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Abstract

Ensuring the safety of question answering001
(QA) systems is critical for deploying them002
in biomedical and scientific domains. One ap-003
proach to improving these systems uses nat-004
ural language inference (NLI) to determine005
whether answers are supported, or entailed,006
by some background context. However, these007
systems are vulnerable to supporting an an-008
swer with a source that is wrong or mislead-009
ing. Our work proposes a critical approach010
by selecting answers based on whether they011
have been contradicted by some background012
context. We evaluate this system on multiple013
choice and extractive QA and find that while014
the contradiction-based systems are competi-015
tive with and often better than entailment-only016
systems, models that incorporate contradiction,017
entailment, and QA model confidence scores018
together are the best. Based on this result,019
we explore unique opportunities for leverag-020
ing contradiction-based approaches such for021
improving interpretability and selecting better022
answers.023

1 Introduction024

Safety in NLP systems is an unresolved issue,025

particularly in biomedical and scientific contexts026

where known issues such as hallucination and over-027

confidence provide obstacles for deploying them (Ji028

et al., 2022; Kell et al., 2021). Utilizing natural lan-029

guage inference (NLI) as a method for improving030

the safety and performance of NLP research is an031

active area of research (Li et al., 2022). However,032

these systems typically focus exclusively on en-033

tailment to verify answers. Similar research looks034

at building self-supporting NLP systems (Nakano035

et al., 2022; Menick et al., 2022) with the goal of036

improving safety by verifying model outputs with037

some external supporting source.038

These developments are troubling since a verifi-039

cation or self-supporting approach is vulnerable to040

selecting supporting sources that might be wrong.041

Figure 1: A QA model is used to produce answers which
are reformulated as hypothesis statements to determine
if they are entailed or contradicted by a premise. The
answers are ranked by the NLI class scores to select the
best answer.

Since supported or verified answers look more cred- 042

ible, a user might be mislead into uncritically ac- 043

cepting model outputs then they otherwise would 044

be. Even though we could also find sources that 045

wrongly contradict an answer, surfacing sources 046

that contradict an answer might help a user engage 047

critically and help a QA system select the least con- 048

tradicted answers. Therefore we ask: under NLI- 049

based setups how do contradictions contribute to 050

the performance of question answering (QA) and 051

how is this different from entailment-based sys- 052

tems? By exploring this question, we hope to show 053

why researchers should be critical of the paradigm 054

of verification in NLP systems and why future work 055

utilizing critical and contradicted statements could 056

provide unexplored opportunities for improving 057

NLP systems. 058

Our work makes the following contributions. We 059

propose a method (Figure 1) that reformulates an- 060

swers under QA as hypothesis statements which 061

are then used with three-class NLI to rank and se- 062

lect answers. We demonstrate, across 9 multiple 063

choice datasets and 7 extractive QA datasets mod- 064

els, that models which use QA confidence scores 065

as well as both entailment and contradiction scores 066
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outperform all other setups. In addition, selecting067

