∇L converges to
some point in Γ, i.e., Φ(x) is well-defined and Φ(x) ∈ Γ.

It can be shown that for every x ∈ Γ, ∂Φ(x) is the orthogonal projection onto the tangent space of Γ
at x. Moreover, (Li et al., 2021b) proved that for any initialization x0 ∈ OΓ, a fixed learning rate
schedule ηk ≡ η, and any t > 0, and time-rescaled SGD iterates z⌊t/η2⌋ converges in distribution to
Zt, the solution to the following slow SDE on Γ:

Zt = Φ(x0) +

∫ t

0

∂Φ(Zs)Σ
1/2(Zs)dWs +

∫ t

0

1

2
∂2Φ(Zs)[Σ(Zs)]ds.

4.2 ANALYSIS OF SGDM VIA SLOW SDE

In this regime, for a fixed α ≥ 0, we choose a series of learning rate scales η(0) > η(1) > · · · > 0

with limn→∞ η(n) = 0. For each n, we assign a hyperparameter schedules {(η(n)k , β
(n)
k )}k≥1, such

that {(η(n)k , β
(n)
k )}k≥1 is scaled by η(n) in the sense of Definition 3.1.

For SGD with a fixed learning rate, as shown in (Li et al., 2021b), it suffices to consider a fixed time
rescaling by looking at z⌊t/η2⌋ to derive the limiting dynamics, i.e., one unit of time for the slow
SDE on Γ corresponds to ⌊1/η2⌋ SGD steps. However, the varying learning rate case requires more
care to align the discrete iterates with the slow dynamics on Γ. As such, we consider learning rate
schedules over time horizon T , which corresponds to K(n) = ⌊T/(η(n))2⌋ steps of discrete updates
of the process {z(n)

k } and {x(n)
k }. To show the dynamics of SGDM and SGD have a limit at n → ∞,

it is necessary that the hyperparameter schedules have a limit as n → ∞, which we formalize below.
Assumption 4.3 (Converging hyperparameter scheduling). There exists learning rate schedule
λt : [0, T ] → R+ with finite variation such that

lim
n→∞

η(n)
K(n)∑
k=0

|η(n)k − η(n) · λk(η(n))2 | = 0.

In the special case η(n)k ≡ η(n), it is clear that λt ≡ 1, which recovers the regime in (Li et al., 2021b).
We furthermore assume that the hyperparameter schedules admit some form of continuity:
Assumption 4.4 (Bounded variation). There is constant Q independent of n such that

K(n)∑
k=1

|η(n)k − η
(n)
k−1| ≤ Qη(n),

K(n)∑
k=1

|β(n)
k − β

(n)
k−1| ≤ Q(η(n))α

In this general regime, we define the slow SDE on Γ to admit the following description:

Xt = Φ(x0) +

∫ t

0

λt∂Φ(Xs)Σ
1/2(Xs)dWs +

∫ t

0

λ2
t

2
∂2Φ(Xs)[Σ(Xs)]ds. (4)
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Figure 1: SGDM performs comparably to SGD in training ResNet-50 on ImageNet with smaller
batch sizes (e.g., 1024), and outperforms SGD significantly at larger batch sizes.

Indeed, we show that both SGDM and SGD, under the corresponding hyperparameter schdules,
converge to the above slow SDE on Γ, as summarized in the following theorem.

Theorem 4.5. Fix the initialization x0 = z0 ∈ OΓ and any α ∈ (0, 1), and suppose the initial
momentum m0 satisfies Assumption 3.2. For n ≥ 1, let {(η(n)k , β

(n))
k }k≥1 be any hyperparameter

schedule scaled by η(n) satisfying Assumptions 4.3 and 4.4. Further fix the noise scale σ(n) ≡ 1.
Under Assumptions 4.1 and 4.2, consider the SGDM trajectory {x(n)

k }k≥1 with hyperparameter
schedule {(η(n)k , β

(n)
k )}k≥1 and initialization (x0,m0), and the SGD trajectory (z(n)

k ) and initializa-
tion z0 = x0. Suppose the slow SDE defined in (4) has a global solution {Xt}t≥0, then as n → ∞
with η(n) → 0, both x

(n)

⌊t/(η(n))2⌋ and z
(n)

⌊t/(η(n))2⌋ converge in distribution to Xt.

The proof of Theorem 4.5 is inspired by (Calzolari and Marchetti, 1997). In this regime, the
momentum process m(n)

k behaves like an Uhlenbeck-Ornstein process with O(ηα) mixing variance,
so the per-step variance will be significantly smaller than that of SGD, analogous to Section 3.1.
Therefore a more careful expansion of the per-step change Φ(xk+1)− Φ(xk) is needed. Tools from
the semi-martingale analysis and weak limit results of stochastic integrals complete our proof.

