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LP-DIXIT: Evaluating Explanations of Link Predictions on
Knowledge Graphs using Large Language Models

Anonymous Author(s)

Abstract

Link prediction methods predict missing facts in incomplete knowl-
edge graphs, often using embeddings to enhance scalability. How-
ever, embeddings complicate explainability, which is crucial for
users’ understanding of inferences in many domains. Methods
emerged to explain predictions by identifying supporting portions
of knowledge. To evaluate explanations from a user perspective,
they can be compared to those in benchmarks, though they are
limited to simplistic graphs. In contrast, user studies on forward
simulatability variation measure how explanations improve pre-
dictability, i.e., the user ability to predict the results of inferences,
which is key to trust. However, user studies face scalability and
reproducibility issues on large graphs. Recognizing these gaps, we
propose LP-DIXIT to algorithmically evaluate explanations of link
predictions by determining forward simulatability variation and
adopting large language models to mimic users, as is done in other
domains, e.g., in evaluating other approaches on language related
tasks. We experimentally prove that LP-DIXIT evaluates as effec-
tive explanations those in benchmarks, and we adopt it to compare
state-of-the-art explanation methods.
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1 Introduction

Knowledge Graphs (KGs) provide an explicit representation of
knowledge in an interlinked and structured manner, enabling
knowledge to become not only human-readable, but also machine-
readable [25]. KGs are essentially multi-relational graphs composed
of entities and relations represented as nodes and edges, respec-
tively. They are known for enabling inference capabilities through
integration with web ontologies, which formally define various
constructs such as classes and relationships between them. As a
result, several KGs have been constructed by both industry [16, 47]
and open source communities [4, 9, 38].

Despite their proven utility, the inherent incompleteness of KGs
due to their typically incremental and distributed development
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process [25] often makes inference more complex, also as a con-
sequence of the Open World Assumption (OWA) made by default
in Logic, which is better suited to web-scale scenarios. To address
this problem, the two tasks of Link Prediction (LP) and Triple Clas-
sification have gained importance: they aim to complete KGs by
inferring missing facts and determining the truth of given asser-
tions, respectively.

In this paper, we focus on LP methods grounded in Knowledge
Graph Embeddings (KGEs) [42], as these show impressive scala-
bility. KGEs are vectors in low-dimensional spaces obtained by
means of Machine Learning solutions to represent elements in the
KGs: complex tasks can be solved through simple linear algebra
operations on the embeddings. However, embeddings are difficult
to relate back to the semantics of the original KG, making KGE
models “opaque boxes” whose predictions are difficult to explain,
undermining their trustworthiness. This problem severely hampers
the application of KGEs, especially in areas where LP is involved
in critical decisions, such as finance, healthcare, or autonomous
driving. For example, the detection of traffic participants (e.g., ve-
hicles, pedestrians, etc.) can be framed as an LP problem on a KG
representing driving scenes [53]. In the case of accidents involving
autonomous vehicles, explanations can significantly help to under-
stand their causes in order to prevent them and to manage legal
and ethical responsibilities.

Several solutions have been proposed to eXplain LP on KGs
(LP-X) [2, 43, 60] in the field of Explainable Artificial Intelligence
(XAI) [20], which aims to improve the transparency and comprehen-
sibility of ML models, thus making them also more trustworthy. In
XAI, methods can be divided into two categories: a) post-hoc meth-
ods, that compute explanations after the predictions, and 2) clear
box methods, that produce predictions along with their explana-
tions [20]. We focus on methods in the former category because,
unlike those in the latter category, they can be applied to any LP
approach. Regretfully, quantitatively assessing the validity of these
methods and conducting comparative studies is challenging: there
is not yet consensus on a standardized evaluation protocol for as-
sessing the quality of explanations, although the need is widely
recognized. Indeed, a research agenda for hybrid (human/machine)
intelligence has stated that convergence on such a protocol is cru-
cial [1].

This challenge also stems from the complexity of explanation
quality, which encompasses multiple dimensions: content, presen-
tation, and user [35]. In terms of content, valuable explanations
are those that correctly and completely represent the ML model’s
behavior, that are similar (dissimilar) along similar (dissimilar) in-
puts and feature simple interactions among their components. For
presentation, valuable explanations have a format that enhance
clarity, e.g., through abstractions, and can be interpreted without
excessive effort. Finally, regarding the user dimension, valuable
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explanations should allow users to build, revise and express men-
tal models of their understanding of the ML model in the context
of their goals, and knowledge, thus allowing them to determine
whether the model is trustable and useful [24]. The user dimension
is crucial because even if the explanations satisfy all the desiderata
in the other dimensions, it is ultimately the users who determine
whether the XAI approaches are truly applicable in practice.

Moreover, this difficulty is also a consequence of the high diver-
sity of existing explanation structures. Indeed, the post-hoc LP-X
methods compute not only prototype explanations, i.e., those con-
sisting of sets of facts, but also those containing ontological ax-
ioms and/or logical rules. Nevertheless, LP-X methods are mainly
evaluated through re-training of the KGEs, i.e., by measuring the
influence of the explanations on solving the very same LP task,
thus solely considering the content dimension and only by accom-
modating prototypes. In contrast, we aim for an evaluation that
covers the user dimension, and that is able to accommodate dif-
ferent explanation structures. Alternatively, benchmarks [21, 33]
that provide ground truth explanations for each prediction can be
adopted. Such explanations are generated through constraints/rules
hand-crafted to model domain knowledge and are also validated by
users. However, currently available benchmarks employ synthetic
data or very limited portions of large KGs, and solely encompass
prototypes. In contrast, we aim for a solution that can be applied to
any real world KG.

In this respect, user studies on the Forward Simulatability Varia-
tion (FSV) (often referred to as FS) of ML models (for tasks other
than LP) [22, 34] also cover the user dimension and are flexible
wrt the structure of explanation. The FSV measures the variation
between the predictability (or simulatability) of the ML inferences
before and after the provision of explanations [22]. Note that an
inference is predictable if a (often human) verifier can hypothe-
size as accurately as possible its output given the same input and
without necessarily replicating the same process. Improving the
predictability of ML models is crucial, as it reflects how accurately
users can form mental models to represent the ML models, and as
such it helps to reinforce user trust in the ML model [24].

However, among the various domains where KGs have been
adopted several ones are very complex and specific; as a result, user
studies on such KGs require highly specialized users. This difficulty
extends to reproducibility challenges: it is difficult to ensure that
the users, that were difficult to recruit in the first place, are available
for follow-up studies that may happen after a significant amount of
time. Therefore, we aim to tailor the formalization of the FSV in LP
and to make it algorithmic in order to overcome the shortcomings
of user studies.

To further our goals, we propose LP-DIXIT. It algorithmically
determines the FSV for post-hoc explanations of LP by leveraging
Large Language Models (LLMs), which are computational models
for natural language understanding and generation with very large
parameter sizes [11]. LP-DIXIT obviates the need for user recruiting
as it employs LLMs as verifiers, thus regarding LLMs as proxies
that mimic actual users. Moreover, LP-DIXIT does not require hand-
crafted rules, as in the creation of benchmarks, and as such it is not
limited to simplified data. The potential ability of LLMs to play such
a role is gaining recognition in various domains, including the eval-
uation of (other) LLMs [61] where the LLM employed as evaluator

is asked to grade an LLM response, possibly with respect to a refer-
ence solution or to indicate its preference between two answers; the
alignment of human evaluations and LLM evaluations is measured
on a benchmark and on a crowdsourced platform. In addition, LLMs
have been employed to mimic humans in building training data
for natural language processing tasks [19], in performing a variety
of social science tasks [3], in generating replies to questionnaires
about their experience in video games, and more. Notably, in [3] are
conditioned to mimic responses of humans with different cultural
background and/or personality. Even if LLMs cannot fully replace
real users [52], their adoption in this context represents a scalable
and reproducible solution for assessments prior to very expensive
user studies. Moreover, we consider LLMs appropriate because they
accept flexible prompts, allowing inference to be performed on
an input consisting of an LP query enriched with an explanation,
which is a necessary step in determining FSV. Furthermore, the
flexibility of prompts enables LP-DIXIT to evaluate any type of
explanation that can be framed in a prompt.

To further motivate the suitability of LLMs as verifiers, we con-
duct experiments to compare the evaluations of LP-DIXIT against
user rated explanations in benchmarks to measure how well LP-
DIXIT aligns with human judgments. We also compare different
LLM of different parameter size to assess which one is most aligned
with human judgment. Furthermore, we address the lack of a com-
parative study for post-hoc LP-X methods through LP-DIXIT. We
summarize our main contributions as follows:

• we formalize LP-DIXIT, to the best of our knowledge, the
first solution for computing the FSV for post-hoc expla-
nations of LP by leveraging LLMs for automating such
assessment

• LP-DIXIT covers the user dimension of explanation quality
and is a flexible framework that can be applied to any KG
and that can accommodating explanations with diverse
structures

• We measure the alignment of LP-DIXIT with human judg-
ment through existing benchmarks

• we experimentally compare, on several well known KGs,
state-of-the-art (SOTA) post-hoc LP-X methods through
LP-DIXIT.