the least contradicted answer provides a competi-068

tive approach to selecting answers that is often on069

par with or better than entailment-based systems.070

While this work is in a relatively limited setting, we071

suggest how leveraging contradictions could help072

improve QA inference in ways that are not possible073

with entailment-based systems.074

1.1 Related work075

NLI for QA has been explored by several authors076

(see the overview in Paramasivam and Nirmala077

(2021)) showing performance improvements in078

multiple choice (Mishra et al., 2021), extractive079

(Chen et al., 2021), open domain (Harabagiu and080

Hickl, 2006) and multihop (Trivedi et al., 2019)081

settings. These approaches have thus far focused082

on using entailment as a verification mechanism.083

Chen et al. (2021) find that under selective question084

answering (Kamath et al., 2020) for extractive QA,085

NLI systems can verify QA systems’ predictions.086

However, their result is limited to only selecting087

a top k % of answers and they do not provide an088

approach for improving QA systems overall perfor-089

mance nor show what their results would have been090

like if they incorporated the contradiction signal.091

Mishra et al. (2021) explores the use of entailment092

for multiple choice and fact checking settings and093

finds that not only do NLI models do well at these094

tasks by themselves but when they are adapted095

using in-domain data and longer premises they per-096

form even better. Despite this, Mishra et al. (2021)097

uses a two-class NLI set up (entailed or not en-098

tailed) which means there would be no information099

about the effect of using the contradiction class if100

this approach was used.101

Factual consistency is the only domain that102

leverages contradictions directly. Factual consis-103

tency seeks to ensure that a collection of utterances104

do not contain contradictions such as unfaithfulness105

towards a source document (see Li et al. (2022) for106

an overview). Here approaches to improve faith-107

fulness are still focused on entailment. Laban et al.108

(2022) proposes a NLI-based method to ensure the109

consistency of a summary with a source document110

that incorporates contradiction and neutral scores111

with entailment scores beating out previous sys-112

tems. Interestingly, they show that a combination113

of entailment and contradiction achieves the best114

results over entailment alone. Similarly, QAFactE-115

val (Fabbri et al., 2022) improves on Laban et al.116

(2022) and maintains the approach of incorporat- 117

ing all NLI class scores. Schuster et al. (2022) and 118

Hsu et al. (2021) develop interesting cases where 119

contradictions are leveraged to identify consistency 120

errors within or across wikipedia articles illustrat- 121

ing the further utility of contradictions. Finally, 122

contradiction detection has surfaced as an impor- 123

tant tool in generating dialogues that are consistent 124

with a persona (Nie et al., 2021; Song et al., 2020). 125

To our knowledge, this is the first work to directly 126

leverage contradictions for QA. 127

2 Method 128

2.1 Overview 129

The proposed approach is similar to Chen et al. 130

(2021) and Mishra et al. (2021) where question an- 131

swer pairs are turned into declarative statements 132

(QA2D) (see Demszky et al. (2018)). QA mod- 133

els for each setting are used to produce answers 134

and confidence scores for each answer which are 135

later used to train calibration models. Three-class 136

NLI classification (entailment, neutral, contradic- 137

tion) is performed on the provided QA contexts 138

(the premises) with the hypotheses produced from 139

the earlier QA2D model. Like Chen et al. (2021) a 140

calibration method is used that combines the con- 141

fidence scores from the QA and NLI models. In 142

the multiple choice setting, answers are selected 143

among a set of alternatives for a given question 144

through ranking by a score produced by the mod- 145

els above. In the extractive QA case, questions 146

are ranked for selective QA (Kamath et al., 2020) 147

where a top k number of answers pre-selected by a 148

QA model are selected by how confident the model 149

is in answering a question. 150

2.2 QA models 151

For the multiple choice setting, we used RoBERTa 152

large (Liu et al., 2019) finetuned on the RACE 153

dataset (Lai et al., 2017) as well as two DeBERTa 154

v3 (He et al., 2021a) variants (base and xsmall) 155

finetuned on SciQ (Welbl et al., 2017). For the 156

extractive QA setting, we used DistillBERT (Sanh 157

et al., 2020) and BERT-Large (Devlin et al., 2019)) 158

models trained on SQuAD (Rajpurkar et al., 2016). 159

More details on model selection, training, and 160

validation are available in Appendix A. In both 161

cases, answers are selected given a context pro- 162

vided by the dataset and those contexts are used as 163

the premise for NLI. 164
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2.3 QA2D165

A QA2D model reformulates a question-answer166

pair to a declarative statement (Demszky et al.,167

2018). As noted in Chen et al. (2021) and Mishra168

et al. (2021), the QA2D reformulation is critical to169

using NLI models in QA since the proposed answer170

needs to match the format of NLI. We trained a T5-171

small model (Raffel et al., 2020) on the dataset pro-172

posed by Demszky et al. (2018) for QA2D since we173

found almost no noticeable differences in perfor-174

mance in larger models. Unlike Chen et al. (2021),175

we found that regardless of size, these QA2D mod-176

els struggled with long questions or questions with177

complex syntax and would often leave the answer178

out of the statement. In order to solve this, con-179

strained decoding that required the answer to be180

in the statement was tried. However, this often181

produced ungrammatical or nonsensical statements.182

We settled with the following heuristic to postpro-183

cess QA2D outputs: If less than 50% of the tokens184

in the answer were in the statement then we ap-185

pended the answer to the end of the statement. 50%186

was used to account for rephrasing the answer or187

swapping pronouns. While some statements re-188

sulted in answer redundancy, this was better than189

having hypotheses which left out the answer. Fu-190

ture work on QA2D should focus on how these191

models can be used outside of the domains in the192

dataset provided by Demszky et al. (2018).193

2.4 NLI194

NLI is then used to classify whether the reformu-195

lated answer is contradicted, entailed, or neutral196

w.r.t to a context passage. The whole context was197

used as Schuster et al. (2022) and Mishra et al.198

(2021) demonstrated that long premises still per-199

formed adequate though not as well as sentence-200

length premises. Using the whole context avoids201

needing to use decontextualization as is required in202

Chen et al. (2021). We used two DeBERTa-based203

models (He et al., 2021b) trained on the MNLI204

dataset (Williams et al., 2018) (called mnli-base205

and mnli-large) and an ALBERT model (Lan et al.,206

2019) trained on the ANLI dataset in addition to207

various other NLI datasets (called albert-anli) (Nie208

et al., 2020). After inference, the confidence scores209

are then used for each class in the procedures be-210

low.211

2.5 Calibration models 212

Like Kamath et al. (2020) and Chen et al. (2021) 213

we developed a set of calibration models in order to 214

do answer ranking. A calibration model is trained 215

on a set of posterior probabilities from downstream 216

models to predict whether an answer is correct. 217

To compare the effect of using different combina- 218

tions of NLI class confidence scores we trained a 219

logistic regression model on linear combinations 220

of the following features: QA indicates that the 221

QA model confidence score is being used, E indi- 222

cates the entailment score is used, C indicates the 223

contradiction score is used and N indicates the neu- 224

tral score. Like Chen et al. (2021), all calibration 225

models are trained on a holdout set of 100 sam- 226

ples from a single domain using logistic regression 227

which predicts, given the confidence scores of the 228

downstream models, whether the answer is correct. 229

A multi-domain calibration approach like in Ka- 230

math et al. (2020) was not used since the focus was 231

a minimum experiment to test the viability of lever- 232

aging different NLI classifications. To illustrate the 233

characteristics of the calibration models, Appendix 234

D presents a regression analysis for the multiple 235

choice setting. 236

2.6 Answer ranking 237

Similar to Harabagiu and Hickl (2006), answers
are ranked based on the highest probability from
the calibration model σ given a linear combination
of the QA or NLI scores given an answer n ∈ N
answer set. When a single feature is used such as
NLI class or QA class no calibration is made and
σ is simply the identity of the confidence score. In
the case of contradiction only σ is the inverse of the
contradiction confidence score, indicating the least
contradicted answer is being selected. Formally
our approach can be described as:

argmax
N

σ(QAn;NLIn)