5 EXPERIMENTS

Our theoretical results in the previous sections mostly work for learning rates that are asymptotically
small. In this section, we verify that momentum indeed has limited benefits in practical training
regimes where the optimal learning rate is not very large. Additional details are in the appendix.

5.1 MOMENTUM MAY INDEED HAVE MARGINAL VALUE IN PRACTICE

ImageNet Experiments. First, we train ResNet-50 on ImageNet across batch sizes. Following the
experimental setup in Goyal et al. (2017), we use a learning rate schedule that starts with a 5-epoch
linear warmup to the peak learning rate and decays it at epoch #30, #60, #80. For SGDM (1), we use
the default value of β = 0.9, and grid search for the best learning rate γ over 0.1× 2k (k ∈ Z). Then
we check whether vanilla SGD with learning rate γ

1−β can achieve the same performance as SGDM.
Consistent with previous empirical studies (Shallue et al., 2019; Smith et al., 2020), we observed that
for training with smaller batch sizes, the optimal learning rate of SGDM is small enough so that SGD
can perform comparably, though SGDM can indeed outperform SGD at larger batch sizes.

Language Model Experiments. In fine-tuning a pre-trained model, a small learning rate is also
preferable to retain the model’s knowledge learned during pre-training. Indeed, we observe that
SGD and SGDM behave similarly in this case. We fine-tune RoBERTa-large (Liu et al., 2019) on 5
diverse tasks (SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013), SNLI (Bowman et al., 2015),
TREC (Voorhees and Tice, 2000), and MNLI (Williams et al., 2018)) using SGD and SGDM. We
follow the few shot setting described in (Gao et al., 2021; Malladi et al., 2023), using a grid for SGD

7



Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000 12000 14000
Effective Step = Step

40%

50%

60%

70%

80%

90%

Te
st

 A
cc

ur
ac

y

14000 15000

90.0%

95.0%

SGD
SGDM
 = 1
 = 2
 = 4

SGDM and SGD for ResNet-32 on CIFAR-10

Figure 2: Standard SGDM achieves higher test performance than SGD (see ℓ = 1), but the two
trajectories get closer when reducing the curvature-induced term with SVAG (i.e., increasing the value
of ℓ, see Definition 5.1 and Lemma 2.4). These experiments confirm our theoretical findings that
SGD and SGDM approximate each other when the gradient noise is the primary source of instability.
We use batch size B = 512 with two learning rate decays by a factor of 0.1 at epochs 80 and 120.
We grid search to find the best learning rate for SGDM (η = 0.2) and then use it to run SGD and
SGDM with SVAG. We use β = 0.9 for SGDM. Additional experimental details are in the appendix.

based on (Malladi et al., 2023) and sampling 512 examples per class (Table 1). Additional settings
and trajectories are in ??.

Table 1: SGD and SGDM for fine-tuning RoBERTa-large on 5 tasks using 512 examples from each
class (Gao et al., 2021; Malladi et al., 2023). Results are averaged over 5 random subsets of the full
dataset. These findings confirm that SGD and SGDM approximate each other in noisy settings.

Task SST-2 SST-5 SNLI TREC MNLI
Zero-shot 79.0 35.5 50.2 51.4 48.8
SGD 94.0 (0.4) 55.2 (1.1) 87.7 (0.3) 97.2 (0.2) 84.0 (0.3)
SGDM 94.0 (0.5) 55.0 (1.0) 88.4 (0.6) 97.2 (0.4) 83.7 (0.8)

5.2 INVESTIGATING THE BENEFIT OF MOMENTUM IN LARGE-BATCH TRAINING

The ImageNet experiments demonstrate that momentum indeed offers benefits in large-batch training
when the optimal learning rate is relatively large. We now use large-batch training experiments on
CIFAR-10 to provide empirical evidence that this benefit may not be due to the noise reduction
effect. We apply SVAG (Li et al., 2021a) to control the noise scale in our experiments and reduce the
curvature-induced training instability (Lemma 2.4) while leaving the noise-induced term unchanged.

Definition 5.1 (SVAG). With any ℓ > 0, SVAG transforms the NGOS Gσ = (f,Σ,Zσ) (Defini-
tion 2.1) into another NGOS Ĝ√

ℓσ = (f,Σ, Ẑ√
ℓσ) with scale

√
ℓσ. For an input θ, Ĝℓσ returns

ĝ = r1(ℓ)g1 + r2(ℓ)g2 where g1, g2 ∼ Gσ(θ) and ri(ℓ) =
1
2 (1 + (−1)i

√
2ℓ− 1). Ẑ√

ℓσ is defined
to ensure ĝ has the same distribution as ∇f(θ) +

√
ℓσz when z ∼ Ẑ√

ℓσ(θ).