The rest of the paper is organized as follows. § 2 reviews existing
LP-X methods and the most recent and effective approaches to
evaluation. § 3 introduces basic notions essential for understanding
the paper. § 4 details our proposal, LP-DIXIT. § 5 illustrates the
experimental study. § 6 provides an overview of the achievements
and challenges and proposes directions for future research.

2 Related Works

In § 2.1 we survey the post-hoc LP-X approaches along with the
methods for evaluating their explanations; in § 2.2 we review evalu-
ation approaches (including tasks beyond LP) focusing on the user
dimension.

2.1 Post-hoc Explanations of Link Predictions

The methods that first emerged [39, 57] explain a prediction by
identifying a single fact: a statement: subject, predicate, object.

2
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Specifically, the approach proposed in [57] is based on perturba-
tions, whilst Criage [39] grounds on approximated Influence Func-
tions [44], but is constrained to a limited set of facts. In contrast,
current methods return prototypes. Kelpie [43] employs a novel
post-training process that supports any KGE model. Kelpie++ [6]
ground on Graph Summarization to enhance Kelpie’s efficiency as
well as effectiveness, and presentation of explanations. Similarly,
KGEx [5] distills surrogate models on sampled sub-graphs, whilst
KE-X [60] identify the facts maximizing the Information Gain wrt
the prediction; in contrast, KGExplainer [32] adopts greedy search
based on perturbations. Notably, GEnI [2] returns explanations con-
sisting of schema axioms and/or facts based on numerical criteria
on predicate embeddings, distance functions, or Influence Functions;
its explanations are also converted into natural language through
hand-crafted templates. However, it is restricted to translational
and bilinear KGE models. Differently, the method introduced in [7]
provides explanation by performing abduction based on learned
rules.

The prototypes are mainly evaluated by re-training the KGE
model, i.e., by comparing the LP performance of the original model
to one trained on a modified KG, where the facts in the explanations
have been added/removed (as in [57], Kelpie, Kelpie++, GEnI, KE-X,
and [7]), or isolated (as in KGEx, and KGExplainer). This approach
supports any KGE model, but it solely covers the content dimension
and is tailored to prototypes, whereas we strive to cover the user
dimension whilst supporting different explanation structures. In
this respect, the explanations by GEnI also undergo manual inspec-
tion, which covers the user dimension, but requires human effort
whereas we aim at an algorithmic evaluation.

Other proposals, such as FR200K [21], FRUNI and FTREE [33],
offer benchmarks of explanations generated through hand-crafted
constraints/rules. However, in [33] explanations are not evaluated
by users, as such this evaluation does not cover the user dimension.
In contrast, in [21] users rate each explanation in the proposed
benchmark based on how intuitive it is, which, however, is a sub-
jective notion. Conversely, we frame the evaluation in the FSV
framework. Moreover, such benchmarks employ simplistic data
and are tailored to prototypes, whereas our target is a solution that
can be applied to real world KGs.

A different explanation consists of a path from the subject to
the object of the prediction. LinkLogic [30] adopts a perturbation
based approach, conversely, CrossE [59] and ApproxSemantic-
CrossE [12] ground on (semantic) similarity of entities and/or
relationships wrt the prediction. The similarity-based explanations
are evaluated in terms of the number of similar paths connecting
similar entities.

Other methods return an explanation different from a set of
facts or a path. In [28] logical rules are mined to explain a set of
predictions, whilst FeaBI [26] extracts interpretable vectors from
embeddings via Feature Selection. In [28] the mined rules are evalu-
ated in terms of their performance in Triple Classification on the
explained predictions and synthetic negatives (false assertions). In
contrast, the vectors resulting from FeaBi are compared to vectors
learned with an interpretable approach, moreover, the classification
performance resulting from training on interpretable vectors or
KGEs is compared.

We also mention [8], XTransE [58], and GNNExplainer [56]
tailored for Graph Neural Networks, although they are clear box
methods whereas we target post-hoc ones. The explanations gener-
ated by XTransE are evaluated as in [28], whilst those resulting
from GNNExplainer are compared to a ground truth. In contrast,
in [8] solely a qualitative evaluation is presented. Finally, SHAP is
notable for its task independence, but it often faces scalability issues.
Its explanations are often evaluated by performing Model Parame-
ters Randomization Check, i.e., by randomizing model parameters
and checking whether the explanations change.

2.2 Evaluation considering Users

Although the main goal of this paper is an algorithmic approach,
we also review key categories of user studies as they are frequent
in the user dimension. In the firstly emerged studies, participants
are asked to rate explanations based on different qualities, e.g.,
satisfaction, usefulness, intuitiveness, etc., or to choose the best
explanation between two alternatives. However, such approaches
involve subjective notions. More recent studies [22, 34] overcome
this problem by measuring the FSV that is also our target; it frames
the evaluation task as a repeated check of predictability; the user
solely evaluates predictability, which in turn is evaluated without re-
ferring to subjective qualities [35]. In other approaches [18, 36, 49],
participants are asked to identify an irrelevant insight introduced
into an explanation, valuable explanations should be easy to distin-
guish from additional noise. Similarly, in [40, 41, 46, 50] participants
are asked to identify, with the help of explanations, a property of
the model that has been changed, whilst in [41, 48] they inspect
explanations to identify detrimental training data.

Recently, proposals for making such evaluation algorithmic to
tackle the challenges of user studies. Firstly, in [37, 40] the effort
that a user would need to follow the recommendations in the ex-
planation is measured, whilst in other proposals the agreement
between diverse XAI methods is measured. In contrast, we aim
at measuring predictability improvement, as it is crucial in trust.
Alternatively, benchmarks of ground-truth explanations that are
generated according to domain knowledge and evaluated by users
have been proposed. However, such benchmarks are often limited
to simplistic data. Finally, in [23] (a refined version of) the FSV is
determined using an LLM to mimic users, but it targets Natural
Language Processing (NLP) tasks, whereas we focus on LP-X meth-
ods. However, in such work the LLM is fine-tuned on examples and
explanations of the target NLP task, thus shifting the focus to the
LLM’s ability to learn the simulation task rather than evaluating
the explanations themselves.

3 Fundamentals

In this section, we introduce KGs more formally and the basics
of KGE methods. A KG is a graph-based data structure G(V,R),
where V is a set of nodes representing entities, and R a set of
predicates, representing binary relations between entities. In the
adopted RDF model, a KG is a collection of triples of the format
⟨𝑠, 𝑝, 𝑜⟩, statements with a subject, apredicate and an object, where
𝑠, 𝑜 ∈ V and 𝑝 ∈ R.

Various models have been proposed for representing KGs in
low-dimensional vector spaces, by learning for each entity and

3
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predicate in the KG a unique numerical vector (or embedding) in a
given space. Different types of embedding spaces can be used, such
as real, pointwise, complex, discrete, Gaussian, manifold; without
loss of generality, we will consider real embeddings in the following,
denoting their vectors in bold-face.

These models typically represent each entity 𝑒 ∈ V , and each
predicate 𝑝 ∈ R by means of an embedding vector e ∈ R𝑘 ,
and p ∈ R𝑖 , respectively, where 𝑘, 𝑖 ∈ N are hyperparame-
ters. In addition, each model is associated with a scoring function
𝑓 : R𝑘 ×R𝑖 ×R𝑘 → R: for each triple ⟨𝑠, 𝑝, 𝑜⟩, the score 𝑓 (⟨𝑠, 𝑝, 𝑜⟩)
measures the probability of such a statement. In the following, we
consider formulations where higher values convey more plausibil-
ity; symmetric formulations can be derived for models where lower
scores convey higher probability. The embeddings and parameters
are learned from the KG by minimizing a loss function based on
𝑓 . To this purpose, the set of triples encoded by G is divided into a
training set Gtrain, a validation set Gval and a test set Gtest . Besides
of entity and predicate embeddings, models can also learn shared
parameters that are not explicitly connected to any KG element,
similarly to the weights of neural layers.

Given a query for LP, as an incomplete triple ⟨𝑠, 𝑝, ?⟩, LP is per-
formed by computing

𝑜 = argmax
𝑒∈V

𝑓 (⟨𝑠, 𝑝, 𝑒⟩).

In the case of multiple triples having the same scores several strate-
gies can be adopted, e.g., lexicographic tie breaking. Moreover, the
rank of a triple ⟨𝑠, 𝑝, 𝑜⟩ in Gtest is required for evaluating the LP
performance and may be defined as:

rank(⟨𝑠, 𝑝, 𝑜⟩) = |{𝑒 ∈ V | 𝑓 (⟨𝑠, 𝑝, 𝑒⟩) >= 𝑓 (⟨𝑠, 𝑝, 𝑜⟩)}| .