For the multiple choice setting we used this for se- 238

lecting the answer to a given question among a set 239

of alternative answers N . We found that using a top 240

K = 4 approach to extractive QA produced almost 241

the same answer alternatives with slightly different 242

spans so we did not use the alternatives ranking 243

approach with extractive QA. For both the multi- 244

ple choice and extractive QA settings we ranked 245

answers like in Kamath et al. (2020), where a top 246

n set of questions at a certain coverage coverage 247
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threshold k is selected, resulting in a set of top248

answers the model is most confident in answering.249

2.7 Datasets250

For both settings, datasets where the context pas-251

sage is already available were used. For the mul-252

tiple choice setting a set of 9 datasets were used.253

Two of those datasets are in-domain for the QA and254

calibration, RACE and SciQ. For extractive QA 5255

of the datasets from the MRQA 2019 task were256

selected (Fisch et al., 2019) as well as SQuAD 2.0257

(Rajpurkar et al., 2018) and SQuAD adversarial258

(Jia and Liang, 2017) for a total of 7 extractive QA259

datasets. The in-domain dataset for the extractive260

QA model is SQuAD and the dataset used for cali-261

bration is Natural Questions since that is what was262

used by Chen et al. (2021). The only preprocessing263

done was to remove questions where the context264

was empty. Appendix B describes full details on265

the datasets used for evaluation.266

3 Results267

3.1 Ranking multiple choice268

In tables 1 (NLI only) and 2 (calibrated) we present269

the accuracy achieved on each of the 9 datasets270

for the mutiple choice setting. We show results271

with each QA model and the mnli-large model for272

NLI (Appendix C shows results for alberta-anli and273

mnli-base which perform worse but generally re-274

flect the same trends). On the NLI-only results pre-275

sented in table 1, the RoBERTA-RACE QA model276

outperforms other approaches on most datasets ex-277

cept MCTest and the combination of entailment278

and contradiction tends to do second best. Notably,279

the SciQ models do much worse than the NLI-280

only ranking for either class except on in-domain281

questions for SciQ and the similar QASC dataset.282

This could possible a result of the RACE domain283

being more generic than the SciQ domain or the284

RACE dataset being larger. The results show that285

an NLI-only approach can be competitive with a286

robust QA model and better than a more limited287

QA model. Notably, incorporating the contradic-288

tion scores with the entailment scores is better than289

entailment alone and that selecting the least contra-290

dicted answer is quite competitive with selecting291

the most entailed answer.292

The results from the calibration models show293

that the NLI calibrated models outperform QA only294

in all cases (they perform the same as RoBERTA-295

RACE in the in-domain case). The best calibra-296

tion incorporates QA confidence, entailment, and 297

contradiction (QA+E+C) achieving an average ac- 298

curacy of 84.57% over 84.09% from RoBERTa- 299

RACE. The second best approach is the calibration 300

with contradiction only (84.33%), however only 301

slightly over entailment only (84.31%). To inspect 302

these trends further, a correlation analysis in Ap- 303

pendix E is provided on how each NLI class and 304

QA confidence score correlates with the correct 305

answer. Interestingly, other than QA model confi- 306

dence scores, it is contradiction confidence score 307

that has the strongest correlation with the correct 308

answer further demonstrating the utility of leverag- 309

ing contradictions. 310

3.2 Selective QA 311

For selective QA evaluation in both settings, the 312

QA model selects the answer and then we evaluate 313

the top 20% or 50% of those answers after sorting 314

them by the approaches we outlined earlier. In 315

the multiple choice setting we do not select the 316

answers for individual questions with the ranking 317

as proposed in the method above since the approach 318

under performed the QA model. Those results are 319

available in Appendix C. 320

3.2.1 Selective QA for multiple choice QA 321

In table 3, the first thing to note is that the QA + C 322

model performs the best on selective QA, achiev- 323

ing best or second best accuracy on almost every 324

dataset for an average of 97.57% at 20% coverage 325

and 94.74% at 50% coverage over 97.45% at 20% 326

coverage and 94.52% at 50% coverage achieved by 327

the RoBERTA-RACE QA model. This is especially 328

striking at 50% coverage where the QA model only 329

does significantly better on the in-domain RACE 330

datasets. The QA+C model is the only model to 331

outperform the QA model ranking by confidence 332

score. The NLI only models can be competitive 333

with the calibrated models. Sorting by the least 334

contradicted achieves good performance and is of- 335

ten better (94.79% @ 20% / 92.13% @ 50%), than 336

sorting by the most entailed (93.50% @ 20% / 337

91.24% @ 50%) or a combination of entailed and 338

contradicted (93.55% @ 20% / 91.89% @ 50%). 339

These results are inline with our intuition that the 340

less contradicted an answer is the more likely it 341

is correct even in cases where there is uncertainty 342

about its entailment. 343
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Model Cosmos DREAM MCS MCS2 MCT QASC RACE RC SciQ Avg
s-base 18.46 43.80 61.99 63.71 44.76 93.41 30.97 27.39 95.28 53.30
s-small 25.46 48.26 60.28 66.04 59.76 90.60 35.56 30.62 98.09 57.18
QA 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.08
E+C 44.36 80.94 85.52 84.99 90.60 96.44 64.29 51.40 92.47 76.77
E 36.18 79.03 86.02 79.72 89.88 95.90 62.14 49.72 91.96 74.50
C 59.26 78.98 83.12 84.43 89.29 92.76 62.74 47.05 91.58 76.58

Table 1: Accuracy scores on NLI-only answer ranking. RoBERTa-RACE is indicated as QA. The best scores are
bold and the second best are underlined.

