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ABSTRACT

Stochastic gradient descent-ascent (SGDA) is one of the main workhorses for
solving finite-sum minimax optimization problems. Most practical implementa-
tions of SGDA randomly reshuffle components and sequentially use them (i.e.,
without-replacement sampling); however, there are few theoretical results on
this approach for minimax algorithms, especially outside the easier-to-analyze
(strongly-)monotone setups. To narrow this gap, we study the convergence
bounds of SGDA with random reshuffling (SGDA-RR) for smooth nonconvex-
nonconcave objectives with Polyak-Łojasiewicz (PŁ) geometry. We analyze both
simultaneous and alternating SGDA-RR for nonconvex-PŁ and primal-PŁ-PŁ ob-
jectives, and obtain convergence rates faster than with-replacement SGDA. Our
rates extend to mini-batch SGDA-RR, recovering known rates for full-batch gra-
dient descent-ascent (GDA). Lastly, we present a comprehensive lower bound for
GDA with an arbitrary step-size ratio, which matches the full-batch upper bound
for the primal-PŁ-PŁ case.

1 INTRODUCTION

A finite-sum minimax optimization problem aims to solve the following:

min
x∈X

max
y∈Y

f(x;y) :=
1

n

n∑
i=1

fi(x;y), (1)

where fi denotes the i-th component function. In plain language, we want to minimize the average
of n component functions for x, while maximizing it for y given x. There are many important areas
in modern machine learning that fall within the minimax problem, including generative adversar-
ial networks (GANs) (Goodfellow et al., 2020), adversarial attack and robust optimization (Madry
et al., 2018; Sinha et al., 2018), multi-agent reinforcement learning (MARL) (Li et al., 2019), AUC
maximization (Ying et al., 2016; Liu et al., 2020; Yuan et al., 2021), and many more. In most cases,
the objective f is usually nonconvex-nonconcave, i.e., neither convex in x nor concave in y. Since
general nonconvex-nonconcave problems are known to be intractable, we would like to tackle the
problems with some additional structures, such as smoothness and Polyak-Łojasiewicz (PŁ) con-
dition(s). We elaborate the detailed settings for our analysis, nonconvex-PŁ and primal-PŁ-PŁ (or,
PŁ(Φ)-PŁ), in Section 2.

One of the simplest and most popular algorithms to solve the problem (1) would be stochastic gra-
dient descent-ascent (SGDA). This naturally extends the idea of stochastic gradient descent (SGD)
used for minimization problems. Given an initial iterate (x0;y0), at time t ∈ N, SGDA (randomly)
chooses an index i(t) ∈ {1, . . . , n} and accesses the i(t)-th component to perform a pair of updates[

xt = xt−1 − α∇1 fi(t)(xt−1;yt−1),

yt = yt−1 + β∇2 fi(t)(x
′;yt−1),

where x′ =

{
xt−1, (simSGDA), or
xt, (altSGDA).

Here, α > 0 and β > 0 are the step sizes and∇j denotes the gradient with respect to j-th argument
for fi(t) (j = 1, 2). As shown in the update equations above, there are two widely used versions of
SGDA: simultaneous SGDA (simSGDA), and alternating SGDA (altSGDA).

In such stochastic gradient methods, there are two main categories of sampling schemes for the
component indices i(t). One way is to sample i(t) independently (in time) and uniformly at random
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from {1, . . . , n}, which is called with-replacement sampling. This scheme is widely adopted in
theory papers because it makes analysis of stochastic methods amenable: the noisy gradients∇fi(t)
are independent over time t and are unbiased estimators of the full-batch gradient ∇f . In contrast,
the vast majority of practical implementations employ without-replacement sampling, indicating a
huge theory-practice gap. In without-replacement sampling, we sample each index precisely once at
each epoch. Perhaps the most popular of such schemes is random reshuffling (RR), which uniformly
randomly shuffles the order of indices at the beginning of every epoch. Unfortunately, it is well-
known that without-replacement methods are much more difficult to analyze theoretically, largely
because the sampled indices in each epoch are no longer independent of each other.

Interestingly, for minimization problems, several recent works overcome this obstacle and show
that SGD using without-replacement sampling leads to faster convergence, given that the number of
epochs is large enough (Nagaraj et al., 2019; Ahn et al., 2020; Mishchenko et al., 2020; Rajput et al.,
2020; Nguyen et al., 2021; Yun et al., 2021; 2022). On the other hand, for minimax problems like
(1), the majority of the studies still assume with-replacement sampling and/or rely on independent
unbiased gradient oracles (Nouiehed et al., 2019; Guo et al., 2020; Lin et al., 2020; Yan et al., 2020;
Yang et al., 2020; Loizou et al., 2021; Beznosikov et al., 2022). There are very few results on mini-
max algorithms using without-replacement sampling; even most of the existing ones take advantage
of (strong-)convexity (in x) and/or (strong-)concavity (in y) (Das et al., 2022; Maheshwari et al.,
2022; Yu et al., 2022). Detailed comparative analysis of these works is conducted in Section 4.

Putting all these issues into consideration, our main question is the following.

Does SGDA using without-replacement component sampling provably converge fast,
even on smooth nonconvex-nonconcave objective f with PŁ structures?

1.1 SUMMARY OF OUR CONTRIBUTIONS

To answer the question, we analyze the convergence of SGDA with random reshuffling (SGDA-RR,
Algorithm 1). We analyze both the simultaneous and alternating versions of SGDA-RR and prove
convergence theorems for the following two regimes. Here we denote the step size ratio as r = β/α.

• When −f(x;y) satisfies µ2-PŁ condition in y (nonconvex-PŁ) and component function
fi’s are L-smooth, we prove that SGDA-RR with r & (L/µ2)2 converges to ε-stationarity
in expectation after O

(
nrLε−2 +

√
nr1.5Lε−3

)
gradient evaluations (Theorem 1).

• Further assuming µ1-PŁ condition on Φ(·) := maxy f(·;y) (primal-PŁ-PŁ, or PŁ(Φ)-
PŁ), we prove that SGDA-RR with r & (L/µ2)2 converges within ε-accuracy in expecta-
tion after Õ

(
nLr
µ1

log(ε−1) +
√
nL( r

µ1
)1.5ε−1

)
gradient evaluations (Theorem 2).

As will be discussed in Section 4, the rates shown above are faster than existing results on with-
replacement SGDA. In fact, Theorems 1 & 2 are special cases (b = 1) of our extended theorems
(Theorems 4 & 5 in Appendix A) that analyze mini-batch SGDA-RR of batch size b; by setting
b = n, we also recover known convergence rates for full-batch gradient descent ascent (GDA).
Hence, our analysis covers the entire spectrum between vanilla SGDA-RR (b = 1) and GDA (b = n).

• Additionally, we provide complexity lower bounds for solving strongly-convex-strongly-
concave (SC-SC) minimax problems using full-batch simultaneous GDA with an arbitrarily
fixed step size ratio r = β/α. Perhaps surprisingly, we find that the lower bound for SC-SC
functions matches the convergence upper bound for a much larger class of primal-PŁ-PŁ
functions when the step size ratio satisfies r & L2/µ2

2 (Theorem 3).

2 PROBLEM SETUP

2.1 NOTATION

In our problem (1), the domain of every fi is Z = X ×Y , where X = Rdx , Y = Rdy , and Z = Rd:
we concern unconstrained problems for simplicity. We denote the Euclidean norm and the standard
inner product by ‖·‖ and 〈·, ·〉, respectively. We often use an abbreviated notation z = (x;y) ∈ Z
for x ∈ X and y ∈ Y . Even when z or (x;y) is followed by superscripts and/or subscripts, we
use the symbols interchangeably; e.g., zki = (xki ;yki ). Note that we split the arguments x (for
minimization) and y (for maximization) by a semicolon (‘;’). We use ∇1 and ∇2 to denote the
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Algorithm 1 simSGDA/altSGDA-RR

1: Given: The number of components n; the number of epochs K; step sizes α, β > 0
2: Initialize: (x1

0;y1
0) ∈ Rdx × Rdy

3: for k ∈ [K] do
4: Sample σk ∼ Unif(Sn) . RR: uniformly randomly shuffle the indices every epoch
5: for i ∈ [n] do
6: xki = xki−1 − α∇1fσk(i)(x

k
i−1;yki−1)

7: if simSGDA-RR then
8: yki = yki−1 + β∇2fσk(i)(x

k
i−1;yki−1) . simultaneous update: x & y

9: else if altSGDA-RR then
10: yki = yki−1 + β∇2fσk(i)(x

k
i ;yki−1) . alternating update: x→ y

11: (xk+1
0 ;yk+1

0 ) = (xkn;ykn)

gradients with respect to first and second arguments, respectively.Accordingly, we can write the full
gradient as, e.g., ∇g = [∇1g

>;∇2g
>]>. For a positive integer N , we denote [N ] := {1, . . . , N}.

Let the set SN be a symmetric group of degree N . That is, each permutation σ ∈ SN is a bijection
from [N ] to itself, or equivalently, a re-arrangement of [N ]. Lastly, we use the usualO/Ω/Θ notation
for bounds, where Õ/Ω̃/Θ̃ are used for hiding some logarithmic factors, respectively.

2.2 ALGORITHMS: SIMSGDA-RR & ALTSGDA-RR

As we explained in Section 1, we consider simSGDA and altSGDA combined with RR, a without-
replacement sampling scheme. We call them simSGDA-RR and altSGDA-RR, respectively. We
present a detailed description of the methods in Algorithm 1. For completeness, we also provide an
extended version that uses mini-batches of size ≥ 1 (Algorithm 2) in Appendix A. For comparison,
we call the SGDA algorithms using with-replacement sampling by just simSGDA and altSGDA.

The quantities α, β > 0 are step sizes associated with x and y, respectively. We use two separate
symbols α and β to allow the two step sizes to be different. Such algorithms are sometimes called
two-time-scale algorithms, in a broader sense, and they are adopted in nonconvex minimax opti-
mization problems (Heusel et al., 2017; Lin et al., 2020; Yang et al., 2020). In fact, a recent result
(Li et al., 2022) shows that having α 6= β is sometimes necessary for convergence.

2.3 ASSUMPTIONS AND DEFINITIONS

To define the function classes that we are interested in solving, we introduce a few assumptions.
Assumption 1 (Component smoothness). Every i-th component fi : Z → R is L-smooth, i.e., fi
is differentiable and ∇fi is L-Lipschitz continuous: ‖∇fi(z)−∇fi(z̄)‖ ≤ L ‖z − z̄‖. As a result,
fi(z̄)−fi(z) ≤ 〈∇fi(z), z̄−z〉+ L

2 ‖z̄−z‖
2 (∀z, z̄) and the average f of fi’s is also L-smooth.1

Assumption 2 (Component gradient variance). There exist constants A,B ≥ 0 such that, for any
z = (x;y) ∈ Z and j ∈ {1, 2}, we have 1

n

∑n
i=1 ‖∇j fi(z)−∇j f(z)‖2 ≤ A ‖∇j f(z)‖2 +B.

Assumption 3. For a function f : X × Y → R, the primal function Φ : X → R is well-defined
as Φ(x) := maxy′∈Y f(x;y′). For each x ∈ X , the set Y∗x := arg maxy′∈Y f(x;y′) is non-empty
and closed. Moreover, we assume Φ(x) is bounded below by Φ∗ = infx′∈X Φ(x′) > −∞.

Note that Assumption 2 controls the discrepancy between the objective function f and its compo-
nents fi’s; it is similar to Assumption 2 of Nguyen et al. (2021), adapted to minimax problems.
Letting A = 0 recovers a common assumption of the uniformly bounded variance of component
gradients; thus, our assumption is a relaxation. Also, note that A = B = 0 when n = 1.

We now add an additional structure to our objective function, which is called Polyak-Łojasiewicz
(PŁ) condition. A function g : Rd → R is said to be µ-PŁ if it has a minimum value g∗ and satisfies

‖∇g(t)‖2 ≥ 2µ(g(t)− g∗). (∀ t ∈ Rd) (µ-PŁ)
1As we noted, Assumption 1 directly implies the average smoothness which is a common requirement in

the analysis with unbiased gradient oracles. Nevertheless, we claim that Assumption 1 is not more crucial than
without-replacement sampling to obtain faster convergence rates: see Appendix F for details and proofs.
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Readers could find several studies and applications that the condition involves, in the papers by
Karimi et al. (2016); Nouiehed et al. (2019); Yang et al. (2020); Liu et al. (2020), and more. Note
that every µ-strongly convex2 function satisfies µ-PŁ condition, whereas a PŁ function does not
need to be convex. Hence, µ-PŁ is a strict generalization of µ-strong convexity. In addition, every
stationary point of a PŁ function is a global optimum, which is a benign property for optimization.

We are interested in the case where our objective function f(x;y) has such a structure in terms of
y (Assumption 4). Sometimes, we further assume the primal function Φ is also PŁ (Assumption 5).
We emphasize that we do not necessarily assume the PŁ conditions for the individual fi’s.
Assumption 4 (y-side PŁ). For each (fixed) x ∈ X , −f(x; ·) is µ2-PŁ, i.e., for every (x;y) ∈ Z ,
‖∇2 f(x;y)‖2 ≥ 2µ2(Φ(x)− f(x;y)), where Φ is the primal function associated with f .
Assumption 5 (Primal PŁ, or PŁ(Φ)). The primal function Φ(·) = maxy′ f(x;y′) of f is µ1-PŁ,
i.e., for every x ∈ X , ‖∇Φ(x)‖2 ≥ 2µ1(Φ(x)− Φ∗), where Φ∗ = minx Φ(x) is well-defined.

We say the function f is nonconvex-PŁ when it satisfies Assumption 4. Since we do not assume any
convexity/concavity, it is generally hard to reach global optima. Due to the y-side PŁ condition, we
can guarantee that the primal function Φ is differentiable and evenLΦ-smooth withLΦ ≤ L+L2/µ2

(Proposition 9 in Appendix B). Since the problem (1) can be reformulated as the minimization
problem of Φ (when we can always find y well that maximizes f(x;y) given x), we could aim to
find an approximate first-order stationary point of Φ, by making the norm of the gradient of Φ small.

On top of that, if f satisfies both Assumptions 4 and 5, the function is said to be primal-PŁ-PŁ,
or PŁ(Φ)-PŁ for short.3 In this case, we directly aim not only to decrease the primal function Φ
associated with the objective function f but also to increase the function value f(x;y) in terms of
y. To evaluate how close we are to our goal, we define a potential function Vλ later in Section 3.
When we attain Vλ(x∗,y∗) = 0, it implies that we arrive at a global minimax point: f(x∗,y∗) =
Φ(x∗) = Φ∗. The function Vλ enables us to develop a unified analysis for nonconvex-PŁ and
PŁ(Φ)-PŁ objective functions; we discuss this in greater detail in Section 3.

3 MAIN RESULTS

Based on the assumptions stated in the previous section, we present the convergence results for
both smooth nonconvex-PŁ objectives and smooth PŁ(Φ)-PŁ objectives. Before stating the main
theorems, we first introduce the most important tool for our analyses: the potential function.

3.1 POTENTIAL FUNCTION Vλ

For our convergence analyses, we utilize a function Vλ : X × Y → R defined as
Vλ(x;y) := λ(Φ(x)− Φ∗) + (Φ(x)− f(x;y)), (2)

where λ > 0 is a constant. We borrow inspiration from Yang et al. (2020) and Das et al. (2022) to
come up with this function, although the placement of λ of ours is different. In fact, the convergence
to a neighborhood of a global minimax point (if it exists) implies the reduction of this function.
For each x, a non-negative term Φ(x) − f(x;y) gets smaller as y makes f(x;y) larger. The term
becomes zero when y = y∗(x) for some y∗(x) ∈ Y∗x, since Φ(x) = f(x;y∗(x)). Also, another
non-negative term Φ(x)−Φ∗ gets smaller as x makes Φ(x) smaller. Thus, as (x;y) approaches to
a minimax optimal point, Vλ(x;y) decreases to near zero. In general, Vλ is not guaranteed to attain
exact zero, especially when the objective function f(x;y) is nonconvex in x (e.g., f is nonconvex-
PŁ). Nevertheless, the potential function is still useful for deriving our convergence results.

3.2 MAIN THEOREMS: UPPER BOUNDS OF CONVERGENCE RATES

Now, we present our main results. We provide a detailed comparison of our theorems against ex-
isting results in Section 4. We present the full proof in Appendices C and D. We remark that both
Theorems 1 and 2 are special cases (for mini-batch size b = 1) of their mini-batch extensions:
Theorems 4 and 5 in Appendix A.

2We say a function g : Rd → R is µ-strongly convex for some µ > 0 if it holds g(x′) ≥ g(x) +

〈∇g(x),x′ − x〉+ (µ/2) ‖x′ − x‖2 (∀x,x′); we say g is µ-strongly concave if −g is µ-strongly convex.
3The PŁ(Φ)-PŁ condition is much weaker than two-sided PŁ condition assuming “x-side” PŁ condition:

see Proposition 10. As pointed out by Guo et al. (2020), there exist a PŁ(Φ)-PŁ function g(x;y) that is not
x-side µ-PŁ for any µ > 0 but even strongly concave in x.
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Theorem 1 (Nonconvex-PŁ). Suppose that f satisfies Assumptions 1, 2, 3, and 4. Let κ2 = L/µ2,
where µ2 is PŁ constant of −f(x; ·) at all x. Let λ = 4. Choose the step sizes α and β such that

β = min

{
1

6L
√
n(n+A)

, O

((
Vλ(z1

0)

Bn2K

) 1
3

)}
and α =

β

r
,

for some r ≥ 14κ2
2. Then, both simSGDA-RR and altSGDA-RR (Algorithm 1) satisfy

1

K

K∑
k=1

E
∥∥∇Φ(xk0)

∥∥2 ≤ O

(
rLVλ(z1

0)

K

√
1+

A

n
+r

(
L2BVλ(z1

0)2

nK2

)1/3
)
.

Upper bound on gradient complexity. To achieve ε-stationarity of the primal function, i.e.,
1
K

∑K
k=1 E

∥∥∇Φ(xk0)
∥∥2 ≤ ε2, a sufficient number of gradient evaluations (denoted by Tε = nK) is

Tε = O

(
rLVλ(z1

0)

ε2
max

{√
n2 + nA,

√
rnB

ε

})
.

Theorem 2 (PŁ(Φ)-PŁ). Suppose that f satisfies Assumptions 1, 2, 3, 4, and 5. Let κ1 = L/µ1 and
κ2 = L/µ2, where µ1 and µ2 are PŁ constants of Φ(·) and −f(x; ·) (at all x), respectively. Let
λ = 4. Choose appropriate step sizes α and β such that

β = min

{
1

6L
√
n(n+A)

, Õ
(

κ2
2

µ1nK

)}
and α =

β

r
,

for some r ≥ 14κ2
2. Then, both simSGDA-RR and altSGDA-RR (Algorithm 1) satisfy

E[Vλ(zK+1
0 )] ≤ O

Vλ(z1
0) · exp

− K

12κ1r
√

1 + A
n

+ Õ
(
κ2

1r
3B

µ1nK2

)
.