4 The Proposed Approach

We introduce LP-DIXIT, a method for algorithmically evaluating
explanations of LPs on KGs. Specifically, it determines the FSV,
which is the variation in the predictability of LP inferences before
and after explanations are provided. Note that an LP inference is
predictable if (usually human) verifiers can simulate it, i.e., they can
provide the same result. To address shortcomings of user studies, LP-
DIXIT employs LLMs to mimic human verifiers. In § 4.1 we formally
define the FSV in an LP scenario. Next, in § 4.2 we specifically delve
into the usage of LLMs as verifiers.

4.1 Forward Simulatability in Link Prediction

Given a query 𝑞 = ⟨𝑠, 𝑝, ?⟩ for which an LP method predicted the
entity 𝑜 as the filler and an explanation 𝑋 for this prediction, 𝐹𝑜
is a function returning a label 𝑦 ∈ {−1, 0, 1} indicating that 𝑋
is, respectively, harmful, neutral, or beneficial in simulating the
inference leading to 𝑜1.

Such a function relies on verifiers whose role is to simulate
inferences, ideally they are users since the main goal of XAI is to
improve their understanding of ML models, but more generally
it can be any other agent capable of performing the simulations,
such as an LLM as in our proposed approach LP-DIXIT. In this
formalization, we do not specify the nature of the verifier and how

1We denote 𝑜 as a subscript rather than an argument of the function 𝐹 because the
verifier does not know it

it performs the required computations, but rather denote it as a
function 𝑆𝑜 that given a query, or a query with an explanation, for
which the LP method predicted 𝑜 as the filler, ideally returns an
entity in the KG that the verifier estimates to be the same entity 𝑜
that was predicted by the LP method. We then define 𝐹𝑜 based on
such verifier.

Specifically, 𝑆 returns an entity 𝑜 ∈ V as the simulation of the
inference that leads to 𝑜 for the query 𝑞, formally:

𝑜 = 𝑆𝑜 (𝑞) (1)

To compute this function, the verifier tries to answer the query by
relying solely on its prior knowledge, hence we refer to this step as
pre-explanation simulation. Similarly, 𝑆𝑜 returns an entity 𝑜𝑋 ∈ V
as the simulation of the inference yielding 𝑜 for the query 𝑞 given
also the explanation 𝑋 , formally:

𝑜𝑋 = 𝑆𝑜 (𝑞,𝑋 ) (2)

In this case the verifiers can rely on the explanation in addition to
their knowledge, so this step is dubbed post-explanation simulation.
Note that, both 𝑜 and 𝑜𝑋 can be equal to or different from 𝑜 .

A simulation is correct if the returned entity is equal to 𝑜 , hence,
the indicator 𝑠𝑜 ∈ {0, 1} denotes if the simulation 𝑜 is correct or
not and is defined as:

𝑠𝑜 = 1𝑜 (𝑜) (3)
Likewise, 𝑠𝑋

𝑜
∈ {0, 1} denotes the correctness of the simulation 𝑜𝑋

and is defined as:
𝑠𝑋
𝑜

= 1𝑜 (𝑜𝑋 ) (4)
The correctness of the simulations is based on the filler 𝑜 predicted
by the LP method rather than the true filler 𝑜 (if available) be-
cause the FSV involves evaluating the predictability of the model
rather than its predictive accuracy. Specifically, evaluating the FSV
involves evaluating the ability of the verifier to obtain the same
predicted filler 𝑜 rather than the true filler 𝑜 . It is worthwhile to
note that for top-ranked triples (correct predictions) 𝑜 = 𝑜

Ultimately, 𝐹𝑜 (𝑞,𝑋 ) returns 𝑦 as the difference between 𝑠𝑋
𝑜

and
𝑠𝑜 , formally:

𝑦 = 𝐹𝑜 (𝑞,𝑋 ) = 𝑠𝑋
𝑜
− 𝑠𝑜 = 1𝑜 (𝑆𝑜 (𝑞,𝑋 )) − 1𝑜 (𝑆𝑜 (𝑞)) (5)

The values returned by 𝐹 are to be interpreted as follows:
• 𝑦 = 1: The explanation 𝑋 lead to a correct simulation when

it was previously incorrect (i.e., 𝑠𝑜 = 0, 𝑠𝑋
𝑜

= 1), this indi-
cates that the explanation is beneficial for the verifier

• 𝑦 = 0: The simulation correctness does not change, either
both are correct (i.e., 𝑠𝑜 = 0, 𝑠𝑋

𝑜
= 0) or both are incorrect

(i.e., 𝑠𝑜 = 1, 𝑠𝑋
𝑜

= 1), this indicates that the explanation was
neutral for the verifier

• 𝑦 = −1: The explanation 𝑋 lead to an incorrect simulation
when it was previously correct (i.e., 𝑠𝑜 = 1, 𝑠𝑋

𝑜
= 0), this

indicates that the explanation was harmful for the verifier

4.2 Using a Large Language Model as a Verifier

LP-DIXIT employs an LLM as a verifier to simulate inferences of the
LP method, i.e., to compute the pre-explanation simulation (𝑆𝑜 (𝑞))
and the post-explanation simulation 𝑆𝑜 (𝑞,𝑋 ). For this purpose, it
builds a prompt by filling out a prompt template that we engineered
and that is shown in Fig. 1. The template features different sections;
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An RDF triple is a statement (subject, predicate, object).
The subject and the object are entities, and the predicate
is a relation between the subject and the object. Perform a
Link Prediction (LP) task, specifically, given an incomplete
RDF triple (subject, predicate, ?), predict the missing object
that completes the triple and makes it a true statement.

Strict requirement: output solely the name of a single ob-
ject entity, discard any explanation or other text.
Correct format: Italy
Incorrect format: The object entity is Italy.

({𝑠 }, {𝑝 }, ?)

{𝑋 }

Figure 1: Structured prompt template with sections separated

by blank lines and variable parts enclosed in curly braces.

the first one is a description of the task to be simulated: the first
part specifies an RDF triple, then it defines LP as providing the
(name of) the entity that fills a query represented as a triple with an
unknown object. Such an abstract description enhances the LLM’s
comprehension of the specific query. The second part of the prompt
includes explicit instructions, along with an example, directing the
LLM to return only the entity name. Without this specific guid-
ance, the LLM may generate unnecessary additional text, such as
introductions, motivations, or invitations to ask for any further
clarification. Conversely, the subsequent steps for computing 𝐹 as-
sume that the simulation will yield only one entity. The last section
is the query 𝑞 to simulate, either with no additional information
(when computing Eq. 1) or also relying on the explanation (when
computing 2). The prompt’s section on the explanation can also
contain a hook that describes the general structure of an expla-
nation. LP-DIXIT specifically uses instruction-tuned LLMs, which
are obtained by fine-tuning their base versions to datasets contain-
ing specific instructions, i.e., detailed descriptions of the input and
the task to be performed, because our prompt template contains
instructions about the input, the task, and the desired output.

Regrettably, LLMs (as well as other kinds of verifiers) are not
aware of the KG on which LP is performed. Specifically, since LLMs
are generative models these perform LP by responding with the
name of the predicted entity to fill the query in contrast with KGE-
based discriminative methods which require to rank all the triples
obtained by filling the query with each entity in the KG. Hence,
LLMs can generate answers consisting of entities that are not in-
cluded in the KG. Addressing this gap, LP-DIXIT includes in the
prompt a set of entities and a natural language instruction stating
that the LLM must pick its response from such set. To clarify, the
resulting prompt is akin to those for Multi-Choice Question Answer-
ing (MCQA) tasks [29], which involve selecting the correct answer
from a set of options based on a given question. Ideally, such a set
should be V: the set of entities in the KG. Nevertheless, in several

LLMs, the maximum number of tokens (basic units of text processed
by LLMs, that can represent words, subwords, or characters) in a
prompt is too small to accommodate the entire setV .

To overcome this issue, it exploits the LP method in order to filter
V to a subset O𝑞 that is meaningful for the query 𝑞, we dub the
resulting method variant LP-DIXITO . Specifically, the LP method
fills 𝑞 = ⟨𝑠, 𝑝, ?⟩ by first computing the ranked sequence O of all
the triples in {⟨𝑠, 𝑝, 𝑒⟩ | 𝑒 ∈ V} according to the score function of
the underlying KGE model; note that LP-DIXITO retains only the
object of each ranked triple. Formally:

O𝑞 = 𝑒1 ≻ · · · ≻ 𝑒𝑛, 𝑒𝑖 ∈ V, 𝑓 (⟨𝑠, 𝑝, 𝑒1⟩) ≥ · · · ≥ 𝑓 (⟨𝑠, 𝑝, 𝑒𝑛⟩) (6)

Next, LP-DIXITO filters down O to its top 𝑘 entities to focus on
entities relevant to the query, but 𝑘 should be the largest number of
entities that fit in the query to mitigate the bias towards the correct
entity. To clarify, we are pursuing a tradeoff: while LP-DIXITO
focuses on relevant entities, it manages the risk of favoring the
correct entity.

One might consider employing Retrieval-Augmented Generation
(RAG) techniques to ensure that the responses are entities in the KG,
as RAG integrates external knowledge sources into the generative
process [55]. However, RAG may introduce additional complexity
into the model architecture, making it more challenging to maintain
and tune andmay still face challenges in ensuring that the responses
are exclusively entities in the KG. We reserve the exploration of
RAG for future studies (as also reported in § 6).

