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Abstract

Ensuring the safety of question answering
(QA) systems is critical for deploying them
in biomedical and scientific domains. One ap-
proach to improving these systems uses nat-
ural language inference (NLI) to determine
whether answers are supported, or entailed,
by some background context. However, these
systems are vulnerable to supporting an an-
swer with a source that is wrong or mislead-
ing. Our work proposes a critical approach
by selecting answers based on whether they
have been contradicted by some background
context. We evaluate this system on multiple
choice and extractive QA and find that while
the contradiction-based systems are competi-
tive with and often better than entailment-only
systems, models that incorporate contradiction,
entailment, and QA model confidence scores
together are the best. Based on this result,
we explore unique opportunities for leverag-
ing contradiction-based approaches such for
improving interpretability and selecting better
answers.

1 Introduction

Safety in NLP systems is an unresolved issue,
particularly in biomedical and scientific contexts
where known issues such as hallucination and over-
confidence provide obstacles for deploying them (Ji
etal., 2022; Kell et al., 2021). Utilizing natural lan-
guage inference (NLI) as a method for improving
the safety and performance of NLP research is an
active area of research (Li et al., 2022). However,
these systems typically focus exclusively on en-
tailment to verify answers. Similar research looks
at building self-supporting NLP systems (Nakano
et al., 2022; Menick et al., 2022) with the goal of
improving safety by verifying model outputs with
some external supporting source.

These developments are troubling since a verifi-
cation or self-supporting approach is vulnerable to
selecting supporting sources that might be wrong.

Premise Hypothesis
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Metals represent approximately 25% of the elemental makeup
of the Earth's crust, The bulk of these metals, primarily
aluminum, iron, calcium, sodium, potassium, and
are typically found in combined form. The most abundant metal
is aluminum, which occurs almost exclusively as the ionic
mineral bauxite. The other most common metals, including iron,
sodium, potassium, magnesium, and calcium, are also found
primarily as the cationic portion of an ionic compound. Very few. \
metals actually ocour naturally as pure substances. The ones |\ \{
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metals.

‘The most abundant metal of the earth'’s crust is magnetite.
\.| CONTRADICTION: 0.967

NEUTRAL: 0030

ENTAILMENT. 0.0016

‘The most abundant metal of the earth's crust is copper. }

Question: The most abundant metal of the earth's crust is aluminum.
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Figure 1: A QA model is used to produce answers which
are reformulated as hypothesis statements to determine
if they are entailed or contradicted by a premise. The
answers are ranked by the NLI class scores to select the
best answer.

Since supported or verified answers look more cred-
ible, a user might be mislead into uncritically ac-
cepting model outputs then they otherwise would
be. Even though we could also find sources that
wrongly contradict an answer, surfacing sources
that contradict an answer might help a user engage
critically and help a QA system select the least con-
tradicted answers. Therefore we ask: under NLI-
based setups how do contradictions contribute to
the performance of question answering (QA) and
how is this different from entailment-based sys-
tems? By exploring this question, we hope to show
why researchers should be critical of the paradigm
of verification in NLP systems and why future work
utilizing critical and contradicted statements could
provide unexplored opportunities for improving
NLP systems.

Our work makes the following contributions. We
propose a method (Figure 1) that reformulates an-
swers under QA as hypothesis statements which
are then used with three-class NLI to rank and se-
lect answers. We demonstrate, across 9 multiple
choice datasets and 7 extractive QA datasets mod-
els, that models which use QA confidence scores
as well as both entailment and contradiction scores



outperform all other setups. In addition, selecting
the least contradicted answer provides a competi-
tive approach to selecting answers that is often on
par with or better than entailment-based systems.
While this work is in a relatively limited setting, we
suggest how leveraging contradictions could help
improve QA inference in ways that are not possible
with entailment-based systems.

1.1 Related work

NLI for QA has been explored by several authors
(see the overview in Paramasivam and Nirmala
(2021)) showing performance improvements in
multiple choice (Mishra et al., 2021), extractive
(Chen et al., 2021), open domain (Harabagiu and
Hickl, 2006) and multihop (Trivedi et al., 2019)
settings. These approaches have thus far focused
on using entailment as a verification mechanism.
Chen et al. (2021) find that under selective question
answering (Kamath et al., 2020) for extractive QA,
NLI systems can verify QA systems’ predictions.
However, their result is limited to only selecting
a top k % of answers and they do not provide an
approach for improving QA systems overall perfor-
mance nor show what their results would have been
like if they incorporated the contradiction signal.
Mishra et al. (2021) explores the use of entailment
for multiple choice and fact checking settings and
finds that not only do NLI models do well at these
tasks by themselves but when they are adapted
using in-domain data and longer premises they per-
form even better. Despite this, Mishra et al. (2021)
uses a two-class NLI set up (entailed or not en-
tailed) which means there would be no information
about the effect of using the contradiction class if
this approach was used.

Factual consistency is the only domain that
leverages contradictions directly. Factual consis-
tency seeks to ensure that a collection of utterances
do not contain contradictions such as unfaithfulness
towards a source document (see Li et al. (2022) for
an overview). Here approaches to improve faith-
fulness are still focused on entailment. Laban et al.
(2022) proposes a NLI-based method to ensure the
consistency of a summary with a source document
that incorporates contradiction and neutral scores
with entailment scores beating out previous sys-
tems. Interestingly, they show that a combination
of entailment and contradiction achieves the best
results over entailment alone. Similarly, QAFactE-
val (Fabbri et al., 2022) improves on Laban et al.