Upper bound on gradient complexity. To achieve ε2-accuracy on expectation of Vλ(zKn ), i.e.,
E[Vλ(zKn )] ≤ ε2, a sufficient number of gradient evaluations (denoted by T ′ε = nK) is

T ′ε = max

{
O
(
κ1r
√
n2 + nA · log

(
Vλ(z1

0)

ε

))
, Õ

(
κ1r

3/2

ε

√
nB

µ1

)}
.

Remark on step size ratio. In both theorems, we use the step sizes of ratio r = β/α & κ2
2.

It is common to use such a step size scheme r = Θ(κ2
2) to analyze two-time-scale (S)GDA for

nonconvex minimax problems (Jin et al., 2020; Lin et al., 2020; Yang et al., 2020).

Remark on the parameter λ. In our convergence analyses, we arbitrarily choose λ = 4 which
makes the numerical calculations easier. The value of λ > 0 does not matter for the equivalence be-
tween the equation Vλ(x∗;y∗) = 0 and global minimax condition (Proposition 11 in Appendix B).
Also, the choice of λ in both theorems can be arbitrary as long as λ > 1; our logic does not fall apart
if other appropriate step sizes for that λ are chosen. That is to say, we can show that the sequence
Vλ(zk0 ) almost monotonically decreases, ignoring some small variance terms.

4 COMPARISON WITH RELATED WORKS

4.1 COMPARISON WITH STOCHASTIC WITH-REPLACEMENT SETTING

First of all, we confirm that SGDA with random reshuffling (RR) has faster convergence rates (i.e.,
fewer gradient computations) than SGDA based on with-replacement sampling. In particular, we
compare our results with the analyses on the purely stochastic minimax settings which assume that
every stochastic gradient oracle is independently sampled and unbiased: this assumption is natu-
rally satisfied by with-replacement sampling for the finite-sum settings we consider. To make the
comparisons fair and easy, we simply let r = β/α = Θ(κ2

2), A = 0, and B = τ2.

Lin et al. (2020, Theorem 4.5) present a convergence rate for with-replacement simSGDA with
r=Θ(κ2

2) run on nonconvex µ2-strongly-concave problems with a convex bounded constraint set Y
for dual variable y. Their gradient complexity to achieve 1

T

∑T
t=1 E ‖∇Φ(xt)‖2≤ε2 (where T is the
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number of iterations) is written as Tε = O
(
κ2

2L∆Φ+κ2L
2D2

ε2 max
{

1, κ2τ
2

ε2

})
, where κ2 = L/µ2,

∆Φ = Φ(x0) − Φ∗, D = diamY , and τ2 is the variance of the (unbiased) stochastic gradient
oracles. Their complexity can be simplified as O(κ3

2τ
2ε−4), treating other factors as constants. In

contrast, our Theorem 1 has a better gradient complexity in terms of ε and τ , thanks to shuffling:

O
(
κ2

2LVλ(z1
0)

ε2
max

{
n,
κ2τ
√
n

ε

})
, (Ours, from Theorem 1)

or simply O(κ3
2τ
√
nε−3). Thus, our gradient complexity for both simSGDA-RR and altSGDA-

RR is better than that of with-replacement simSGDA when ε is small as ε ≤ O(τ/
√
n). Our rate

has three more strengths: (i) we do not require strong concavity in y, which is a strictly stronger
assumption than requiring y-side PL condition; (ii) we do not require the constraint set Y to be
bounded; (iii) our result can easily extend to the case of any mini-batch sizes, whereas Lin et al.
(2020) need a particular choice of mini-batch size M = O(κ2τ

2/ε) to ensure convergence.

For nonconvex-PŁ objectives, Yang et al. (2022, Theorem 3.1) provide a convergence rate for with-
replacement altSGDA with r = Θ(κ2

2). Their rate can be translated to a gradient complexity for
achieving 1

T

∑T
t=1 E ‖∇Φ(xt)‖2 ≤ ε2, written as O

(
κ2

2LVλ(z0)
ε2

(
1 +

κ2
2Vλ(z0)2τ2

∆Φε2

))
or simply

O(κ4
2τ

2ε−4). Therefore, our gradient complexity for both altSGDA-RR and simSGDA-RR is better
when ε is small as ε ≤ O(κ2τ/

√
n).

For PŁ(Φ)-PŁ objectives, Yang et al. (2020, Theorem 3.3) obtain a convergence rate for with-
replacement altSGDA with r = Θ(κ2

2).4 They apply diminishing step sizes (O(1/t), t ∈ N) to
derive a gradient complexity bound O

(
κ1κ

4
2τ

2

µ1ε2

)
to achieve E[Vλ(zT )] ≤ ε2. One can apply the

constant step sizes depending on the total number T of iterations to their analysis and derive a sim-
ilar complexity with only deterioration in a logarithmic factor. In contrast, our gradient complexity
for both sim/altSGDA-RR using constant step sizes can be written as, for small enough ε,

Õ
(
κ1κ

3
2τ
√
n

ε
√
µ1

)
. (Ours, from Theorem 2)

This is a better complexity in ε and κ2, especially when ε ≤ Õ
(
κ2τ/
√
nµ1

)
, even without the

requirement of diminishing step size.

4.2 COMPARISON WITH OTHER WORKS ON STOCHASTIC WITHOUT-REPLACEMENT SETTING

One of the most relevant works to this paper is Das et al. (2022, Theorem 3). The authors obtain
a similar convergence rate to us for the two-sided PŁ objective, based on linearization of gradients,
but for a dissimilar algorithm which they refer to as AGDA-RR. The algorithm can be also thought of
as epoch-wise-alternating SGDA-RR, whereas our algorithm (altSGDA-RR) can be called as step-
wise-alternating SGDA-RR. In epoch k, their algorithm (i) performs updates only on x (xk0 , . . . ,x

k
n)

while fixing y to yk0 , and then (ii) performs updates only on y (yk0 , . . . ,y
k
n) while fixing x to

xk+1
0 = xkn. We believe that our step-wise algorithm is closer to practice, especially when n is

large. Because of the distinction between algorithms, the proof techniques are also different.

Xie et al. (2021, Theorem 3) present a convergence rate of CD-MA, an extension of simSGDA to
the cross-device federated learning setup, on nonconvex-PŁ setting. Their convergence result for
CD-MA also assumes mini-batch sampling by random reshuffling. As a consequence, they yield a
rate analogous to our Theorem 1 if we reduce their result to the single-machine setup. Nevertheless,
our convergence bound contains a term that shrinks with the number of components or mini-batches,
whereas theirs does not. For a more detailed comparison, please refer to Appendix H.

There are also some works on RR-based (constrained) minimax optimization algorithms other than
SGDA, but for convex-concave problems. Maheshwari et al. (2022) present OGDA-RR, a gradient-
free RR-based optimistic GDA algorithm. Yu et al. (2022) study stochastic proximal point with RR,
consisting of double-loop epochs. Their analyses exploit convex-concavity and Lipschitz continuity
of their objective, based on the arguments by Nagaraj et al. (2019). This enables a direct usage of the
duality gap, the difference between primal function Φ(·) and dual function Ψ(·) = minx f(x; ·), as
a criterion for optimality. On the contrary, our work relies on a different structure of the functions,
which in turn differentiates the constructions of convergence rates.

4Although they consider two-sided PŁ problems, their analysis applies to PŁ(Φ)-PŁ problems as well.
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4.3 COMPARISON WITH DETERMINISTIC SETTING

Here, we compare our rates with (full-batch) gradient descent-ascent (GDA):[
xk = xk−1 − α∇1 f(xk−1;yk−1),

yk = yk−1 + β∇2 f(x′;yk−1),
where x′ =

{
xk−1, (simGDA), or
xk, (altGDA).

It uses the whole information of the objective f at every iteration without any noise. For comparison
with GDA, we utilize our extended theorems for arbitrary mini-batch size b (Theorems 4 and 5 in
Appendix A). By letting b = n and matching our iterate zk0 = (xk0 ;yk0 ) to a GDA iterate zk =
(xk;yk), our results reduce to upper convergence bounds for simGDA and altGDA.

For nonconvex-PŁ problems (Theorems 1 & 4), the convergence rate and iteration complexity (i.e.,
sufficient number of iterations Kε) become

min
k∈[K]

‖∇Φ(xk)‖2 ≤ O
(
κ2

2LVλ(z1)

K

)
; i.e., Kε = O

(
κ2

2LVλ(z1)

ε2

)
, (3)

when r = Θ(κ2
2). This is similar to a known rate of simGDA with r = Θ(κ2

2) for nonconvex-
strongly-concave problems by Lin et al. (2020, Theorem 4.4) as a special case. Their iteration
complexity is written as O((κ2

2L∆Φ + κ2L
2D2)/ε2), where the symbols are already defined in

Section 4.1. To see how the two bounds compare in terms of the factors other than ε, notice that
we have Φ(x)− f(x;y) ≤ L

2 ‖y − y
∗(x)‖2 for any (x;y), due to the L-smoothness of −f . Here,

y∗(x) is an element of Y∗x = arg maxy f(x;y). Thus, we have Vλ(z1) = λ[Φ(x1) − Φ∗] +

[Φ(x1)− f(z1)] ≤ λ∆Φ +LD2/2. As a result, we could loosely translate our iteration complexity
(3) to O((κ2

2L∆Φ + κ2
2L

2D2)/ε2). We suspect that the discrepancy in terms of κ2 comes from the
fact that our analysis does not require the (strong) concavity in terms of y or a bounded constraint
Y: these requirements made a considerable difference in proofs.

For PŁ(Φ)-PŁ problems (Theorems 2 & 5), the rate and iteration complexity (K ′ε) become

Vλ(zK+1) ≤ Vλ(z1) · exp

(
− K

Cκ1κ2
2

)
; i.e., K ′ε = O

(
κ1κ

2
2 log(1/ε)

)
(4)

where r = Θ(κ2
2) and C is a numerical constant. This recovers the linear convergence by Yang et al.

(2020, Theorem 3.2) as a special case, where they prove convergence of altGDA with step size ratio
r = Θ(κ2

2) for two-sided PŁ problem. Following the proof of (Yang et al., 2020, Theorem 3.2), one
can show that the bound (4) indeed implies the actual convergence to a global minimax point z∗, in
the sense that we can achieve ‖zk − z∗‖ ≤ ε in O

(
κ1κ

2
2 log(1/ε)

)
iterations.

5 LOWER BOUND FOR (FULL-BATCH) SIMGDA USING SEPARATE STEP SIZES

As an extension of the discussion from Section 4.3, we characterize a lower complexity bound of de-
terministic simGDA with separate step sizes (α, β) of arbitrary ratio r = β/α, for smooth strongly-
convex-strongly-concave (SC-SC) cases. Surprisingly, at least for r & κ2

2, our lower bound matches
the upper complexity bound of GDA for a much wider class of smooth PŁ(Φ)-PŁ problems,5 which
is quite surprising.

For a smooth PŁ(Φ)-PŁ problems, simGDA with at least r = Ω(κ2
2) has an upper complexity bound

K = O(κ1r log(1/ε)) for a global ε-convergence Vλ(zK) ≤ ε2 in terms of potential function. This
means that the lowest complexity is O(κ1κ

2
2 log(1/ε)) achieved when r = Θ(κ2

2). On the other
hand, for a L-smooth µ-SC-SC problem with saddle point z∗, it is well-known that the simGDA
with a single step-size (α = β) has a tight upper/lower complexity K = Θ(κ2 log(1/ε)) to achieve
‖zK − z∗‖2 ≤ ε2, where κ = L/µ (e.g., Das et al. (2022, Theorem C.1)). The difference of
complexity bounds in condition number (κ1κ

2
2 v.s. κ2) is somewhat questionable because, at least in

smooth minimization problems, strongly convex problems and PŁ problems have identical gradient
descent (GD) iteration complexity O(κ log(1/ε)) (Karimi et al., 2016, Theorem 1).

One could ask where the discrepancy in terms of κ comes from: is it due to (i) the criteria (Vλ(zK)

v.s. ‖zK − z∗‖2) for ε-accuracy, (ii) the function classes (PŁ(Φ)-PŁ v.s. SC-SC), or (iii) the step size
5strongly-convex-strongly-concave (SC-SC) ⊂ two-sided PŁ ⊂ PŁ(Φ)-PŁ ⊂ nonconvex-PŁ.
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ratios (Ω(κ2
2) v.s. 1)? We answer the question by showing the following theorem: the discrepancy

in κ comes from the step size ratio difference. We defer the proof to Appendix E.

Theorem 3 (Lower bound, ratio-specific). Consider a class F(L, µ1, µ2) of functions f(x;y) with
two arguments x and y, which is L-smooth, µ1-strongly-convex in x, and µ2-strongly-concave in y.
Suppose κ1 = L/µ1 ≥ c and κ2 = L/µ2 ≥ c for some constant c > 1. Then, for any step size ratio
r = β/α > 0, there exists a function f ∈ F(L, µ1, µ2) with a unique saddle point z∗, for which
simGDA with any step sizes (α, β) = (β/r, β) requires at least

K =

{
Ω (κ1r log(1/ε)) , if r ≥ κ2/c,
Ω (κ1κ2 log(1/ε)) , if c/κ1 ≤ r ≤ κ2/c,
Ω((κ2/r) log(1/ε)), if 0 < r ≤ c/κ1

iterations to achieve either ‖zK − z∗‖2 ≤ ε2 or Vλ(zK) ≤ ε2.

Thanks to Theorem 3, we can say from Theorem 5 that for any step size ratio r & κ2
2, we have a

tight upper bound on the iteration complexityK = O(κ1r log(1/ε)) of simGDA for general PŁ(Φ)-
PŁ problems. Note that Theorem 3 also subsumes the existing lower bound of the equal-step-size
(r = 1) simGDA for µ-SC-SC problems.

Given the tightness of bounds for r & κ2
2, a natural next step is to discuss 1 . r . κ2

2. Recent work
by Li et al. (2022) also discusses the step size ratio of simGDA. In Li et al. (2022, Theorem 4.1), the
authors construct a y-side strongly-concave function6 and show that simGDA with a step size ratio
r ≤ κ2 is impossible to converge. The necessity of r & κ2 implied by this theorem also applies to
the PŁ(Φ)-PŁ case. Thus, there is no hope for showing an upper convergence bound of simGDA
with 1 . r . κ2 for general nonconvex-PŁ problems. We remark that their theorem does not
contradict nor subsume Theorem 3 because we consider a much smaller function class (SC-SC) to
construct the lower bounds.

On the sufficiency of r & κ2 for convergence, Li et al. (2022, Theorem 4.2) show that simGDA with
r ≥ cκ (for some c > 1) can locally converge at the iteration complexity O(κ1r log(1/ε)) for some
nonconvex-strongly-concave problems, which matches the bound in Theorem 3. Our upper bounds
(Theorems 4 and 5) do require r & κ2

2, which may look suboptimal, but we claim that our results are
not necessarily weaker. One reason is that our convergence guarantee is global, i.e., independent of
the initialization. Another reason is that their analysis is only valid when a differential Stackelberg
equilibrium7 exists, whereas a general PŁ(Φ)-PŁ function may not have such an equilibrium (for an
example, see Proposition 13 in Appendix B).

As far as we know, it is still an open problem whether a global convergence bound for simGDA on
nonconvex-PŁ problems can be shown when the step size ratio r is between Ω(κ2) and O(κ2

2).

6 EXPERIMENTS

To validate our main theoretical findings, here we present some numerical results. We focus on the
primal-PŁ-strongly-concave (or PŁ(Φ)-SC, which is PŁ(Φ)-PŁ as well) quadratic games of the form

min
x∈Rd

max
y∈Rd

f(x;y) = 1
2x
>Ax+ x>By − 1

2y
>Cy = 1

n

∑n
i=1 fi(x;y),

where fi(x;y) = 1
2x
>Aix+ x>Biy − 1

2y
>Ciy + u>i x− v>i y.

(5)

This toy example is often used to numerically evaluate the minimax algorithms (Yang et al., 2020;
Loizou et al., 2021; Das et al., 2022) and appears in various domains such as AUC maximization
(Ying et al., 2016), policy evaluation (Du et al., 2017), and imitation learning (Cai et al., 2019)

To make the game in Equation (5) satisfy PŁ(Φ)-SC and component L-smoothness, we should sam-
ple the coefficient matrices and vectors carefully. First, they need to be ‖Ai‖2 , ‖Bi‖2 , ‖Ci‖2 ≤ L
and

∑n
i=1 ui =

∑n
i=1 vi = 0. To make the primal function Φ a well-defined real-valued function

6 g(x; y) = −L
2
x2 + Lxy − µ

2
y2, where L/µ > 1: its primal function is strongly convex.

7Loosely speaking, a differential Stackelberg equilibrium is a stationary point (x∗;y∗) where f(x∗; ·) is
locally strongly concave near y∗ and Φ(·) is locally strongly convex near x∗.
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(a) simSGDA v.s. simSGDA-RR.
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(b) altSGDA v.s. altSGDA-RR.
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(c) AGDA v.s. AGDA-RR.

Figure 1: Experimental results on quadratic games (5). Solid lines: average across 10 different runs.
Shaded regions: 95% confidence intervals (±1.96 std). Dots: start/end of epochs. The vertical axes
are on a logarithmic scale.

for any x ∈ Rd, we choose C = 1
n

∑n
i=1Ci to be positive definite, i.e., µI � C for an identity

matrix I and µ > 0. Then, the primal function can be explicitly written as

Φ(x) = maxy∈Rd f(x;y) = 1
2x
> (A+BC−1B>

)
x := 1

2x
>Mx.

We construct a matrix M := A + BC−1B> to be rank-deficient positive semi-definite. Letting
the smallest nonzero eigenvalue of M by µ, we ensure that Φ is µ-PŁ but not strongly convex. We
emphasize that the objective function f is not even (strongly-)convex in x in general.

We compare six algorithms in total: simSGDA-RR, altSGDA-RR, AGDA-RR (as defined in Das
et al. (2022)), and the with-replacement counterparts of these three algorithms. To this end, on 5
different randomly-generated quadratic games and under 2 random seeds per game (i.e., 10 runs per
algorithm), we run each algorithm for the same number of epochs using constant step sizes of ratio
β/α = cκ2

2 for some constant c and κ2 = L/µ.

We report the potential function values (Vλ, defined in Equation (2)) at every iteration.8 Results
are presented in Figure 1: the values are normalized by dividing them by the initial value. As
we discussed in Section 4.1, we observe that the random reshuffling considerably accelerates the
convergence of the algorithms. Furthermore, all three algorithms with random reshuffling show
more or less the same performance. Specifically, the plots for simSGDA (resp. simSGDA-RR) and
altSGDA (resp. altSGDA-RR) are almost identical. We believe this is because we choose a random
seed for each of the 10 different runs and share it across different algorithms.

Please refer to Appendix G for more detailed construction, discussion, and comparative study of the
experimental results.