In addition, LLMs may not be able to correctly simulate LPs as
they are not trained/fine-tuned for this task or other predictive
tasks on KGs. To address this issue, we also developed a few-shot
prompt template [31], i.e., a prompt including a set D of examples
(or demonstrations) of solved LP queries, as LLMs are renowned
for their in-context learning capability, i.e., learning from examples
provided directly in the input without the need for performing ex-
pensive fine-tuning. We dub the resulting declination of the method
LP-DIXITD . It selects as examples the triples in G that are ranked
first by the LP method because the correctness of the simulations is
determined wrt 𝑜 rather than 𝑜 . It adopts predicate-guided demon-
strations, i.e., it selects those queries where the predicate is the
same predicate 𝑝 in order to focus on triples related to the specific
query 𝑞 as in the LLM-based LP method proposed in [54]. Then,
LP-DIXITD samples 𝑗 triples from D and incorporates each triple
⟨𝑠′, 𝑝, 𝑜′⟩ in the prompt as the query ⟨𝑠′, 𝑝, ?⟩, along with its corre-
sponding filler 𝑜′. Finally, LP-DIXITOD combines both LP-DIXITD
and LP-DIXITO .

5 Experimental Evaluation

We illustrate the experimental evaluation that was carried out, spec-
ifying the experimental setup and discussing quantitative results.

5.1 Experimental Setting

We measured the alignment of LP-DIXIT wrt human judgment in
determining the FSV by comparing its output on benchmark expla-
nations to the labels in the benchmark.We evaluated all the variants
of LP-DIXIT on the benchmarks FR200K, FTREE, and FRUNI. In
FR200K users rated explanations based on intuitiveness; scores are
then averaged and normalized in the interval [0, 1] To mitigate the
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subjective nature of intuitiveness, we kept only high-scoring expla-
nations because neutral scores can lead to different opinions among
users; similarly, low-scoring explanations may be unclear and am-
biguous, leading to subjective judgments, whereas high-scoring
explanations are likely to be less ambiguous, leading to more con-
sistent judgments. Specifically, we performed quantile based dis-
cretization of the scores into the categorical labels {−1, 0, 1} and we
kept solely the explanations with label 1. In contrast, in FRUNI ex-
planations are not rated by users and we assumed all explanations
to have label 0.

Furthermore, we performed the experiments with different LP
methods as the FSV can vary depending on the LP method. Specifi-
cally, three examples in key families of KGE models were adopted:
TransE [10] (translational), ConvE [13] (neural) and ComplEx [51]
(bilinear). However, in both benchmarks, explanations are associ-
ated to rule-based predictions whilst the prompts including the
entity set O and the example set D rely on KGE-based predictions.
To fill this gap, we kept solely the test triples that are ranked first
by the LP method and that have a ground truth explanation; we
excluded the cases where no top-ranked test triples were available
(FTREE with all models and FRUNI with ConvE).

As verifiers, we adopted the SOTA LLMs Llama-3.1 [17]
(Llama3.1-8b-Instruct, Llama3.1-70b-Instruct) and Mixtral [27]
(Mixtral-7x8B-Instruct-v0.1). We chose 𝑘 = 100 entities in O accord-
ing to the limit of 8192 tokens in Llama-3.1 and 𝑗 = 10 examples
in D as it is a rather popular choice [31]; we adopted the same
values for Mixtral to ensure a fair comparison. We measured the
proportion of explanations for which LP-DIXIT correctly returned 1
along with the occurrences of 0 and −1, as these represent different
types of errors, with 0 being the least severe.

We also adopted LP-DIXIT for comparing SOTA post-hoc LP-X
methods. Specifically, we adopted the best setting resulting from
the evaluation on the benchmark. Such comparative study encom-
passed several KGs: FB15k-237 [10], WN18RR [10], YAGO3-10 [14],
YAGO4-20 [6], DB50K [45], DB100K [15]. FB15k-237 is extracted
from Freebase by selecting entities with at least 100 occurrences and
removing redundant relationships. Similarly, WN18RR is extracted
from WordNet by retaining the entities involved in triples with
specific predicates and excluding those appearing in fewer than
15 triples. In addition, DB50K and DB100K are extracted from DB-
pedia, while YAGO4-20 is extracted from YAGO4 by retaining the
triples with entities that appear in 20 or more triples and excluding
those with literal objects. YAGO4-20, DB50K, and DB100K, along
with RDF triples, incorporate OWL statements (in the OWL2-DL
format) including class assertions, and other schema axioms, e.g.,
disjointness, details of such integration are reported in [6].

The compared post-hoc LP-X methods are Criage, the method
proposed in [57] (that we dub DP short for Data Poisoning), Kelpie,
Kelpie++, and GEnI which are recent and effective approaches also
supplying data and code. Criage, DP, Kelpie and Kelpie++ can be
executed in two different versions: necessary (nec) and sufficient
(suff). For each version Kelpie++ can be run with two different ap-
proaches to Graph Summarization: bisimulation (b) and simulation
(s). However, we executed GEnI and Criage exclusively for TransE
and ComplEx because they are tailored to translational and bilinear
models. Similarly, we executed Kelpie++ exclusively on YAGO4-20,

DB50K, and DB100K because it requires KGs equipped with OWL
statements.

Furthermore, for each configuration of model and dataset, we
compare the post-hoc LP-X methods on a set of 100 randomly sam-
pled test triples that are correctly ranked first by the LP method. It is
very important to note that each KGE model will lead to a different
set of top-ranked triples. Therefore, the comparison is not intended
to be between different KGE models, but rather between different
LP-X methods applied to the triples that each model ranks correctly
Each top-ranked triple ⟨𝑠, 𝑝, 𝑜⟩ is regarded as a query 𝑞 = ⟨𝑠, 𝑝, ?⟩
along with its filler 𝑜 , note that 𝑜 = 𝑜 for each triple as we focused
on correct predictions. Next, we computed the explanation 𝑋 , its
label 𝑦 = 𝐹𝑜 (𝑞,𝑋 ), and its indicators 𝑠𝑜 , 𝑠𝑋𝑜 for each test triple. We
aggregate the results over 100 triples by computing the average 𝑠
of the correctness indicators of the pre-explanation simulation, and
the average 𝑠𝑋 of the correctness indicators of the post-exp simula-

tions; the final score is then computed as 𝑦 = 𝑠𝑋 − 𝑠 and represents
the average FSV. Finally, we adopted the same LLMs and the same
values for 𝑗 and 𝑘 employed in the evaluation with the benchmark.
The code, the datasets, and the trained KGE models utilized in our
study are openly accessible on GitHub2. In Appendix A, we provide
detailed information on the hyperparameters utilized for training
the KGE models, as well as those used in the explanations methods,
and in the LLMs.

5.2 Outcomes of the Evaluation

In Tab. 1 we report the outcomes in terms of percentages of out-
comes equal to −1, 0, or 1, of the experiments that measure the
alignment of LP-DIXIT with human judgment. In such Table L-70B
(L-8B) stands for Llama3.1-70B-Instruct (Llama3.1-8B-instruct) and
M-7B stands for Mixtral-8x7B-Instruct (in the following we omit
Instruct in the name of LLMs).

The percentage of explanations from FR200K that return 0 is
consistently higher than the percentage of those that return −1.
Thus, even if LP-DIXIT does not return 1 for all explanations in
FR200K, the majority of errors are of the least serious type. In
addition, LP-DIXIT with Llama-3.1-70B as the verifier consistently
outperforms the other configurations on FR200K. In contrast, LP-
DIXIT using Mixtral-8x7B performs best on FRUNI, as it correctly
returns 0 for all the explanations.