Model Cosmos DREAM MCS MCS2 MCT QASC RACE RC SciQ Avg
s-base 18.46 43.80 61.99 63.71 44.76 93.41 30.97 27.39 95.28 53.30
s-small 25.46 48.26 60.28 66.04 59.76 90.60 35.56 30.62 98.09 57.18
QA 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.08
QA+E+C 64.72 83.19 90.06 87.59 91.43 98.60 77.53 69.80 98.21 84.57
QA+E 64.32 82.85 89.92 87.29 91.07 98.49 77.18 69.66 98.09 84.31
QA+C 64.82 82.75 89.88 87.29 90.83 98.38 77.16 69.80 98.09 84.33

Table 2: Accuracy scores on calibrated NLI answer ranking. Calibrations are with the RoBERTa-RACE model
(QA). The best scores are bold and the second best are underlined.

Database QA +E+C QA+C QA+E E+C E C QA
20% CosmosQA 77.55 91.12 76.88 69.18 68.34 83.25 88.61

DREAM 98.28 98.77 98.28 96.32 96.32 96.81 98.28
MCScript 99.82 99.46 99.82 99.64 99.64 99.46 99.82
MCScript-2.0 99.58 99.72 99.45 99.17 99.03 97.37 99.58
MCTest 100 99.40 100 100 100 99.40 98.81
QASC 100 100 100 100 100 100 100
RACE 94.93 96.69 94.72 92.44 92.24 90.17 98.24
R_C 88.73 92.96 89.44 85.21 85.92 86.62 93.66
SciQ 100 100 100 100 100 100 100
Avg 95.43 97.57 95.40 93.55 93.50 94.79 97.45

50% CosmosQA 80.29 81.70 76.94 75.80 70.64 80.63 76.47
DREAM 95.10 96.86 94.90 93.63 93.63 93.63 96.67
MCScript 98.57 98.64 98.28 98.00 97.93 97.14 98.78
MCScript-2.0 96.40 98.23 95.84 94.68 94.40 96.01 98.01
MCTest 99.52 99.76 99.52 99.05 99.05 99.76 99.52
QASC 100 100 100 99.78 99.78 99.78 100
RACE 90.11 92.68 89.99 87.71 87.38 85.23 93.88
R_C 85.11 84.83 85.39 78.37 78.37 77.25 87.36
SciQ 100 100 100 100 100 99.74 100
Avg 93.90 94.74 93.43 91.89 91.24 92.13 94.52

Table 3: Selective QA for the multiple choice with accuracy scores at 20% and 50% coverage of the dataset.
Calibrations and QA confidence are all from RoBERTa-RACE where RACE is the in-domain dataset.
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Dataset QA+E+C QA+E QA+C E+C E C QA
20% BioASQ 85.04 85.06 83.10 74.22 74.22 75.47 82.99

HotpotQA 86.62 86.69 85.89 80.60 80.60 79.82 85.33
NaturalQuestions 91.84 91.68 92.18 79.89 79.87 82.09 90.98
SQuAD 98.26 98.76 98.17 92.37 92.48 90.88 99.04
SQuAD-adv 43.99 43.98 43.57 43.74 43.60 42.81 39.83
SQuAD2 37.64 37.56 36.07 37.43 37.31 37.68 30.52
TriviaQA 81.33 81.21 80.36 65.53 65.25 69.13 80.68
Avg 74.96 74.99 74.19 67.68 67.62 68.27 72.77

50% BioASQ 76.13 76.04 75.51 71.49 71.49 72.97 75.49
HotpotQA 79.37 79.30 78.95 77.43 77.43 77.31 78.74
NaturalQuestions 84.53 84.48 83.24 74.96 74.93 78.62 82.47
SQuAD 96.98 96.97 97.01 91.58 91.52 91.19 97.00
SQuAD-adv 41.80 41.16 41.49 42.76 42.79 42.03 40.26
SQuAD2 29.41 28.45 28.77 34.43 34.14 34.39 26.18
TriviaQA 74.30 74.37 74.23 65.05 64.93 68.08 74.21
Avg 68.93 68.68 68.46 65.39 65.32 66.37 67.76

Table 4: Selective QA for extractive QA with F1 scores at 20% and 50% coverage. Calibrated models and QA use
the BERT-large model.