7 CONCLUSION

We investigated stochastic algorithms based on without-replacement component sampling, called
simSGDA-RR and altSGDA-RR, for solving smooth nonconvex finite-sum minimax optimization
problems. We established convergence rates under the y-side PŁ condition (nonconvex-PŁ) and,
additionally, the primal PŁ condition (PŁ(Φ)-PŁ). We ascertain that the SGDA-RR can achieve a
faster rate than its with-replacement counterpart, which agrees with the existing theory on without-
replacement SGD for minimization. Lastly, we provided complexity lower bounds for simGDA with
an arbitrarily fixed step size ratio r, demonstrating that the full-batch upper bound with r & κ2

2 for
PŁ(Φ)-PŁ functions is tight.

Possible future directions include widening our results beyond sim/altSGDA (e.g., extra-gradient or
optimistic GDA) and beyond RR (e.g., single/adversarial shuffling). As also discussed in Section 5,
an interesting open question remains open: can we identify tight convergence rates for stochastic
(with-/without-replacement) and/or deterministic GDA with step size ratio r satisfying κ2 . r . κ2

2,
for general nonconvex-PŁ problems?

8As described in Section 4.2, AGDA-RR uses only one-side gradient (∇1 or ∇2) at each iteration; given a
fixed budget of gradient computations, it should access components twice as many times as SGDA-RR. Hence,
we report the values at every other iteration of AGDA & AGDA-RR, for a fair comparison.
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A MINI-BATCH SGDA-RR AND CONVERGENCE RATES

In this appendix, we present an algorithm that extends simSGDA-RR and altSGDA-RR by using
mini-batches of size b ≥ 1. For simplicity, we assume that the number of components n is an
integer multiple of the mini-batch size b in our analysis; i.e., n = bq for some integer q ≥ 1. One
can extend this to the case when n is not necessarily a multiple of b (e.g., n = b(q − 1) + s, where
q ≥ 1, s ∈ [b]) so that there are q − 1 mini-batches of size b and one more mini-batch of size s ≤ b.

Algorithm 2 Mini-batch simSGDA/altSGDA-RR

1: Given: The number of components n = b(q − 1) + s (q: number of iterations per epoch);
mini-batch size b; the number of epochs K; step sizes α, β > 0

2: Initialize: (x1
0;y1

0) ∈ Rdx × Rdy
3: for k ∈ [K] do
4: Sample σk ∼ Unif(Sn) . RR: uniformly randomly shuffle the indices every epoch
5: for t ∈ [q] do
6: Bkt := {σk(j) : b(t− 1) < j ≤ bt, j ∈ [n]} . Mini-batch : a set of component indices
7: xkt = xkt−1 − α

b

∑
i∈Bkt

∇1fi(x
k
t−1;ykt−1)

8: if simSGDA-RR then
9: ykt = ykt−1 + β

b

∑
i∈Bkt

∇2fi(x
k
t−1;ykt−1) . simultaneous update: x & y

10: else if altSGDA-RR then
11: ykt = ykt−1 + β

b

∑
i∈Bkt

∇2fi(x
k
t ;ykt−1) . alternating update: x→ y

12: (xk+1
0 ;yk+1

0 ) = (xkn/b;y
k
n/b)

Next, we illustrate the generalized versions of our main results (Theorems 1 and 2) for Algorithm 2
with mini-batches of size b ≥ 1. Let us assume n ≥ 2 because the case n = 1 trivially boils down to
simGDA or altGDA. We defer the proofs for simultaneous updates to Appendix C. We present the
parts that change in the proof for alternating updates in Appendix D.
Theorem 4 (Nonconvex-PŁ, mini-batch SGDA-RR). Suppose f satisfies Assumptions 1, 2, 3, and 4.
Let λ = 4. Choose the step sizes α and β by α = β/r for some r ≥ 14κ2

2 and

β = b ·min

 1

6Ln
√

1 + n−b
n−1 ·

A
n

,
1

c

(
Vλ(z1

0)

Ln2(n−bn−1 )BK

) 1
3

 ,

for some numerical constant c > 0. Then, mini-batch simSGDA-RR and altSGDA-RR with mini-
batch size b (a divisor of n) satisfy

1

K

K∑
k=1

E
∥∥∇Φ(xk0)

∥∥2 ≤ 6rLVλ(z1
0)

K

√
1 +

(
n− b
n− 1

)
A

n
+ 2cr

(
L2B Vλ(z1

0)2

nK2
· n− b
n− 1

)1/3

.

Theorem 5 (PŁ(Φ)-PŁ, mini-batch SGDA-RR). Suppose f satisfies Assumptions 1, 2, 3, 4, and 5.
Let λ = 4. Choose the step sizes α and β by α = β/r for some r ≥ 14κ2

2 and

β = b ·min

 1

6Ln
√

1 + n−b
n−1 ·

A
n

,
2r

µ1nK
max

1, log

 Vλ(z1
0)µ1nK

2

8c3κ2
1r

3
(
n−b
n−1

)
B


 ,

for some numerical constant c > 0. Then, mini-batch simSGDA-RR and altSGDA-RR with mini-
batch size b (a divisor of n) satisfy

E[Vλ(zK+1
0 )] ≤ O

Vλ(z1
0) · exp

− K

12κ1r
√

1 + n−b
n−1

A
n

+ Õ
(
κ2

1r
3B

µ1nK2

)
· n− b
n− 1

.

As a side remark, some works consider a sampling method called b-minibatch sampling where
all the elements in each mini-batch are distinct (i.e., without-replacement component sampling
per mini-batch), e.g., Loizou et al. (2021, Definition 2.1). However, there is a significant gap be-
tween this method and ours: any two distinct mini-batches sampled by the b-minibatch sampling
can intersect with each other (i.e., mini-batches are sampled with replacement), whereas, in each
epoch of our Algorithm 2, all the mini-batches are mutually disjoint.
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B TECHNICAL PROPOSITIONS

Notation. Throughout this appendix, we use X = Rdx and Y = Rdy . Given a closed set S ⊂ Rd,
we denote the set of all projection(s) of v ∈ Rd onto S, i.e., the nearest point(s) in S from v, by
ΠS(v) := arg minw∈S ‖v −w‖.

B.1 FUNCTION CLASSES: PŁ CONDITION, SMOOTHNESS, AND MORE

Proposition 6 (κ ≥ 1). Let g be an L-smooth function which is bounded below by g∗. Then, for any
x,

‖∇g(x)‖2 ≤ 2L [g(x)− g∗] .
If g is µ-PŁ as well, then µ ≤ L. Consequently, the condition number κ := L/µ of g is ≥ 1.

Proof. Since g is L-smooth, for any x and y,

g∗ ≤ g(y) ≤ g(x) + 〈∇g(x),y − x〉+
L

2
‖y − x‖2 . (6)

Now define a convex quadratic function hx(y) of y as

hx(y) := g(x) + 〈∇g(x),y − x〉+
L

2
‖y − x‖2 .

Since its gradient is
∇hx(y) = ∇g(x) + L(y − x),

y∗ := x− 1
L∇g(x) is a minimum of hx. Plugging y = y∗ to the equation (6), we get

g∗ ≤ g(x) +

〈
∇g(x),− 1

L
∇g(x)

〉
+
L

2

∥∥∥∥− 1

L
∇g(x)

∥∥∥∥2

= g(x)− 1

2L
‖∇g(x)‖2 .

Rearranging the terms,
‖∇g(x)‖2 ≤ 2L [g(x)− g∗] .

If we additionally utilize PŁ inequality with g∗ := min g(x),

‖∇g(x)‖2 ≥ 2µ [g(x)− g∗] ,

we directly yield µ ≤ L and thus κ = L/µ ≥ 1.

Definition 1 (Karimi et al. (2016)). Consider g : X → R. Let xp ∈ ΠX∗(x) be a projection of x
onto the optimal set X ∗ = arg minx∈X g(x).

(1) We say g satisfies µ-strong convexity (SC) if g(x′) ≥ g(x) + 〈∇g(x),x′ − x〉 +
µ
2 ‖x

′ − x‖2 for any x,x′ ∈ X .

(2) We say g satisfies µ-restricted secant inequality (RSI) if 〈∇g(x),x− xp〉 ≥ µ ‖xp − x‖2
for any x ∈ X .

(3) We say g satisfies µ-error bound (EB) condition if ‖∇g(x)‖ ≥ µ ‖xp − x‖ for any x ∈ X .

(4) We say g satisfies µ-quadratic growth (QG) condition if g(x)−minx′ g(x′) ≥ µ
2 ‖xp−x‖

2

for any x ∈ X .

Proposition 7. From Definition 1, The following implications are true.

• µ-SC implies µ-PŁ and µ-RSI.

• µ-PŁ implies µ-QG and µ-EB.

• µ-RSI implies µ-EB.

• µ-EB and L-smoothness together imply (µ2/L)-PŁ.
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Proof. Most of the proofs originated from Karimi et al. (2016, Theorem 2).

(SC⇒ PŁ) Substitute x to xp and x′ to x, respectively, from Definition 1.(1).

(PŁ⇒ QG & EB) See the proof in Karimi et al. (2016, Theorem 2)

(SC⇒ RSI) We know µ-SC⇒ µ-PŁ⇒ µ-QG. From Definition 1.(1) & 1.(4),

〈∇g(x),x− xp〉
SC
≥ g(x)− g(xp) +

µ

2
‖xp − x‖2

QG
≥ µ

2
‖xp − x‖2 +

µ

2
‖xp − x‖2 = µ ‖xp − x‖2 .

This implies µ-RSI.

(RSI⇒ EB) See the proof in Karimi et al. (2016, Theorem 2).

(EB & smooth⇒ PŁ) We use ∇g(xp) = 0. By L-smoothness and µ-EB condition,

g(x)− g(xp)
smooth
≤ 〈∇g(xp),x− xp〉+

L

2
‖x− xp‖2 =

L

2
‖x− xp‖2

EB
≤ L

2µ2
‖∇g(x)‖2 .

This implies (µ2/L)-PŁ condition on g.

Proposition 8 (Lipschitz continuity-like property of y∗(x)). For anL-smooth function g : X×Y →
R, suppose −g(x; ·) is µ2-PŁ. Let κ2 = L/µ2.

Consider any x0,x1 ∈ X . For any y∗0 ∈ Y∗x0
= arg maxy∈Y g(x0;y), there exists a y∗1 ∈ Y∗x1

=
arg maxy∈Y g(x1;y) such that ‖y∗0 − y∗1‖ ≤ κ2 ‖x0 − x1‖.

In fact, it is enough to choose y∗1 as a projection of y∗0 onto the set Y∗x1
, namely, y∗1 ∈ ΠY∗x1

(y∗0).

Proof. We borrow the proof from Nouiehed et al. (2019, Lemma A.3).

Recall Φ(x) := maxy′∈Y g(x;y′). By PŁ inequality and smoothness of g,

2µ2 (Φ(x1)− g(x1;y∗0)) ≤ ‖∇2g(x1;y∗0)‖2

= ‖∇2g(x1;y∗0)−∇2g(x0;y∗0)‖2 ≤ L2 ‖x1 − x0‖2 .

The second equality applies∇2 g(x0;y∗0) = 0, since y∗0 ∈ arg maxy g(x0;y).

Moreover, note that −g(x1; ·) satisfies µ2-QG condition (∵ Proposition 7). To apply this, we utilize
our choice of y∗1 :

Φ(x1)− g(x1;y∗0) ≥ µ2

2
‖y∗1 − y∗0‖

2
.

As a result, we have µ2
2 ‖y∗0 − y∗1‖

2 ≤ L2 ‖x0 − x1‖2. This completes the proof.

Proposition 9 (Smoothness of primal function). Consider the same function g as Proposition 8.
Then, the function Φ(x) := maxy′∈Y g(x;y′) is differentiable with

∇Φ(x) = ∇1 g(x;y∗(x)), regardless of the choice of y∗(x) ∈ arg max
y′∈Y

g(x;y′).

Moreover, Φ is L(κ2 + 1)-smooth, where κ2 = L/µ2.

Proof. This is already proved in Lemma A.5 of Nouiehed et al. (2019). However, we present
a bit different proof without using second-order Taylor expansion. To start, recall Y∗x :=
arg maxy∈Y g(x;y). That is, we could choose any y∗(x) ∈ Y∗x.

We first show the differentiability of Φ. Fix a unit vector u ∈ X = Rdx : ‖u‖ = 1. Let any h > 0.
We first claim that there exists a path p : (−h, h] → Y = Rdy which is continuous at t = 0 and
p(t) ∈ Y∗(x+tu). In fact, let p(t) be a projection of y∗(x) (that we chose) onto the set Y∗(x+tu).
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Then, p(0) = y∗(x), and by Proposition 8, we have ‖p(0)− p(t)‖ ≤ κ2 ‖x− (x+ tu)‖ = κ2t.
This shows the continuity of p(t) at t = 0. Now, note that there exists a t1 ∈ (0, h) such that,

Φ(x+ hu)− Φ(x)

= g(x+ hu;p(h))− g(x;p(0))

=
{
g(x+ hu;p(h))− g(x+ hu;p(0))

}
+
{
g(x+ hu;p(0))− g(x;p(0))

}
≥ 0 + 〈∇1g(x+ t1u;p(0)), hu〉 ,

by mean value theorem (applied to the first argument). We have the inequality at the last line because
g(x + hu;p(h)) ≥ g(x + hu;p(0)), since p(h) ∈ Y∗(x+hu). With a similar logic, there exists a
t2 ∈ (0, h) such that,

Φ(x+ hu)− Φ(x)

= g(x+ hu;p(h))− g(x;p(0))

=
{
g(x+ hu;p(h))− g(x;p(h))

}
+
{
g(x;p(h))− g(x;p(0))

}
≤ 〈∇1g(x+ t2u;p(h)), hu〉+ 0.

To combine these two inequalities into a single line,

〈∇1g(x+ t1u;p(0)),u〉 ≤ Φ(x+ hu)− Φ(x)

h
≤ 〈∇1g(x+ t2u;p(h)),u〉 .

Using the continuity of p(·) and ∇1g(·; ·) (∵ g has Lipschitz continuous gradient), we can deduce
that the directional derivative of Φ in a direction u (denoted by DuΦ) is in fact

DuΦ(x) = 〈∇1g(x;y∗(x)),u〉 ,
by taking the limit h→ 0+. Since u is arbitrary, we can conclude that∇Φ(x) = ∇1 g(x;y∗(x)).

The proof of Lipschitz smoothness of Φ exactly follows the proof by Nouiehed et al. (2019). Con-
sider any x0,x1 ∈ X . As in Proposition 8, choose any y∗0 ∈ Y∗x0

and y∗1 ∈ ΠY∗x1
(y∗0). Then,

‖∇Φ(x0)−∇Φ(x1)‖
= ‖∇1g(x0;y∗0)−∇1g(x1;y∗1)‖
≤ ‖∇1g(x0;y∗0)−∇1g(x1;y∗0)‖+ ‖∇1g(x1;y∗0)−∇1g(x1;y∗1)‖
≤ L {‖x0 − x1‖+ ‖y∗0 − y∗1‖}
≤ L(1 + κ2) ‖x0 − x1‖ .

The last inequality holds because of Proposition 8.

Proposition 10 (x-side PŁ ⇒ primal PŁ). Suppose g : X × Y → R is L-smooth and two-
sided PŁ with constants µ1 and µ2. Then, g satisfies primal PŁ condition: the function Φ(x) :=
maxy′∈Y g(x;y′) is µ1-PŁ. As a result, a smooth two-sided PŁ function is PŁ(Φ)-PŁ.

Proof. See Lemma A.3 of Yang et al. (2020).

Definition 2. Consider g : X × Y → R. Then, the point (x∗;y∗) ∈ X × Y is called

(i) a stationary point of g if ∇1 g(x∗;y∗) = ∇2 g(x∗;y∗) = 0.

(ii) a saddle point of g if g(x∗;y) ≤ g(x∗;y∗) ≤ g(x;y∗) for all x,y.

(iii) a global minimax point of g if g(x∗;y) ≤ g(x∗;y∗) ≤ maxy′ g(x;y′) for all x,y.

(iv) a global maximin point of g if minx′ g(x′;y) ≤ g(x∗;y∗) ≤ g(x;y∗) for all x,y.
Proposition 11. Consider a function g : X × Y → R.

(1) In general, a saddle point of g is a global minimax/maximin point.

(2) Let Φ(x) := maxy g(x;y) and Φ∗ := minx Φ(x) be well-defined. Let λ > 0 be a
constant. In general, a point (x∗;y∗) is a global minimax point of g if and only if

Vλ(x∗;y∗) := λ[Φ(x)− Φ∗] + [Φ(x)− g(x;y)] = 0.
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(3) If g is smooth nonconvex-PŁ, then a global minimax point is a stationary point.

(4) If g is PŁ(Φ)-PŁ, then there exists a global minimax point (x∗;y∗) of g. As a result, if g is
also smooth, then the point (x∗;y∗) is a stationary point.

(5) If g is smooth two-sided PŁ, every stationary point is a saddle point. As a result, there
exists a saddle point (x∗;y∗) of g.

In particular, smooth two-sided PŁ functions enjoy the “minimax theorem,” which establishes “min-
imax = maximin.”

Proof. (1) (saddle point⇒ global minimax & global maximin) This is straightforward by the defi-
nitions: for any x and y,

min
x′

g(x′;y) ≤ g(x∗;y) ≤ g(x∗;y∗) ≤ g(x;y∗) ≤ max
y′

g(x;y′).

(2) (global minimax ⇐⇒ Vλ = 0) The terms Φ(x) − Φ∗ and Φ(x) − g(x;y) are non-negative.
Hence, Vλ(x;y) is non-negative, and Vλ(x∗;y∗) = 0 if and only if Φ∗ = Φ(x∗) = g(x∗;y∗),
which is equivalent to the global minimax point condition.

(3) (smooth nonconvex-PŁ: global minimax ⇒ stationary) Suppose (x∗;y∗) is a global minimax
point. Since g(x∗;y) ≤ g(x∗;y∗) for any y, Φ(x∗) = maxy g(x∗;y) = g(x∗;y∗). Thus, Φ has a
minimum g(x∗;y∗) at x = x∗. By Proposition 9, Φ(·) is a differentiable function and we have

∇1 g(x∗;y∗) = ∇Φ(x∗) = 0.

Also, since a differentiable function g(x∗;y) has a maximum at y = y∗, we also have
∇2 g(x∗;y∗) = 0. Therefore, (x∗;y∗) is a stationary point.

(4) (PŁ(Φ)-PŁ: ∃ global minimax) Let x∗ ∈ arg minx Φ(x) and y∗ ∈ arg maxy f(x∗;y). Then,
f(x∗,y∗) = Φ(x∗) = Φ∗. as noted in (2), (x∗,y∗) is a global minimax point. By (3), it is in fact a
stationary point, when g is smooth as well.