It is also worth noting that when using Llama-3.1-70B, which is
the largest model in terms of parameter size, the addition of O and
D is almost always detrimental. For instance, on predictions made
on FR200Kwith TransE, when using such LLM, we got the following
proportions of 1: 65% for LP-DIXIT, 62% for LP-DIXITO , 43% for
LP-DIXITD , and 39 % for LP-DIXITOD . In contrast, in the case of
Llama-3.1-8B and Mixtral-8x7B such additions are often beneficial.
For instance, on predictions made on FR200K with ComplEx, when
using Llama3.1-8B, the sequence of percentages of 1 is 48.2%, 48.9%,
61% , and 65%. It may be that very large LLMs make better use of the
input context, such as the explanations we are evaluating. It follows
that the use of smaller LLMs is more appropriate when running
a very large LLM is too demanding in terms of computational
resources. Conversely, if sufficient resources are available, using

2https://anonymous.4open.science/r/lp-dixit-168D
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Table 1: Alignment of LP-DIXIT with human judgment

FSV LLM FR200K FRUNI

-1 0 1 -1 0 1

Tr
an

sE

LP-DIXIT L-70B 0.025 0.311 0.664 0.000 0.834 0.166
LP-DIXIT L-8B 0.000 0.525 0.475 0.000 0.960 0.040
LP-DIXIT M-7B 0.004 0.601 0.395 0.000 1.000 0.000
LP-DIXITO L-70B 0.021 0.353 0.626 0.144 0.751 0.105
LP-DIXITO L-8B 0.017 0.563 0.420 0.170 0.585 0.245
LP-DIXITO M-7B 0.021 0.546 0.433 0.051 0.628 0.321
LP-DIXITD L-70B 0.021 0.546 0.433 0.119 0.877 0.004
LP-DIXITD L-8B 0.004 0.420 0.576 0.090 0.910 0.000
LP-DIXITD M-7B 0.004 0.866 0.130 0.036 0.964 0.000
LP-DIXITOD L-70B 0.101 0.500 0.399 0.264 0.679 0.058
LP-DIXITOD L-8B 0.008 0.441 0.550 0.303 0.574 0.123
LP-DIXITOD M-7B 0.038 0.765 0.197 0.032 0.809 0.159

Co
m
pl
Ex

LP-DIXIT L-70B 0.008 0.239 0.754 0.000 0.852 0.148
LP-DIXIT L-8B 0.002 0.516 0.482 0.000 0.961 0.039
LP-DIXIT M-7B 0.002 0.566 0.431 0.000 1.000 0.000
LP-DIXITO L-70B 0.014 0.268 0.718 0.012 0.809 0.179
LP-DIXITO L-8B 0.022 0.490 0.489 0.044 0.725 0.230
LP-DIXITO M-7B 0.030 0.506 0.464 0.012 0.613 0.375
LP-DIXITD L-70B 0.021 0.481 0.498 0.092 0.888 0.020
LP-DIXITD L-8B 0.003 0.385 0.612 0.076 0.919 0.006
LP-DIXITD M-7B 0.010 0.867 0.123 0.047 0.953 0.000
LP-DIXITOD L-70B 0.049 0.485 0.466 0.056 0.845 0.099
LP-DIXITOD L-8B 0.004 0.346 0.650 0.055 0.824 0.121
LP-DIXITOD Mx7B 0.014 0.779 0.207 0.020 0.747 0.232

Co
nv

E

LP-DIXIT L-70B 0.000 0.130 0.870 – – –
LP-DIXIT L-8B 0.000 0.565 0.435 – – –
LP-DIXIT M-7B 0.000 0.522 0.478 – – –
LP-DIXITO L-70B 0.043 0.348 0.609 – – –
LP-DIXITO L-8B 0.000 0.304 0.696 – – –
LP-DIXITO M-7B 0.000 0.609 0.391 – – –
LP-DIXITD L-70B 0.130 0.565 0.304 – – –
LP-DIXITD L-8B 0.000 0.261 0.739 – – –
LP-DIXITD M-7B 0.043 0.739 0.217 – – –
LP-DIXITOD L-70B 0.217 0.435 0.348 – – –
LP-DIXITOD L-8B 0.130 0.391 0.478 – – –
LP-DIXITOD M-7B 0.087 0.609 0.304 – – –

Table 2: Outcomes of LP-DIXIT on three KGs

KGE LP-X Mode FB15k-237 WN18RR YAGO3-10

TransE

DP nec 0.000 0.500 0.860

DP suff 0.010 0.510 0.860

Kelpie nec 0.000 0.020 0.280
Kelpie suff 0.030 0.000 0.580
GEnI – 0.010 -0.050 -0.020

ComplEx

Criage nec 0.570 0.520 0.850
Criage suff 0.430 0.290 0.810

DP nec -0.020 0.600 0.700
DP suff -0.020 0.600 0.700

Kelpie nec 0.020 0.310 0.570
Kelpie suff 0.020 0.630 0.690
GEnI – -0.010 -0.010 -0.020

ConvE

Criage nec 0.090 0.269 0.800
Criage suff 0.300 0.250 0.870

DP nec 0.000 0.038 0.070
DP suff -0.040 0.019 0.120

Kelpie nec 0.000 0.019 -0.010
Kelpie suff 0.000 0.019 0.070

the larger LLM can help avoid the added complexity of computing
the rank to construct O and selecting the examples to build D.

We chose LP-DIXIT with Llama-3.1 for the comparative study of
post-hoc LP-X methods because it performs best on FR200K, which
is the most reliable benchmark since it is user-rated. Moreover,

Table 3: Outcomes of LP-DIXIT on KGs with schema

KGE LP-X Mode Summ. DB100K DB50K YAGO4-20

TransE DP nec – 0.140 0.300 0.150

DP suff – 0.110 0.300 0.150

Kelpie nec – 0.150 0.330 0.080
Kelpie suff – 0.080 0.310 0.140
GEnI – – -0.040 -0.020 0.030

Kelpie++ nec b 0.150 0.300 0.080
Kelpie++ nec s 0.150 0.340 0.070
Kelpie++ suff b 0.130 0.300 0.080
Kelpie++ suff s 0.140 0.320 0.120

ComplEx

Criage nec – 0.710 0.720 0.480
Criage suff – 0.630 0.690 0.520

DP nec – 0.460 0.300 0.110
DP suff – 0.460 0.300 0.110

Kelpie nec – 0.370 0.280 0.130
Kelpie suff – 0.390 0.300 0.090
GEnI – – 0.030 -0.010 0.000

Kelpie++ nec b 0.290 0.260 0.150
Kelpie++ nec s 0.280 0.330 0.100
Kelpie++ suff b 0.190 0.270 0.120
Kelpie++ suff s 0.160 0.280 0.150

ConvE

Criage nec – 0.450 0.660 0.360
Criage suff – 0.510 0.420 0.710

DP nec – 0.270 0.090 0.060
DP suff – 0.240 0.100 0.080

Kelpie nec – 0.020 0.090 0.030
Kelpie suff – 0.150 0.070 0.080

Kelpie++ nec b 0.130 0.100 0.060
Kelpie++ nec s 0.080 0.130 0.080
Kelpie++ suff b 0.180 0.100 0.150
Kelpie++ suff s 0.130 0.050 0.130

Llama-3.1 proved to be much faster than Mixtral-8x. The compar-
ative studies with the other setups are available in our GitHub
repository. Hence, in Tab. 2 we report the results in terms of 𝑦
of the comparative evaluation of the post-hoc LP-X methods on
FB15k-237, WN18RR, and YAGO3-10, while in Tab. 3 we report the
results of the evaluation, including Kelpie++, on DB50K, DB100K,
and YAGO4-20. On all KGs, Criage andData Poisoning performed
best, even though these methods produce the simplest explanations:
those consisting of a single triple. In contrast, GEnI leads to limited
(often negative) FSV. We posit that this occurred because GEnI very
often failed to generate an explanation, we handled such cases by
running the post-explanation simulation in LP-DIXIT without an
explanation, analogously to the pre-explanation simulation.

Moreover, in Tab. 4 we report the outcomes of LP-DIXITO on
DB50K, DB100K, and YAGO4-20. Note that the results between
Tab. 3 and Tab. 4 are often very similar. This is because O and/or
D are added to both the pre-explanation simulation and the post-
explanation simulation, improving the simulation accuracy in both
steps. To clarify, if both 𝑠 and 𝑠𝑋 increase by the same amount, the
difference between them remains the same. Indeed, we report in
Tab. 5 the values for 𝑠 obtained by LP-DIXIT and LP-DIXITO for
each dataset and model; such a metric does not depend on the LP-X
method and is thus essentially identical for all such methods: we
report it only once for each model and dataset. Tab. 5 shows that
LP-DIXITO consistently improves on LP-DIXIT in performing pre-

explanation simulations. Since 𝑠 is higher for LP-DIXITO than for
LP-DIXIT, while 𝑦 is close between them, it follows that 𝑠𝑋 is also
higher, i.e., LP-DIXITO also improves on LP-DIXIT in performing
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Table 4: Outcomes of LP-DIXITO on KGs with schema

KGE LP-X Mode Summ. DB100K DB50K YAGO4-20

TransE

DP nec – 0.110 0.310 0.040
DP suff – 0.120 0.310 0.050

Kelpie nec – 0.120 0.260 0.000
Kelpie suff – 0.030 0.270 -0.020
GEnI – – 0.050 -0.040 -0.110

Kelpie++ nec b 0.160 0.290 0.000
Kelpie++ nec s 0.170 0.280 -0.070
Kelpie++ suff b 0.210 0.270 -0.050
Kelpie++ suff s 0.200 0.270 -0.060

ComplEx

Criage nec. – 0.570 0.580 0.380
Criage suff – 0.420 0.520 0.360

DP nec – 0.320 0.240 -0.010
DP suff – 0.320 0.240 -0.010

Kelpie nec. – 0.180 0.200 0.070
Kelpie suff – 0.150 0.240 0.040
GEnI – – -0.020 0.000 -0.010

Kelpie++ nec b 0.190 0.170 0.030
Kelpie++ nec s 0.190 0.250 0.050
Kelpie++ suff b 0.130 0.240 0.100
Kelpie++ suff s 0.090 0.200 0.100

ConvE

Criage nec – 0.350 0.480 0.210
Criage suff – 0.430 0.300 0.330

DP nec – 0.220 0.070 -0.040
DP suff – 0.190 0.080 0.070

Kelpie nec. – -0.040 0.040 0.000
Kelpie suff – 0.080 0.040 0.070

Kelpie++ nec b 0.050 0.050 0.000
Kelpie++ nec s 0.080 0.020 0.000
Kelpie++ suff b 0.090 0.020 0.040
Kelpie++ suff s 0.100 -0.010 0.030

Table 5: Performance in pre-explanation simulation

KGE FSV DB100K DB50K YAGO4-20

TransE LP-DIXIT 0.203 0.080 0.130
LP-DIXITO 0.359 0.330 0.622

ComplEx LP-DIXIT 0.130 0.080 0.130
LP-DIXITO 0.310 0.350 0.423

ConvE LP-DIXIT 0.240 0.070 0.120
LP-DIXITO 0.360 0.400 0.530

post-explanation simulation. Thus, LP-DIXIT proved to focus on
the evaluation of the explanations rather than on the LLM’s ability
to answer LP queries: if this ability increases but the explanations
remain the same, the FSV does not change. The addition of O and/or
D can be seen as making the verifier more resourceful and thus
potentially more able to mimic human users in the FSV.