(2022) and maintains the approach of incorporat-
ing all NLI class scores. Schuster et al. (2022) and
Hsu et al. (2021) develop interesting cases where
contradictions are leveraged to identify consistency
errors within or across wikipedia articles illustrat-
ing the further utility of contradictions. Finally,
contradiction detection has surfaced as an impor-
tant tool in generating dialogues that are consistent
with a persona (Nie et al., 2021; Song et al., 2020).
To our knowledge, this is the first work to directly
leverage contradictions for QA.

2 Method

2.1 Overview

The proposed approach is similar to Chen et al.
(2021) and Mishra et al. (2021) where question an-
swer pairs are turned into declarative statements
(QA2D) (see Demszky et al. (2018)). QA mod-
els for each setting are used to produce answers
and confidence scores for each answer which are
later used to train calibration models. Three-class
NLI classification (entailment, neutral, contradic-
tion) is performed on the provided QA contexts
(the premises) with the hypotheses produced from
the earlier QA2D model. Like Chen et al. (2021) a
calibration method is used that combines the con-
fidence scores from the QA and NLI models. In
the multiple choice setting, answers are selected
among a set of alternatives for a given question
through ranking by a score produced by the mod-
els above. In the extractive QA case, questions
are ranked for selective QA (Kamath et al., 2020)
where a top k£ number of answers pre-selected by a
QA model are selected by how confident the model
is in answering a question.

2.2 QA models

For the multiple choice setting, we used RoBERTa
large (Liu et al., 2019) finetuned on the RACE
dataset (Lai et al., 2017) as well as two DeBERTa
v3 (He et al., 2021a) variants (base and xsmall)
finetuned on SciQ (Welbl et al., 2017). For the
extractive QA setting, we used DistillBERT (Sanh
et al., 2020) and BERT-Large (Devlin et al., 2019))
models trained on SQuAD (Rajpurkar et al., 2016).
More details on model selection, training, and
validation are available in Appendix A. In both
cases, answers are selected given a context pro-
vided by the dataset and those contexts are used as
the premise for NLI.



23 QA2D

A QA2D model reformulates a question-answer
pair to a declarative statement (Demszky et al.,
2018). As noted in Chen et al. (2021) and Mishra
et al. (2021), the QA2D reformulation is critical to
using NLI models in QA since the proposed answer
needs to match the format of NLI. We trained a T5-
small model (Raffel et al., 2020) on the dataset pro-
posed by Demszky et al. (2018) for QA2D since we
found almost no noticeable differences in perfor-
mance in larger models. Unlike Chen et al. (2021),
we found that regardless of size, these QA2D mod-
els struggled with long questions or questions with
complex syntax and would often leave the answer
out of the statement. In order to solve this, con-
strained decoding that required the answer to be
in the statement was tried. However, this often
produced ungrammatical or nonsensical statements.
We settled with the following heuristic to postpro-
cess QA2D outputs: If less than 50% of the tokens
in the answer were in the statement then we ap-
pended the answer to the end of the statement. 50%
was used to account for rephrasing the answer or
swapping pronouns. While some statements re-
sulted in answer redundancy, this was better than
having hypotheses which left out the answer. Fu-
ture work on QA2D should focus on how these
models can be used outside of the domains in the
dataset provided by Demszky et al. (2018).

24 NLI

NLI is then used to classify whether the reformu-
lated answer is contradicted, entailed, or neutral
w.r.t to a context passage. The whole context was
used as Schuster et al. (2022) and Mishra et al.
(2021) demonstrated that long premises still per-
formed adequate though not as well as sentence-
length premises. Using the whole context avoids
needing to use decontextualization as is required in
Chen et al. (2021). We used two DeBERTa-based
models (He et al., 2021b) trained on the MNLI
dataset (Williams et al., 2018) (called mnli-base
and mnli-large) and an ALBERT model (Lan et al.,
2019) trained on the ANLI dataset in addition to
various other NLI datasets (called albert-anli) (Nie
et al., 2020). After inference, the confidence scores
are then used for each class in the procedures be-
low.

2.5 Calibration models

Like Kamath et al. (2020) and Chen et al. (2021)
we developed a set of calibration models in order to
do answer ranking. A calibration model is trained
on a set of posterior probabilities from downstream
models to predict whether an answer is correct.
To compare the effect of using different combina-
tions of NLI class confidence scores we trained a
logistic regression model on linear combinations
of the following features: QA indicates that the
QA model confidence score is being used, E indi-
cates the entailment score is used, C indicates the
contradiction score is used and N indicates the neu-
tral score. Like Chen et al. (2021), all calibration
models are trained on a holdout set of 100 sam-
ples from a single domain using logistic regression
which predicts, given the confidence scores of the
downstream models, whether the answer is correct.
A multi-domain calibration approach like in Ka-
math et al. (2020) was not used since the focus was
a minimum experiment to test the viability of lever-
aging different NLI classifications. To illustrate the
characteristics of the calibration models, Appendix
D presents a regression analysis for the multiple
choice setting.