(5) (smooth two-sided PŁ: stationary⇒ saddle) Let (x∗;y∗) be a stationary point. By PŁ inequali-
ties, for any x and y,

0 = ‖∇2 g(x∗;y∗)‖2 ≥ 2µ2(max
y

g(x∗;y)− g(x∗;y∗)) ≥ 0,

0 = ‖∇1 g(x∗;y∗)‖2 ≥ 2µ1(g(x∗;y∗)−min
x
g(x;y∗)) ≥ 0.

Since µ1, µ2 > 0, these imply maxy g(x∗;y) = g(x∗;y∗) = minx g(x;y∗). Thus, (x∗;y∗) is
a saddle point. Note that (4) and Proposition 10 together proves the existence of a stationary point
of g. Therefore, there must exists a saddle point, which is also pointed out by Guo et al. (2020,
Lemma 8). This concludes the proof.

We remark that, in the proof above, (3) is false for general (nonconvex-nonconcave) functions.
Only local minimax point can ensure stationarity (Jin et al., 2020). As remarked by Jin et al. (2020)
(Figure 2 of their paper), the function xy−cos(y) has non-stationary global minimax points (0,±π).

The following two propositions are for showing that general two-sided PŁ function may not have a
differential Stackelberg equilibrium defined as Li et al. (2022, Definition 3.1).

Proposition 12. Let g be a µ-strongly convex function on Rn. Consider any matrix M ∈ Rn×m
with a positive rank. Suppose that θ is the smallest nonzero singular value ofM . Then g(My) is a
µθ2-PŁ function of y ∈ Rm.

Proof. See Karimi et al. (2016, Appendix B) for the proof.

Proposition 13. Consider a twice continuously differentiable strongly-convex-strongly-concave
function h : Rr × Rs → R. That is, for some constants µ1, µ2 > 0, h(x;y) is µ1-strongly-convex
in x and −h(x;y) is µ2-strongly-convex in y. Let (x∗;y∗) be the unique stationary point of h. Of
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course, it is a differential Stackelberg equilibrium of h. That is, if the hessian matrix ∇2h(x∗;y∗)
at that point is written as

∇2h(x∗;y∗) =

[
∇2

1,1 h(x∗;y∗) ∇2
1,2 h(x∗;y∗)

∇2
2,1 h(x∗;y∗) ∇2

2,2 h(x∗;y∗)

]
=

[
C B
B> −A

]
,

thenA andC−BA−1B> are both positive definite matrices. Consider a function g : Rp×Rq → R
defined by g(x;y) = h(Mx;Ny) for some matrices M ∈ Rr×p, N ∈ Rs×q . Then, g is two-
sided PŁ. Moreover, each stationary point of g may not be a differential Stackelberg equilibrium in
general, for example, when s < q.

Proof. Because of Proposition 12, g is clearly a two-sided PŁ function.

If (x;y) is a stationary point of g, then it must be an element of an affine set {(x;y) ∈ Rp × Rq :
Mx = x∗;Ny = y∗}. This is because

∇g(x;y) =

[
∇1 g(x;y)
∇2 g(x;y)

]
=

[
M>∇1 h(Mx;Ny)
N>∇2 h(Mx;Ny)

]
= 0

if and only if ∇1 h(Mx;Ny) = 0 and ∇2 h(Mx;Ny) = 0, being equivalent to Mx = x∗ and
Ny = y∗. Furthermore, the hessian of g at (x;y) is

∇2g(x;y) =

[
M>∇2

1,1 h(Mx;Ny)M M>∇2
1,2 h(Mx;Ny)N

N>∇2
2,1 h(Mx;Ny)M N>∇2

2,2 h(Mx;Ny)N

]
=

[
M>CM M>BN

(M>BN)> −N>AN

]
.

If s < q, the q × q matrix N>AN cannot have a full rank, thereby it cannot be even invertible.
This implies the stationary point (x;y) cannot be a differential Stackelberg equilibrium.

B.2 WITHOUT-REPLACEMENT SAMPLING

In this subsection, we provide a useful proposition for analysis of mini-batching approach under
without-replacement sampling. We consider the case of mutually disjoint mini-batches in a whole
epoch, not only applying without-replacement sampling to each individual mini-batch.

Consider a collection of n vectors v1, . . . ,vn ∈ Rd. Suppose we uniformly randomly sample a
permutation σ : [n]→ [n]; i.e., σ ∼ Unif(Sn). Define

m =
1

n

n∑
i=1

vi (sample mean) and τ2 =
1

n

n∑
i=1

‖vi −m‖2 (sample variance).

Fix any b ∈ [n] and let n = b(q − 1) + s for some integers q ≥ 1 and s ∈ [b]. Now, divide the
indices [n] into q batches, with exactly b items per batch (except for the last batch when s < b), as
follows:

Wt = {σ(j) : b(t− 1) < j ≤ bt, j ∈ [n]} (t ∈ [q]).

For each batchWt, define

wt =
1

|Wt|
∑
i∈Wt

vi (batch mean).

For any k ∈ [q − 1], define

mk :=
1

k

k∑
t=1

wt (accumulative average of batch means over 1 ≤ t ≤ k).

Of course, we may simply take mq = m (deterministically) for k = q. Thus, because of the
randomness of σ, we can obtain the mean (vector) and the variance (scalar) ofmk as follows.
Proposition 14 (Without-replacement sampling). Given the setup above, for any k < q and n > 1,

E[mk] = m and E
[
‖mk −m‖2

]
=

(n− bk)

bk(n− 1)
τ2.

(Of course, if k = q or n = 1 = q, E[‖mq −m‖2] = 0 sincemq = m.)
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Remark. As a special case, if n = bq (namely, b divides n and s = b), then for any k ≤ q,

E
[
‖mk −m‖2

]
=

(q − k)

k(n− 1)
τ2.

If we further assume b = s = 1 and q = n, this proposition recovers Lemma 1 of Mishchenko et al.
(2020).

Proof of Proposition 14. Since σ is a uniformly randomly sampled permutation, it is easy to obtain
that

E[vσ(i)] = E[wt] = E[mk] = m,

for any i ∈ [n], t ∈ [q], and k ∈ [q].

The covariances between vσ(i)’s can be deduced from the proof by Mishchenko et al. (2020,
Lemma 1) as follows:

Cov(vσ(i),vσ(j)) := E
[〈
vσ(i) −m,vσ(j) −m

〉]
=

{
− τ2

n−1 , if i 6= j,

τ2 if i = j.

Thus, for each t ∈ [q], the variance of wt is obtained as

E
[
‖wt −m‖2

]
= E

∥∥∥∥∥ 1

|Wt|
∑
i∈Wt

(vi −m)

∥∥∥∥∥
2


=
1

|Wt|2


∑
i∈Wt

E
[
‖vi −m‖2

]
+
∑

i,j∈Wt
i 6=j

Cov(vi,vj)


=

1

|Wt|2

{
|Wt|τ2 + |Wt|(|Wt| − 1)

(
− τ2

n− 1

)}
=

n− |Wt|
|Wt|(n− 1)

τ2,

which can also be directly deduced by Lemma 1 of Mishchenko et al. (2020). We notice that this
does not depends on the size of the batchWt.

Next, we look at the covariances between distinct wt’s. For a pair of distinct integers t, u ∈ [q], by
the bi-linearity of covariance,

Cov(wt,wu) =
1

|Wt| · |Wu|
∑

(i,j)∈Wt×Wu

Cov(vi,vj)

=
1

|Wt| · |Wu|
∑

(i,j)∈Wt×Wu

(
− τ2

n− 1

)
= − τ2

n− 1
.

The second equality holds becauseWt andWu are a disjoint set of integers whenever t 6= u.

Now, fix any k ∈ [q − 1]. Note that, by our mini-batching strategy, |Wt| = b for every t < q.
Therefore, by definition ofmk,

E
[
‖mk −m‖2

]
= E

∥∥∥∥∥1

k

k∑
t=1

(wt −m)

∥∥∥∥∥
2


=
1

k2


k∑
t=1

E
[
‖wt −m‖2

]
+
∑
t,u∈[k]
t 6=u

Cov(wt,wu)


=

1

k2

{
k ·
(

n− b
b(n− 1)

τ2

)
+ k(k − 1) ·

(
− τ2

n− 1

)}
=

n− bk
bk(n− 1)

τ2.
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B.3 BASIC RECURRENCE INEQUALITY

In this subsection, we present a basic result of a recurrence inequality. It serves as a stepping-stone
of our convergence bound, particularly at the end of the proof (Appendix C.5).
Proposition 15. Let {ak}∞k=1 be a sequence of non-negative numbers satisfying the following re-
currence inequality:

ak+1 ≤ (1− bη)ak + cηm+1,

where b, c, and η are non-negative real numbers such that bη ∈ (0, 1), and m is a non-negative
integer. Then, for any integer K ≥ 1, we have

aK+1 ≤ (1− bη)Ka1 + cηm/b.

Proof. We proceed with induction on K = 0, 1, 2, · · · . Note that

a1 ≤ (1− bη)0a1 + cηm/b.

This shows the case when K = 0. On the other hand, if K ≥ 1, by an inductive assumption,

aK+1 ≤ (1− bη)aK + cηm+1

≤ (1− bη) ·
(
(1− bη)K−1a1 + cηm/b

)
+ cηm+1

= (1− bη)Ka1 + cηm/b.

C PROOFS FOR (MINI-BATCH) SIMULTANEOUS SGDA-RR

In this appendix, we provide a convergence analysis for the mini-batch simSGDA-RR (Algorithm 2)
on both general nonconvex-PŁ problems and primal-PŁ-PŁ problems. The two cases mostly share
the same proof strategies; they only diverge at the end of the proofs. The proof is long; we first pro-
vide the sketch of proof in subsection C.1; then, we provide the full proof by dividing it into 4 follow-
up subsections of this appendix. The proof for the alternating counterpart (minibatch altSGDA-RR)
can be done with some modifications illustrated in Appendix D. All technical propositions required
for the proofs can be found in Appendix B.

C.1 WARM-UP: PROOF SKETCH FOR b = 1

Here we simply consider the proofs of Theorem 1 and 2 for simSGDA-RR, which is a fully stochas-
tic case (mini-batches of size b = 1). The proofs for altSGDA-RR can be done with slight modifi-
cations.

We start the proof by aggregating all updates throughout an epoch to obtain an “epoch-wise” update:

xk+1
0 = xk0 − nαgk, gk = 1

n

∑n
i=1∇1fσk(i)(z

k
i−1),

yk+1
0 = yk0 + nβhk, hk = 1

n

∑n
i=1∇2fσk(i)(z

k
i−1).

The reason is that the sampled components in each epoch are dependent to each other so that it is
much harder to deal with each iteration individually. The strategy of update-aggregation is quite
general for analysis of optimization algorithms involving without-replacement sampling (Ahn et al.,
2020; Mishchenko et al., 2020; Nguyen et al., 2021; Das et al., 2022). We assume that the interme-
diate iterates zk1 , . . . ,z

k
n stay close to the starting iterate zk0 of an epoch k, which can be ensured by

small step sizes. Then, we can approximate the aggregated epoch of SGDA-RR as a step of simGDA
applied to f = 1

n

∑n
i=1 fi, with approximations of gk ≈ ∇1f(zk0 ) and hk ≈ ∇2f(zk0 ).

With Assumptions 1 and 4, note that the primal function Φ(·) is (L+L2/µ2)-smooth (Proposition 9).
Applying this and L-smoothness of −f , we can have the following inequality (Lemma 16):

Vλ(zk+1
0 )− Vλ(zk0 ) ≤ − ((λ+ 1)/2)nα

∥∥∇Φ(xk0)
∥∥2

+ (λ+ 1)nα
∥∥∇Φ(xk0)−∇1 f(zk0 )

∥∥2

+ (nα/2)
∥∥∇1 f(zk0 )

∥∥2 − (nβ/2)
∥∥∇2 f(zk0 )

∥∥2

+ (λ+ 1/2)nα
∥∥gk −∇1 f(zk0 )

∥∥2
+ (nβ/2)

∥∥hk −∇2 f(zk0 )
∥∥2
.
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Hence, to guarantee the fast decrease of Vλ(zk0 ), it is important to control the “noise” terms for GDA
approximations,

∥∥gk −∇1 f(zk0 )
∥∥2

and
∥∥hk −∇2 f(zk0 )

∥∥2
, in the last line of inequality above. By

applying the tools for without-replacement sampling (Proposition 14), we can actually upper-bound
the conditional expectations of both noise terms by

2L2n(n+A)
(
α2
∥∥∇1 f(zk0 )

∥∥2
+ β2

∥∥∇2 f(zk0 )
∥∥2
)

+ 2L2n(α2 + β2)B. (Lemma 17 & 18)

Then, by taking advantage of several properties of smooth nonconvex-PŁ functions (e.g., Proposi-
tions 7, 8, and 9) and some small-step-size assumptions (e.g., β = O(1/nL), β/α = r & κ2

2), we
eventually have

E
[
Vλ(zk+1

0 )
]
− E

[
Vλ(zk0 )

]
≤ −nαE

[∥∥∇Φ(xk0)
∥∥2
]
− (Lκ2nα/2)E

[
Φ(xk0)− f(zk0 )

]
+ Cα3,

where C ≥ 0 is a constant (with respect to k) depending on L, n, B, and r = β/α. (Lemma 20).
We note that the step size ratio r & κ2

2 is crucial for showing that the coefficient in front of the
term E

[
Φ(xk0)− f(zk0 )

]
is non-positive: even if it is possible with r . κ2

2, we must assume that
κ2 upper-bounded by a positive numerical constant, which is not desirable for showing convergence
bounds. Thus, we expect that a different proof strategy should be applied to avoid the requirement
r & κ2

2 on the step size ratio.

The proofs of Theorems 1 and 2 diverge from here. The rest of the proof is mostly about choosing
appropriate step sizes and solving the recurrence inequalities.

The full proof of Theorems 4 and 5 starts from the following subsection.

C.2 EPOCH-WISE REPRESENTATIONS AND BOUNDING NOISE TERMS

Before starting the proof, we again remark that we assume that the mini-batch size b divides the
number of components n (namely, q := n/b is a positive integer) for simplicity: thus, readers who
want to read proofs for fully stochastic case (i.e., b = 1) can substitute n to every q. Also, there
is no problem in treating any fraction with a positive numerator and a zero denominator as +∞.
Moreover, we simply regard (q − 1)/(n− 1) = 1 when n = 1.

We start the proof by aggregating all updates throughout an epoch to obtain an “epoch-wise” update
equation. The reason is that the sampled components in each epoch depend on each other, so it is
much harder to deal with each iteration individually. At iteration t ∈ [n/b] = [q] of epoch k ∈ [K],
we use a mini-batch

Bkt := {σk(j) : b(t− 1) < j ≤ bt, j ∈ [n]}.
To ease the analysis of Algorithm 2, define the following sums associated with (partial) gradient
oracles at a point z = (x;y) over the mini-batch:

gkt (z) :=
1

b

∑
i∈Bkt

∇1fi(z), hkt (z) :=
1

b

∑
i∈Bkt

∇2fi(z).

By Assumption 1, gkt and hkt are L-Lipschitz continuous. Computing the average of them over a
whole epoch (zk0 , · · · , zkq−1), we define

gk :=
1

q

q∑
t=1

gkt (zkt−1), hk :=
1

q

q∑
t=1

hkt (zkt−1).

Then, by summing up the updates in the epoch k, we can summarize the epoch as follows.

xk+1
0 = xk0 − qαgk, yk+1

0 = yk0 + qβhk. (simSGDA-RR)

We may assume that the intermediate iterates zk1 , . . . ,z
k
q stay close to the starting iterate zk0 of an

epoch k, which results from, e.g., small step sizes. Then, we can approximate the aggregated epoch
of SGDA-RR as a step of simGDA applied to f = 1

n

∑n
i=1 fi: g

k ≈ ∇1f(zk0 ), hk ≈ ∇2f(zk0 ).
In other words,

xk+1
0 ≈ xk0 − qα∇1f(zk0 ), yk+1

0 ≈ yk0 + qβ∇2f(zk0 ), (≈simGDA)

With Assumptions 1, 3 and 4, we can yield a naive (but complicated) upper bound of the gap
Vλ(zk+1

0 ) − Vλ(zk0 ), only applying the smoothness of Φ and −f , without any assumptions on step
sizes.
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Lemma 16. Suppose that Assumptions 1, 3 and 4 hold. Let κ2 = L/µ2, where µ2 is PŁ constant of
−f(x; ·). Then, the mini-batch simSGDA-RR satisfies that

Vλ(zk+1
0 )− Vλ(zk0 )

≤ −
(
λ+ 1

2

)
qα
∥∥∇Φ(xk0)

∥∥2
+ (λ+ 1)qα

∥∥∇Φ(xk0)−∇1f(zk0 )
∥∥2

+
qα

2

∥∥∇1f(zk0 )
∥∥2 − qβ

2

∥∥∇2f(zk0 )
∥∥2

+

(
λ+

1

2

)
qα
∥∥gk −∇1f(zk0 )

∥∥2
+
qβ

2

∥∥hk −∇2f(zk0 )
∥∥2

−
[
λ− {(λ+ 1)(κ2 + 1) + 1}Lqα

]qα
2

∥∥gk∥∥2 − (1− Lqβ)
qβ

2

∥∥hk∥∥2
. (7)

Proof. By definition of Vλ, the following equation holds:

Vλ(zk+1
0 )− Vλ(zk0 ) = (λ+ 1)

[
Φ(xk+1

0 )− Φ(xk0)
]

+
[
f(zk0 )− f(zk+1

0 )
]
. (8)

First, we seek for an upper bound of Φ(xk+1
0 )− Φ(xk0). By Proposition 9, Φ is L(κ2 + 1)-smooth.

Hence, we have

Φ(xk+1
0 )− Φ(xk0)

≤
〈
∇Φ(xk0),xk+1

0 − xk0
〉

+
L(κ2 + 1)

2

∥∥xk+1
0 − xk0

∥∥2

= −qα
〈
∇Φ(xk0), gk

〉
+
L(κ2 + 1)

2
q2α2

∥∥gk∥∥2

= −qα
2

{∥∥∇Φ(xk0)
∥∥2

+
∥∥gk∥∥2 −

∥∥∇Φ(xk0)− gk
∥∥2
}

+
L(κ2 + 1)

2
q2α2

∥∥gk∥∥2

= −qα
2

∥∥∇Φ(xk0)
∥∥2

+
qα

2

∥∥∇Φ(xk0)− gk
∥∥2 − qα

2
(1− L(κ2 + 1)qα)

∥∥gk∥∥2

≤ −qα
2

∥∥∇Φ(xk0)
∥∥2

+ qα
∥∥∇Φ(xk0)−∇1f(zk0 )

∥∥2
+ qα

∥∥gk −∇1f(zk0 )
∥∥2

− qα

2
(1− L(κ2 + 1)qα)

∥∥gk∥∥2
. (9)

The third line is due to polarization equality9 and the last inequality applies Young’s inequality.10

Next, applying Assumption 1, L-smoothness of−f(·; ·) yields an upper bound of f(zk0 )−f(zk+1
0 ).

f(zk0 )− f(zk+1
0 )

≤ −
〈
∇f(zk0 ), zk+1

0 − zk0
〉

+
L

2

∥∥zk+1
0 − zk0

∥∥2

= −
〈
∇1f(zk0 ),xk+1

0 − xk0
〉
−
〈
∇2f(zk0 ),yk+1

0 − yk0
〉

+
L

2

∥∥xk+1
0 − xk0

∥∥2
+
L

2

∥∥yk+1
0 − yk0

∥∥2

= qα
〈
∇1f(zk0 ), gk

〉
− qβ

〈
∇2f(zk0 ),hk

〉
+
L

2
q2α2

∥∥gk∥∥2
+
L

2
q2β2

∥∥hk∥∥2

=
qα

2

∥∥∇1f(zk0 )
∥∥2 − qα

2

∥∥gk −∇1f(zk0 )
∥∥2

+
qα

2
(1 + Lqα)

∥∥gk∥∥2

− qβ

2

∥∥∇2f(zk0 )
∥∥2

+
qβ

2

∥∥hk −∇2f(zk0 )
∥∥2 − qβ

2
(1− Lqβ)

∥∥hk∥∥2
. (10)

The last equality is due to polarization equality. Lastly, substituting (9) and (10) to (8) finishes the
proof.