Moving to a qualitative analysis, we now illustrate typ-
ical examples of explanation output along with the re-
sults of the post-explanation simulation performed with
Llama-3.1-70B. We report the explanations generated by
DP (nec) and Kelpie (nec.) for predictions performed
with TransE on YAGO3-10. We specifically focus on the
triple ⟨Ihor_Korotetskiy, isAffiliatedTo, FC_Shakhtar_Donetsk⟩.
The explanation generated by DP is the triple
⟨Ihor_Korotetskiy, playsFor, FC_Shakhtar_Donetsk⟩. In con-
trast, the explanations generated by Kelpie consists of 4
triples: ⟨Ihor_Korotetskiy, playsFor, FC_Shakhtar_Donetsk⟩,
⟨Ihor_Korotetskiy, isAffiliatedTo, FC_Illichivets_Mariupol⟩,

⟨Ihor_Korotetskiy, isAffiliatedTo, FC_Kryvbas_Kryvyi_Rih⟩, and
⟨Ihor_Korotetskiy, playsFor, FC_Zorya_Luhansk⟩

The post-explanation simulation in the case of DP is the ground
truth FC_Shakhtar_Donets, whilst in the case of Kelpie it is
FC_Illichivets_Mariupol. It seems that the additional triples in the
explanation by Kelpie mislead the model whilst the explanation by
DP being simpler potentially include less misleading information.

6 Conclusion

We introduced LP-DIXIT, a novel approach to algorithmically eval-
uate explanations considering the perspective of users. Specifically,
it determines the FSV by employing LLMs to mimic human verifiers.
We performed an experimental evaluation on two existing bench-
marks to assess the alignment of LP-DIXIT with human judgment.
LP-DIXIT was also developed to address the lack of comparative
studies of post-hoc LP-X methods.

Whilst the results demonstrated the effectiveness of LP-DIXIT,
some limitations of our approach deserve further investigation.
First, in our formalization of the FSV a simulation is correct if the
entity returned by the verifier is equal to the prediction of the
KGE that is a ground truth in the context of FSV. However, if the
simulation differs from the ground truth, it may still lead to a true
triple existing in the KG. Therefore, we intend to investigate the
impact of distinguishing between the different types of errors in
the simulation. Moreover, if an LP-X method fails to generate an
explanation, LP-DIXIT executes the post-explanation simulation

with no explanation, analogously to the pre-explanation simulation.
We plan to further investigate the impact of failures on the overall
performance. In addition, LP-DIXITO keeps the set of possible
entities ordered as obtained from the KGE and the demonstrations
in LP-DIXITD are preserved in the order obtained from filtering
the triples. It may be worthwhile to assess the influence of different
orders.

A natural extension of this work would be a formalization of the
FSV with a more fine-grained output, e.g, in a continuous interval.
For example, we could consider the simulation as a ranking of
entities as fillers and then measure the ranking correlation with the
ground truth ranking given by the KGE model. In addition, we plan
to investigate on the use of RAG models as verifiers. Another goal
may be experimenting with more advanced prompt engineering
techniques, such as Chain-of-Though prompting. Finally, we could
also conduct a user study of the FSV with human users as verifiers
to gain additional insight into the alignment of LP-DIXIT with
human judgment.

References

[1] Zeynep Akata, Dan Balliet, Maarten De Rijke, Frank Dignum, Virginia Dignum,
Guszti Eiben, Antske Fokkens, Davide Grossi, Koen Hindriks, and Holger Hoos.
2020. A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect
with Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence.
Computer 53, 8 (2020), 18–28. https://doi.org/10.1109/MC.2020.2996587

[2] Elvira Amador-Domínguez, Emilio Serrano, and Daniel Manrique. 2023. GEnI:
A Framework for the Generation of Explanations and Insights of Knowledge
Graph Embedding Predictions. Neurocomputing 521 (2023), 199–212. https:
//doi.org/10.1016/j.neucom.2022.12.010

[3] Lisa P. Argyle, Ethan C. Busby, Nancy Fulda, Joshua R. Gubler, Christopher
Rytting, and David Wingate. 2023. Out of One, Many: Using Language Models
to Simulate Human Samples. Political Analysis 31, 3 (2023), 337–351. https:
//doi.org/10.1017/pan.2023.2

8

https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1016/j.neucom.2022.12.010
https://doi.org/10.1016/j.neucom.2022.12.010
https://doi.org/10.1017/pan.2023.2
https://doi.org/10.1017/pan.2023.2


929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LP-DIXIT: Evaluating Explanations of Link Predictions on Knowledge Graphs using Large Language Models Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open Data.
In The Semantic Web, David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nier-
strasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Karl Aberer, Key-Sun Choi,
Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck,
Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux (Eds.). Vol. 4825. Springer-Verlag, Berlin, Heidelberg, 722–735.
https://doi.org/10.1007/978-3-540-76298-0_52

[5] Vasileios Baltatzis and Luca Costabello. 2023. KGEx: Explaining Knowl-
edge Graph Embeddings via Subgraph Sampling and Knowledge Distillation.
arXiv:2310.01065 [cs]

[6] Roberto Barile, Claudia d’Amato, and Nicola Fanizzi. 2024. Explanation of
Link Predictions on Knowledge Graphs via Levelwise Filtering and Graph Sum-
marization. In The Semantic Web, Albert Meroño Peñuela, Anastasia Dimou,
Raphaël Troncy, Olaf Hartig, Maribel Acosta, Mehwish Alam, Heiko Paulheim,
and Pasquale Lisena (Eds.). Vol. 14664. Springer-Verlag, Berlin, Heidelberg, 180–
198. https://doi.org/10.1007/978-3-031-60626-7_10

[7] Patrick Betz, Christian Meilicke, and Heiner Stuckenschmidt. 2022. Adversarial
Explanations for Knowledge Graph Embeddings. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, Luc De Raedt
(Ed.). International Joint Conferences on Artificial Intelligence Organization,
Online, 2820–2826. https://doi.org/10.24963/ijcai.2022/391 Main Track.

[8] Rajarshi Bhowmik and Gerard De Melo. 2020. Explainable Link Prediction for
Emerging Entities in Knowledge Graphs. In The Semantic Web – ISWC 2020,
Jeff Z. Pan, Valentina Tamma, Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel
Polleres, Oshani Seneviratne, and Lalana Kagal (Eds.). Vol. 12506. Springer-Verlag,
Berlin, Heidelberg, 39–55. https://doi.org/10.1007/978-3-030-62419-4_3

[9] Kurt Bollacker, Robert Cook, and Patrick Tufts. 2007. Freebase: A SharedDatabase
of Structured General Human Knowledge. In Proceedings of the 22nd National
Conference on Artificial Intelligence - Volume 2, Vol. 7. AAAI Press, Cambridge,
Massachusetts, 1962–1963. https://dl.acm.org/doi/10.5555/1619797.1619981

[10] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates
Inc., Red Hook, NY, USA, 2787—-2795. https://https://dl.acm.org/doi/10.5555/
2999792.2999923

[11] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, CunxiangWang, YidongWang, Wei Ye, Yue Zhang, Yi Chang,
Philip S. Yu, Qiang Yang, and Xing Xie. 2024. A Survey on Evaluation of Large
Language Models. ACM Transactions on Intelligent Systems and Technology 15, 3
(June 2024), 1–45. https://doi.org/10.1145/3641289

[12] Claudia d’Amato, Pierpaolo Masella, and Nicola Fanizzi. 2021. An Approach
Based on Semantic Similarity to Explaining Link Predictions on Knowledge
Graphs. In IEEE/WIC/ACM International Conference on Web Intelligence. ACM,
ESSENDON VIC Australia, 170–177. https://doi.org/10.1145/3486622.3493956