2.6 Answer ranking

Similar to Harabagiu and Hickl (2006), answers
are ranked based on the highest probability from
the calibration model o given a linear combination
of the QA or NLI scores given an answer n € N
answer set. When a single feature is used such as
NLI class or QA class no calibration is made and
o is simply the identity of the confidence score. In
the case of contradiction only o is the inverse of the
contradiction confidence score, indicating the least
contradicted answer is being selected. Formally
our approach can be described as:

argmax 0(QA,; NLI,)
N

For the multiple choice setting we used this for se-
lecting the answer to a given question among a set
of alternative answers N. We found that using a top
K = 4 approach to extractive QA produced almost
the same answer alternatives with slightly different
spans so we did not use the alternatives ranking
approach with extractive QA. For both the multi-
ple choice and extractive QA settings we ranked
answers like in Kamath et al. (2020), where a top
n set of questions at a certain coverage coverage



threshold & is selected, resulting in a set of top
answers the model is most confident in answering.

2.7 Datasets

For both settings, datasets where the context pas-
sage is already available were used. For the mul-
tiple choice setting a set of 9 datasets were used.
Two of those datasets are in-domain for the QA and
calibration, RACE and SciQ. For extractive QA 5
of the datasets from the MRQA 2019 task were
selected (Fisch et al., 2019) as well as SQuAD 2.0
(Rajpurkar et al., 2018) and SQuAD adversarial
(Jia and Liang, 2017) for a total of 7 extractive QA
datasets. The in-domain dataset for the extractive
QA model is SQuAD and the dataset used for cali-
bration is Natural Questions since that is what was
used by Chen et al. (2021). The only preprocessing
done was to remove questions where the context
was empty. Appendix B describes full details on
the datasets used for evaluation.

3 Results

3.1 Ranking multiple choice

In tables 1 (NLI only) and 2 (calibrated) we present
the accuracy achieved on each of the 9 datasets
for the mutiple choice setting. We show results
with each QA model and the mnli-large model for
NLI (Appendix C shows results for alberta-anli and
mnli-base which perform worse but generally re-
flect the same trends). On the NLI-only results pre-
sented in table 1, the ROBERTA-RACE QA model
outperforms other approaches on most datasets ex-
cept MCTest and the combination of entailment
and contradiction tends to do second best. Notably,
the SciQ models do much worse than the NLI-
only ranking for either class except on in-domain
questions for SciQ and the similar QASC dataset.
This could possible a result of the RACE domain
being more generic than the SciQ domain or the
RACE dataset being larger. The results show that
an NLI-only approach can be competitive with a
robust QA model and better than a more limited
QA model. Notably, incorporating the contradic-
tion scores with the entailment scores is better than
entailment alone and that selecting the least contra-
dicted answer is quite competitive with selecting
the most entailed answer.

The results from the calibration models show
that the NLI calibrated models outperform QA only
in all cases (they perform the same as ROBERTA-
RACE in the in-domain case). The best calibra-

tion incorporates QA confidence, entailment, and
contradiction (QA+E+C) achieving an average ac-
curacy of 84.57% over 84.09% from RoBERTa-
RACE. The second best approach is the calibration
with contradiction only (84.33%), however only
slightly over entailment only (84.31%). To inspect
these trends further, a correlation analysis in Ap-
pendix E is provided on how each NLI class and
QA confidence score correlates with the correct
answer. Interestingly, other than QA model confi-
dence scores, it is contradiction confidence score
that has the strongest correlation with the correct
answer further demonstrating the utility of leverag-
ing contradictions.

3.2 Selective QA

For selective QA evaluation in both settings, the
QA model selects the answer and then we evaluate
the top 20% or 50% of those answers after sorting
them by the approaches we outlined earlier. In
the multiple choice setting we do not select the
answers for individual questions with the ranking
as proposed in the method above since the approach
under performed the QA model. Those results are
available in Appendix C.

3.2.1 Selective QA for multiple choice QA

In table 3, the first thing to note is that the QA + C
model performs the best on selective QA, achiev-
ing best or second best accuracy on almost every
dataset for an average of 97.57% at 20% coverage
and 94.74% at 50% coverage over 97.45% at 20%
coverage and 94.52% at 50% coverage achieved by
the ROBERTA-RACE QA model. This is especially
striking at 50% coverage where the QA model only
does significantly better on the in-domain RACE
datasets. The QA+C model is the only model to
outperform the QA model ranking by confidence
score. The NLI only models can be competitive
with the calibrated models. Sorting by the least
contradicted achieves good performance and is of-
ten better (94.79% @ 20% / 92.13% @ 50%), than
sorting by the most entailed (93.50% @ 20% /
91.24% @ 50%) or a combination of entailed and
contradicted (93.55% @ 20% / 91.89% @ 50%).
These results are inline with our intuition that the
less contradicted an answer is the more likely it
is correct even in cases where there is uncertainty
about its entailment.



Model Cosmos DREAM MCS MCS2 MCT QASC RACE R¢ SciQ  Avg

s-base  18.46 43.80 61.99 6371 44776 93.41 3097 2739 95.28 53.30
s-small  25.46 48.26 60.28 66.04 59.76 90.60 3556 30.62 98.09 57.18
QA 64.22 82.56 89.70 86.98 9048 98.16 7693 69.80 97.96 84.08
E+C 44.36 80.94 85.52 8499 90.60 9644 6429 5140 9247 76.77
E 36.18 79.03 86.02 79.72 89.88 9590 62.14 49.72 9196 74.50
C 59.26 78.98 83.12 84.43 89.29 92.76 6274 47.05 91.58 76.58

Table 1: Accuracy scores on NLI-only answer ranking. ROBERTa-RACE is indicated as QA. The best scores are
bold and the second best are underlined.