In our experiments, we divide the learning rate η by ℓ after applying SVAG so λ′ = λ/
√
ℓ, and run ℓ

times the original iterate steps. This ensures that way the noise-induced impact and the descent force
stay the same scale in Lemma 2.4, while the curvature-induced impact is reduced by a factor of ℓ.

We train a ResNet-32 (He et al., 2016) on CIFAR-10 (Krizhevsky et al.) with batch size B = 512.
In order to control the curvature-induced impact, we apply SVAG (Li et al., 2021a; Malladi et al.,
2022) to the NGOS (Definition 2.1) for SGD and SGDM. We first grid search to find the best learning
rate for the standard SGDM (ℓ = 1), and then we perform SGD and SGDM with that same learning
rate for different levels of ℓ. The results are summarized in Figure 2. We see that standard SGDM
outperforms standard SGD, but when we increase the noise level ℓ, the two trajectories become closer.
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6 RELATED WORKS

The role of momentum in optimization. The accelerating effect of some variants of momentum
has been observed in convex optimization (Kidambi et al., 2018) and linear regression (Jain et al.,
2018) with under specialized parametrizations. Smith (2018) pointed out that momentum can help
stabilize training, but the optimal choice of momentum is closely related to the choice of learning
rate. Plattner (2022) later empirically established that momentum enlarges the learning rate but does
not boost performance. Arnold et al. (2019) argued using a quadratic example that momentum might
not reduce variance as the gradient noise in each would actually be carried over to future iterates due
to momentum. Tondji et al. (2021) showed that the application of a multi-momentum strategy can
achieve variance reduction in deep learning.

Defazio (2020) proposed a stochastic primal averaging formulation for SGDM which facilitates a
Lyapunov analysis for SGDM, and one particular insight from their analysis is that momentum may
help reduce noise in the early stage of training but is no longer helpful when the iterates are close
to local minima. Xie et al. (2021) showed that under SDE approximation, the posterior of SGDM
is the same as that of SGD. Jelassi and Li (2022) proved the generalization benefit of momentum
in GD in a specific setting of binary classification, by showing that GD+M is able to learn small
margin data from the historical gradients in the momentum. A stronger implicit regularization effect
of momentum in GD is also proved in Ghosh et al. (2023).

Convergence of momentum methods. Momentum-based methods do not tend to yield faster
convergence rates in theory. Yu et al. (2019) showed that distributed SGDM can achieve the same
linear speedup as ditributed SGD in the non-convex setting. Also in the non-convex setting, Yan et al.
(2018) showed that the gradient norm converges at the same rate for SGD, SGDM and stochastic
Nestrov’s accelerated gradient descent, and they used stability analysis to argue that momentum
helps generalization when the loss function is Lipschitz. Under the formulation of quasi-hyperbolic
momentum (Ma and Yarats, 2019), Gitman et al. (2019) proposed another unified analysis for
momentum methods.Liu et al. (2020) proved that SGDM converges as fast as SGD for strongly
convex and non-convex objectives even without a bounded gradient assumption. Using a iterate-
averaging formulation, Sebbouh et al. (2021) proved last-iterate convergence of SGDM in both
convex and non-convex settings. Later, (Li et al., 2022a) showed that constant momentum can lead to
suboptimal last-iterate convergence rate and increasing momentum resolves the issue. Smith (2018);
Liu et al. (2018) provided evidence that momentum helps escape saddle points.

Characterizing implicit bias near manifold of local minimizers A recent line of work has studied
the implicit bias induced by gradient noise in SGD-type algorithms, when iterates are close to some
manifold of local minimizers (Blanc et al., 2020; Damian et al., 2021; Li et al., 2021b). In particular,
Li et al. (2021b) developed a framework for describing the dynamics of SGD via a slow SDE on
the manifold of local minimizers in the regime of small learning rate (see ?? for an introduction).
Similar methodology has become a powerful tool for analyzing algorithmic implicit bias and has been
extended to many other settings, including SGD/GD for models with normalization layers (Lyu et al.,
2022; Li et al., 2022b), GD in the edge of stability regime (Arora et al., 2022), Local SGD (Gu et al.,
2023), sharpness-aware minimization (Wen et al., 2022), and pre-training for language models (Liu
et al., 2022). Notably, Cowsik et al. (2022) utilized the similar idea to study the slow SDE of SGDM
study the optimal scale of the momentum parameter with respect to the learning rate, which has a
focus different from our paper.

7 CONCLUSIONS

This work provides theoretical characterizations of the role of momentum in stochastic gradient
methods. We formally show that momentum does not introduce optimization and generalization
benefits when the learning rates are small, and we further exhibit empirically that the value of
momentum is marginal for gradient-noise-dominated learning settings with practical learning rate
scales. Hence we conclude that momentum does not provide a significant performance boost in
the above cases. Our results further suggest that model performance is agnostic to the choice of
momentum parameters over a range of hyperparameter scales.
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