[13] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2D knowledge graph embeddings. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Ap-
plications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence (New Orleans, Louisiana, USA)
(AAAI’18/IAAI’18/EAAI’18). AAAI Press, Cambridge, Massachusetts, Article 221,
8 pages. https://https://dl.acm.org/doi/10.5555/3504035.3504256

[14] Vincenzo Di Cicco, Donatella Firmani, Nick Koudas, Paolo Merialdo, and Divesh
Srivastava. 2019. Interpreting Deep Learning Models for Entity Resolution:
An Experience Report Using LIME. In Proceedings of the Second International
Workshop on Exploiting Artificial Intelligence Techniques for Data Management.
ACM, Amsterdam Netherlands, 1–4. https://doi.org/10.1145/3329859.3329878

[15] Boyang Ding, Quan Wang, Bin Wang, and Li Guo. 2018. Improving Knowledge
Graph Embedding Using Simple Constraints. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Melbourne, Australia, 110–121. https:
//doi.org/10.18653/v1/P18-1011

[16] Xin Luna Dong. 2019. Building a Broad Knowledge Graph for Products. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE Computer
Society, Washington DC, USA, 25–25. https://doi.org/10.1109/ICDE.2019.00010

[17] Abhimanyu Dubey et al. 2024. The Llama 3 Herd of Models. arXiv:2407.21783
[18] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. 2019. Towards

automatic concept-based explanations. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems. Curran Associates Inc., Red
Hook, NY, USA, Article 832, 10 pages. https://dl.acm.org/doi/10.5555/3454287.
3455119

[19] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. 2023. ChatGPT Outperforms
Crowd Workers for Text-Annotation Tasks. Proceedings of the National Acad-
emy of Sciences 120, 30 (July 2023), e2305016120. https://doi.org/10.1073/pnas.
2305016120

[20] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2019. A Survey of Methods for Explaining Black
Box Models. Comput. Surveys 51, 5 (Sept. 2019), 1–42. https://doi.org/10.1145/
3236009

[21] Nicholas Halliwell, Fabien Gandon, and Freddy Lecue. 2021. User Scored Evalua-
tion of Non-Unique Explanations for Relational Graph Convolutional Network
Link Prediction on Knowledge Graphs. In Proceedings of the 11th Knowledge
Capture Conference. ACM, Virtual Event USA, 57–64. https://doi.org/10.1145/
3460210.3493557

[22] Peter Hase and Mohit Bansal. 2020. Evaluating Explainable AI: Which Algorith-
mic Explanations Help Users Predict Model Behavior?. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Online, 5540–5552. https://doi.org/10.18653/v1/2020.
acl-main.491

[23] Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. 2020. Leakage-Adjusted
Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior
in Natural Language?. In Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics, Online, 4351–4367.
https://doi.org/10.18653/v1/2020.findings-emnlp.390

[24] Robert R. Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman. 2023.
Measures for Explainable AI: Explanation Goodness, User Satisfaction, Mental
Models, Curiosity, Trust, and Human-AI Performance. Frontiers in Computer
Science 5 (2023), 1096257. https://doi.org/10.3389/fcomp.2023.1096257

[25] Aidan Hogan, Claudio Gutierrez, Michael Cochez, Gerard de Melo, Sabrina
Kirrane, Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M.
Rashid, Lukas Schmelzeisen, Steffen Staab, Eva Blomqvist, Claudia d’Amato,
José Emilio Labra Gayo, Sebastian Neumaier, Anisa Rula, Juan Sequeda, and
Antoine Zimmerman. 2022. Knowledge Graphs. Number 22 in Synthesis Lectures
on Data, Semantics, and Knowledge. Springer, Cham, Switzerland. https://doi.
org/10.2200/S01125ED1V01Y202109DSK022

[26] Youmna Ismaeil, Daria Stepanova, Trung-Kien Tran, and Hendrik Blockeel. 2023.
FeaBI: A Feature Selection-Based Framework for Interpreting KG Embeddings.
In The Semantic Web – ISWC 2023, Terry R. Payne, Valentina Presutti, Guilin Qi,
María Poveda-Villalón, Giorgos Stoilos, Laura Hollink, Zoi Kaoudi, Gong Cheng,
and Juanzi Li (Eds.). Vol. 14265. Springer-Verlag, Berlin, Heidelberg, 599–617.
https://doi.org/10.1007/978-3-031-47240-4_32

[27] Albert Q. Jiang et al. 2024. Mixtral of Experts. arXiv:2401.04088
[28] Narayanan Asuri Krishnan and Carlos R. Rivero. 2023. A Model-Agnostic

Method to Interpret Link Prediction Evaluation of Knowledge Graph Embed-
dings. In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management. ACM, Birmingham United Kingdom, 1107–1116.
https://doi.org/10.1145/3583780.3614763

[29] Sawan Kumar. 2022. Answer-Level Calibration for Free-Form Multiple Choice
Question Answering. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association for Computa-
tional Linguistics, Dublin, Ireland, 665–679. https://doi.org/10.18653/v1/2022.acl-
long.49

[30] Niraj Kumar-Singh, Gustavo Polleti, Saee Paliwal, and Rachel Hodos-Nkhereanye.
2024. LinkLogic: A New Method and Benchmark for Explainable Knowledge
Graph Predictions. arXiv:2406.00855 [cs]

[31] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. Comput. Surveys 55, 9
(Sept. 2023), 1–35. https://doi.org/10.1145/3560815

[32] Tengfei Ma, Xiang song, Wen Tao, Mufei Li, Jiani Zhang, Xiaoqin Pan, Jianxin
Lin, Bosheng Song, and xiangxiang Zeng. 2024. KGExplainer: Towards Ex-
ploring Connected Subgraph Explanations for Knowledge Graph Completion.
arXiv:2404.03893 [cs]

[33] Pablo Sanchez Martin, Tarek Besold, and Priyadarshini Kumari. 2023. FRUNI
and FTREE Synthetic Knowledge Graphs for Evaluating Explainability. In XAI in
Action: Past, Present, and Future Applications.

[34] YaoMing, Panpan Xu, Huamin Qu, and Liu Ren. 2019. Interpretable and Steerable
Sequence Learning via Prototypes. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. ACM, Anchorage
AK USA, 903–913. https://doi.org/10.1145/3292500.3330908

[35] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin
Schmitt, Jörg Schlötterer, Maurice Van Keulen, and Christin Seifert. 2023. From
Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review
on Evaluating Explainable AI. Comput. Surveys 55, 13s (Dec. 2023), 1–42. https:
//doi.org/10.1145/3583558

[36] Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chiranjib Bhattacharyya.
2019. Word2Sense: Sparse Interpretable Word Embeddings. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Florence, Italy, 5692–5705. https://doi.org/10.
18653/v1/P19-1570

[37] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. 2020. LearningModel-
Agnostic Counterfactual Explanations for Tabular Data. In Proceedings of The
Web Conference 2020. ACM, Taipei Taiwan, 3126–3132. https://doi.org/10.1145/

9

https://doi.org/10.1007/978-3-540-76298-0_52
https://arxiv.org/abs/2310.01065
https://doi.org/10.1007/978-3-031-60626-7_10
https://doi.org/10.24963/ijcai.2022/391
https://doi.org/10.1007/978-3-030-62419-4_3
https://dl.acm.org/doi/10.5555/1619797.1619981
https://https://dl.acm.org/doi/10.5555/2999792.2999923
https://https://dl.acm.org/doi/10.5555/2999792.2999923
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3486622.3493956
https://https://dl.acm.org/doi/10.5555/3504035.3504256
https://doi.org/10.1145/3329859.3329878
https://doi.org/10.18653/v1/P18-1011
https://doi.org/10.18653/v1/P18-1011
https://doi.org/10.1109/ICDE.2019.00010
https://arxiv.org/abs/2407.21783
https://dl.acm.org/doi/10.5555/3454287.3455119
https://dl.acm.org/doi/10.5555/3454287.3455119
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3460210.3493557
https://doi.org/10.1145/3460210.3493557
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://doi.org/10.3389/fcomp.2023.1096257
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1007/978-3-031-47240-4_32
https://arxiv.org/abs/2401.04088
https://doi.org/10.1145/3583780.3614763
https://doi.org/10.18653/v1/2022.acl-long.49
https://doi.org/10.18653/v1/2022.acl-long.49
https://arxiv.org/abs/2406.00855
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2404.03893
https://doi.org/10.1145/3292500.3330908
https://doi.org/10.1145/3583558
https://doi.org/10.1145/3583558
https://doi.org/10.18653/v1/P19-1570
https://doi.org/10.18653/v1/P19-1570
https://doi.org/10.1145/3366423.3380087
https://doi.org/10.1145/3366423.3380087


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

3366423.3380087
[38] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. 2020. YAGO

4: A Reason-able Knowledge Base. In The Semantic Web, Andreas Harth, Sabrina
Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa
Gentile, Peter Haase, and Michael Cochez (Eds.). Vol. 12123. Springer-Verlag,
Berlin, Heidelberg, 583–596. https://doi.org/10.1007/978-3-030-49461-2_34

[39] Pouya Pezeshkpour, C. A. Irvine, Yifan Tian, and Sameer Singh. 2019. Investigat-
ing Robustness and Interpretability of Link Prediction via Adversarial Modifica-
tions. In Proceedings of NAACL-HLT. 3336–3347.