3.2.2 SelectiveQA for extractive QA344

For the extractive QA setting we present the same345

analysis in table 4. Similar trends to multiple346

choice QA are present where calibration with con-347

tradiction only, QA + C, has better average F1348

scores than the QA model (74.19% vs 72.77% at349

20%, 68.46% vs 67.76% at 50%). Of the NLI-only350

ranking, selecting the least contradicted does best.351

Although only slightly better than the QA + C, the352

results show that the QA + E model does best at353

20% coverage and the QA + E + C model does best354

at 50% coverage. This indicates that entailment is355

still an important signal, albeit more powerful when356

combined with contradiction. Appendix C contains357

a comparison with the smaller DistillBERT model358

which shows similar results. Notably with a smaller359

model QA+E+C does best in all cases and that se-360

lecting the least contradicted answer without any361

calibration does second best at 50% coverage.362

3.3 Answer Rejection on SQuAD 2.0363

In order to explore how useful contradiction might364

be in other settings, we evaluated the answer re-365

jection task in SQuAD 2.0 (Rajpurkar et al., 2018)366

using our BERT-large model. This task evaluates367

how well a model does at abstaining from answer-368

ing a question that is unanswerable. Three setups369

are used: rejecting answers by QA confidence,370

by entailment score, and by contradiction score.371

When selecting by least entailed answers the prob-372

lem becomes a two-class NLI (entailed v not en- 373

tailed) which was previously looked at by Chen 374

et al. (2021). 375

Table 5 shows that the NLI-based setups outper- 376

form QA confidence setups in all cases. Interest- 377

ingly, the difference between rejecting answers that 378

are not entailed and rejecting answers that have 379

been contradicted appears to reflect a precision ver- 380

sus recall trade off. The overall best model (best 381

F1 score) is achieved by rejecting answers where 382

the contradiction score was greater than 5%, suc- 383

cessfully rejecting 76.15% answers and accepting 384

93.23% answerable questions. Rejecting answers if 385

they are not entailed, where E < 50%, achieves the 386

second best F1 score and illustrates an interesting 387

dynamic. E < 50% has the best recall (38.52%), 388

successfully rejecting the most answers, while C 389

> 50% has the best precision (97.06%), accepting 390

the most answerable questions. This result shows 391

that if we want to build systems that err on the 392

side of rejecting answers not entailed has an ad- 393

vantage. Conversely, if we want to build systems 394

that are better at rejecting only answers that should 395

be rejected then contradicted is a better strategy. 396

The results highlight the utility of using contradic- 397

tion confidence scores even if they are low which 398

gives credence to using the contradiction score as a 399

meaningful signal. 400
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Reject Accept Precision Recall F1
QA <50% 46.71% 86.15% 62.81% 23.39% 34.09%
QA <25% 22.29% 95.45% 71.05% 11.16% 19.29%
QA <75% 71.22% 72.86% 56.79% 35.66% 43.81%
E <5% 43.80% 98.74% 94.55% 21.93% 35.61%
E <25% 63.82% 96.58% 90.33% 31.95% 47.21%
E <10% 52.14% 98.02% 92.95% 26.11% 40.77%
E <50% 76.94% 91.52% 81.96% 38.52% 52.41%
C >50% 42.78% 99.35% 97.06% 21.42% 35.09%
C >25% 54.21% 98.59% 95.05% 27.15% 42.23%
C >10% 66.88% 96.50% 90.53% 33.49% 48.89%
C >5% 76.15% 93.23% 84.92% 38.13% 52.63%

Table 5: Rejecting unanswerable questions in SQuAD2.0 (11,873 answers total with 5,945 unanswerable questions).
Bold indicates the best score and underlined indicates the second best score.

4 Discussion401

While the results above show that contradiction402

is an important signal for improving performance403

of QA systems in the settings above, contradic-404

tion provides additional unique opportunities for405

improving NLP systems overall. Contradiction406

is a particularly important signal because it can407

improve interpretability. When choosing answers408

based on the least contradicted answer, we have409

information about the other answers and why we410

didn’t select them. Namely, that they were con-411

tradicted. Entailment and QA model confidence412

do not have the same interpretability since all that413

is known about the other answers is they have a414

lower entailment or confidence score, they could415

still be correct or entailed. In addition, we would416

not know if the unselected alternatives were neutral417

or contradicted with respect to the premise.418

Once an answer is known to be contradicted, that419

information can be used to try retrieving another420

answer. In models that support prompting, we can421

use that contradiction as a hint for another attempt422

at an answer. Entailment does not lend itself to this423

iterative refinement of question answering and we424

suggest that future work on utilizing contradiction425

should investigate developing inference techniques426

that take advantage of the contradiction signal.427

Contradiction also provides a unique opportu-428

nity for open domain QA systems which require429

retrieving a context containing the answer. Like430

entailment-based approaches (Harabagiu and Hickl,431

2006) we can try selecting the least contradicted432

passage for a downstream reader. We can also imag-433

ine extending the work of Schuster et al. (2022)434

where contradiction-based approaches could be435

used to retrieve passages that would contradict an 436

answer to determine if the proposed answer might 437

be wrong and thereby develop an iterative inference 438

procedure for open domain settings. Retrieved con- 439

tradicting sources could also be surfaced to a user to 440

help them critically engage with selected answers 441

by the model. 442

Finally contradicted statements are already being 443

used in a generative setting to improve fact veri- 444

fication systems during train time (Wright et al., 445

2022; Pan et al., 2021; Saakyan et al., 2021). Re- 446

cent work (Saunders et al., 2022) has shown that 447

self-criticism is a powerful technique for improv- 448

ing the quality of NLP systems during inference 449

and we believe generating critical statements for 450

model predictions could help with overall perfor- 451

mance, interpretability, and safety by providing 452

outputs with a full picture under which they might 453

be faulty. Future work should assess whether a 454

contradiction-based approaches to improve NLP 455

safety along these lines is an interesting alternative 456

to the current verification-based approaches. 457

5 Limitations 458

Despite the results above, multiple choice QA and 459

extractive QA with a provided context is a limited 460

setting that doesn’t indicate the results would ex- 461

tend to other popular settings where NLI. Given 462

that Laban et al. (2022) shows similar results that 463

contradiction is an important signal in factual con- 464

sistency we are hopeful that it would. 465

5.1 Context Length and NLI datasets 466

Even though there is a greater tendency to use NLI 467

in zero-shot settings (Yin et al., 2020). Domain 468
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transfer is a known issue with using NLI models.469