Model Cosmos DREAM MCS MCS2 MCT QASC RACE R¢ SciQ  Avg

s-base 18.46 43.80 61.99 6371 4476 9341 3097 2739 9528 53.30
s-small 25.46 48.26 60.28 66.04 59.76 90.60 3556 30.62 98.09 57.18
QA 64.22 82.56 89.70 8698 90.48 98.16 7693 69.80 97.96 84.08

QA+E+C  64.72 83.19 90.06 87.59 9143 98.60 77.53 69.80 98.21 84.57
QA+E 64.32 82.85 89.92 87.29 91.07 9849 77.18 69.66 98.09 84.31
QA+C 64.82 82.75 89.88 87.29 90.83 98.38 77.16 69.80 98.09 84.33

Table 2: Accuracy scores on calibrated NLI answer ranking. Calibrations are with the RoOBERTa-RACE model
(QA). The best scores are bold and the second best are underlined.

Database QA +E+C QA+C QA+E E+C E C QA
20% CosmosQA  77.55 91.12 76838 69.18 68.34 8325 88.61
DREAM 98.28 98.77 9828 9632 9632 96.81 98.28
MCScript 99.82 99.46  99.82 99.64 99.64 99.46 99.82
MCScript-2.0  99.58 99.72 9945 99.17 99.03 97.37 99.58
MCTest 100 9940 100 100 100  99.40 98.81
QASC 100 100 100 100 100 100 100
RACE 94.93 96.69 9472 9244 9224 90.17 98.24
R_C 88.73 0206 89.44 8521 8592 86.62 93.66
SciQ 100 100 100 100 100 100 100
Avg 95.43 97.57 9540 9355 93.50 94.79 97.45
50% CosmosQA  80.29 8170 7694 7580 70.64 80.63 7647
DREAM 95.10 96.86 9490 93.63 93.63 93.63 96.67
MCScript 98.57 08.64 9828 98.00 97.93 97.14 98.78
MCScript-2.0  96.40 98.23 9584 9468 9440 96.01 98.01
MCTest 99.52 99.76  99.52 99.05 99.05 99.76 99.52
QASC 100 100 100  99.78 99.78 99.78 100
RACE 90.11 92.68 89.99 87.71 8738 8523 93.88
R_C 85.11 84.83 8539 7837 7837 7725 87.36
SciQ 100 100 100 100 100  99.74 100
Avg 93.90 9474 9343 91.89 9124 92.13 94.52

Table 3: Selective QA for the multiple choice with accuracy scores at 20% and 50% coverage of the dataset.
Calibrations and QA confidence are all from RoBERTa-RACE where RACE is the in-domain dataset.



Dataset QA+E+C QA+E QA+C E+C E C QA
20% BioASQ 85.04 85.06 83.10 7422 7422 7547 8299
HotpotQA 86.62 86.69 85.80 80.60 80.60 79.82 85.33
NaturalQuestions 91.84 91.68 92.18 79.89 79.87 82.09 90.98
SQuAD 98.26 98.76  98.17 92.37 9248 90.88 99.04
SQuAD-adv 43.99 43.98 4357 43774 43.60 42.81 39.83
SQuAD2 37.64 37.56 36.07 3743 3731 37.68 30.52
TriviaQA 81.33 81.21 8036 6553 6525 69.13 80.68
Avg 74.96 7499 7419 67.68 67.62 6827 7277
50% BioASQ 76.13 76.04 7551 7149 7149 7297 75.49
HotpotQA 79.37 7930 7895 7743 7743 7131 78.74
NaturalQuestions  84.53 8448 8324 7496 7493 78.62 8247
SQuAD 96.98 9697 97.01 9158 91.52 91.19 97.00
SQuAD-adv 41.80 41.16 4149 4276 42.79 42.03 40.26
SQuAD2 29.41 28.45 2877 3443 34.14 3439 26.18
TriviaQA 74.30 7437 7423 65.05 6493 68.08 74.21
Avg 68.93 68.68 68.46 6539 6532 6637 67.76

Table 4: Selective QA for extractive QA with F1 scores at 20% and 50% coverage. Calibrated models and QA use

the BERT-large model.

3.2.2 SelectiveQA for extractive QA

For the extractive QA setting we present the same
analysis in table 4. Similar trends to multiple
choice QA are present where calibration with con-
tradiction only, QA + C, has better average F1
scores than the QA model (74.19% vs 72.77% at
20%, 68.46% vs 67.76% at 50%). Of the NLI-only
ranking, selecting the least contradicted does best.
Although only slightly better than the QA + C, the
results show that the QA + E model does best at
20% coverage and the QA + E + C model does best
at 50% coverage. This indicates that entailment is
still an important signal, albeit more powerful when
combined with contradiction. Appendix C contains
a comparison with the smaller DistillBERT model
which shows similar results. Notably with a smaller
model QA+E+C does best in all cases and that se-
lecting the least contradicted answer without any
calibration does second best at 50% coverage.

3.3 Answer Rejection on SQuAD 2.0

In order to explore how useful contradiction might
be in other settings, we evaluated the answer re-
jection task in SQuAD 2.0 (Rajpurkar et al., 2018)
using our BERT-large model. This task evaluates
how well a model does at abstaining from answer-
ing a question that is unanswerable. Three setups
are used: rejecting answers by QA confidence,
by entailment score, and by contradiction score.
When selecting by least entailed answers the prob-

lem becomes a two-class NLI (entailed v not en-
tailed) which was previously looked at by Chen
et al. (2021).