We remark that the last two terms of the inequality (7) can be simply ignored by applying small
enough step sizes. However, the terms in the third line of (7) are non-negatives terms related to the

9For any a, b ∈ Rd, 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.
10For any a, b ∈ Rd, ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2.
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“noise” of approximation gk ≈ ∇1f(zk0 ), hk ≈ ∇2f(zk0 ). Hence, it is important to control the
noise terms

∥∥gk −∇1f(zk0 )
∥∥2

and
∥∥hk −∇2f(zk0 )

∥∥2
to guarantee a fast decrease of Vλ(zk0 ).

Lemma 17. For mini-batch simSGDA-RR, define

Gk :=
1

q

q∑
t=1

∥∥zkt−1 − zk0
∥∥2
. (11)

With Assumption 1, then∥∥gk −∇1f(zk0 )
∥∥2 ≤ L2Gk and

∥∥hk −∇2f(zk0 )
∥∥2 ≤ L2Gk.

As a side remark, Gk = 0 when q = 1 and, in particular, n = 1.

Proof. Recall that 1
q

∑q
t=1 g

k
t (z) = ∇1f(z) and 1

q

∑q
t=1 h

k
t (z) = ∇2f(z). By Lipschitz continu-

ity and Jensen’s inequality,11

∥∥gk −∇1f(zk0 )
∥∥2

=

∥∥∥∥∥1

q

q∑
t=1

[
gkt (zkt−1)− gkt (zk0 )

]∥∥∥∥∥
2

≤ 1

q

q∑
t=1

∥∥gkt (zkt−1)− gkt (zk0 )
∥∥2 ≤ L2

q

q∑
t=1

∥∥zkt−1 − zk0
∥∥2
.

Similarly, ∥∥hk −∇2f(zk0 )
∥∥2 ≤ L2

q

q∑
t=1

∥∥zkt−1 − zk0
∥∥2
.

This concludes the proof.

Thanks to the lemma, it suffices to bound the term Gk. One can notice that it also represents how
far the intermediate iterates zkt are from the pivot zk0 in average. Before moving on, we define an
algorithm-specific symbol denoting a conditional expectation.

Definition 3. We denote a conditional expectation of a random variable X given all iterates of the
first k − 1 epochs by Ek[X] = E[X|z1

0 , z
1
1 , . . . ,z

k−1
n ]. In particular, if k = 1, it boils down to a

conditional expectation given only the initial iterate z1
0 .

We get an upper bound of a (conditional) expectation Ek[Gk] in the following lemma, which extends
a lemma of Nguyen et al. (2021, Lemma 6) to our minimax problems.

Lemma 18. Suppose that Assumptions 1 and 2 hold. Assume that the permutation σk is sampled
uniformly at random from Sn. Then, for any step sizes α, β satisfying α2 + β2 ≤ 1

3q(q−1)L2 , the

iterates {zkt }
q−1
t=0 of the k-th epoch of mini-batch simSGDA-RR satisfies (for n > 1)

EkGk ≤ 2

(
q2 +

q(q − 1)

n− 1
A

)(
α2
∥∥∇1f(zk0 )

∥∥2
+ β2

∥∥∇2f(zk0 )
∥∥2
)

+
2q(q − 1)

n− 1
(α2 + β2)B.

Proof. Note that Gk = 0 when q = 1 by its definition. From now, we may assume q > 1 and
n > 1 in this proof. By summing the first t ∈ [q − 1] updates of the k-th epoch of mini-batch
simSGDA-RR, we have

xkt = xk0 − tα

1

t

t∑
j=1

gkj (zkj−1)

 , ykt = yk0 + tβ

1

t

t∑
j=1

hkj (zkj−1)

 .

11For any n vectors a1, · · · , an,
∥∥∥ 1
n

∑n
j=1 aj

∥∥∥2 ≤ 1
n

∑n
j=1 ‖aj‖

2.
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Then we can bound the following squared distance.

∥∥xkt − xk0∥∥2
= α2t2

∥∥∥∥∥∥1

t

t∑
j=1

gkj (zkj−1)

∥∥∥∥∥∥
2

≤ 3α2t2


∥∥∥∥∥∥1

t

t∑
j=1

[
gkj (zkj−1)− gkj (zk0 )

]∥∥∥∥∥∥
2

+

∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇1f(zk0 )

∥∥2


≤ 3α2t

t∑
j=1

∥∥gkj (zkj−1)− gkj (zk0 )
∥∥2

+ 3α2t2


∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇1f(zk0 )

∥∥2


≤ 3α2L2t ·

t∑
j=1

∥∥zkj−1 − zk0
∥∥2

+ 3α2t2


∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇1f(zk0 )

∥∥2


≤ 3α2L2t · qGk + 3α2t2


∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇1f(zk0 )

∥∥2

 . (12)

The second and third lines are due to Jensen’s inequality. The fourth line is due to L-Lipschitz
continuity of gkj . Likewise,

∥∥ykt − yk0∥∥2 ≤ 3β2L2t · qGk + 3β2t2


∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2

 . (13)

Summing up (12) and (13),∥∥zkt − zk0∥∥2
=
∥∥xkt − xk0∥∥2

+
∥∥ykt − yk0∥∥2

≤ 3(α2 + β2)L2tqGk + 3α2t2


∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇1f(zk0 )

∥∥2


+ 3β2t2


∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2

 . (14)

Taking (conditional) expectation Ek (given zk0 ) to inequality (14),

Ek
∥∥zkt − zk0∥∥2

(14)

≤ 3(α2 + β2)L2tq · (Ek[Gk]) + 3α2t2
∥∥∇1f(zk0 )

∥∥2
+ 3β2t2

∥∥∇2f(zk0 )
∥∥2

+ 3α2t2Ek

∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

+ 3β2t2Ek

∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

. (15)

Here we take advantage of the without-replacement sampling. Putting∇sfi(zk0 ) 7→ vi (s ∈ {1, 2}),
one can realize a correspondence between the quantities that arise from our algorithm and the sym-
bols in Appendix B.2: for s = 1 (∇1fi(z

k
0 ) 7→ vi),

m = ∇1f(zk0 ), τ2 ≤ A
∥∥∇1f(zk0 )

∥∥2
+B, wt = gkt (zk0 ), mt =

1

t

t∑
j=1

gkj (zk0 ),
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and for s = 2 (∇2fi(z
k
0 ) 7→ vi),

m = ∇2f(zk0 ), τ2 ≤ A
∥∥∇2f(zk0 )

∥∥2
+B, wt = hkt (zk0 ), mt =

1

t

t∑
j=1

hkj (zk0 ).

The upper bounds of τ2’s come from Assumption 2. Then by Proposition 14, for any t ≤ q,

t2Ek

∥∥∥∥∥∥1

t

t∑
j=1

gkj (zk0 )−∇1f(zk0 )

∥∥∥∥∥∥
2

≤ t(q − t)
n− 1

(
A
∥∥∇1f(zk0 )

∥∥2
+B

)
,

t2Ek

∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

≤ t(q − t)
n− 1

(
A
∥∥∇2f(zk0 )

∥∥2
+B

)
.

Putting these to the inequality (15),

Ek
∥∥zkt − zk0∥∥2 ≤ 3(α2 + β2)

[
L2tqEk[Gk] +

t(q − t)
n− 1

B

]
+ 3

(
α2
∥∥∇1f(zk0 )

∥∥2
+ β2

∥∥∇2f(zk0 )
∥∥2
)[
t2 +

t(q − t)
n− 1

A

]
.

Taking an average of the inequality above over 0 ≤ t ≤ q − 1,

EkGk =
1

q

q−1∑
t=0

Ek
∥∥zkt − zk0∥∥2

≤ 3q(q − 1)

2
(α2 + β2)L2EkGk + (α2 + β2)

q2 − 1

2(n− 1)
B

+
(
α2
∥∥∇1f(zk0 )

∥∥2
+ β2

∥∥∇2f(zk0 )
∥∥2
)( (q − 1)(2q − 1)

2
+

q2 − 1

2(n− 1)
A

)
, (16)

where we used the facts∑q−1
t=0 t = q(q−1)

2 , 1
q

∑q−1
t=0 t

2 = (q−1)(2q−1)
6 , and 1

q

∑q−1
t=0

t(q−t)
n−1 = q2−1

6(n−1) .

Since we assumed α2 + β2 ≤ 1
3q(q−1)L2 , we have 1 ≤ 2

(
1− 3q(q−1)L2

2 (α2 + β2)
)

. Using this,

EkGk ≤ 2

(
1− 3q(q − 1)L2

2
(α2 + β2)

)
EkGk

(16)
≤
(

(q − 1)(2q − 1) +
q2 − 1

(n− 1)
A

)(
α2
∥∥∇1f(zk0 )

∥∥2
+ β2

∥∥∇2f(zk0 )
∥∥2
)

+
q2 − 1

n− 1
(α2 + β2)B

≤ 2

(
q2 +

q(q − 1)

n− 1
A

)(
α2
∥∥∇1f(zk0 )

∥∥2
+ β2

∥∥∇2f(zk0 )
∥∥2
)

+
2q(q − 1)

n− 1
(α2 + β2)B,

where the last inequality used (q − 1)(2q − 1) ≤ 2q2 and q + 1 ≤ 2q for q ≥ 1.

C.3 RECURRENCE INEQUALITIES FOR GENERAL SMOOTH NONCONVEX-PŁ OBJECTIVE

Subsequently, we obtain recurrence inequalities about (expected) potential function Ek[Vλ(zk0 )] for
nonconvex-PŁ problem. Since primal-PŁ-PŁ problem is a subclass of nonconvex-PŁ problem, the
recurrence relations can serve as stepping-stones of our convergence rates.

We introduce some assumptions on small step sizes which enable us to get rid of a few trouble-
some terms from our bound. On top of that, combining the PŁ condition (Assumption 4) with
Lemmas 16, 17, and 18, we eventually obtain a much more concise bound on the expected per-
epoch change of Vλ. This simple recurrence inequality becomes the key to proving our convergence
bounds.
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Lemma 19. Suppose that Assumptions 1, 2, 3, and 4 hold. Assume that the step sizes α and β satisfy

α ≤ λ

{(λ+ 1)(κ2 + 1) + 1}qL
, β ≤ 1

qL
, α2 + β2 ≤ 1

3q(q − 1)L2
, (17)

and the condition

C0 := qβ − 2L2q

(
q2 +

q(q − 1)

n− 1
A

)
((2λ+ 1)α+ β)β2 ≥ 0

as well. Then, the iterates of mini-batch simSGDA-RR satisfy

Ek[Vλ(zk+1
0 )]− Vλ(zk0 ) ≤ −C1

∥∥∇Φ(xk0)
∥∥2 − C2

[
Φ(xk0)− f(zk0 )

]
+ C3

where

C1 =

(
λ− 1

2

)
qα− 2L2q

(
q2 +

q(q − 1)

n− 1
A

)(
(2λ+ 1)α+ β

)
α2,

C2 = µ2C0 − 2(λ+ 2)Lκ2qα− 4L3κ2q

(
q2 +

q(q − 1)

n− 1
A

)(
(2λ+ 1)α+ β

)
α2

= µ2qβ − 2(λ+ 2)Lκ2qα− 2L2µ2q

(
q2 +

q(q − 1)

n− 1
A

)(
(2λ+ 1)α+ β

) (
2κ2

2α
2 + β2

)
,

C3 =

(
L2q2(q − 1)

n− 1

)
((2λ+ 1)α+ β) (α2 + β2)B.

Proof. The first two inequalities of (17) eliminate the last two terms on the right-hand side of the
inequality in Lemma 16. In addition, applying Lemma 17 to Lemma 16 as well, we have

Vλ(zk+1
0 )− Vλ(zk0 )≤−

(
λ+ 1

2

)
qα
∥∥∇Φ(xk0)

∥∥2
+ (λ+ 1)qα

∥∥∇Φ(xk0)−∇1f(zk0 )
∥∥2

+
qα

2

∥∥∇1f(zk0 )
∥∥2 − qβ

2

∥∥∇2f(zk0 )
∥∥2

+
(2λ+ 1)α+ β

2
qL2Gk. (18)

If we take the conditional expectation Ek and apply Lemma 18 (which requires the third inequality
of (17) to hold) to (18)

Ek[Vλ(zk+1
0 )]− Vλ(zk0 )

≤−
(
λ+ 1

2

)
qα
∥∥∇Φ(xk0)

∥∥2
+ (λ+ 1)qα

∥∥∇Φ(xk0)−∇1f(zk0 )
∥∥2

+
1

2

[
qα+ 2L2q

(
q2 +

q(q − 1)

n− 1
A

)
((2λ+ 1)α+ β)α2

] ∥∥∇1f(zk0 )
∥∥2

− 1

2

[
qβ − 2L2q

(
q2 +

q(q − 1)

n− 1
A

)
((2λ+ 1)α+ β)β2

]
︸ ︷︷ ︸

C0

∥∥∇2f(zk0 )
∥∥2

+

(
L2q2(q − 1)

n− 1

)
((2λ+ 1)α+ β) (α2 + β2)B︸ ︷︷ ︸

C3

. (19)

It is now left to bound terms in (19) using the tools developed so far. First, recall that Φ(x) :=
maxy′∈Y f(x;y′). Since −f(x;y) is µ2-PŁ in y, we have

−
∥∥∇2f(zk0 )

∥∥2 ≤ −2µ2(Φ(xk0)− f(zk0 )). (20)

Given any x, ∇Φ(x) = ∇1f(x;y∗(x)) for any y∗(x) ∈ arg maxy′∈Y f(x;y′) by Proposition 9.
Besides, −f(x; ·) satisfies QG condition with constant µ2 by Proposition 7. Thus, by choosing
y∗(xk0) to be the projection of yk0 onto arg maxy′∈Y f(xk0 ;y′),∥∥∇Φ(xk0)−∇1f(zk0 )

∥∥2 ≤ L2
∥∥y∗(xk0)− yk0

∥∥2 ≤ 2Lκ2

[
Φ(xk0)− f(zk0 )

]
. (21)
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Here, the first inequality applies L-Lipschitz continuity of ∇1f(xk0 ; ·), implied by Assumption 1.
On top of that, applying the Young’s inequality to the term

∥∥∇1f(zk0 )
∥∥2

,∥∥∇1f(zk0 )
∥∥2 ≤ 2

∥∥∇Φ(xk0)
∥∥2

+ 2
∥∥∇Φ(xk0)−∇1f(zk0 )

∥∥2

(21)
≤ 2

∥∥∇Φ(xk0)
∥∥2

+ 4Lκ2

[
Φ(xk0)− f(zk0 )

]
(22)

By applying inequalities (20), (21), and (22) to the bound (19), we conclude the proof.

In Lemma 19, we saw that if step sizes are chosen to satisfy certain conditions, then we can simplify
the per-epoch progress a great deal. It is now left to choose appropriate step sizes and parameters
(e.g., λ) so as to make sure not only that α and β meet the small step size conditions (17) but also
that the constants C0, C1, C2, and C3 are positive.
Lemma 20. Suppose that Assumptions 1, 2, 3 and 4 hold. Let λ = 4 and assume that

0 < β ≤ 1

6L
√
q2 + q(q−1)

n−1 A
, α =

β

r
, where r ≥ 14κ2

2.

Then these satisfy all the inequalities (17) and the terms defined in Lemma 19 satisfy

C0 > 0, C1 > qα, C2 > Lκ2qα/2, C3 ≥ 0.

Consequently, due to the recurrence inequality in Lemma 19, mini-batch simSGDA-RR satisfies, for
some numerical constant c > 0,

Ek[Vλ(zk+1
0 )]− Vλ(zk0 )

≤ −qα
∥∥∇Φ(xk0)

∥∥2 − (Lκ2qα/2)
[
Φ(xk0)− f(zk0 )

]
+ (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3. (?)

Please note that we mark the recurrence inequality above with a special symbol (?) because this
inequality is the exact point where the proofs of Theorems 4 and 5 start to deviate.

Proof. Regardless of A ≥ 0, we have

β ≤ 1

6Lq
and α ≤ 1

6Lqr
≤ 1

84Lκ2
2q
. (23)

This is enough to guarantee that the inequalities (17) hold with λ = 4. Since C0 > C2/µ2, it is
enough to show C2 > 0 to prove that C0 > 0. Applying λ = 4, κ2 ≥ 1, and β/α = r ≥ 14κ2

2,

C1

qα
=

3

2
− 2L2

(
q2 +

q(q − 1)

n− 1
A

)
(9 + r)α2

≥ 3

2
− 2

62
· 9 + r

r2
≥ 3

2
− 2 · 23

62 · 142
> 1,

C2

µ2qβ
= 1− 12κ2

2

r
− 2L2

(
q2 +

q(q − 1)

n− 1
A

)(
9

r
+ 1

)(
2κ2

2

r2
+ 1

)
β2

≥ 1− 12

14
− 2

62

(
9

14κ2
2

+ 1

)(
2

142κ2
2

+ 1

)
≥ 2

14
− 2 · 23 · 198

62 · 143
>

1

2 · 14
.

Thus, C1 > qα and

C2 >
µ2qβ

2 · 14
=
µ2qrα

2 · 14
≥ Lκ2qα/2.