In particular, NLI datasets tend to focus on textual470

entailment over short passages such as sentence471

pairs and performance degrades when using longer472

passages such as in the datasets we use (Mishra473

et al., 2021). Even when in-domain datasets are474

created (Chen et al., 2021; Khot et al., 2018; Mishra475

et al., 2021). They tend to focus on data augmenta-476

tion strategies that produce two-class NLI datasets477

(entail, not entailed) which wouldn’t give us any478

contradiction signals. Future work should pick up479

on producing models capable of performing tex-480

tual entailment over longer passages and devising481

methods for generating three-class NLI datasets482

so that we can determine if contradictions receive483

the same benefits from those approaches that en-484

tailment has. Additionally we saw that albert-anli485

performed worse than mnli-large and mnli-large486

performs poorly on some datasets indicating that487

we still have much more work to do to improve488

upon NLI in general.489

5.2 Ranking requires alternatives and time490

In the extractive QA setting presented above we491

did not use ranking answer alternatives like we492

used for the multiple choice setting due to lack of493

more diverse outputs. Further work with extrac-494

tive QA models that produce diverse alternatives495

is required. Like other textual entailment based496

systems, this speaks to the computational expense497

involved in generating and evaluating answer alter-498

natives. If we were to apply our method to an open499

domain setting where a set of context passages are500

retrieved, the ranking procedure would require a501

quadratic evaluation procedure for each context502

passage against each reformulated answer candi-503

date (Schuster et al., 2022). Future work should504

look towards comparison approaches that amor-505

tize the computational cost involved in pairwise506

NLI-based ranking techniques such as investigat-507

ing NLI-based dense passage retrieval (Reimers508

and Gurevych, 2019).509

6 Summary510

We have demonstrated that incorporating contradic-511

tion is an important signal for multiple choice and512

extractive QA systems. By proposing a method that513

reformulates answers as hypothesis statements, the514

system is able to rank answers and demonstrate that515

QA model confidence calibrated with entailment516

and contradiction scores outperform QA models by517

themselves as a ranking approach in all cases. In 518

addition, models calibrated with contradiction only 519

or simply selecting the least contradicted answers 520

with NLI only provides a competitive approach to 521

selecting answers that is often on par with or better 522

than entailment-only systems. These results show 523

that we should rethink the paradigm of verifying 524

answers with entailment across NLP setups. While 525

this work is in a relatively limited setting, we pro- 526

vide discussion on how leveraging contradictions 527

could help improve open domain QA as well as 528

other NLP tasks at large. 529

7 Ethics Statement 530

Works addressing NLP safety should be aware of 531

their limitations and be clear about potential harms 532

and misuse of their proposed approaches. Systems 533

that improve safety by verification or support are 534

vulnerable to drawing on untrue and biased sources 535

to justify their outputs. The appearance of credibil- 536

ity given to texts that use citations and appeals to 537

authority means that users should be made aware 538

that the sources they draw on can be wrong. This 539

applies to critical sources as well since a source 540

can provide criticism that is wrong or misleading. 541

However, by presenting contradictions we believe 542

that systems could provide a wider breadth of op- 543

tions for users to engage with critically than models 544

which claim to verify answers by appealing to the 545

authority of a source document. 546
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A Training Setup and Reproducibility 854

Table 7 outlines the pretrained models that we used 855

and datasets they are trained on, all of these models 856

are publicly available on the huggingface model 857

hub under the locations listed. Where space doesn’t 858

allow RoBERTa-RACE is aliased as RACE. In addi- 859

tion to several pretrained models used in the setups 860

described earlier, we trained 3 models, a t5-small 861

model on Demszky et al. (2018) for the QA2D set 862

up where a Rogue1 of 90.73% is achieved on the 863

validation set, DeBERTa-v3 models (xsmall and 864

base) trained on SciQ (Welbl et al., 2017) achieving 865

93.99% accuracy on the xsmall model and 91.76% 866

accuracy on the base model. Where space doesn’t 867

allow the DeBERTa-v3 models are called s-base 868

and s-small. All models were trained using the 869

huggingface trainer API (Wolf et al., 2020) with an 870

Adam optimizer at a learning rate of 5.60e-05 with 871

weight decay of 0.01. All models and inference 872

were performed on 1 Tesla P100 GPU. More details 873

are available on table 7. Full instructions on repro- 874

ducibility as well as trained models are provided in 875

the publicly available code including directions to 876

weights and biases to inspect the training runs, full 877

parameter set, and evaluations suites which will be 878

available upon publication. 879

B Dataset Details 880

The tables (Table 8 and Table 9) below outline the 881

datasets used . Additional details such as train 882

size and preprocessing steps are available in the 883

references provided. When space doesn’t allow 884

CosmosQA is aliased to Cosmos, MCScript to 885

MCS, MCScript-2.0 to MCS2, MCTest to MCT, 886

and RACE-C to RC . As mentioned previously the 887

only preprocessing step used was to filter out ques- 888

tions where no context passage is provided. Finally, 889

validation splits are used in the CosmosQA and 890

QASC case since context passages or gold answers 891

are not made available so readers should be aware 892

of this when reading results on those datasets. 893

C Model size and approach performance 894

analysis 895

In order to help understand how the results pre- 896

sented above differ with model size or approach 897
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Huggingface Name
LIAMF-USP/roberta-large-finetuned-RACE RoBERTa-RACE
bert-large-uncased-whole-word-masking-finetuned-squad BERT-Large
distilbert-base-uncased-distilled-squad DistillBERT
ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli albert-anli
microsoft/deberta-base-mnli mnli-base
microsoft/deberta-v2-xxlarge-mnli mnli-large

Table 6: Pretrained models that we used.

Model Dataset Epochs Score
t5-small Demszky et al. (2018) 20 Rogue1 90.73
deberta-v3-xsmall Welbl et al. (2017) 6 Accuracy 93.99
deberta-v3-base Welbl et al. (2017) 6 Accuracy 91.79

Table 7: The models we trained for or setups with evaluation scores and number of epochs trained.