Table 5 shows that the NLI-based setups outper-
form QA confidence setups in all cases. Interest-
ingly, the difference between rejecting answers that
are not entailed and rejecting answers that have
been contradicted appears to reflect a precision ver-
sus recall trade off. The overall best model (best
F1 score) is achieved by rejecting answers where
the contradiction score was greater than 5%, suc-
cessfully rejecting 76.15% answers and accepting
93.23% answerable questions. Rejecting answers if
they are not entailed, where E < 50%, achieves the
second best F1 score and illustrates an interesting
dynamic. E < 50% has the best recall (38.52%),
successfully rejecting the most answers, while C
> 50% has the best precision (97.06%), accepting
the most answerable questions. This result shows
that if we want to build systems that err on the
side of rejecting answers not entailed has an ad-
vantage. Conversely, if we want to build systems
that are better at rejecting only answers that should
be rejected then contradicted is a better strategy.
The results highlight the utility of using contradic-
tion confidence scores even if they are low which
gives credence to using the contradiction score as a
meaningful signal.



Reject Accept  Precision Recall F1
QA <50% 46.71% 86.15% 62.81%  23.39% 34.09%
QA <25% 2229% 9545% 71.05% 11.16% 19.29%
QA<T5% T71.22% 72.86% 56.79%  35.66% 43.81%
E <5% 43.80% 98.74% 94.55%  21.93% 35.61%
E <25% 63.82% 96.58% 90.33%  31.95% 47.21%
E <10% 52.14% 98.02% 92.95%  26.11% 40.77%
E <50% 76.94% 91.52% 81.96%  38.52% 52.41%
C>50% 42.78% 99.35% 97.06%  21.42% 35.09%
C>25% 5421% 98.59% 95.05%  27.15% 42.23%
C>10% 66.88% 96.50% 90.53%  33.49% 48.89%
C>5% 76.15% 93.23% 84.92%  38.13% 52.63%

Table 5: Rejecting unanswerable questions in SQuAD2.0 (11,873 answers total with 5,945 unanswerable questions).
Bold indicates the best score and underlined indicates the second best score.

4 Discussion

While the results above show that contradiction
is an important signal for improving performance
of QA systems in the settings above, contradic-
tion provides additional unique opportunities for
improving NLP systems overall. Contradiction
is a particularly important signal because it can
improve interpretability. When choosing answers
based on the least contradicted answer, we have
information about the other answers and why we
didn’t select them. Namely, that they were con-
tradicted. Entailment and QA model confidence
do not have the same interpretability since all that
is known about the other answers is they have a
lower entailment or confidence score, they could
still be correct or entailed. In addition, we would
not know if the unselected alternatives were neutral
or contradicted with respect to the premise.

Once an answer is known to be contradicted, that
information can be used to try retrieving another
answer. In models that support prompting, we can
use that contradiction as a hint for another attempt
at an answer. Entailment does not lend itself to this
iterative refinement of question answering and we
suggest that future work on utilizing contradiction
should investigate developing inference techniques
that take advantage of the contradiction signal.

Contradiction also provides a unique opportu-
nity for open domain QA systems which require
retrieving a context containing the answer. Like
entailment-based approaches (Harabagiu and Hickl,
2006) we can try selecting the least contradicted
passage for a downstream reader. We can also imag-
ine extending the work of Schuster et al. (2022)
where contradiction-based approaches could be

used to retrieve passages that would contradict an
answer to determine if the proposed answer might
be wrong and thereby develop an iterative inference
procedure for open domain settings. Retrieved con-
tradicting sources could also be surfaced to a user to
help them critically engage with selected answers
by the model.

Finally contradicted statements are already being
used in a generative setting to improve fact veri-
fication systems during train time (Wright et al.,
2022; Pan et al., 2021; Saakyan et al., 2021). Re-
cent work (Saunders et al., 2022) has shown that
self-criticism is a powerful technique for improv-
ing the quality of NLP systems during inference
and we believe generating critical statements for
model predictions could help with overall perfor-
mance, interpretability, and safety by providing
outputs with a full picture under which they might
be faulty. Future work should assess whether a
contradiction-based approaches to improve NLP
safety along these lines is an interesting alternative
to the current verification-based approaches.

5 Limitations

Despite the results above, multiple choice QA and
extractive QA with a provided context is a limited
setting that doesn’t indicate the results would ex-
tend to other popular settings where NLI. Given
that Laban et al. (2022) shows similar results that
contradiction is an important signal in factual con-
sistency we are hopeful that it would.

5.1 Context Length and NLI datasets

Even though there is a greater tendency to use NLI
in zero-shot settings (Yin et al., 2020). Domain



transfer is a known issue with using NLI models.
In particular, NLI datasets tend to focus on textual
entailment over short passages such as sentence
pairs and performance degrades when using longer
passages such as in the datasets we use (Mishra
et al., 2021). Even when in-domain datasets are
created (Chen et al., 2021; Khot et al., 2018; Mishra
et al., 2021). They tend to focus on data augmenta-
tion strategies that produce two-class NLI datasets
(entail, not entailed) which wouldn’t give us any
contradiction signals. Future work should pick up
on producing models capable of performing tex-
tual entailment over longer passages and devising
methods for generating three-class NLI datasets
so that we can determine if contradictions receive
the same benefits from those approaches that en-
tailment has. Additionally we saw that albert-anli
performed worse than mnli-large and mnli-large
performs poorly on some datasets indicating that
we still have much more work to do to improve
upon NLI in general.