Then we conclude the proof by bounding the term C3. We can already check from the definition
that C3 ≥ 0. We can upper-bound C3 by

C3 =

(
L2q2(q − 1)

n− 1

)
(9 + r) (1 + r2)Bα3 ≤ (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3,

for some numerical constant c > 0.
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C.4 CONVERGENCE RATES FOR SMOOTH NONCONVEX-PŁ PROBLEM

In this subsection, we show the convergence bound of general smooth nonconvex-PŁ problems in
terms of mink∈[K] E

[∥∥∇Φ(xk0)
∥∥2
]
. From the inequality (?) in Lemma 20, we can simply ignore

the second term
−(Lκ2qα/2)

[
Φ(xk0)− f(zk0 )

]
≤ 0

of the right-hand side because Φ(x) ≥ f(x;y) for any (x;y). In other words, we may deal with
the inequality

Ek[Vλ(zk+1
0 )]− Vλ(zk0 ) ≤ −qα

∥∥∇Φ(xk0)
∥∥2

+ (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3. (nc-PŁ)

Plugging q = n/b, we eventually show the convergence rate (Theorem 4). (Recall that b is the size
of mini-batches.)
Theorem 21 (Equivalent to Theorem 4, for simSGDA-RR). Suppose that f satisfies Assumptions 1,
2, 3, and 4 are satisfied. Let λ = 4. Choose the step sizes α and β by α = β/r for some r ≥ 14κ2

2
and

β = min

 1

6L
√
q2 + q(q−1)

n−1 A
,

1

c

(
Vλ(z1

0)

L2q2( q−1
n−1 )BK

) 1
3

 ,

for some numerical constant c > 0. Then, mini-batch simSGDA-RR satisfies

1

K

K∑
k=1

E
[∥∥∇Φ(xk0)

∥∥2
]
≤ 6rLVλ(z1

0)

K

√
1 +

(
q − 1

n− 1

)
A

q
+ 2cr

(
L2B Vλ(z1

0)2

qK2
· q − 1

n− 1

)1/3

.

Proof. To replace the conditional expectations with unconditional expectations, we take expectation
to both sides of the inequality (nc-PŁ):

E[Vλ(zk+1
0 )− Vλ(zk0 )] ≤ −qαE

[∥∥∇Φ(xk0)
∥∥2
]

+ (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3.

Rearranging the terms and taking a sum from k = 1 to k = K, we have

qα

K∑
k=1

E
[∥∥∇Φ(xk0)

∥∥2
]
≤ E[Vλ(z1

0)− Vλ(zK+1
0 )] + (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3K.

Dividing both sides by qKα, we get the following. Note that Vλ is non-negative.

1

K

K∑
k=1

E
[∥∥∇Φ(xk0)

∥∥2
]
≤ Vλ(z1

0)

qKα
+ (cr)3L2

(
q(q − 1)

n− 1

)
Bα2

Since our choice of step sizes implies

α = min

 1

6rL
√
q2 + q(q−1)

n−1 A
,

1

cr

(
Vλ(z1

0)

L2Bq2( q−1
n−1 )K

) 1
3

 ,

we eventually prove the theorem by using the inequality max{a, b} ≤ a+ b (for a, b ≥ 0).

C.5 CONVERGENCE RATES FOR SMOOTH PRIMAL-PŁ-PŁ PROBLEM

In this subsection, we prove the convergence bound of primal-PŁ-PŁ (or, PŁ(Φ)-PŁ) problems in
terms of E

[
Vλ(zK+1

0 )
]
.

Unlike the previous subsection, we additionally utilize Assumption 5 stating that f(x;y) satisfies
primal PŁ condition, namely, the primal function Φ(x) = maxy′ f(x;y′) is a µ1-PŁ function. With
this assumption, we yield another recurrence inequality from the inequality (?). We note that it uses
the µ1-PŁ condition for Φ (∵ Proposition 10) but not necessarily for f(·;y).
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Lemma 22. Suppose that f satisfies Assumptions 1, 2, 3, 4, and 5. Then, with the same choice of
λ = 4 and the same condition of the step sizes α and β as in Lemma 20, the mini-batch simSGDA-RR
satisfies that, for some numerical constant c > 0,

Ek[Vλ(zk+1
0 )] ≤ (1− µ1qα/2)Vλ(zk0 ) + (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3. (PŁ(Φ)-PŁ)

Proof. Since the primal function Φ is a µ1-PŁ function,

−
∥∥∇Φ(xk0)

∥∥2 ≤ −2µ1

[
Φ(xk0)− Φ∗

]
.

Also, since µ1 ≤ L and κ2 ≥ 1, we know that −Lκ2 ≤ −µ1. Applying these to the inequality (?),
we have

Ek
[
Vλ(zk+1

0 )
]
− Vλ(zk0 )

≤ −(2µ1qα/λ) · λ
[
Φ(xk0)− Φ∗

]
− (µ1qα/2)

[
Φ(xk0)− f(zk0 )

]
+ (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3

= −(µ1qα/2) · Vλ(zk0 ) + (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3,

since λ = 4. By re-arranging the terms, we conclude the proof.

Of course, the multiplier 1 − µ1qα/2 has a value between 0 and 1. To see why, note that from
Equation (23),

0 < µ1qα/2 ≤ µ1q ·
1

2 · 84Lκ2
2q

=
1

168κ1κ2
2

< 1.

Theorem 23 (Equivalent to Theorem 5, for simSGDA-RR). Assume that f satisfies Assumptions 1,
2, 3, 4, and 5. Let λ = 4. Choose the step sizes by α = β/r for some r ≥ 14κ2

2 and

β = min

 1

6L
√
q2 + q(q−1)

n−1 A
,

2r

µ1qK
max

1, log

 Vλ(z1
0)µ1qK

2

8(cr)3κ2
1

(
q−1
n−1

)
B


 ,

for some numerical constant c > 0. Then, mini-batch simSGDA-RR satisfies

E[Vλ(zKn )] ≤ O

Vλ(z1
0) · exp

− K

12κ1r

√
1 +

(
q−1
n−1

)
A
q


+ Õ

(
κ2

1r
3B

µ1qK2

)
· q − 1

n− 1
.

Proof. To replace the conditional expectations with unconditional expectations, we take expectation
to both sides of the inequality (PŁ(Φ)-PŁ):

E
[
Vλ(zk+1

0 )
]
≤ (1− µ1qα/2)E

[
Vλ(zk0 )

]
+ (cr)3L2

(
q2(q − 1)

n− 1

)
Bα3.

Unrolling the recurrence inequality (Proposition 15) and using the facts β = 14κ2
2α, we have

E[Vλ(zKn )] ≤ (1− µ1qα/2)KVλ(z1
0) +

2 · (cr)3L2

µ1qα

(
q2(q − 1)

n− 1

)
Bα3

≤ exp(−µ1qKα/2)Vλ(z1
0) + 2(cr)3µ1κ

2
1

(
q(q − 1)

n− 1

)
Bα2. (24)

Note that, in the inequality above, the second term of the right hand side becomes zero when q = 1.
In that case, we can prove exponential decay of E[Vλ(zk0 )]. Thus, we simply assume q > 1 hereafter.

Case 1: If K is as large as

K >
κ1r

3/2

√
µ1
·

√
8c3eB

Vλ(z1
0) q

(
q − 1

n− 1

)
, (e = exp(1))
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we have a step size α as

α = min

 1

6Lr
√
q2 + q(q−1)

n−1 A
,

2

µ1qK
log (♣)

 , where ♣ =
Vλ(z1

0)µ1qK
2

8(cr)3κ2
1κ

6
2

(
q−1
n−1

)
B
.

Due to the lower bound of epoch size K, the fraction ♣ inside the log factor is indeed greater than
e > 1, which guarantees the step size is positive. Putting this to the inequality (24) and using the
fact that max{a, b} ≤ a+ b (for a, b ≥ 0), we eventually have

E
[
Vλ(zKn )

]
≤ Vλ(z1

0) · exp

− K

12κ1r

√
1 +

(
q−1
n−1

)
A
q

+
2 · 8(cr)3κ2

1B

µ1qK2

(
q − 1

n− 1

)[
1 + log2 (♣)

]

= Vλ(z1
0) · exp

− K

12κ1r

√
1 +

(
q−1
n−1

)
A
q

+ Õ
(
κ2

1r
3B

µ1qK2

)
· q − 1

n− 1
.

Case 2: Otherwise, the log factor might have a negative value when K is too small. However, in
this case, we have

Vλ(z1
0) ≤ 8(cr)3eκ2

1B

µ1qK2
· q − 1

n− 1
; α = min

 1

84Lκ2
2

√
q2 + q(q−1)

n−1 A
,

2

µ1qK

 .

Putting these to the inequality (24), we have

E
[
Vλ(zKn )

]
≤ 8(cr)3eκ2

1B

µ1qK2

(
q − 1

n− 1

)[
exp(−µ1qKα/2) +

1

e
· (µ1qKα/2)

2

]
≤ 8(cr)3eκ2

1B

µ1qK2

(
q − 1

n− 1

)
= O

(
κ2

1r
3B

µ1qK2

)
· q − 1

n− 1
.

The inequality in the last line is due to the fact that e−t + t2/e ≤ 1 for each t ∈ (0, 1], and that
µ1qKα/2 ∈ (0, 1].

Combining both Case 1 and Case 2, we conclude the proof of the theorem.

D PROOFS FOR (MINI-BATCH) ALTERNATING SGDA-RR: FOCUSING ON
CHANGES IN THE PROOF

In this appendix, we prove the same convergence rates for altSGDA-RR as the simultaneous update
counterpart. Since most of the steps in the proof are similar to those in Appendix C, we only describe
which steps change in the proof.

D.1 EPOCH-WISE REPRESENTATIONS AND BOUNDING NOISE TERMS

To analyze altSGDA-RR, we modify the notation for epoch-wise updates. The only change is that
an update ykt 7→ ykt+1 uses xkt+1 instead of xkt . Hence, the definition of hk should be modified.
Recall that

gkt (z) :=
1

b

∑
i∈Bkt

∇1fi(z), hkt (z) :=
1

b

∑
i∈Bkt

∇2fi(z),

where Bkt is a mini-batch of size b formed at iteration t of epoch k. Then, at epoch k, by re-definition
of hk,

gk :=
1

q

q∑
t=1

gkt (xkt−1;ykt−1), hk :=
1

q

q∑
t=1

hkt (xkt ;ykt−1).

xk+1
0 = xk0 − qαgk, yk+1

0 = yk0 + qβhk. (altSGDA-RR)
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We still approximate this epoch-wise update rule to a full-batch simultaneous GDA update
(≈simGDA) with step sizes qα and qβ. Again, we control the “noise” terms

∥∥gk −∇1f(zk0 )
∥∥2

and
∥∥hk −∇2f(zk0 )

∥∥2
not to be large. Because of the modification of hk, we have a different

result for
∥∥hk −∇2f(zk0 )

∥∥2
as follows.

Lemma 24. For mini-batch altSGDA-RR, recall that

Gk :=
1

q

q∑
t=1

∥∥zkt−1 − zk0
∥∥2
.

If we have Assumption 1, then we have∥∥hk −∇2f(zk0 )
∥∥2 ≤ L2Gk + L2qα2

∥∥gk∥∥2
, whereas

∥∥gk −∇1f(zk0 )
∥∥2 ≤ L2Gk. (25)

Proof. Because of L-Lipschitz continuity of hkt (·; ·),

∥∥hk −∇2f(zk0 )
∥∥2

=

∥∥∥∥∥1

q

q∑
t=1

[
hkt (xkt ;ykt−1)− hkt (xk0 ;yk0 )

]∥∥∥∥∥
2

≤ 1

q

q∑
t=1

∥∥hkt (xkt ;ykt−1)− hkt (xk0 ;yk0 )
∥∥2

≤ L2

q

q∑
t=1

∥∥zkt−1 − zk0
∥∥2

+
L2

q

∥∥xkq − xk0∥∥2
= L2Gk + L2qα2

∥∥gk∥∥2
.

The last ineqaulity holds because xkq = xk+1
0 .

D.2 BOUNDING NOISE TERMS: A BIT DIFFERENT PROOF OF LEMMA 18

We notice that the same result as Lemma 18 holds not only for simultaneous updates but also al-
ternating updates, even though it is not very straightforward. We need to reflect the changes from
the previous subsection. That is, we have to be careful when we expand the term

∥∥ykt − yk0∥∥2

(0 ≤ t ≤ q − 1). Unlike the inequality (12) (in the original proof), we have

∥∥ykt − yk0∥∥2
= β2t2

∥∥∥∥∥∥1

t

t∑
j=1

hkj (xkj ;ykj−1)

∥∥∥∥∥∥
2

≤ 3β2t2


∥∥∥∥∥∥1

t

t∑
j=1

[
hkj (xkj ;ykj−1)− hkj (zk0 )

]∥∥∥∥∥∥
2

+

∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2


≤ 3β2t2

1

t

t∑
j=1

∥∥hkj (xkj ;ykj−1)− hkj (zk0 )
∥∥2

+

∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2


≤ 3β2t2

L2

t

∥∥xkt −xk0∥∥2
+

t∑
j=1

∥∥zkj−1−zk0
∥∥2

+

∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2


≤ 3β2L2t

t∑
j=1

∥∥zkj − zk0∥∥2
+ 3β2t2


∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2


≤ 3β2L2t · qGk + 3β2t2


∥∥∥∥∥∥1

t

t∑
j=1

hkj (zk0 )−∇2f(zk0 )

∥∥∥∥∥∥
2

+
∥∥∇2f(zk0 )

∥∥2

 .
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The second and third inequality holds by Jensen’s inequality, and the last inequality holds because
t ≤ q − 1. The resulting upper bound is identical to the inequality (13). Proving this inequality
above suffices to show that the conclusion of Lemma 18 also holds for altSGDA-RR, because we
eventually take an average along 0 ≤ t ≤ q − 1 and the other steps in the proof do not utilize the
“order” (either simultaneous or alternating) of updates.

D.3 RECURRENCE INEQUALITIES FOR GENERAL SMOOTH NONCONVEX-PŁ OBJECTIVE

In the proof for simSGDA-RR, we applied Lemma 16, Lemma 18, and the “small-step-size” as-
sumptions (three inequalities in (17)) to deduce Lemma 19. However, due to Lemma 24 that we
obtained for altSGDA-RR, we need slightly different assumptions on step sizes rather than (17).

Fortunately, we notice that the Lemma 16 also holds for altSGDA-RR, with a modified version of
hk. This is because the proof of the lemma does not utilize step-wise updates, while the discrepancy
between simultaneous and alternating updates only appears in the step-wise updates. Thus, we have
the same result as Lemma 19.

Lemma 25. Suppose that Assumptions 1, 2, 3, and 4 hold. Modify the inequalities (17) (from
Lemma 19) by

λ− {(λ+ 1)(κ2 + 1) + 1}Lqα− L2qαβ ≥ 0, β ≤ 1

qL
, α2 + β2 ≤ 1

3q(q − 1)L2
. (26)

(In fact, only the first one is different.) Then, the result of Lemma 19 still holds for mini-batch
altSGDA-RR.

Proof. We first apply Lemma 24 to the general bound resulted from Lemma 16:

Vλ(zk+1
0 )− Vλ(zk0 )

≤−
(
λ+ 1

2

)
qα
∥∥∇Φ(xk0)

∥∥2
+ (λ+ 1)qα

∥∥∇Φ(xk0)−∇1f(zk0 )
∥∥2

+
qα

2

∥∥∇1f(zk0 )
∥∥2 − qβ

2

∥∥∇2f(zk0 )
∥∥2

+
(2λ+ 1)α+ β

2
qL2Gk

−
[
λ− {(λ+ 1)(κ2 + 1) + 1}Lqα− L2qαβ

]qα
2

∥∥gk∥∥2 − (1− Lqβ)
qβ

2

∥∥hk∥∥2
. (27)

Hence, the first two inequalities of (26) eliminate the last two terms on the right side of the inequal-
ity (27) above:

Vλ(zk+1
0 )− Vλ(zk0 )≤−

(
λ+ 1

2

)
qα
∥∥∇Φ(xk0)

∥∥2
+ (λ+ 1)qα

∥∥∇Φ(xk0)−∇1f(zk0 )
∥∥2

+
qα

2

∥∥∇1f(zk0 )
∥∥2 − qβ

2

∥∥∇2f(zk0 )
∥∥2

+
(2λ+ 1)α+ β

2
qL2Gk.

This is identical to the inequality (18) in the proof of Lemma 19. From this point on, the rest of the
proof is exactly identical to Lemma 19.

Lemma 25 establishes that altSGDA-RR also satisfies a concise bound on the expected per-epoch
change of Vλ, albeit under a slightly different set of assumptions (26) on step sizes. Using this result,
we can prove the convergence rates for altSGDA-RR that are exactly the same as simSGDA-RR.

D.4 SMALL STEP SIZE ASSUMPTIONS

It is left to show an altSGDA-RR counterpart for Lemma 20 which establishes the general recurrence
inequality (?). In fact, the same choice of step sizes as simSGDA-RR, namely

0 < β ≤ 1

6L
√
q2 + q(q−1)

n−1 A
and α =

β

r
where r ≥ 14κ2

2,
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actually meets the newly introduced conditions (26). Among the three inequalities, the only one that
needs to be checked is

λ− {(λ+ 1)(κ2 + 1) + 1}Lqα− L2qαβ > 0.

Note that, regardless of A ≥ 0,

β ≤ 1

6Lq
and α ≤ 1

6Lqr
≤ 1

84Lκ2
2q

In this case,

λ− {(λ+ 1)(κ2 + 1) + 1}Lqα− L2qαβ

≥ 4− (11κ2 + Lβ)Lqα ≥ 4−
(

11κ2 +
1

6

)
· 1

84κ2
2

> 0.

Therefore, there is no need to modify our choices of λ and the step sizes α, β for the analysis of
altSGDA-RR, and the rest of the proof for simSGDA-RR goes through.

E PROOFS FOR LOWER BOUND OF DETERMINISTIC FULL-BATCH SIMGDA

In this appendix, we illustrate a comprehensive lower bound for full-batch GDA, which is specific
to the choice of step size ratio (Theorem 3). Before we start the proof, we define a class of smooth
strongly-convex-strongly concave functions.
Definition 4. Let F(L, µ1, µ2) be the class of functions f(x;y) with two arguments x and y of
any dimension, which is L-smooth, µ1-strongly-convex in x, and µ2-strongly-concave in y. Let
κ1 = L/µ1 ≥ 1 and κ2 = L/µ2 ≥ 1 be condition numbers of the function class. Denote the
(unique) saddle (or, global minimax) point by z∗ = (x∗;y∗).

We restate and prove the Theorem 3 for reader’s convenience.
Theorem 26 (Restatement of Theorem 3). Suppose κ1 ≥ c and κ2 ≥ c for some constant c > 1.
Then, for each step size ratio r > 0, there exists a function f ∈ F(L, µ1, µ2) for which simGDA
with any step sizes α and β of ratio r = β/α requires

K =

{
Ω (κ1r log(1/ε)) , if r ≥ κ2/c,
Ω (κ1κ2 log(1/ε)) , if c/κ1 ≤ r ≤ κ2/c,
Ω((κ2/r) log(1/ε)), if 0 < r ≤ c/κ1

iterations to achieve either ‖zk − z∗‖2 ≤ ε2 or Vλ(zK) ≤ ε2.