Dataset Split Size Reference
CosmosQA validation 2985 Huang et al. (2019)
DREAM test 2041 Sun et al. (2019)
MCScript test 2797 Ostermann et al. (2018)
MCScript-2.0 test 3610 Ostermann et al. (2019))
MCTest test 840 Richardson et al. (2013)
QASC validation 926 Khot et al. (2020)
RACE test 4934 Lai et al. (2017)
RACE-C test 712 Liang et al. (2019))
SciQ test 884 Welbl et al. (2017)

Table 8: Datasets used for the multiple choice setting including split used and sample size. Validation splits were
used in the case of CosmosQA since the test split is not publicly available and QASC since context passages or gold
answers are not available.

we have presented the following supplemental ta-898

bles. Table 10 shows differences in performance899

between mnli-base, mnli-large, and albert-anli. Ta-900

ble 11 shows selective QA accuracies in the multi-901

ple choice setting where answer selection is done902

through ranking before we rank answers for se-903

lective QA. Selective QA on extractive QA using904

DistillBERT (table 12) shows that QA+E+C does905

best in all cases and contradiction only does second906

best at 50% coverage.907

D Regression Analysis908

Table 13 shows a supplemental regression analy-909

sis for each calibration model used in the multiple910

choice settings. The results indicate that as the911

MNLI model gets larger the calibration model uses912

its NLI confidence scores more. Importantly entail-913

ment coefficients are stronger than contradiction914

coefficients in all cases and this should be kept in915

mind when considering the results presented in this916

paper. 917

E Correlation Analysis 918

Since we are using the NLI and QA model scores 919

to construct the setups above, we’d like to know 920

how these factors correlate with the correct an- 921

swer. Table 15 shows how each NLI class cor- 922

relates both by score and by actual classification 923

(score > 50%) as compared against QA model con- 924

fidence score. The multiple choice analysis shows 925

answers from the RoBERTa-RACE model and the 926

extractive QA analysis shows answers from the 927

BERT-large model trained on SQuAD. The correla- 928

tion analysis presents Spearman rank correlations. 929

What we see is that in the multiple choice setting 930

the confidence score has a strong correlation with 931

the correct answer which makes sense given the 932

confidence score is a softmax over the multiple 933

choice classes. Extractive QA confidence scores 934

have a much weaker correlation and tend to have 935
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Dataset Size Reference
BioASQ 1504 Fisch et al. (2019)
TriviaQA 7785
HotpotQA 5901
SQuAD 10506
Natural Questions 12836
SQuAD2 11871 Rajpurkar et al. (2018)
SQuAD-adv 5347 (Jia and Liang, 2017)

Table 9: Extractive QA datasets used. Validation sets are used on the SQuAD2.0 and SQuAD adversarial datasets
and MRQA 2019 dev sets are used for the MRQA 2019 sets.

Model Cosmos Dream MCS MCS2 MCT QASC RACE RC SciQ Avg
SciQ-base 18.46 43.80 61.99 63.71 44.76 93.41 30.97 27.39 95.28 53.31
SciQ-small 25.46 48.26 60.28 66.04 59.76 90.60 35.56 30.62 98.09 57.19
RACE 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.09
mnli-base
QA + E + C 64.32 82.66 89.63 87.01 90.71 98.27 76.95 69.80 98.09 84.16
QA + E 64.25 82.66 89.63 86.98 90.71 98.27 76.95 69.80 97.96 84.14
QA + C 64.29 82.56 89.63 87.01 90.60 98.16 76.93 69.80 97.96 84.1
E + C 33.03 62.27 76.76 72.11 68.57 92.66 45.16 34.41 88.01 63.66
E 27.81 62.47 79.37 71.94 68.81 92.66 43.48 34.41 88.01 63.22
C 43.45 59.19 70.18 69.97 67.50 81.86 41.81 32.58 87.37 61.55
albert-anli
QA + E + C 64.19 82.56 89.70 87.06 90.48 98.16 76.93 69.80 97.96 84.09
QA + E 64.19 82.56 89.70 87.06 90.60 98.16 76.93 69.80 97.96 84.11
QA + C 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.09
E + C 35.71 68.20 79.55 73.88 77.50 91.79 49.05 39.47 90.82 67.33
E 33.67 68.35 79.91 73.19 77.38 91.90 49.07 39.19 90.94 67.07
C 45.16 63.74 73.58 72.71 73.33 77.86 46.34 38.20 87.24 64.24

Table 10: Accuracy scores in the multiple choice setting for various NLI models used. Calibration was with the
RoBERTA-RACE model.
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Dataset QA+E+C QA+E QA+C E+C E C QA
20% CosmosQA 77.55 67.17 83.25 20.10 27.47 67.50 88.61

DREAM 98.28 96.32 96.81 81.13 91.91 93.87 98.28
MCScript 99.82 99.64 99.46 93.02 98.93 96.96 99.82
MCScript-2.0 99.58 99.03 97.37 92.24 97.37 95.01 99.58
MCTest 100 100 99.40 85.12 97.02 97.02 98.81
QASC 100 100 100 97.30 100 99.46 100
RACE 94.93 92.13 90.17 62.73 76.71 75.05 98.24
RACE-C 88.73 85.21 86.62 71.13 74.65 69.01 93.66
SciQ 100 100 100 82.05 100 96.15 100
Avg 95.43 93.28 94.79 76.09 84.90 87.78 97.45

50% CosmosQA 80.29 70.78 80.70 32.17 34.72 64.88 76.47
DREAM 95.10 93.63 93.63 85.20 89.41 88.33 96.67
MCScript 98.57 97.85 97.14 94.71 95.99 92.70 98.78
MCScript-2.0 96.40 94.46 96.07 91.02 91.75 91.69 98.01
MCTest 99.52 98.81 99.76 91.43 95.24 96.19 99.52
QASC 100 99.78 99.78 98.27 98.70 98.49 100
RACE 90.11 87.22 85.23 67.89 71.70 68.18 93.88
RACE-C 85.11 78.09 77.25 66.57 66.85 55.06 87.36
SciQ 100 100 99.74 89.03 96.43 96.43 100
Avg 93.90 91.18 92.14 79.59 82.31 83.55 94.52

Table 11: Selective QA accuracies in the multiple choice setting where answer selection is done through ranking
before we rank answers for selective QA.