5.2 Ranking requires alternatives and time

In the extractive QA setting presented above we
did not use ranking answer alternatives like we
used for the multiple choice setting due to lack of
more diverse outputs. Further work with extrac-
tive QA models that produce diverse alternatives
is required. Like other textual entailment based
systems, this speaks to the computational expense
involved in generating and evaluating answer alter-
natives. If we were to apply our method to an open
domain setting where a set of context passages are
retrieved, the ranking procedure would require a
quadratic evaluation procedure for each context
passage against each reformulated answer candi-
date (Schuster et al., 2022). Future work should
look towards comparison approaches that amor-
tize the computational cost involved in pairwise
NLI-based ranking techniques such as investigat-
ing NLI-based dense passage retrieval (Reimers
and Gurevych, 2019).

6 Summary

We have demonstrated that incorporating contradic-
tion is an important signal for multiple choice and
extractive QA systems. By proposing a method that
reformulates answers as hypothesis statements, the
system is able to rank answers and demonstrate that
QA model confidence calibrated with entailment
and contradiction scores outperform QA models by

themselves as a ranking approach in all cases. In
addition, models calibrated with contradiction only
or simply selecting the least contradicted answers
with NLI only provides a competitive approach to
selecting answers that is often on par with or better
than entailment-only systems. These results show
that we should rethink the paradigm of verifying
answers with entailment across NLP setups. While
this work is in a relatively limited setting, we pro-
vide discussion on how leveraging contradictions
could help improve open domain QA as well as
other NLP tasks at large.

7 Ethics Statement

Works addressing NLP safety should be aware of
their limitations and be clear about potential harms
and misuse of their proposed approaches. Systems
that improve safety by verification or support are
vulnerable to drawing on untrue and biased sources
to justify their outputs. The appearance of credibil-
ity given to texts that use citations and appeals to
authority means that users should be made aware
that the sources they draw on can be wrong. This
applies to critical sources as well since a source
can provide criticism that is wrong or misleading.
However, by presenting contradictions we believe
that systems could provide a wider breadth of op-
tions for users to engage with critically than models
which claim to verify answers by appealing to the
authority of a source document.
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A Training Setup and Reproducibility

Table 7 outlines the pretrained models that we used
and datasets they are trained on, all of these models
are publicly available on the huggingface model
hub under the locations listed. Where space doesn’t
allow RoBERTa-RACE is aliased as RACE. In addi-
tion to several pretrained models used in the setups
described earlier, we trained 3 models, a t5-small
model on Demszky et al. (2018) for the QA2D set
up where a Roguel of 90.73% is achieved on the
validation set, DeBERTa-v3 models (xsmall and
base) trained on SciQ (Welbl et al., 2017) achieving
93.99% accuracy on the xsmall model and 91.76%
accuracy on the base model. Where space doesn’t
allow the DeBERTa-v3 models are called s-base
and s-small. All models were trained using the
huggingface trainer API (Wolf et al., 2020) with an
Adam optimizer at a learning rate of 5.60e-05 with
weight decay of 0.01. All models and inference
were performed on 1 Tesla P100 GPU. More details
are available on table 7. Full instructions on repro-
ducibility as well as trained models are provided in
the publicly available code including directions to
weights and biases to inspect the training runs, full
parameter set, and evaluations suites which will be
available upon publication.

B Dataset Details

The tables (Table 8 and Table 9) below outline the
datasets used . Additional details such as train
size and preprocessing steps are available in the
references provided. When space doesn’t allow
CosmosQA is aliased to Cosmos, MCScript to
MCS, MCScript-2.0 to MCS2, MCTest to MCT,
and RACE-C to R¢. As mentioned previously the
only preprocessing step used was to filter out ques-
tions where no context passage is provided. Finally,
validation splits are used in the CosmosQA and
QASC case since context passages or gold answers
are not made available so readers should be aware
of this when reading results on those datasets.

C Model size and approach performance
analysis

In order to help understand how the results pre-
sented above differ with model size or approach


http://arxiv.org/abs/2204.07447
http://arxiv.org/abs/2204.07447
http://arxiv.org/abs/2204.07447
http://arxiv.org/abs/2204.07447
http://arxiv.org/abs/2204.07447
https://doi.org/10.1609/aaai.v34i05.6417
https://doi.org/10.1609/aaai.v34i05.6417
https://doi.org/10.1609/aaai.v34i05.6417
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.18653/v1/N19-1302
https://doi.org/10.18653/v1/N19-1302
https://doi.org/10.18653/v1/N19-1302
https://doi.org/10.18653/v1/W17-4413
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.2203.12990
https://doi.org/10.48550/arXiv.2203.12990
https://doi.org/10.48550/arXiv.2203.12990
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660
https://doi.org/10.18653/v1/2020.emnlp-main.660

Huggingface Name
LIAMF-USP/roberta-large-finetuned-RACE RoBERTa-RACE
bert-large-uncased-whole-word-masking-finetuned-squad BERT-Large
distilbert-base-uncased-distilled-squad DistillBERT
ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli albert-anli
microsoft/deberta-base-mnli mnli-base
microsoft/deberta-v2-xxlarge-mnli mnli-large
Table 6: Pretrained models that we used.

Model Dataset Epochs  Score

t5-small Demszky et al. (2018) 20 Roguel 90.73

deberta-v3-xsmall Welbl et al. (2017) 6 Accuracy 93.99

deberta-v3-base Welbl et al. (2017) 6 Accuracy 91.79

Table 7: The models we trained for or setups with evaluation scores and number of epochs trained.