Proof. The proof is done in case by case, constructing a worst-case function for each of 4 different
regimes of step size ratio r: (1) µ1/µ2 ≤ r ≤ κ2/c, (2) c/κ1 ≤ r ≤ µ1/µ2, (3) r ≥ κ2/c, and (4)
0 < r ≤ c/κ1. Readers might notice the similarities of the proofs for (1)↔(2) and (3)↔(4).

Case 1. (µ1/µ2 ≤ r ≤ κ2/c). Consider

f (1)(v, x; y) :=
µ1

2
v2 +

rµ2

2
x2 − µ2

2
y2 + `xy,

where `2 = L2 − rµ2
2 − Lµ2|r − 1| ≥ 0. Applying Proposition 28, it can be shown that f (1) ∈

F(L, µ1, µ2). Also, z∗ = (0, 0; 0) is its unique saddle point. Note that, the GDA on f (1) can be
written as

vt+1 =

(
1− βµ1

r

)
vt,

[
xt+1

yt+1

]
=

[
1− βµ2 −β`/r
β` 1− βµ2

]
︸ ︷︷ ︸

A

[
xt
yt

]
= A

[
xt
yt

]
.

Also, the eigenvalues τ ofA is

τ = 1− βµ2 ±
√

(1− βµ2)2 − ((1− βµ2)2 + β2`2/r)

= 1− βµ2 ±
β`√
r

√
−1.
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The spectral radius (i.e., maximum absolute eigenvalue) is

ρ(A) =
√

(1− βµ2)2 + β2`2/r.

Since the eigenvalues are complex conjugates of each other (the magnitudes are the same), both
eigenvalues have magnitude ρ(A). Then, by Proposition 27, ρ(A) < 1 is necessary for convergence.
To this end, we need β > 0 satisfying β < 2µ2r/(rµ

2
2 + `2).

To guarantee ‖(vk, xk; yk)− (0, 0; 0)‖2 ≤ ε2, we need a large enough k to have v2
k ≤ O(ε2). Such

a k is required to be at least Ω
(

r
βµ1

log(1/ε)
)

. Now note that, since µ1/µ2 ≤ r ≤ κ2/c and κ2 ≥ c,

1

β
>
rµ2

2 + `2

2µ2r
=
L2 − Lµ2|r − 1|

2µ2r
=

L2

2µ2r

(
1− |r − 1|

κ2

)
≥ L2

2µ2r

(
1− 1

c

)
.

The last inequality is true by minimizing
(

1− |r−1|
κ2

)
for r ∈ [µ1/µ2, κ2/c]. If r ≥ 1, it has smaller

value when r is larger: by taking r = κ2/c, we have 1− κ2/c−1
κ2

≥ 1− 1
c . Otherwise (r < 1), which

is possible only when µ1 < µ2, the term has smaller value when r is smaller: by taking r = µ1/µ2,
we have 1+ µ1/µ2−1

κ2
= 1+ µ1−µ2

L ≥ 1− 1
κ2
≥ 1− 1

c . Thus, we eventually need Ω
(

L2

µ1µ2
log(1/ε)

)
iterations.

Case 2. (c/κ1 ≤ r ≤ µ1/µ2). Consider

f (2)(x; y, w) :=
µ1

2
x2 − µ1

2r
y2 + ˜̀xy − µ2

2
w2,

where ˜̀2 = L2 − µ2
1/r − Lµ1|1 − 1/r| ≥ 0. Applying Proposition 28, it can be shown that

f (2) ∈ F(L, µ1, µ2), and z∗ = (0; 0, 0) is its unique saddle point. Note that, the GDA on f (2) can
be written as[

xt+1

yt+1

]
=

[
1− βµ1/r −β`/r

β` 1− βµ1/r

]
︸ ︷︷ ︸

B

[
xt
yt

]
= B

[
xt
yt

]
, wt+1 = (1− βµ2)wt.

Also, the eigenvalues τ ofB is

τ = 1− βµ1/r ±
√

(1− βµ1/r)2 − ((1− βµ1/r)2 + β2`2/r)

= 1− βµ1

r
± β`√

r

√
−1.

The spectral radius is
ρ(B) =

√
(1− βµ1/r)2 + β2`2/r.

Since the eigenvalues are complex conjugates of each other (the magnitudes are the same), both
eigenvalues have magnitude ρ(B). Then, by Proposition 27, ρ(B) < 1 is necessary for conver-
gence. To this end, we need β > 0 satisfying β < 2µ1/(µ

2
1/r + `2).

To guarantee ‖(xk; yk, wk)− (0; 0, 0)‖2 ≤ ε2, we need a large enough k to have w2
k ≤ O(ε2).

Such a k is required to be at least Ω
(

1
βµ2

log(1/ε)
)

. Now note that, since c/κ1 ≤ r ≤ µ1/µ2 and
κ1 ≥ c,

1

β
>
µ2

1/r + `2

2µ1
=
L2 − Lµ1|1− 1/r|

2µ1
=

L2

2µ1

(
1− |1− 1/r|

κ1

)
≥ L2

2µ1

(
1− 1

c

)
.

The last inequality is true by minimizing
(

1− |1−1/r|
κ1

)
for r ∈ [c/κ1, µ1/µ2]. If 1 > 1/r, which

is possible only when µ1 > µ2, it has smaller value when r is larger: by taking r = µ1/µ2, we have
1 − 1−µ2/µ1

κ1
= 1 − µ1−µ2

L ≥ 1 − 1
κ1
≥ 1 − 1

c . Otherwise (1 < 1/r), the term has smaller value

when r is smaller: by taking r = c/κ1, we have 1 + 1−κ1/c
κ1

≥ 1 − 1
c . Thus, we eventually need

Ω
(

L2

µ1µ2
log(1/ε)

)
iterations.
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Case 3. (r ≥ κ2/c). Consider f (3)(x; y) = µ1

2 x
2 − L

2 y
2. Clearly, f (3) ∈ F(L, µ1, L) ⊂

F(L, µ1, µ2) and z∗ = (0, 0) is its unique saddle point. The GDA on f (3) can be written as

xk+1 =

(
1− βµ1

r

)
xk, yk+1 = (1− βL) yk.

To guarantee ‖(xk; yk)− (0, 0)‖2 ≤ ε2, we need a large enough k to have x2
k ≤ O(ε2). Such a

k is required to be at least Ω
(

r
βµ1

log(1/ε)
)

. Also, we need β < 2/L to guarantee yk → 0 (i.e.,

otherwise, it diverges). Combining these facts, we eventually need Ω
(
Lr
µ1

log(1/ε)
)

iterations.

Case 4. (0 < r ≤ c/κ1). Consider f (4)(x; y) = L
2 x

2 − µ2

2 y
2. Clearly, f (4) ∈ F(L,L, µ2) ⊂

F(L, µ1, µ2) and z∗ = (0, 0) is its unique saddle point. The GDA on f (4) can be written as

xk+1 =

(
1− βL

r

)
xk, yk+1 = (1− βµ2) yk.

To guarantee ‖(xk; yk)− (0, 0)‖2 ≤ ε2, we need a large enough k to have y2
k ≤ O(ε2). Such a k

is required to be at least Ω
(

1
βµ2

log(1/ε)
)

. Also, we need β < 2r/L to guarantee xk → 0 (i.e.,

otherwise, it diverges). Combining these facts, we eventually need Ω
(

L
rµ2

log(1/ε)
)

iterations.

Lastly, we note that the lower iteration complexity bound in terms of the potential function Vλ is
equivalent to the complexity in terms of squared distance norm from the (unique) saddle point z∗,
up to constant factors. This is proved in Lemma 29 that we defer its proof.

Here are the postponed/omitted proofs from the proof above.
Proposition 27. For a square matrix A ∈ Rm×m and a sequence of m-dimensional vectors (vk),
the matrix iteration vk+1 = Avk converges to vk → 0 if and only if the spectral radius (i.e.,
maximum absolute eigenvalue) of ρ(A) of A is less than 1. Furthermore, its convergence speed is
characterized by O((ρ(A) + ε)k) for any (arbitrarily small) ε > 0.

Proof. See Horn & Johnson (2012, Theorem 5.6.10-12).

Proposition 28. Let µ1, µ2, and L be positive numbers such that L ≥ max{µ1, µ2}. Consider a
quadratic function f on R× R defined by

f(x; y) =
µ1

2
x2 − µ2

2
y2 + `xy, where `2 ≤ L2 − µ1µ2 − L|µ1 − µ2|.

Then, f ∈ F(L, µ1, µ2), and its unique saddle point is z∗ = (0, 0).

For example, if µ1 ≥ µ2, `2 = (L− µ1)(L+ µ2) is enough to guarantee L-smoothness.

Proof. The strong-convex-strong-concavity is trivially true. Note that the gradient and hessian of f
is

∇f(x; y) = H[x y]>, H =

[
µ1 `
` −µ2

]
.

Since H is a non-singular matrix, f has a unique stationary point at origin (x = 0, y = 0). By
Proposition 11, it is also a unique saddle & global minimax point.

For any two distinct points z1 = (x1; y1) and z2 = (x2; y2) in R× R,

‖∇f(z1)−∇f(z2)‖
‖z1 − z2‖

=
‖H(z1 − z2)‖
‖z1 − z2‖

≤ ‖H‖2 ,

where ‖H‖2 is spectral norm (i.e., maximum singular value) of H . We would like to show that
‖H‖2 ≤ L. To this end, it is enough to verify the following two inequalities:

det(L2I −HH>) = L4 − (µ2
1 + µ2

2 + 2`2)L2 + (µ1µ2 + `2)2 ≥ 0,

trace(HH>)/2 = (µ2
1 + µ2

2)/2 + `2 ≤ L2.
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This is because the characteristic polynomial of HH>, or det(ωI −HH>), is a quadratic poly-
nomial of ω, and its maximum root should not be greater than L2. Let `2 = L2−µ1µ2 +a for some
a ∈ R. Plugging this `2 into both inequalities above, we get

a2 − (µ1 − µ2)2L2 ≥ 0 and a ≤ −(µ1 − µ2)2/2,

respectively. One can check that a = −L|µ1 − µ2| is the largest possible a satisfying both inequali-
ties above. This proves the proposition.

Subsequently, we show that if our convergence rate is exponential, then the iteration complexity in
terms of ‖z − z∗‖2 is equivalent to that in terms of Vλ(z) = λ[Φ(x) − Φ∗] + [Φ(x) − f(z)] for
PŁ(Φ)-PŁ problem, up to constant factors. This also applies to the function class F(L, µ1, µ2) since
it is a subclass of smooth PŁ(Φ)-PŁ functions (∵ Propositions 7 and 10).

Lemma 29. Suppose f(x;y) is an L-smooth function satisfying y-side µ2-PŁ condition and primal
µ1-PŁ condition (i.e., PŁ(Φ)-PŁ). Suppose z∗ = (x∗;y∗) is a global minimax point of f . Then, it
satisfies

λµ1µ
2
2

2(λµ1µ2 + 2L2)
‖z − z∗‖2 ≤ Vλ(z) ≤ (λ+ 1)L3

µ2
2

‖z − z∗‖2 .

We remark that the second inequality also holds for general smooth nonconvex-PŁ problems.

Proof. Let κ1 = L/µ1 and κ2 = L/µ2 be condition numbers. By the conditions of f (smoothness
and PŁ conditions), for any x and y,

µ1

2
‖x− x∗‖2

Prop. 10
≤ Φ(x)− Φ∗

Prop. 9
≤ L(κ2 + 1)

2
‖x− x∗‖2 ,

µ2

2
‖y − y∗(x)‖2

Ass. 4
≤ Φ(x)− f(x;y)

Ass. 1
≤ L

2
‖y − y∗(x)‖2 ,

where y∗(x) is a projection of y to arg maxy′ f(x;y′). In particular, y∗(x∗) = y∗. Since y∗(x) is
a function of x and can differ from y∗, we need to bound the term ‖y − y∗(x)‖2 using ‖x− x∗‖2

and ‖y − y∗‖2. To upper-bound the term ‖y − y∗(x)‖2, note that,

‖y − y∗(x)‖2 ≤ (‖y − y∗(x∗)‖+ ‖y∗(x)− y∗(x∗)‖)2

≤ (‖y − y∗‖+ κ2 ‖x− x∗‖)2

≤
(
1 + κ2

2

) (
‖y − y∗‖2 + ‖x− x∗‖2

)
.

The first inequality holds by triangle inequality, the second inequality holds by Proposition 8, and
the last inequality holds by Cauchy-Schwarz inequality.12 To lower-bound in a similar way, note
that for any constant a > 0,

‖y − y∗‖2 ≤ (‖y − y∗(x)‖+ ‖y∗(x)− y∗(x∗)‖)2

≤
(
‖y − y∗(x)‖+

κ2√
a
·
√
a ‖x− x∗‖

)2

≤
(

1 +
κ2

2

a

)(
‖y − y∗(x)‖2 + a ‖x− x∗‖2

)
.

∴ ‖y − y∗(x)‖2 ≥ 1

1 + κ2
2/a
‖y − y∗‖2 − a ‖x− x∗‖2 .

12(ax+ by)2 ≤ (a2 + b2)(x2 + y2) for real numbers a, b, x, y.
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Now we can prove the inequalities in the lemma. We first show the second one. Applying κ2 ≥ 1
multiple times,

Vλ(x;y) = λ[Φ(x)− Φ∗] + [Φ(x)− f(z)]

≤ λL(κ2 + 1)

2
‖x− x∗‖2 +

L

2
‖y − y∗(x)‖2

≤
(
λL(κ2 + 1)

2
+
L(1 + κ2

2)

2

)
‖x− x∗‖2 +

L(1 + κ2
2)

2
‖y − y∗‖2

≤ (λ+ 1)Lκ2
2

(
‖x− x∗‖2 + ‖y − y∗‖2

)
=

(λ+ 1)L3

µ2
2

‖z − z∗‖2 .

To show the first inequality of the lemma, let a = λµ1

2µ2
.

Vλ(x;y) ≥ λµ1

2
‖x− x∗‖2 +

µ2

2
‖y − y∗(x)‖2

≥
(
λµ1

2
− µ2a

2

)
‖x− x∗‖2 +

µ2

2(1 + κ2
2/a)

‖y − y∗‖2

≥ λµ1

4
‖x− x∗‖2 +

λµ1

4(a+ κ2
2)
‖y − y∗‖2

≥ λµ1

4(a+ κ2
2)

(
‖x− x∗‖2 + ‖y − y∗‖2

)
=

λµ1µ
2
2

2(λµ1µ2 + 2L2)
‖z − z∗‖2 .

This concludes the proof.

The equivalence of iteration complexities for achieving ‖zK − z∗‖2 ≤ ε2 or Vλ(zK) ≤ ε2 is
quite straightforward from this lemma, as long as the convergence speed is exponential. For ex-
ample, suppose we have a upper convergence bound ‖zK − z∗‖2 ≤ a exp(−K/r) for some con-
stants a, r > 0. This implies a upper iteration complexity bound K = O(r log(1/ε)) sufficient
to achieve ‖zK − z∗‖2 ≤ ε2. Then by Lemma 29, we also have Vλ(zK)2 ≤ a′ exp(−K/r)
where a′ = a(λ+ 1)L3/µ2

2 is also a constant. This implies a lower iteration complexity bound
K = O(r log(1/ε)) as well, sufficient to achieve Vλ(zK)2 ≤ ε2. The other way of complexity
translation operates with a similar logic.

F REMARK ON SMOOTHNESS ASSUMPTIONS AND LOWER BOUND OF
WITH-REPLACEMENT SGD(A)

During the discussion phase of the conference, a reviewer raised a question about whether or not
the component smoothness (Assumption 1) is more crucial than the without-replacement component
sampling for faster convergence. However, we would like to claim that the component smoothness
alone is not sufficient for improving the convergence rate for with-replacement SGD(A). To this end,
we provide some formal results on lower convergence bounds. For simplicity, we use mini-batches
of size 1 throughout this appendix.

Firstly, the theorem below provides a lower bound on with-replacement SGD for minimization prob-
lems. Readers can also verify that an analogous lower bound holds for SGD with unbiased and in-
dependently sampled gradient oracle for more general stochastic minimization problems. The proof
will appear later in this appendix.
Theorem 30. For any step size η > 0, there exists a real-valued strongly-convex function f(x)
defined on Rd with f∗ := minx f(x), satisfying:

1. f consists of n > 1 smooth component functions fi: f(x) = 1
n

∑n
i=1 fi(x), where each

component fi is smooth;

2. After running T > 1 iterations of with-replacement SGD (with mini-batch size 1) starting
from x0 ∈ Rd, the last iterate xT satisfies E[f(xT )−f∗] ≥ Ω(1/T ), where the expectation
is taken with respect to the randomness of i.i.d. index choice at each iteration.
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Next, we show this theorem naturally induces a convergence lower bound for the minimax counter-
part: with-replacement SGDA. Consider a (finite-sum) minimax problem minx maxy g(x,y) :=
f(x) − f(y), where f = 1

n

∑n
i=1 fi is a worst-case function in the proof of Theorem 30.

Here, the minimax problem on g can be solved by minimizing f . Moreover, since the primal
function Φ(x) := maxy g(x,y) associated with g is in fact the same as f(x) − f∗, the po-
tential function Vλ(x,y) := λ[Φ(x) − (minx Φ(x))] + [Φ(x) − g(x,y)] becomes the same as
λ(f(x) − f∗) + (f(y) − f∗) for a constant λ > 0. Combining these facts, we can immediately
obtain the following lower convergence bound of with-replacement SGDA.

Corollary 1. There exists a strongly-convex-strongly-concave function g(x,y) := 1
n

∑n
i=1 gi(x,y)

consisting of n smooth component functions gi, where the last iterate (xT ,yT ) of with-replacement
SGDA satisfies E[V (xT ,yT )] ≥ Ω(1/T ).

Corollary 1 formally proves that with-replacement SGDA on strongly-convex-strongly-concave
minimax problems with smooth components has a worst-case convergence rate Ω(1/T ). This in
fact matches the O(1/T ) upper bound obtained for primal-PŁ-PŁ problems by Yang et al. (2020).
Considering that strongly-convex-strongly-concave functions form a strict subset of primal-PŁ-PŁ
functions, Corollary 1 establishes that adding component smoothness assumption does not provide
further speed up for with-replacement SGDA.

In contrast, our theoretical result in Theorem 2 shows that SGDA-RR has a much faster convergence
rate E[Vλ] ≤ Õ( 1

nK2 ) for primal-PŁ-PŁ minimax problems, where K is the number of epochs.
One can check that our Õ( 1

nK2 ) bound is faster than the tight convergence rate Θ(1/T ) of with-
replacement SGDA by simply plugging in T = nK. In light of Corollary 1 we proved, we can now
claim that the improvement can be solely attributed to RR.

Although we do not provide a lower bound for more general nonconvex-PŁ problems here, we
believe the more challenging case of nonconvex-PŁ lower bound is a topic for another separate
paper. Nonetheless, we conjecture that the speed up by SGDA-RR in nonconvex-PŁ settings is also
due to the effect of RR, not component smoothness.

From now on, we provide the postponed proof of Theorem 30.