Dataset QA+E+C QA+E QA+C E+C E C QA
20% BioASQ 70.97 70.41 71.55 74.07 74.07 74.34 68.99

HotpotQA 73.44 73.08 70.88 71.59 71.51 70.41 69.41
NaturalQuestions 85.59 85.29 85.45 78.46 78.46 80.53 83.27
SQuAD 96.22 96.45 95.77 83.15 83.09 81.37 97.15
SQuAD-adv 40.39 39.75 39.49 40.07 39.56 40.59 31.98
SQuAD2 35.46 35.24 33.64 36.36 36.13 36.66 25.95
TriviaQA 64.96 64.68 64.55 52.67 52.09 52.56 63.98
Avg 66.72 66.41 65.90 62.34 62.13 62.35 62.96

50% BioASQ 65.96 65.92 64.37 63.53 63.53 66.95 64.79
HotpotQA 64.42 64.21 63.65 65.88 65.85 66.91 62.81
NaturalQuestions 72.28 71.99 70.82 67.54 67.51 74.18 69.95
SQuAD 92.56 92.57 92.34 81.86 82.21 80.95 92.54
SQuAD-adv 33.69 32.90 33.45 38.74 38.22 38.52 31.89
SQuAD2 26.68 25.70 26.00 32.95 32.61 32.83 23.52
TriviaQA 58.40 58.41 58.25 51.43 51.18 52.99 58.25
Avg 59.14 58.81 58.41 57.42 57.30 59.05 57.68

Table 12: SelectiveQA on extractive QA using DistillBERT. Note that QA+E+C does best in all cases and
contradiction only does second best at 50% coverage.
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QA Model NLI Model Combination Confidence Entailment Contradiction Acc
SciQ mnli-base QA + C 4.13 -1.06 0.99

QA + E 3.90 1.37 0.99
QA + E + C 3.83 1.22 -0.76 0.99
E + C 2.56 -1.47 0.86

mnli-large QA + C 3.98 -1.32 0.99
QA + E 3.78 1.55 0.99
QA + E + C 3.65 1.31 -0.97 0.99
E + C 2.63 -1.72 0.91

RACE mnli-base QA + C 3.04 -0.15 0.89
QA + E 3.03 0.27 0.89
QA + E + C 3.02 0.26 -0.14 0.89
E + C 0.73 -0.46 0.75

mnli-large QA + C 2.97 0.00 -0.81 0.89
QA + E 2.91 0.98 0.89
QA + E + C 2.85 0.92 -0.75 0.89
E + C 1.76 -1.12 0.78

Table 13: Regression analysis for each mnli-based nli model with each QA model used calibration with logistic
regression multiple choice settings. Accuracy is the evaluation metric used.

Contradiction Entailment Neutral
Dataset QA Score Class Score Class Score Class
CosmosQA 0.53 -0.34 -0.17 0.05 -0.01 0.21 0.16
DREAM 0.72 -0.57 -0.35 0.54 0.50 -0.11 -0.13
MCScript 0.80 -0.59 -0.42 0.59 0.50 -0.04 -0.08
MCScript2 0.77 -0.50 -0.32 0.41 0.37 -0.04 -0.05
MCTest 0.73 -0.65 -0.47 0.64 0.69 -0.20 -0.15
QASC 0.57 -0.54 -0.28 0.55 0.67 -0.50 -0.26
RACE 0.65 -0.37 -0.20 0.35 0.34 -0.11 -0.11
RACE-C 0.59 -0.24 -0.13 0.18 0.25 -0.09 -0.11
SciQ 0.75 -0.69 -0.47 0.68 0.67 -0.42 -0.19

Table 14: Correlation analysis (Spearman rank correlation) per dataset in the multiple choice setting. RoBERTa-
RACE is used for the QA scores.

Contradiction Entailment Neutral QA
multiple choice Score -0.47 0.37 -0.06 0.71

Class -0.28 0.38 -0.06
extractive QA Score -0.16 0.31 -0.12 0.19

Class -0.15 0.39 -0.29

Table 15: Correlation analysis (Spearman rank correlation) in the multiple choice and extractive QA settings.
RoBERTa-RACE is the QA model used for multiple choice QA scores and BERT-large is used for the extractive QA
scores.
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less correlation than entailment has with the correct936

answer. Despite the results presented above, con-937

tradiction only has a notable correlation with the938

correct answer when the score is used rather than939

the classification. This is another proof point of our940

approach of using confidence scores for NLI rather941

than classifications. Interestingly in the extractive942

QA case the neutral class is more negatively corre-943

lated when selecting for contradiction when using944

classification. Our conjecture would be that in the945

extractive QA case we don’t have much to compare946

against. When looking at the per dataset corre-947

lations for the multiple choice setting (Table 14)948

we see that in most cases, other than the QA con-949

fidence scores, the contradiction scores have the950

strongest correlations with the correct answer out951

of any NLI class and neutral, as we would expect,952

tends to have very weak correlations. We do not953

present the per dataset correlation for extractive QA954

as they are very weak, which we again hypothesize955

comes from having no answers to compare with.956
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