Dataset Split Size  Reference

CosmosQA validation 2985 Huang et al. (2019)
DREAM test 2041 Sun et al. (2019)
MCScript test 2797 Ostermann et al. (2018)
MCScript-2.0  test 3610 Ostermann et al. (2019))
MCTest test 840  Richardson et al. (2013)
QASC validation 926  Khot et al. (2020)
RACE test 4934 Lai et al. (2017)
RACE-C test 712 Liang et al. (2019))
SciQ test 884  Welbl et al. (2017)

Table 8: Datasets used for the multiple choice setting including split used and sample size. Validation splits were
used in the case of CosmosQA since the test split is not publicly available and QASC since context passages or gold

answers are not available.

we have presented the following supplemental ta-
bles. Table 10 shows differences in performance
between mnli-base, mnli-large, and albert-anli. Ta-
ble 11 shows selective QA accuracies in the multi-
ple choice setting where answer selection is done
through ranking before we rank answers for se-
lective QA. Selective QA on extractive QA using
DistillBERT (table 12) shows that QA+E+C does
best in all cases and contradiction only does second
best at 50% coverage.

D Regression Analysis

Table 13 shows a supplemental regression analy-
sis for each calibration model used in the multiple
choice settings. The results indicate that as the
MNLI model gets larger the calibration model uses
its NLI confidence scores more. Importantly entail-
ment coefficients are stronger than contradiction
coefficients in all cases and this should be kept in
mind when considering the results presented in this
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paper.
E Correlation Analysis

Since we are using the NLI and QA model scores
to construct the setups above, we’d like to know
how these factors correlate with the correct an-
swer. Table 15 shows how each NLI class cor-
relates both by score and by actual classification
(score > 50%) as compared against QA model con-
fidence score. The multiple choice analysis shows
answers from the ROBERTa-RACE model and the
extractive QA analysis shows answers from the
BERT-large model trained on SQuAD. The correla-
tion analysis presents Spearman rank correlations.
What we see is that in the multiple choice setting
the confidence score has a strong correlation with
the correct answer which makes sense given the
confidence score is a softmax over the multiple
choice classes. Extractive QA confidence scores
have a much weaker correlation and tend to have



Dataset Size Reference

BioASQ 1504  Fischetal. (2019)
TriviaQA 7785

HotpotQA 5901

SQuAD 10506

Natural Questions 12836

SQuAD2 11871 Rajpurkar et al. (2018)
SQuAD-adv 5347 (Jia and Liang, 2017)

Table 9: Extractive QA datasets used. Validation sets are used on the SQuAD2.0 and SQuAD adversarial datasets
and MRQA 2019 dev sets are used for the MRQA 2019 sets.

Model Cosmos Dream MCS MCS2 MCT QASC RACE R¢ SciQ Avg
SciQ-base 18.46 4380 6199 63.71 4476 9341 3097 27.39 9528 53.31
SciQ-small  25.46 4826 60.28 66.04 59.76 90.60 35.56 30.62 98.09 57.19
RACE 64.22 82.56 89.70 86.98 90.48 98.16 76.93 69.80 97.96 84.09
mnli-base

QA+E+C 64.32 82.66 89.63 87.01 90.71 9827 7695 69.80 98.09 84.16
QA +E 64.25 82.66 89.63 86.98 90.71 98.27 76.95 69.80 9796 84.14
QA+C 64.29 82.56 89.63 87.01 90.60 98.16 7693 69.80 97.96 84.1
E+C 33.03 62.27 76776 72.11 68.57 92.66 45.16 3441 88.01 63.66
E 27.81 6247 7937 7194 6881 9266 4348 3441 88.01 63.22
C 43.45 59.19 70.18 6997 67.50 81.86 41.81 32.58 &87.37 61.55
albert-anli

QA+E+C 064.19 82.56 89.70 87.06 90.48 98.16 7693 69.80 97.96 84.09
QA +E 64.19 82.56 89.70 87.06 90.60 98.16 76.93 69.80 9796 84.11
QA +C 64.22 82.56 89.70 86.98 9048 98.16 7693 69.80 97.96 84.09
E+C 35.71 68.20 79.55 73.88 77.50 91.79 49.05 3947 90.82 67.33
E 33.67 68.35 7991 73.19 7738 9190 49.07 39.19 9094 67.07
C 45.16 63.74 73,58 7271 7333 77.86 4634 3820 87.24 64.24

Table 10: Accuracy scores in the multiple choice setting for various NLI models used. Calibration was with the

RoBERTA-RACE model.
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Dataset QA+E+C QA+E QA+C E+C E C QA
20% CosmosQA  77.55 67.17 83.25 20.10 2747 67.50 88.61
DREAM 98.28 9632 96.81 81.13 91.91 93.87 98.28
MCSeript 99.82 99.64 99.46 93.02 98.93 96.96 99.82
MCScript-2.0  99.58 99.03 9737 9224 97.37 9501 99.58

MCTest 100 100 9940 8512 97.02 97.02 98.81
QASC 100 100 100 9730 100  99.46 100
RACE 94.93 92.13 90.17 6273 7671 7505 98.24
RACE-C 88.73 8521 86.62 71.13 7465 69.01 93.66
SciQ 100 100 100 8205 100 96.15 100
Avg 95.43 9328 9479 76.09 8490 87.78 97.45
50% CosmosQA  80.29 7078 8070 32.17 3472 64.88 7647
DREAM 95.10 93.63 93.63 8520 89.41 8833 96.67

MCScript 98.57 97.85 97.14 9471 9599 92770 98.78
MCScript-2.0  96.40 9446 96.07 91.02 91.75 91.69 98.01

MCTest 99.52 98.81 99.76 9143 9524 96.19 99.52
QASC 100 99.78 99.78 98.27 98.70 98.49 100
RACE 90.11 87.22 8523 67.89 71.70 68.18 93.88
RACE-C 85.11 78.09 77.25 66.57 66.85 55.06 87.36
SciQ 100 100 99.74 89.03 96.43 96.43 100
Avg 93.90 91.18 92.14 79.59 8231 83.55 94.52

Table 11: Selective QA accuracies in the multiple choice setting where answer selection is done through ranking
before we rank answers for selective QA.