Proof of Theorem 30. We construct worst-case functions with quadratic functions on R, which are
clearly L-smooth for a fixed constant L > 0. Then, it is easy to extend the logic to the functions
with domains of higher dimensions. Let x0 ∈ R be the initial iterate.

Case 1 ( 1
LT ≤ η ≤

(
2
L −

1
LT

)
). Note that the condition on the step size, 1

LT ≤ η ≤
(

2
L −

1
LT

)
, is

equivalent to an inequality (1− ηL)2 ≤ (1− 1/T )2.

We first assume n is an even number. We will encounter the case with an odd n > 1 a bit later.
Consider f(x) = L

2 x
2 consisting of even number of components fi’s defined by

fi(x) =

{
L
2 x

2 + νx, (i ≤ n
2 ),

L
2 x

2 − νx, (i ≥ n
2 + 1),

for some number ν ∈ R. At each iteration t ≥ 1, we choose a component index i(t) i.i.d.∼ Unif([n])
(with-replacement sampling). Then we can write the chosen component function at iteration t as
fi(t) = L

2 x
2 − stνx for some i.i.d. random variable st ∼ Unif({±1}). Accordingly, an SGD step

can be written as
xt = xt−1 − η∇fi(t)(xt−1) = (1− ηL)xt−1 + ηstν.

By applying telescopic sum, we have

xT = (1− ηL)Tx0 + ην

T∑
t=1

(1− ηL)(T−t) · st.

Taking squares and expectations (with respect to the random variables s1, . . . , sT ) to both sides, we
have

E[x2
T ] = (1− ηL)2Tx2

0 + η2ν2
T∑
t=1

(1− ηL)2(T−t),
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by applying the fact that st’s are zero-mean independent random variables with absolute values 1:

E[st · st′ ] =

{
0, t 6= t′ (∵ independent),
1, t = t′ (∵ s2

t = 1).

We calculate the sum above as follows: since (1− ηL)2 ≤ (1− 1/T )2 and (1− 1/T )T ≤ e−1,

T∑
t=1

(1− ηL)2(T−t) =
1− (1− ηL)2T

1− (1− ηL)2
≥

1− (1− 1
T )2T

2ηL(1− ηL
2 )
≥ 1− e−2

2ηL
.

With this inequality, and since (1− ηL)2Tx2
0 ≥ 0, we can lower-bound the expectation E[x2

T ]:

E[x2
T ] ≥ η2ν2 · 1− e−2

2ηL
=

(1− e−2)ν2

2L
η ≥ (1− e−2)ν2

2L2T
.

Since f has a minimum f∗ = 0 at x = 0, we eventually have

E[f(xT )− f∗] =
L

2
E[x2

T ] ≥ (1− e−2)ν2

4LT
= Ω

(
ν2

LT

)
.

Now we consider the case when the number of components n > 1 is odd. Consider fn(x) ≡ 0
and let the remaining n − 1 components be the same as the case above (with an even number of
components). Note that the zero-component fn does not affect the trajectory of SGD (i.e., the points
visited by SGD) and the optimality of f (f∗ = 0 at x = 0), while the whole objective function
becomes f(x) = n−1

n ·
L
2 x

2. Thus, it can be easily shown that the Ω
(
ν2

LT

)
lower bound also holds.

Case 2 (0 < η < 1
LT or η >

(
2
L −

1
LT

)
). From the condition on the step size, we have (1−ηL)2 >

(1− 1/T )2. Consider fi(x) = L
2 x

2 for every i ∈ [n]: every components are the same. In this case,
we show that the last iterate of SGD is bounded below by a constant with respect to T > 1.

At each iteration t ≥ 1, we obtain xt = (1− ηL)xt−1 by a step of SGD. Then, applying T ≥ 2,

x2
T = (1− ηL)

2T · x2
0 >

(
1− 1

T

)2T

x2
0 ≥

(
1− 1

2

)4

x2
0 =

x2
0

16
.

Since f(x) = 1
n

∑n
i=1 fi(x) = L

2 x
2 has a minimum f∗ = 0 at x = 0, we have

f(xT )− f∗ > Lx2
0

32
= Ω(1) · Lx2

0.

G EXPERIMENTS: QUADRATIC GAMES

In this appendix, we provide a more detailed illustration of our numerical evaluations on quadratic
games introduced in Section 6. Recall that the objective function f and its component functions fi
are given in Equation (5) as

f(x;y) =
1

2
x>Ax+ x>By − 1

2
y>Cy,

fi(x;y) =
1

2
x>Aix+ x>Biy −

1

2
y>Ciy + u>i x− v>i y.

We choose the same dimensions for the variables x ∈ Rdx and y ∈ Rdy : we set dx = dy = d.

G.1 PARAMETER CHOICES

To sample the matrix C = 1
n

∑n
i=1Ci ∈ Rd satisfying that µCId � C and ‖Ci‖2 ≤ LC , we first

randomly generate an orthogonal matrix QC ∈ Rd×d (i.e., QCQ
>
C = Id), by taking advantage of
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the QR-decomposition of a random matrix. Then, we generate the eigenvalues of Ci’s as follows.
We sample the entries of n vectors λCi ∈ Rd (i ∈ [n]) uniformly from the interval [µC , LC ]. We add
some level of perturbations to some entries of each λCi ; we replace some entries to the numbers in an
interval [−LC , µC ], keeping the entries of the vector 1

n

∑n
i=1 λ

C
i in the interval [µC , LC ]. Finally,

we define Ci = QCΛC
i Q
>
C where ΛC

i = diag(λCi ). Because of the perturbation step, some Ci’s
are not positive definite, thereby some components fi’s become non-(strongly-)concave in y.

Next, we sample the matrix Bi’s. There are no requirements for B but ‖Bi‖2 ≤ LB ; Bi’s are
even not necessarily symmetric when dx 6= dy . Thus, we first generate the orthogonal matrices UB

i

and V B
i by taking advantage of the singular value decomposition of random matrices. Then, we

generate the singular values of Bi’s by sampling the entries of n vectors σBi uniformly from the
interval [0, LC ]. After that, we define Bi = UB

i ΣB
i V

B
i where ΣC

i = diag(σCi ). We typically
want to take a larger LB than LC to strengthen the interaction term x>By.

Recall that the primal function Φ associated with f is explicitly written as

Φ(x) = max
y∈Rd

f(x;y) =
1

2
x>
(
A+BC−1B>

)
x :=

1

2
x>Mx. (28)

Note that the inverse of C can be efficiently computed as C−1 = QC(ΛC)−1Q>C .

Before generating the matrices Ai’s, we first generate Mi’s satisfying that 1
n

∑n
i=1Mi = M and

the nonzero eigenvalues of positive semidefinite M are in the interval [µM , LM ]. The process of
sampling Mi’s is almost identical to how to sample Ci’s. One notable difference is, Mi’s and M
are forced to have r(< d) zero eigenvalues: this makes M a positive semidefinite (but not strictly
positive definite) matrix of rank d− r. Moreover, we get the µM -PŁ(Φ) condition in x as follows:

Proposition 31. Consider a positive semidefinite matrix M ∈ Rd. If the smallest nonzero eigen-
value ofM is µ, then Φ(x) := 1

2x
>Mx is µ-PŁ in x. Also, Φ∗ = minx Φ(x) = 0.

Proof. Apply the eigendecomposition of M : M = QΛQ>. Let M = Λ1/2Q>. Then, we have
Φ(x) = 1

2

∥∥Mx
∥∥2

, which implies that Φ(x) ≥ 0 (∀x) and in fact Φ∗ = 0. Note that 1
2 ‖x‖

2

is 1-strongly convex. Also, the minimum nonzero singular value of M is
√
µ (∵ M = M

>
M ).

Therefore, by the proof of Proposition 12, Φ(x) is a µ-PŁ function of x. Lastly, we note that Φ(x)
is not strongly convex in general, especially whenM is a rank-deficient matrix.

Typically, the spectral norm ‖M‖2 is known to be bounded above by ‖A‖2 +L2
B/µC in worst-case

(Nouiehed et al., 2019; Li et al., 2022). However, since we sample M without knowing the exact
form ofAi’s while we want to control the spectral norm ‖Ai‖2 not too large (for smoothness of fi),
we (empirically) decide to choose rather smaller LM : simply, we choose LM = LB .

Now we let Ai = Mi −BC−1B> and A = 1
n

∑n
i=1Ai to satisfy Equation (28). We emphasize

thatA may have negative eigenvalues; the objective is nonconvex in x in general. We have checked
this is true across the experimental settings. Also, we let L := max{‖A‖2, LB , LC} for further
parameter selection. (In fact, because of our choice of parameter values, L was always equal to LB
in our experiments.)

Furthermore, we generate the vectors ui’s and vi’s satisfying
∑n
i=1 ui = 0 =

∑n
i=1 vi. The entries

of these vectors are uniformly sampled from an interval [−∆,∆], thereby the average of entries is
centered to zero. In addition, to verify our theory, we choose the step-sizes of the form β = c1 · b/nL
and α = c0 · β/κ2

2 for some constants c0 and c1 and batch size b.

Lastly, we specify the values of parameters described above: n = 100, d = 25, µM = µC , and
LC = 1 < LM = LB . The constants c0 and c1 are tuned among 10{−2,−1.5,±1,±0.5, 0}. In the
following subsections, we investigate the effects of the change of

(i) ∆ ∈ {10,20, 40}, determining the discrepancy between components,

(ii) condition number κ2 ∈ {5,10, 20}, determined by LB and µC , and

(iii) batch size b ∈ {1, 25, 50, 100},
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(b) ∆ = 20, simSGDA(-RR)
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(c) ∆ = 40, simSGDA(-RR)
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(d) ∆ = 10, altSGDA(-RR)
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(e) ∆ = 20, altSGDA(-RR)
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(f) ∆ = 40, altSGDA(-RR)
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(h) ∆ = 20, AGDA(-RR)
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(i) ∆ = 40, AGDA(-RR)

Figure 2: Comparisons by changing the value of ∆ ∈ {10, 20, 40}. Solid lines: average across 10
different runs. Shaded regions: 95% confidence intervals (±1.96 std). The vertical axes are on a
logarithmic scale.

from the plots of the values potential function Vλ(x;y) = (1 + λ)Φ(x) − f(x;y) over epochs.13

(Numbers in bold font above are the default values of parameters.)

G.2 COMPARISON: THE EFFECT OF COMPONENT DISCREPANCY

Notice that the discrepancy between component functions gets larger as ∆ grows. Technically, one
can check that the gradient variance (that we controlled in Assumption 2) is proportional to the norms
of the vectors ui and vi. Moreover, we have already discussed that the gap between convergence
speeds of SGDA and SGDA-RR becomes larger especially when the gradient variance is large.

Now, we present the results of numerical experiments by varying the values of ∆ to 10, 20, and 40,
while fixing LB = 4, µC = 0.4, b = 1, and other experiment parameters. As shown in Figure 2, we
can observe that the difference between the random-reshuffling algorithm and the uniform-sampling
algorithm gets larger as ∆ increases.

G.3 COMPARISON: THE EFFECT OF CONDITION NUMBER

Here, we present the results of experiments by varying the values of κ2 to 5, 10, and 20, while fixing
∆ = 20, b = 1, and other experiment parameters. To this end, we applied the parameter settings for
LB and µC as (LB , µC) = (2.5, 0.5), (4, 0.4), (5, 0.25), respectively.

13During and after the discussion phase, we performed some more experiments. As we tried to plot all the
results over iterations, the size of the figures in pdf format became too large. Consequently, in this appendix,
we only plot the results over epochs to reduce the file size of the figures.
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(b) κ2 = 10, simSGDA(-RR)
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(c) κ2 = 20, simSGDA(-RR)
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(d) κ2 = 5, altSGDA(-RR)
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(e) κ2 = 10, altSGDA(-RR)
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(f) κ2 = 20, altSGDA(-RR)
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(g) κ2 = 5, AGDA(-RR)
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(h) κ2 = 10, AGDA(-RR)
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(i) κ2 = 20, AGDA(-RR)

Figure 3: Comparisons by changing the value of κ2 = L/µC ∈ {5, 10, 20}. Solid lines: average
across 10 different runs. Shaded regions: 95% confidence intervals (±1.96 std). The vertical axes
are on a logarithmic scale. Note: we run 1000 epochs for κ2 = 20 (see the rightmost column),
whereas we run 300 epochs for the other κ2 ∈ {5, 10} (see the leftmost & middle columns).

The results are shown in Figure 3. We observe that more epochs are required for convergence when
κ2 increases, regardless of the type of algorithm. One may think that the performance gap between
RR-based/non-RR-based algorithms is small when κ2 is huge. However, when we run the algorithm
for an extended number of epochs, we observe a significant gap in convergence speeds.

G.4 COMPARISON: THE EFFECT OF BATCH SIZE

The last comparison is about the effect of batch size b ∈ {1, 25, 50, 100}. Recall that we linearly
scale the step sizes as the batch size changes. However, since the number of epochs is fixed, the
number of iterations decreases as b gets larger.

As the readers can notice, the convergence behavior of SGDA (resp., SGDA-RR) and AGDA (resp.,
AGDA-RR) are similar in our construction of quadratic games. Thus, in this subsection, we only
compare simSGDA and its variants. Rather, we introduce two more methods of component choice
other than with-replacement uniform sampling and random reshuffling:

• WORB(WithOut-Replacement mini-Batching): every mini-batch is without-replacement
& uniformly-randomly sampled, while any pair of mini-batches in an epoch may have
some indices in common; the same as b-minibatch sampling (Loizou et al., 2021).

• NS(No Shuffle): accessing 1, ..., n in its predefined order to construct mini-batches;
without-replacement but deterministic. Remark: for minimization problems, SGD with
NS is usually referred to as incremental gradient (IG) algorithm (Mishchenko et al., 2020).
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(b) b = 25
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(c) b = 50
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(d) b = 100

Figure 4: Comparisons of simSGDA(-RR,-WORB,-NS) as changing b ∈ {1, 25, 50, 100}. Solid
lines: average across 10 different runs. Shaded regions: 95% confidence intervals (±1.96 std). The
vertical axes are on a logarithmic scale.

These two methods are somewhat related to without-replacement component sampling, whereas
they are both different from RR which uniformly randomly samples a permutation of [n] every
epoch. We call simSGDA using mini-batches sampled by WORB and NS as simSGDA-WORB and
simSGDA-NS, respectively. Remarks: If b = 1, simSGDA-WORB becomes the same algorithm as
vanilla simSGDA. Also, since we choose n = 100, if b = n = 100, all three algorithms simSGDA-
RR/-WORB/-NS become the same as deterministic & full-batch (simultaneous) GDA.

The results are shown in Figure 4. One can notice that the potential plots of simSGDA, simSGDA-
RR, and simSGDA-NS are respectively the same even if we change the batch size (b < 100).
Also, if b > 1, simSGDA-WORB has better performance than vanilla simSGDA. These imply that
without-replacement mini-batches benefit the convergence speed to some extent in our quadratic
game. However, the result of experiments also implies that both (i) without-replacement per epoch
(i.e., shuffling) and (ii) randomization are indeed essential for fast convergence in our quadratic
game experiments. In particular, WORB requires a very large batch size but still has a much slower
convergence rate than RR (see Figure 4c which is the case of using half of the total components at
each iteration).

H OMITTED COMPARISON WITH RELATED WORKS

H.1 COMPARISON WITH XIE ET AL. (2021)

To specialize Xie et al. (2021, Theorem 3) to the single-machine setup and discuss their results in
terms of our notation, we need to replace their symbols

(T, S,K, σ2
1 , σ

2
2 , G

2
1, G

2
2, L12, Lf , µ, LΦ,L0, ηt, γt)
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with the following symbols from our notation

(K, 1, n, 0, 0, B,B,L, L, µ2, L(κ2 + 1), Vλ(z1
0), α, β),

and also put A = 0 (their analysis only applies uniformly bounded component variance per ma-
chine). Then we can naively translate the bound of Xie et al. (2021, Theorem 3) to our language
as

min
k∈[K]

E
[
‖Φ(x)‖2

] (?)
≤ O

(
κ2LVλ(z1

0)

K
+ κ2

2

(
L2BVλ(z1

0)2

K2

)1/3
)
.

To the best of our knowledge, however, we believe there may be a mistake in the proof of Xie et al.
(2021, Appendix C.4). From the inequalities on the last page of their paper, we notice that the term
40L2

12L0

µ2γKT might be missing in a step, where γ is chosen to be the minimum of several terms including
1

87LfK
. Thus, as far as we can tell, it seems inevitable that this omitted term would lead to an

additional term 3480LfL
2
12L0

µ2T in the final bound. By combining this to their bound and re-translating
it, we eventually have

min
k∈[K]

E
[
‖Φ(x)‖2

]
≤O

(
κ2

2LVλ(z1
0)

K
+ κ2

2

(
L2BVλ(z1

0)2

K2

)1/3
)
,

since their L2
12/µ

2 translates to our κ2
2. Therefore, their result actually shows the same depen-

dency on condition number κ2 as our Theorem 1. Nevertheless, comparing the terms related to the
component-wise variance B, ours is better. In the second term in the bound above does not shrink
even when the number of iterations (per machine & per communication) grows. In our case (The-
orem 1), however, the dominant term (in K) can be briefly written as O

((
B
nK2

)1/3)
which can

diminish with large n, i.e., the number of iterations per epoch.

46


	Introduction
	Summary of our contributions

	Problem setup
	Notation
	Algorithms: simSGDA-RR & altSGDA-RR
	Assumptions and definitions

	Main results
	Potential function V
	Main theorems: upper bounds of convergence rates

	Comparison with related works
	Comparison with stochastic with-replacement setting
	Comparison with other works on stochastic without-replacement setting
	Comparison with deterministic setting

	Lower bound for (full-batch) simGDA using separate step sizes
	Experiments
	Conclusion
	Mini-batch SGDA-RR and convergence rates
	Technical propositions
	Function classes: PŁ condition, smoothness, and more
	Without-replacement sampling
	Basic recurrence inequality

	Proofs for (mini-batch) simultaneous SGDA-RR
	Warm-up: proof sketch for b=1
	Epoch-wise representations and bounding noise terms
	Recurrence inequalities for general smooth nonconvex-PŁ objective
	Convergence rates for smooth nonconvex-PŁ problem
	Convergence rates for smooth primal-PŁ-PŁ problem

	Proofs for (mini-batch) alternating SGDA-RR: focusing on changes in the proof
	Epoch-wise representations and bounding noise terms
	Bounding noise terms: a bit different proof of Lemma 18
	Recurrence inequalities for general smooth nonconvex-PŁ objective
	Small step size assumptions

	Proofs for lower bound of deterministic full-batch simGDA
	Remark on smoothness assumptions and Lower bound of with-replacement SGD(A)
	Experiments: quadratic games
	Parameter choices
	Comparison: the effect of component discrepancy
	Comparison: the effect of condition number
	Comparison: the effect of batch size

	Omitted comparison with related works
	Comparison with xie2021efficient