[40] Kaivalya Rawal andHimabindu Lakkaraju. 2020. Beyond Individualized Recourse:
Interpretable and Interactive Summaries of Actionable Recourses. Advances in
Neural Information Processing Systems 33 (2020), 12187–12198. https://https:
//dl.acm.org/doi/10.5555/3495724.3496746

[41] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, San Francisco California USA, 1135–1144. https://doi.org/10.1145/
2939672.2939778

[42] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and
Paolo Merialdo. 2021. Knowledge Graph Embedding for Link Prediction: A
Comparative Analysis. ACM Transactions on Knowledge Discovery from Data 15,
2 (April 2021), 1–49. https://doi.org/10.1145/3424672

[43] Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teofili. 2022.
Explaining Link Prediction Systems Based on Knowledge Graph Embeddings. In
Proceedings of the 2022 International Conference on Management of Data. ACM,
Philadelphia PA USA, 2062–2075. https://doi.org/10.1145/3514221.3517887

[44] David Ruppert. 1987. Robust Statistics: The Approach Based on Influence Func-
tions. Technometrics 29, 2 (May 1987), 240–241. https://doi.org/10.1080/00401706.
1987.10488218

[45] Baoxu Shi and Tim Weninger. 2018. Open-World Knowledge Graph Completion.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[46] Chandan Singh, W. James Murdoch, and Bin Yu. 2018. Hierarchical Interpreta-
tions for Neural Network Predictions. In International Conference on Learning
Representations. https://doi.org/10.48550/arXiv.1806.05337

[47] Amit Singhal. 2012. Introducing the Knowledge Graph: Things, Not
Strings. https://blog.google/products/search/introducing-knowledge-graph-
things-not/.

[48] Sumedha Singla and Brian Pollack. 2020. Explanation by Progressive Exaggera-
tion. In The International Conference on Learning Representations.

[49] Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick,
and Eduard Hovy. 2018. Spine: Sparse Interpretable Neural Embeddings. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. https:
//doi.org/10.1609/aaai.v32i1.11935

[50] Alona Sydorova, Nina Poerner, and Benjamin Roth. 2019. Interpretable Question
Answering on Knowledge Bases and Text. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. 4943–4951. https:
//doi.org/10.48550/arXiv.1906.10924

[51] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In International
Conference on Machine Learning. JMLR, Online, 2071–2080. https://https://dl.
acm.org/doi/10.5555/3045390.3045609

[52] Angelina Wang, Jamie Morgenstern, and John P. Dickerson. 2024. Large Lan-
guage Models Cannot Replace Human Participants Because They Cannot Portray
Identity Groups. arXiv:2402.01908 [cs]

[53] Ruwan Wickramarachchi, Cory Henson, and Amit Sheth. 2021. Knowledge-
Infused Learning for Entity Prediction in Driving Scenes. Frontiers in Big Data 4
(2021), 759110. https://doi.org/10.3389/fdata.2021.759110

[54] Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui Chen, Feiyu Xiong,
Mosha Chen, and Huajun Chen. 2022. From Discrimination to Generation:
Knowledge Graph Completion with Generative Transformer. In Companion
Proceedings of the Web Conference 2022. ACM, Virtual Event, Lyon France, 162–
165. https://doi.org/10.1145/3487553.3524238

[55] Sheng Xu, Mike Chen, and Shuwen Chen. 2024. Enhancing Retrieval-Augmented
Generation Models with Knowledge Graphs: Innovative Practices Through a
Dual-Pathway Approach. In Advanced Intelligent Computing Technology and
Applications, De-Shuang Huang, Zhanjun Si, and Wei Chen (Eds.). Vol. 14880.
Springer Nature Singapore, Singapore, 398–409. https://doi.org/10.1007/978-
981-97-5678-0_34

[56] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating Explanations for Graph Neural Networks. Ad-
vances in neural information processing systems 32 (2019), 9244–9255. https:
//dl.acm.org/doi/10.5555/3454287.3455116

[57] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li,
and Kui Ren. 2019. Data Poisoning Attack against Knowledge Graph Embedding.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence.
4853–4859. https://doi.org/10.24963/ijcai.2019/674

[58] Wen Zhang, Shumin Deng, Han Wang, Qiang Chen, Wei Zhang, and Huajun
Chen. 2020. XTransE: Explainable Knowledge Graph Embedding for Link Pre-
diction with Lifestyles in e-Commerce. In Semantic Technology, Xin Wang,
Francesca A. Lisi, Guohui Xiao, and Elena Botoeva (Eds.). Vol. 1157. Springer
Singapore, Singapore, 78–87. https://doi.org/10.1007/978-981-15-3412-6_8

[59] Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, and Huajun Chen.
2019. Interaction Embeddings for Prediction and Explanation in Knowledge
Graphs. In Proceedings of the Twelfth ACM International Conference onWeb Search
and Data Mining. ACM, Melbourne VIC Australia, 96–104. https://doi.org/10.
1145/3289600.3291014

[60] Dong Zhao, Guojia Wan, Yibing Zhan, Zengmao Wang, Liang Ding, Zhigao
Zheng, and Bo Du. 2023. KE-X: Towards Subgraph Explanations of Knowledge
Graph Embedding Based on Knowledge Information Gain. Knowledge-Based
Systems 278 (2023), 110772. https://doi.org/10.1016/j.knosys.2023.110772

[61] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, and Eric Xing. 2024. Judging
Llm-as-a-Judge with Mt-Bench and Chatbot Arena. Advances in Neural Informa-
tion Processing Systems 36 (2024), 46595–46623. https://dl.acm.org/doi/10.5555/
3666122.3668142

A Appendix: Hyper-parameters

In this appendix, we report in Tab. 6 the hyper-parameters that
we adopted to train each KGE model on each KG and benchmark.
Furthermore, we employed the same set of hyper-parameters to
execute Criage, DP, Kelpie, Kelpie++ and GEnI to generate expla-
nations.

Note that:
• 𝐷 is the embedding dimension which is identical for entity

and relation embeddings in the models that we adopted
• 𝑝 is the exponent of the 𝑝-norm
• 𝐿𝑟 is the learning rate
• 𝐵 is the batch size
• 𝐸𝑝 is the number of epochs
• 𝛾 is the margin in the Pairwise Ranking Loss
• 𝑁 is the number of negative triples generated for each

positive triple
• 𝜔 is the size of the convolutional kernels
• 𝐷𝑟𝑜𝑝 is the training dropout rate, specifically:

– 𝑖𝑛 is the input dropout
– ℎ is the dropout applied after a hidden layer
– 𝑓 𝑒𝑎𝑡 is the feature dropout

We adopted Random Search to find the values of the hyper-
parameters, except for 𝐵 and 𝐸𝑝; the performance of each con-
figuration is assessed on the validation set. Specifically, for 𝐵 we
adopted the value 16536 for all configurations as it leads to opti-
mize execution times and parallelism, exceptions are ComplEx and
ConvE on FRUNI where we adopted 4096 as such KGs have a much
more higher of entities and thus require more memory. While, for
𝐸𝑝 we adopted early stopping with 1000 as maximum number of
epochs, 5 as patience threshold, and evaluating the model on the
validation set every 5 epoch during the training of the models. Then,
we reported the epoch on which the training stopped.

In all the LLMs we adopted the value 0.6 for the temperature
parameter. Finally, we specify the value 0.6 for the threshold pa-
rameter required in GEnI as it is one of the values suggested in [2].
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Table 6: Hyper-parameters of the KGE models

FB15k-237 WN18RR YAGO3-10 DB50K DB100K YAGO4-20 FRUNI FR200K

TransE

𝐷 256 128 256 128 256 64 64 128
𝑝 2 2 2 2 2 2 2 2
𝐸𝑝 90 160 70 180 215 100 30 65
𝐿𝑟 0.008 0.014 0.042 0.001 0.026 0.008 0.002 0.028
𝛾 1 10 2 2 10 2 1 10
𝑁 10 5 15 10 5 15 5 5

ConvE

𝐷 200 200 200 200 200 200 200 200
𝐷𝑟𝑜𝑝.𝑖𝑛 0.1 0 0.1 0 0.2 0.2 0.1 0.2
𝐷𝑟𝑜𝑝.ℎ 0.1 0 0 0 0 0.1 0 0.5
𝐷𝑟𝑜𝑝.𝑓 𝑒𝑎𝑡 0 0.3 0 0 0.2 0.3 0.2 0.2
𝐸𝑝 270 50 565 65 670 535 30 45
𝐿𝑟 0.021 0.029 0.012 0.023 0.034 0.042 0.037 0.016

ComplEx
𝐷 256 265 256 256 64 64 256 256
𝐸𝑝 124 239 94 104 1000 754 164 89
𝐿𝑟 0.044 0.046 0.034 0.050 0.008 0.004 0.004 0.048
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