Dataset QA+E+C QA+E QA+C E+C E C QA
20% BioASQ 70.97 70.41 7155 74.07 74.07 7434 68.99
HotpotQA 73.44 73.08 70.88 71.59 71.51 7041 69.41
NaturalQuestions  85.59 8529 8545 7846 7846 80.53 83.27
SQuAD 96.22 96.45 95777 83.15 83.09 8137 97.15
SQuAD-adv 40.39 39.75 39.49 40.07 39.56 40.59 31.98
SQuAD2 35.46 3524 33.64 3636 36.13 36.66 2595
TriviaQA 64.96 64.68 6455 52.67 52.09 52.56 63.98
Avg 66.72 66.41 6590 62.34 62.13 6235 62.96
50% BioASQ 65.96 6592 6437 63.53 63.53 6695 64.79
HotpotQA 64.42 6421 63.65 6588 65.85 6691 62.81
NaturalQuestions  72.28 7199 70.82 67.54 6751 7418 69.95
SQuAD 92.56 92.57 9234 81.86 8221 8095 92.54
SQuAD-adv 33.69 3290 3345 38.74 38.22 38.52 31.89
SQuAD2 26.68 25770 26.00 3295 32.61 32.83 23.52
TriviaQA 58.40 5841 5825 5143 51.18 5299 58.25
Avg 59.14 58.81 5841 57.42 5730 59.05 57.68

Table 12: SelectiveQA on extractive QA using DistillBERT. Note that QA+E+C does best in all cases and
contradiction only does second best at 50% coverage.
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QA Model NLIModel Combination Confidence Entailment Contradiction Acc

SciQ mnli-base QA +C 4.13 -1.06 0.99
QA+E 3.90 1.37 0.99

QA+E+C 383 1.22 -0.76 0.99

E+C 2.56 -1.47 0.86

mnli-large QA +C 3.98 -1.32 0.99

QA+E 3.78 1.55 0.99

QA+E+C 3.65 1.31 -0.97 0.99

E+C 2.63 -1.72 0.91

RACE mnli-base QA +C 3.04 -0.15 0.89
QA+E 3.03 0.27 0.89

QA+E+C 3.02 0.26 -0.14 0.89

E+C 0.73 -0.46 0.75

mnli-large QA +C 2.97 0.00 -0.81 0.89

QA+E 291 0.98 0.89

QA+E+C 2585 0.92 -0.75 0.89

E+C 1.76 -1.12 0.78

Table 13: Regression analysis for each mnli-based nli model with each QA model used calibration with logistic
regression multiple choice settings. Accuracy is the evaluation metric used.

Contradiction Entailment Neutral

Dataset QA  Score Class Score Class Score Class
CosmosQA 0.53 -0.34 -0.17 0.05 -0.01 0.21 0.16

DREAM 0.72 -0.57 -0.35 054 0.50 -0.11 -0.13
MCScript 0.80 -0.59 -0.42  0.59 0.50 -0.04 -0.08
MCScript2  0.77 -0.50 -0.32 041 0.37 -0.04 -0.05
MCTest 0.73 -0.65 -047 0.64 0.69 -0.20 -0.15
QASC 0.57 -0.54 -0.28 0.55 0.67 -0.50 -0.26
RACE 0.65 -0.37 -0.20 0.35 0.34 -0.11 -0.11
RACE-C 0.59 -0.24 -0.13 0.18 0.25 -0.09 -0.11
SciQ 0.75 -0.69 -0.47 0.68 0.67 -0.42 -0.19

Table 14: Correlation analysis (Spearman rank correlation) per dataset in the multiple choice setting. ROBERTa-
RACE is used for the QA scores.

Contradiction Entailment Neutral QA

multiple choice Score -0.47 0.37 -0.06 0.71
Class -0.28 0.38 -0.06

extractive QA Score -0.16 0.31 -0.12 0.19
Class -0.15 0.39 -0.29

Table 15: Correlation analysis (Spearman rank correlation) in the multiple choice and extractive QA settings.
RoBERTa-RACE is the QA model used for multiple choice QA scores and BERT-large is used for the extractive QA
scores.
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less correlation than entailment has with the correct
answer. Despite the results presented above, con-
tradiction only has a notable correlation with the
correct answer when the score is used rather than
the classification. This is another proof point of our
approach of using confidence scores for NLI rather
than classifications. Interestingly in the extractive
QA case the neutral class is more negatively corre-
lated when selecting for contradiction when using
classification. Our conjecture would be that in the
extractive QA case we don’t have much to compare
against. When looking at the per dataset corre-
lations for the multiple choice setting (Table 14)
we see that in most cases, other than the QA con-
fidence scores, the contradiction scores have the
strongest correlations with the correct answer out
of any NLI class and neutral, as we would expect,
tends to have very weak correlations. We do not
present the per dataset correlation for extractive QA
as they are very weak, which we again hypothesize
comes from having no answers to compare with.
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